Hilbert points in Hilbert space-valued Lᵖ spaces
Abstract
Let \(H\) be a Hilbert space and \((\Omega,\mathcal{F},\mu)\) a probability space. A Hilbert point in \(L^p(\Omega; H)\) is a nontrivial function \(\varphi\) such that \(\|\varphi\|_p \leq \|\varphi+f\|_p\) whenever \(\langle f, \varphi \rangle = 0\). We demonstrate that \(\varphi\) is a Hilbert point in \(L^p(\Omega; H)\) for some \(p\neq2\) if and only if \(\|\varphi(\omega)\|_H\) assumes only the two values \(0\) and \(C>0\). We also obtain a geometric description of when a sum of independent Rademacher variables is a Hilbert point.
Downloads
Published
20-02-2023
Issue
Section
Articles
How to Cite
Brevig , O. F., & Grepstad , S. (2023). Hilbert points in Hilbert space-valued Lᵖ spaces. North-Western European Journal of Mathematics, 9, 17-29. https://nwejm.univ-lille.fr/index.php/nwejm/article/view/3