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Abstract

This article deals with generalisations of some classical problems and results
in additive combinatorics of groups to the context of group actions or group
representations. We show that the classical methods are sufficiently deep to
extend to this wider context where, instead of two free transitive commuting
actions (left and right multiplications on the group), there is only one single
action. Following ideas of Hamidoune and Tao, our main tool is the notion of
G-invariant submodular function defined on power sets. We are able to extend
to this group action context results of Hamidoune and Tao as well as results of
Murphy and Ruzsa.

Keywords: submodular function, additive combinatorics, Kneser, group action,
small growing set, fragment, atom.
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1 Introduction

Consider a multiplicative group G acting on the left on a non empty set X. When A
and Y are respectively finite nonempty subsets of G and X what can be said about
the cardinality |A ·Y | of the set A · Y = {a · y | (a,y) ∈ A × Y } ? Here a · y means the
image of y under the action of a. When X = G and the action considered is the
action by left multiplication (thus a · y = ay, the product of the two elements in the
group G), this question relates to additive (or here multiplicative) combinatorics
on groups and there exist in the literature numerous results yielding lower and
upper bounds for the cardinality of the Kronecker product set AY (see for example
Nathanson (1996) and Tao (2013)). Among them, Kneser’s theorem (Grynkiewicz
(2013, Theorem 6.1, p.61)) is a corner stone claiming that in any Abelian group

|GAY |+ |AY | ≥ |A|+ |Y |
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where GAY = {g ∈ G | gAY = AY } is the stabilizer of the product set AY . This theorem
does not remain true for non Abelian groups even it is not immediate to find a
simple counterexample. Therefore, if we consider GA·Y = {g ∈ G | g · (A ·Y ) = A ·Y },
the inequality

|GA·Y |+ |A ·Y | ≥ |A|+ |Y | (1)

does not hold in the general left action context. In contrast, it is very easy to find a
counterexample by considering the action of the symmetric group Sn on the set
{1, . . . ,n} (see Example 1).

Although Kneser’s theorem does not have an immediate generalisation in the
group action context, we shall see in this paper that it is nevertheless possible to
obtain interesting analogues of various other results in this setting, most of them
being inspired by results or tools coming from additive combinatorics for non
Abelian groups. Among them is the notion of submodular function defined on
subsets of G or subsets of X. In fact, we will often obtain two different families
of statements by fixing Y and letting A running on P (G) (the power set of G) or
fixing A and letting Y running on P (X) (the power set of X). This is for example
the case for Theorems 3 and 7 which both are declinations of the same theorem
proved by Tao (2013) for product sets in general groups. Even if the group action
context studied in this paper presents some analogies with the combinatorics of
groups (i.e. the case of an action by multiplication), it is worth mentioning that
there are important differences. Maybe the most important comes from the fact
that the multiplication in a group can be performed on the left and on the right and
that it corresponds to the case of two free commuting actions on G whereas a group
action on X is only one-hand sided. This makes many classical tools like the Dyson
or Diderrich transforms on subsets of groups (see for example Diderrich (1973) and
Nathanson (1996)) irrelevant for group actions.

The present paper can also be regarded as a contribution to the general project
aiming at extending methods developed in additive combinatorics of groups to
more general contexts and, as such, it has been thought to be as self-contained as
possible. In the linear context, where the cardinalities of sets are replaced by the
dimensions of vectors spaces, this was initiated in Hou, Leung, and Xiang (2002)
for field extensions and developed in particular in Bachoc, Couvreur, and Zémor
(2018), Eliahou and Lecouvey (2009), Lecouvey (2014) (for fields and division
rings) and in Beck and Lecouvey (2017) and Mirandola and Zémor (2015) (for
associative algebras). As far as we are aware, the group action setting presented
in this paper was first considered much more recently in Murphy (2019) and
Murphy (2016) in connection with the notion of approximate groups. Our approach
here, based on tools coming from group theory and on the notion of submodular
functions, is different. Most often, we are also able to state linear analogues of our
results where group actions on finite sets are replaced by finite-dimensional group
representations.
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2. Group actions and representations context

Let us now describe more precisely the content of the paper. Section 2 is devoted
to the presentation of the context of the article: group actions and representations.
Section 3 presents methods and examples that extend positively or negatively to
the context of group actions. Our aim is also to show that not every result can be
generalised to the group action context. In particular, we explain how the problem
of determining lower and upper bounds for the previous cardinality |A ·Y | can
theoretically be reduced to the classical group setting when sufficient information
on the orbit decomposition and the stabilizers of the elements is available. This
is for example the case for free actions. Nevertheless in general, this reduction
is not easy to perform and the results are not so simple and elegant as in the
group setting. We also consider the particular case of a faithful action which gives
straightforward counterexamples to Kneser’s inequality (1). For more positive
results, we establish results in the spirit of the paper by Murphy (2019) and we give
an analogue of a theorem by Ruzsa (2009) for the action of a product set AB in the
group G on a subset Y of X to illustrate that many other classical results in additive
combinatorics certainly have interesting counterparts in the group action context.
The further sections are devoted to the use of submodular functions to generalise
theorems of classical additive group theory to the context of group actions and group
representations. Section 4 presents the notion of submodular maps and gives the
standard examples that will be studied in the following. We define in particular a
natural analogue of the classical graph cut submodular function (see Proposition 5).
Section 5 develops the theory of fragment and atom of Hamidoune (see Hamidoune
(1984) and Tao (2008)) in the context of group action and representations. In
particular, Proposition 7 gives some information on the structure of the atoms
associated to a G-invariant submodular function defined on P (X). In Section 6, we
state and prove the analogues of theorems by Hamidoune, Tao and Petridis in our
group action and group representation setting which are at the heart of this paper.
These analogues rely on the submodularity of the maps introduced in Section 4. We
also study in details the fragment for one of these maps. Finally, in Section 7, we
end our article with another extension of a classical result whose proof needs the
notion of submodular map on a lattice.

2 Group actions and representations context

In the sequel we consider G a group and X a set on which G acts. As usual, for any
(g,x) ∈ G ×X, we shall denote by g · x the element of X corresponding to the action
of g on x. Let us write

Gx = {g ∈ G | g · x = x}
for the stabilizer of x in G. For any subset Y ⊂ X and any g ∈ G, set g ·Y = {g ·y | y ∈ Y }.
Let

GY = {g ∈ G | g ·Y = Y }
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be the stabilizer of Y in G. Observe that for any fixed g ∈ G, the map{
X −→X
x 7−→g · x (2)

is bijective. In particular, for any finite subset Y ⊂ X, we have |g ·Y | = |Y | , that is
the sets g ·Y and Y have the same cardinality. It also shows that a group action of
G on a set X may be given by a group homomorphism from G to the group S(X)
of permutations of the set X. The action of G on X is said to be faithful when the
corresponding homomorphism from G to S(X) is injective.

For any subset A ⊂ G and Y ⊂ X, define

A ·Y = {a · y | (a,y) ∈ A×Y }.

In the sequel, we will study lower and upper bounds for the cardinality |A ·Y | when
A and Y are supposed to be finite. In the particular case X = G and G acts on itself
by left translation, we recover the classical problem in additive combinatorics of
determining lower and upper bounds for Minkowski products of finite subsets of
an ambient group.

It will also be interesting to replace the set X by its linear analogue, that is, to
consider a representation (ρ,V ) of the group G instead of an action of G on X. Recall
that a representation (ρ,V ) is a group homomorphism ρ : G→ GL(V ) where V is a
finite-dimensional vector space over a given field k. This can essentially be thought
as a linear action of G on the vector space V and we will write g · v the action of
any element g ∈ G on any vector v ∈ V . We thus have for any (λ1,λ2) ∈ k2 and any
(v1,v2) ∈ V 2

g · (λ1v1 +λ2v2) = λ1(g · v1) +λ2(g · v2).

For any subset Z in V , we denote by ⟨Z⟩ the k-subspace of V generated by the
vectors in Z. We then write for short dim(Z) instead of dim(⟨Z⟩). Given any k-
subspace W of V and any subset A of G, we will study the dimension dim(A ·W ) of
the set

A ·W = ⟨a · v | (a,v) ∈ A×W ⟩.

in terms of dim(W ) and |A|.

3 Extensions and limits of standard techniques

This section is devoted to the continuation of the work by Murphy (2019) on some
extensions of classical results in combinatorial group theory to the action group
setting. The notion of symmetric sets introduced by Murphy allows us to generalise
a theorem of Freiman (1973) (Subsection 3.3). In Subsection 3.4, we show that the

78



3. Extensions and limits of standard techniques

proof of Theorem 9.2 by Ruzsa (2009) can be extended to the group action context.
But we start the section with some obstructions: we show that the most classical
method in the study of a group action, namely the orbit decomposition method, is
not so powerful in our combinatorial context because it requires much information
on the stabilizers and the associated left cosets. We also exhibit counterexamples to
the direct generalisation of Kneser’s theorem in the group action setting.

3.1 Orbit decomposition method for a group action

In this paragraph, we will assume that the set X is finite. Given an element x in X,
we denote by Ox = {g · x | g ∈ G} its orbit. Let us fix x1, . . . ,xr in X so that

X =
r⊔

i=1
Oxi

is the disjoint union of the orbits Oxi , i = 1, . . . , r. It is classical that for any i = 1, . . . , r
the map

φi :
{

G/Gxi →Oxi
gGxi 7−→ g · xi

is well-defined and bijective. Assume now that we have fixed a representative g[i] in
each left coset gGxi of G/Gxi . Also for any subset S in G, write |S |i for the cardinality
of the set of cosets φi(S) = {gGxi | g ∈ S} which is the same as the cardinality of the
set S[i] = {g[i] | φi(g[i]) ∈ φi(S)}.

For any subset Y ⊂ X, write Yi = Y ∩Oxi . Then, we have for any subset A ⊂ G

A ·Y =
r⊔

i=1
A ·Yi .

Finally, for any i = 1, . . . , r, we get by setting Bi = {g[i] | gGxi ∈ φ
−1
i (Yi)} the equalities

|Yi | = |Bi | , |A ·Yi | = |ABi |i and

|A ·Y | =
r∑

i=1

|ABi |i .

Therefore, the problem of studying the cardinality of |A ·Y | can be formally reduced
to the problem of studying first each product set ABi in the group G and next the
number |ABi |i of left cosets attained by the elements of ABi . Since we have

|ABi |∣∣∣Gxi

∣∣∣ ≤ |ABi |i ≤ |ABi | , i = 1, . . . , r

we get
r∑

i=1

|ABi |∣∣∣Gxi

∣∣∣ ≤ |A ·Y | ≤
r∑

i=1

|ABi |
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which theoretically reduces the question to classical estimations of product sets in
groups which is largely addressed in the literature. In particular, when the action is
simply transitive (that is when there is only one orbit and each stabilizer is trivial),
both problems are equivalent. When the action is free (each stabilizer is trivial) we
just get

|A ·Y | =
r∑

i=1

|ABi |

so that the study of |A ·Y | can be initialized by determining the orbits of the action
of G on X. However, in the general case, in addition to the orbit decomposition, this
method requires much information on the different stabilizers, their associated left
cosets and the maps φi , i = 1, . . . , r. This makes the results not so simple and elegant
as in the group setting. So other methods are needed. The last two subsections of
this section show how some standard methods of combinatorial group theory can
be adaptated. But, we first study generalisations of Kneser’s theorem in the group
action context.

3.2 Counterexample to Kneser’s theorem for group action

In this subsection, we exhibit two counterexamples that show that Kneser’s theorem
cannot be directly extended to the group action context.

Example 1 – Assume Y = {1, . . . , k}, G = Sn and consider n > ℓ ≥ k. Let A0 be the set
of permutations σ ∈Sn such that σ ({1, . . . , k}) ⊂ {1, . . . , ℓ}. One easily checks that

|A0| =
ℓ!

(ℓ − k)!
(n− k)!.

Now, observe that A0 · Y = {1, . . . , ℓ} and thus the stabilizer GA0·Y of A0 · Y has
cardinality∣∣∣GA0·Y

∣∣∣ = ℓ!× (n− ℓ)!.

So we get

|A0 ·Y |+
∣∣∣GA0·Y

∣∣∣ ≥ |Y |+ |A0| ⇐⇒ ℓ + ℓ!× (n− ℓ)! ≥ k +
ℓ!

(ℓ − k)!
(n− k)!

Hence

|A0 ·Y |+
∣∣∣GA0·Y

∣∣∣ ≥ |Y |+ |A0| ⇐⇒
ℓ − k

ℓ!(n− ℓ)!
≥

(
n− k
n− ℓ

)
− 1

which can only hold when ℓ = k for otherwise

ℓ − k
ℓ!(n− ℓ)!

< 1 and
(
n− k
n− ℓ

)
− 1 ≥ 1.
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3. Extensions and limits of standard techniques

In particular, when ℓ > k, the inequality (1) does not hold. Neither does the inequal-
ity |A0 ·Y |+

∣∣∣GA0·Y
∣∣∣ ≥ ∣∣∣GA0·Y Y

∣∣∣+ ∣∣∣GA0·YA0

∣∣∣ since GA0·Y Y = {1, . . . , ℓ} and GA0·YA0 = A0.
When k = ℓ, the set A0 is a group isomorphic to the direct product Sk ×Sn−k and
we get A0 ·Y = Y with GA0·Y = A0 in which case (1) becomes an equality.

Example 2 – There exists another version of Kneser’s theorem saying that for any
two non empty subsets A,B of an Abelian group G verifying |A+B| < |A|+ |B|, the
stabilizer of A + B is non trivial. This version is also no longer true in the group
action context. Indeed, let us consider G the group of affine transformations of
the line on F7: G = {x ∈ F7 7→ ax + b ∈ F7, a ∈ F ×7 ,b ∈ F7}, set Y = {1,2} ⊂ F7 and
A = {x 7→ x,x 7→ 5x+ 3} ⊂ G. We have AY = {1,2,6}. But an easy computation shows
that the stabilizer of AY in G is the identity map x 7→ x even though |AY | < |A|+ |Y |.

3.3 Symmetry sets and upper bounds

In this subsection, we use the symmetry sets introduced by Murphy (2019) to obtain
results analogous to results about sets of small doubling. Assume that the group G
acts on the set X and consider a finite nonempty subset Y of X. Following Murphy’s
ideas, for a real number α ∈ [0,1], we introduce the symmetry set of Y in G for α is
defined as

Symα(Y ) = {g ∈ G | |g ·Y ∩Y | ≥ α |Y |}.

We also introduce the weak stabilizer of Y as

ΓY = {g ∈ G | g ·Y ∩Y , ∅} =
⋃

α∈]0,1]

Symα(Y ).

One immediately checks that 1 ∈ ΓY and g ∈ Symα(Y ) if and only if g−1 ∈ Symα(Y ).
Also, if G acts on itself by left translation and A ⊂ G, we have ΓA = AA−1. Observe
also that Sym1(Y ) = GY is the stabilizer of Y in G. In general, we always have
GY ⊂ Symα(Y ) for any α ∈ [0,1] and, more generally, Symα(Y ) ⊂ Symα′ (Y ) for
α′ ≤ α. Therefore the set of subsets (Symα(Y ))α∈[0,1] decreases from G to GY when
α increases in [0,1]. The set{

|g ·Y ∩Y |
|Y |

| g ∈ ΓY
}
⊂Q>0

is discrete and not empty. Thus it admits a minimum α0 and we have ΓY = Symα0
(Y ).

When (ρ,V ) is a linear representation of G such that V , {0}, we define similarly
for any k-subspace W , {0} of V

Symα(W ) = {g ∈ G | dimg ·W ∩W ≥ αdimW } and

ΓW = {g ∈ G | g ·W ∩W , {0}}.
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We also have 1 ∈ Symα(W ) and g ∈ Symα(W ) if and only if g−1 ∈ Symα(W ).

In this section, we examine what kind of information can be extracted when
some assumptions are imposed on the cardinality ratio |A·Y ||Y | (or the dimension ratio
dim(A·Y )
dim(Y ) ). This problem was addressed in detail by Murphy (2019) for group action

setting. Let us start by recalling Theorem 1 of Murphy (2019) and state its linear
version.

Proposition 1 – 1. Assume that |A ·Y | = |Y |. Then H = ⟨A−1A⟩3 is a subgroup of
GY and Y decomposes into H-orbits.

2. Assume that dim⟨A ·W ⟩ = dimW . Then H = ⟨A−1A⟩ is a subgroup of GW . When
k has characteristic zero and H is finite, the k-space W decomposes into irreducible
representations for the group H .

Proof. 1: For any a ∈ A, we have 1 ∈ a−1A and a−1A ·Y = Y because Y ⊂ a−1A ·Y and∣∣∣a−1A ·Y
∣∣∣ = |A ·Y | = |Y |. This shows that A−1A ·Y = Y and thus the desired inclusion

⟨A−1A⟩ ⊂ GY . Since H is a subgroup of GY , it acts on Y which yields the decomposi-
tion in H-orbits. 2: We get similarly A−1A ·W = W and the decomposition of W in
irreducible representations for the finite group H follows from the semisimplicity
of its representation theory in characteristic zero. □

Small growing sets

In his article Murphy (2019), Murphy extends Ruzsa’s triangle inequality, Ruzsa’s
covering lemma and Balog-Szemerédi-Gowers theorem to the context of group
actions. Here, we extend results on small growing subsets: we examine cases where
the hypotheses of the previous proposition are relaxed. In the following α is a fixed
real number in ]0,1].

Lemma 1 – 1. Assume that A ⊂ G and Y ⊂ X are finite and nonempty and satisfy
|A ·Y | ≤ (2−α) |Y |. Then A−1A ⊂ Symα(Y ).

2. Let us consider A ⊂ G and W a finite-dimensional k-subspace of V . Assume that
dim⟨A ·W ⟩ ≤ (2−α)dimW then A−1A ⊂ Symα(W ).

Proof. 1: Let us consider a,b in A. Since we have |a ·Y | = |b ·Y | = |Y | , a · Y ⊂ A · Y ,
b · Y ⊂ A · Y and |A ·Y | ≤ (2 −α) |Y | , we must have |(a ·Y )∩ (b ·Y )| ≥ α |Y |. We thus
obtain

∣∣∣(b−1a ·Y )∩Y
∣∣∣ ≥ α |Y | and the desired inclusion A−1A ⊂ Symα(Y ).

2: This works similarly using Grassmann formula. □

3Here ⟨A−1A⟩means the subgroup of G generated by A−1A.
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3. Extensions and limits of standard techniques

Given a subset S of G, we denote by ⟨S⟩ the subgroup of G generated by the
elements in S. The next proposition extends a standard result by Freiman (1973,
p.54).

Proposition 2 –

1. Assume that A ⊂ G and Y ⊂ X are nonempty, Y is finite and A and Y satisfy∣∣∣A−1 ·Y
∣∣∣ ≤ 3−α

2 |Y |. Then (AA−1)2 and AA−1 are contained in Symα(Y ).

2. Assume A ⊂ G is non empty and W is a nonzero finite dimensionnal k-subspace of
V such that dim⟨A−1 ·W ⟩ ≤ 3−α

2 dimW . Then (AA−1)2 is contained in Symα(W ).

Proof. 1: Consider u = ab−1 in AA−1 with a,b in A. We have∣∣∣(a−1 ·Y )∩ (b−1 ·Y )
∣∣∣ =

∣∣∣a−1 ·Y
∣∣∣+

∣∣∣b−1 ·Y
∣∣∣− ∣∣∣(a−1 ·Y )∪ (b−1 ·Y )

∣∣∣ ≥
2 |Y | −

∣∣∣A−1 ·Y
∣∣∣ ≥ 1 +α

2
|Y |

where the second inequality follows from the inclusions a−1 ·Y ⊂ A−1 ·Y and b−1 ·Y ⊂
A−1 ·Y together with the hypothesis

∣∣∣A−1 ·Y
∣∣∣ ≤ 3−α

2 |Y |. We thus get

|Y ∩u ·Y | ≥
1 +α

2
|Y | .

For any v ∈ AA−1, we get similarly∣∣∣v−1 ·Y ∩Y
∣∣∣ = |Y ∩ v ·Y | ≥

1 +α
2
|Y | .

This implies that both sets Y ∩u ·Y and v−1 ·Y ∩Y intersect non trivially in Y and∣∣∣u ·Y ∩ v−1 ·Y ∩Y
∣∣∣ ≥ |Y ∩u ·Y |+ ∣∣∣v−1 ·Y ∩Y

∣∣∣− |Y | ≥ α |Y | .

Therefore we obtain that |vu ·Y ∩Y | ≥ α |Y | and the product vu of any two elements
u,v in AA−1 belongs to Symα(Y ). In particular, by taking v = 1 ∈ AA−1, we get that
AA−1 is contained in Symα(Y ).

2: The proof can be easily adapted to the context of a linear representation V
of G. □

Remark 1 –

1. When G acts on itself by left translation and Y = A, we have ΓA = AA−1 and
the hypothesis

∣∣∣A−1 ·Y
∣∣∣ < 3

2 |Y | implies that ⟨AA−1⟩G ⊂ AA−1, that is AA−1 is
itself a subgroup of G. Indeed, for some α, (AA−1)2 ⊂ Symα(Y ) ⊂ ΓA = AA−1.
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2. If we assume |A ·Y | < 3
2 |Y |, we get similarly that (A−1A)2 is contained ΓY .

Assertion 1 of the previous remark suggests the following corollary of Proposi-
tion 2.

Corollary 1 – Assume that A ⊂ G and Y ⊂ X are nonempty with Y a finite set and that
there exists α ∈]0,1[ such that

Symα(Y ) ⊂ AA−1 and
∣∣∣A−1 ·Y

∣∣∣ ≤ 3−α
2
|Y | .

Then AA−1 is a subgroup of G.

Proof. By Proposition 2, we get (AA−1)2 ⊂ Symα(Y ) ⊂ AA−1. Therefore, AA−1 is a
subgroup of G. □

3.4 Action of a product subset of G on a subset of X

Assume that G acts on the set X. We now address the question of determining an
upper bound of |AB ·Y | when A,B are nonempty finite subsets of G and Y a finite
subset of X. This is a group action version of Theorem 9.2 of Ruzsa (2009).

Theorem 1 – With the previous notation we have

|AB ·Y |2 ≤ |AB| |B ·Y |max
b∈B
{|Ab ·Y |}. (3)

In particular, when the elements of A commute with those of B we have

|AB ·Y |2 ≤ |AB| |B ·Y | |A ·Y | .

Proof. We proceed by induction on |B|. When B = {b}, we obtain

|Ab ·Y |2 ≤ |Ab| |b ·Y |max
b∈B
{|Ab ·Y |}

by observing that |Ab ·Y | ≤ |Ab| |Y | and |b ·Y | = |Y |. Now assume that |B| > 1. Set
m = maxu∈B{|Au ·Y |} and fix b ∈ B such that m = |Ab ·Y |. Write B = B′ ∪ {b}. Set
A = {a1, . . . , ar } and Y = {y1, . . . , ys}. We have AB = AB′ ∪Ab. There exists a subset A♭

of A such that

AB = AB′
⊔
a∈A♭

ab.

Similarly, there exists a subset Y ♭ of Y such that

B ·Y = (B′ ·Y )
⊔

y∈Y ♭

b · y.

We get
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3. Extensions and limits of standard techniques

AB ·Y = (AB′ ·Y )
⋃
a∈A♭

(ab ·Y ) = (AB′ ·Y )
⋃
a∈A♭

(aB ·Y ) =(Cont. next page)

(AB′ ·Y )
⋃
a∈A♭

(aB′ ·Y )
⋃
a∈A♭

⋃
y∈Y ♭

(ab · y).

Since we have
⋃
a∈A♭

(aB′ ·Y ) ⊂ AB′ ·Y , we can write

AB ·Y = (AB′ ·Y )
⋃
a∈A♭

⋃
y∈Y ♭

(ab · y).

By the previous decomposition, there exists X ⊂ A♭ ×Y ♭ such that

AB ·Y = (AB′ ·Y )
⊔

(a,y)∈X
(ab · y).

Set α = |X |, β =
∣∣∣A♭

∣∣∣ and γ =
∣∣∣Y ♭

∣∣∣. Since |AB ·Y | = |AB′ ·Y |+α, the desired inequality
(3) is equivalent to(∣∣∣AB′ ·Y ∣∣∣+α

)2
≤

(∣∣∣AB′∣∣∣+ β
)(∣∣∣B′ ·Y ∣∣∣+γ

)
m. (4)

By the induction hypothesis, we have∣∣∣AB′ ·Y ∣∣∣2 ≤ ∣∣∣AB′∣∣∣ ∣∣∣B′ ·Y ∣∣∣m. (5)

because maxu∈B′ {|Au ·Y |)} ≤ maxu∈B{|Au ·Y |)} = m. Moreover
⊔

(a,y)∈X
(ab · y) ⊂ Ab · Y

and therefore α ≤m. Since X ⊂ A♭ ×Y ♭, we have also α ≤ βγ . Hence α2 ≤mβγ. By
multiplying with (5), this gives

α2
∣∣∣AB′ ·Y ∣∣∣2 ≤ ∣∣∣AB′∣∣∣ ∣∣∣B′ ·Y ∣∣∣m2βγ.

Therefore

α
∣∣∣AB′ ·Y ∣∣∣ ≤m

√
γ |AB′ | × β |B′ ·Y | ≤m

γ |AB′ |+ β |B′ ·Y |
2

.

So

2α
∣∣∣AB′ ·Y ∣∣∣ ≤mγ

∣∣∣AB′∣∣∣+mβ
∣∣∣B′ ·Y ∣∣∣ .

Combining this last inequality with α2 ≤mβγ and (5), we finally get(∣∣∣AB′ ·Y ∣∣∣+α
)2

=
∣∣∣AB′ ·Y ∣∣∣2 + 2α

∣∣∣AB′ ·Y ∣∣∣+α2 ≤

m
∣∣∣AB′∣∣∣ ∣∣∣B′ ·Y ∣∣∣+mγ

∣∣∣AB′∣∣∣+mβ
∣∣∣B′ ·Y ∣∣∣+mβγ =

(∣∣∣AB′∣∣∣+ β
)(∣∣∣B′ ·Y ∣∣∣+γ

)
m

as desired. □
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4 Submodular functions

The goal of this section is to show how techniques based on submodular functions
are efficient methods to obtain results in the group action setting.

4.1 Background

Consider a set S (in the sequel S could be a group G or the set X on which G acts).
Let P (S) be the power set of S.

Definition 1 – The map f : P (S)→R is said to be submodular when

f (A∩B) + f (A∪B) ≤ f (A) + f (B) (6)

for any subsets A and B in P (S).
The submodular function f is said increasing when f (A) ≤ f (B) for any subsets

A ⊂ B ⊂ S.
The submodular function f is said G-invariant when f (gA) = f (A) for any

subsets A ⊂ S et any g ∈ G.

Very often, we shall consider submodular functions defined on the set Pfin(S)
of finite subsets in S rather than on P (S). When S is finite, one can check that f is
submodular if and only if for any subsets A1 ⊂ A2 of P (S) and any s ∈ S \A2, we
have

f (A1 ∪ {s})− f (A1) ≥ f (A2 ∪ {s})− f (A2). (7)

Let us now introduce examples of submodular functions relevant for our pur-
poses.

4.2 Combinations of submodular functions

We now record the two following easy propositions.

Proposition 3 – The set of nonnegative submodular functions defined from a set S is a
cone: given f and g nonnegative submodular on P (S) and (λ,µ) ∈R≥0, the map

λf +µg

is yet submodular nonnegative.

Now assume f is submodular (f is not assumed nonnegative here) and u is a
modular map defined on P (S), that is satisfying

u(A∪B) +u(A∩B) = u(A) +u(B).

Proposition 4 – For any real λ ∈R, the map f −λu is submodular on P (S).
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4.3 Fundamental examples of submodular functions

In this subsection, we give four examples of submodular functions. These functions
will be studied in detail in the next sections.

Group action and graph cut type submodular function

Let G be a finite group acting on the finite set X. For any subset Y ⊂ X, set

EY = {(g,y) ∈ G ×Y | g · y < Y }.

Consider the cut function

f :
{
P (X)→Z≥0
Y 7−→ |EY |

(8)

Proposition 5 – The previous function f is G-invariant submodular and nonnegative.

Proof. Consider two subsets Y1 and Y2 of X such that Y1 ⊂ Y2 and y0 ∈ X \Y2. Then
EY1∪{y0} is the disjoint union of

{(g,y) ∈ G ×Y1 | g · y < Y1} \ {(g,y) ∈ G ×Y1 | g · y = y0}and {(g,y0) | g · y0 < Y1 ∪ {y0}}.

This gives

f (EY1∪{y0}) = f (EY1
) +

∣∣∣{(g,y0) | g · y0 < Y1 ∪ {y0}}
∣∣∣− ∣∣∣Gy0

∣∣∣ ∣∣∣Oy0
∩Y1

∣∣∣ .
Similarly, we have

f (EY2∪{y0}) = f (EY2
) +

∣∣∣{(g,y0) | g · y0 < Y2 ∪ {y0}}
∣∣∣− ∣∣∣Gy0

∣∣∣ ∣∣∣Oy0
∩Y2

∣∣∣ .
Now, the assumption Y1 ⊂ Y2 implies the set inclusions

{(g,y0) | g ·y0 < Y2∪{y0}} ⊂ {(g,y0) | g ·y0 < Y1∪{y0}} and Oy0
∩Y1 ⊂ Oy0

∩Y2.

This gives

f (EY1∪{y0})− f (EY1
) ≥ f (EY2∪{y0})− f (EY2

)

and f is submodular by (7). Moreover, the function f is clearly nonnegative. Finally,
for any Y ⊂ X and any g0 ∈ G the map

χg0
:
{

EY → Eg0·Y
(g,y) 7−→ (g0gg

−1
0 , g0 · y)

is a bijection which implies the desired equality f (g0 ·Y ) = f (Y ). □

Remark 2 – When the action of G on X is free, it can be represented by an oriented
graph Γ = (X,E) with set of vertices X and set of arrows x→ x′ when there exists
g ∈ G such that x′ = g · x. Observe that such an element g is then unique by
assumption. Then the previous function f becomes the cut function of Γ which is
classical in graph theory and known to be submodular.
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Action on a fixed set or subspace

Assume that G acts on X. Fix Y a finite subset of X and λ a real. Let Pfin(G) be the
set of finite subsets in G. Then the map

cY :
{
Pfin(G)→R

A 7−→ |A ·Y | −λ |A|

is G-invariant submodular for every λ and increasing when λ = 0. Indeed, we have
for any two finite subsets A and B of G and any g ∈ G

(A∩B) ·Y ⊂ (A ·Y )∩ (B ·Y ) and (A∪B) ·Y = (A ·Y )∪ (B ·Y ),

and |gA ·Y | = |A ·Y | and |gA| = |A|. Similarly, when (ρ,V ) is a linear representation
of G and W is a fixed finite dimensional subspace of V , the map

γW :
{
Pfin(G)→R

A 7−→ dim(A ·W )−λ|A|

is G-invariant submodular for every λ and increasing when λ = 0 because

⟨(A∩B) ·W ⟩ ⊂ ⟨A ·W ⟩ ∩ ⟨B ·W ⟩ and ⟨(A∪B) ·W ⟩ = ⟨A ·W ⟩+ ⟨B ·W ⟩.

Action of a fixed subset in a group

When G acts on X and A is a fixed finite subset of G and λ a fixed real, we can
alternatively consider the map

dA :
{
Pfin(X)→R

Y 7−→ |A ·Y | −λ |Y |

defined on the set Pfin(X) of finite subsets of X. This gives yet a submodular function
since for any Y ,Z in Pfin(X), we have

A · (Y ∩Z) ⊂ (A ·Y )∩ (A ·Z) and A · (Y ∪Z) = (A ·Y )∪ (A ·Z).

Remark 3 – When G is Abelian, the submodular function dA is G-invariant since
for every finite subset Y of X and every g ∈ G, we have |A ·g ·Y | = |g ·A ·Y | = |A ·Y | and
|g ·Y | = |Y |. But this is not necessarily the case when G is not Abelian as illustrated
by the example below.

Example 3 – Assume that G = S5 regarded as the symmetric group permuting the
set {1,2,3,4,5}. Set Y = {1,2} and take A to be the subgroup of elements of G fixing
1 and 2. Now for g ∈ G such that g(1) = 5, g(2) = 4, g(3) = 3, g(4) = 2 and g(5) = 1, we
have

|A ·Y | = |Y | = 2

but

|A · g ·Y | = |A · {4,5}| = |{3,4,5}| = 3.
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5 Fragments and atoms

In this section, we derive some minimisation properties of submodular functions
and their applications to the case of G-invariant submodular maps.

5.1 Definitions and general properties

In this paragraph, we fix a submodular function f defined on P (S) such that
m = minY,∅∈Pfin(S) f (Y ) exists. Then a fragment for f is a nonempty finite subset
Y of S such that f (Y ) = m. An atom for f is a fragment of minimum cardinality.
Observe that there exists at least one fragment and one atom by the hypotheses
on f . Moreover, by definition, all the atoms have the same finite cardinality.

Lemma 2 – Assume A1 and A2 are two atoms for the submodular function f . Then
A1 = A2 or A1 ∩A2 = ∅.

Proof. Assume A1 ∩A2 is not empty. Since f is a submodular function on Pfin(S),
we can write

f (A1 ∩A2) + f (A1 ∪A2) ≤ f (A1) + f (A2) = 2m

by using that A1 and A2 are atoms. We have f (A1∩A2) ≥m and f (A1∪A2) ≥m since
m = minY,∅∈Pfin(S) f (Y ), we get f (A1∩A2) = f (A1∪A2) = m. Hence both A1∪A2 and
A1 ∩A2 are fragments for f . Now, observe that A1 ∩A2 ⊂ A1. Thus by minimality
of the cardinality of an atom, we have |A1 ∩A2| = |A1| and therefore A1 ∩A2 = A1
which means that A1 ⊂ A2. But A1 and A2 have same cardinality since they are
atoms. So A1 = A2. □

5.2 Invariant submodular functions on groups

Let G be a group and f : Pfin(G)→ R a submodular function. Recall that f is said
G-invariant when f (gA) = f (A) for any g ∈ G and any finite subset A ⊂ G.

Proposition 6 – Fix f a G-invariant submodular map. If m = minA∈Pfin(G)\{∅} f (A)
exists then, there exists a unique atom H for f containing 1. Moreover H is a finite
subgroup of G, the atoms of G are the left cosets gH with g ∈ G and they yield a partition
of G.

Proof. The existence of an atom is obtained as in the previous paragraph. Now, if
A is an atom, since it is nonempty, we get that a−1A is also an atom for any a ∈ A
because f (a−1A) = m. Then H = a−1A is an atom containing 1. Let H ′ be another
atom containing 1. Then H ∩H ′ is nonempty, thus by Lemma 2, we must have
H = H ′ which proves that there exists indeed a unique atom H containing 1. Given
h ∈ H , we show similarly that h−1H is an atom containing 1 so that h−1H = H.
Therefore, for any h,h′ ∈H we get that h−1h′ belongs to H which shows that H is a
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subgroup of G (finite by definition of an atom for f ). Let A be an atom for H . Then,
for any a ∈ A, the atom a−1A coincides with H because it contains 1. Thus, A = aH
is a left coset of H . It is then well-known that the left cosets of H give a partition of
G. □

5.3 Invariant submodular functions for group actions

Assume that G acts on the set X and consider f : Pfin(X)→R a submodular function.
Assume that m = infY∈Pfin(X)\{∅} f (Y ) exists and f is G-invariant. In this case, we get
by Lemma 2 that for any atom Y0 and any g ∈ G

g ·Y0 is an atom such that g ·Y0 = Y0 or g ·Y0 ∩Y0 = ∅.

Let A be the set of atoms for f . We thus get an action of the group G on the set
of atoms A. Now given any element y0 in the atom Y0, we obtain the inclusion
Gy0
⊂ GY0

of the stabilizers of y0 and Y0 for the action of G on X. Indeed, for any
g ∈ Gy0

, we have y0 = g · y0 ∈ g · Y0 and also y0 ∈ Y0. Therefore g · Y0 ∩ Y0 , ∅ and
g ·Y0 = Y0 which means that g belongs to GY0

. Observe also that if y0 belongs to the
atom Y0, then any element g · y0 also belongs to an atom (because g · y0 belongs to
g ·Y0). We will call the set

C(X) =
∐

Y0∈A
Y0

the core of X. The action of G on X restricts to an action on C(X) and thus, the set
C(X) is a disjoint union of orbits for the action of G on X. Moreover, for any such
orbit O and any atom Y0, we have

O∩Y0 = ∅ or O∩Y0 = {g · y | g ∈ GY0
/Gy0
} with y0 ∈ O ∩Y0 ,

that is, O∩Y0 is empty or parametrised by the elements of the coset GY0
/Gy0

with
y0 ∈ O ∩Y0 since Gy0

is then a subgroup of GY0
. In particular, if the action of G on

X is assumed to be transitive, we have a unique orbit, C(X) = X and the atoms form
a partition of X. Let us summarize the previous observations.

Proposition 7 – Assume that G acts on the set X and f : Pfin(X)→R is a G-invariant
submodular function such that m = infY,∅∈Pfin(X) f (Y ) exists.

When the action of G on X is transitive, C(X) = X, each element of X belongs to one
atom.

Moreover, the atoms for f are blocks of imprimitivity of the action meaning that we
have the following properties:

1. The group G acts on the set A of atoms for f .

2. The action of G restricts to the core C(X) of X, defined as the disjoint union of the
atoms for f which is thus also a disjoint union of orbits for the action of G on X.
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3. For any atom Y0, any y0 ∈ Y0 and any orbit O, we have Gy0
⊂ GY0

. Moreover,
the intersection set O ∩ Y0 is empty or parametrised by the elements of the coset
GY0

/Gy0
with y0 ∈ O ∩Y0.

Example 4 – For each action of a finite group G on the finite set X, one can consider
the cut function f as defined in (8). By Proposition 5, it is nonnegative submodular
and G-invariant. Also the minimum of f is equal to zero and is attained in any
subset Y such that g · y ∈ Y for any g ∈ G and any y ∈ Y . This means that the
fragments of f are the disjoint union of orbits and the atoms are the orbits of
minimal cardinality. The core is the disjoint union of the orbits with minimal
cardinality.

Example 5 – Here is another example in which atoms are the orbits with minimal
cardinality; the submodular function considered is the function dA of Subsection 4.3
with λ > 0. Fix σ ∈ Sn, consider X = {1, . . . ,n} and A = ⟨σ⟩. As suggested in
Subsection 3.1, X can be written as X = X1⊔· · ·⊔Xr where the Xi are the orbits of X
under the action of A. In this case, dA(Y ) =

∑
j,Xj∩Y,∅ |Xj | −λ|Y |. Among the subsets

Z of X meeting non trivially exactly the same Xi as Y , dA(Z) is minimal precisely
when Z = ∪j,Xj∩Y,∅Xj . In this case, dA(Z) = (1−λ)|Z |. Thus, for λ < 1, the fragments
and atoms coincide and are the Xj with minimal cardinality. When λ = 1, every
union of orbits is a fragment and the atoms are the Xj with minimal cardinality.

6 Generalising results in additive group theory with
submodular functions

This section is devoted to the study of the submodular functions cY ,γY ,dA of Sub-
section 4.3. Each of its subsection is devoted to the study of one of these three
submodular maps. We start with cY which allows us to generalise three classical
results. Subsection 6.2 is devoted to γY : we show that the results proved in the
preceding subsection extend to linear actions. Finally, in Subsection 6.3, we are
able to state results analogous to the one obtain for cY in the case of an action by an
Abelian group. We also study the atoms for small or big values of the parameter λ
in the definition of dA.

In any cases, recall that we consider an action of the group G on a set X (or a
linear action on a vector space V ). The functions cY ,γY , Y ⊂ X are defined on Pfin(G)
from a fixed finite subset of X or V whereas the functions dA is defined on Pfin(X)
from a finite fixed subset A ⊂ G. Also, all these functions attain their minimum on
their restrictions to nonempty subsets as soon as they are nonnegative because their
images are discrete subsets of R.
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6.1 Group action context and submodular functions cY
The submodularity and G-invariance of cY allow us to generalise a theorem of
Hamidoune, a theorem of Petridis and Tao and a theorem of Tao on small doubling
sets.

A generalisation of a theorem of Hamidoune

Let us start with an observation which is not relevant in the context of additive
group theory but crucial in our group action context. Consider the map

qY :
{ Pfin(G) \ {∅} →Q>0

A 7−→ |A·Y |
|A|

Then it might happen that

µ = inf
A∈Pfin(G)\{∅}

qY (A) = 0. (9)

This will be in particular the case if GY is an infinite subgroup of G since subsets A
in GY may have arbitrary large cardinalities whereas |AY | = |Y | is then fixed. In the
opposite direction, we will always have µ > 0 when

1. there exists an element y0 ∈ Y such that Gy0
= {1} and then µ ≥ 1 (this is in

particular true if we consider the action by left translation of G on itself),

2. or the group G is finite and then µ ≥ |Y ||G| because we always have |A ·Y | ≥ |Y |
and Y is fixed.

To overcome this difficulty, we need in general the assumption

µ = inf
A∈Pfin(G)\{∅}

|A ·Y |
|A|

> 0. (10)

Example 6 – Let us compute the value of µ for some actions.

1. When the action is free (for example in the case of the left translation of G on
itself), we have |A ·Y | ≥ |A| so that µ ≥ 1.

2. For the action of the symmetric group Sn on {1, . . . ,n}, when |A ·Y | = ℓ, we get
with the notation of Example 1

inf
A∈Pfin(Sn)\{∅},|A·Y |=ℓ

|A ·Y |
|A|

=
|A0 ·Y |
|A0|

=
ℓ

ℓ!
(ℓ−k)! (n− k)!

which is minimal for ℓ = n and then

µ =
n
n!

=
1

(n− 1)!
.
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3. Assume G is finite and acts on itself by conjugation. If we consider Y a subset
of Z(G), the center of G, we get A ·Y = Y for any subset A ⊂ G. Then

µ = inf
A∈P (G)\{∅}

|A ·Y |
|A|

=
|Y |
|G|

.

4. We get similarly µ = |Y ||G| as soon as Y is a set of fixed elements under the action
of G.

Remark 4 – Assume G is infinite and the infimum µ in (10) is attained for the
subset A0 ⊂ G, that is µ = |A0·Y |

|A0 |
> 0. Since we have GY ·Y = Y for the stabilizer GY

of Y , the set A0 is a disjoint union of left GY -cosets. In particular, GY is finite.

Under the assumption µ > 0, for any λ ∈ [0,µ], the G-invariant submodular
function cY defined on Pfin(G) by cY (A) = |A ·Y | −λ |A| is non negative since

cY (A) = |A ·Y | −λ |A| ≥ |A ·Y | −λ |A| ≥ 0 .

Observe that

cY (A) ≥ (µ−λ) |A| .

We get the following theorem.

Theorem 2 – Consider a subset Y ⊂ X and set

µ = inf
A∈Pfin(G)\{∅}

|A ·Y |
|A|

.

Then

• either µ = 0,

• or for any λ ∈ [0,µ], there exists a finite subgroup H of G containing GY such that

cY (A) ≥ cY (H) ≥ |Y | −λ |H | (11)

for any finite subset A in G.

Proof. Assume µ > 0 and set as usual m = minA,∅∈Pfin(G) cY (A). The case λ = 0 is
trivial (take H = GY and notice that GY is finite by a previous remark). Consider
λ ∈]0,µ] and A0 ∈ Pfin(G) such that µ = |A0·Y |

|A0 |
. Then, for any A ∈ Pfin(G), we have

cY (A) = |A ·Y | −λ |A| ≥ |A0 ·Y | −λ |A0| ≥ (µ−λ) |A0| ≥ 0
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so that cY is a nonnegative submodular function. By Proposition 6, there thus exists
a unique atom H for cY containing 1 which is a subgroup of G. Assume there exists
g ∈ GY such g <H . Then

cY (H ∪ {g}) = |(H ∪ {g}) ·Y | −λ |H ∪ {g}| = cY (H)−λ < cY (H)

and H ∪ {g} is nonempty. This contradicts the fact that H is an atom. Thus, we must
have GY ⊂H . Also since H is an atom, we have for any finite subset A in G

cY (A) = |A ·Y | −λ |A| ≥ |H ·Y | −λ |H | = cY (H)

Since 1 ∈H , we have Y ⊂H ·Y which gives cY (H) ≥ |Y | −λ|H |. □

Remark 5 –

1. Observe that when µ = 0, then λ = 0 and the inequality (11) still holds since it
reduces to |A ·Y | ≥ |Y |.

2. When Y contains an element with trivial stabilizer, we have µ ≥ 1 and the
theorem generalises Hamidoune’s one when G acts on itself by left translation.

3. Note that we must have H = {1} when G is torsion free because H is a finite
subgroup of G.

Consider a finite subset Y in X such that µ > 0.

Corollary 2 – For any λ ∈]0,µ] and any finite subset A0 in G there exists a subgroup H
of G containing GY such that

λ max
A⊂G,A·Y=A0·Y

|A|+ |Y | ≤ λ |H |+ |A0 ·Y | .

A generalisation of a theorem of Petridis and Tao

In another direction, we can also get the following analogue of a theorem by Tao
and Petridis (see Tao (2013, Theorem 4.1)) in our group action context.

Theorem 3 – Consider A a nonempty finite subset of G and Y a finite subset of X.
Assume that

|A ·Y | ≤ α |A|

with α ∈R≥0. Then, there exists a nonempty subset B in A such that

|CB ·Y | ≤ α |CB|

for any finite subset C of G.
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Proof. Define the map qA,Y such that

qA,Y :
{ P (A) \ {∅} →Q>0

C 7−→ |C·Y |
|C|

and set its minimum µ (which indeed exists since P (A) is finite). Let B ⊂ A be such
that µ = |B·Y |

|B| . Now consider the function cY defined by cY (C) = |C ·Y | − µ |C| on
Pfin(G). We have seen that he function cY is submodular and G-invariant. We also
have here cY (B) = 0 and for any C ⊂ A we get cY (C) ≥ cY (B) = 0. Nevertheless, cY
may not be nonnegative on Pfin(G) in general. For any nonempty finite subset S of
G and any g ∈ G, we can write

cY (B∪ g−1S) + cY (B∩ g−1S) ≤ cY (B) + cY (g−1S) = cY (S)

because cY (B) = 0 and cY (g−1S) = cY (S). We also have cY (B ∩ g−1S) ≥ 0 because
B∩ g−1S ⊂ B ⊂ A which implies that cY (B∪ g−1S) ≤ cY (S) for any g ∈ G and any
S ∈ Pfin(G). By G-invariance, this gives

cY (gB∪ S) ≤ cY (S) (12)

for any g ∈ G and any S ∈ Pfin(G). Now, let us consider a subset C of G such that
C = {g1, g2, . . . , gm} and C♭ = {g1, g2, . . . , gm−1}. We get for any S ′ ∈ Pfin(G)

cY (CB∪ S ′) = cY (gmB∪ (C♭B∪ S ′)) ≤ cY (C♭B∪ S ′)

by applying (12) with g = gm and S = C♭B∪S ′ . By an easy induction on m we finally
obtain

cY (CB∪ S ′) ≤ cY (S ′)

for any S ′ ∈ Pfin(G). In particular for S ′ = ∅, we get

cY (CB) ≤ 0⇐⇒ |CB ·Y | −µ |CB| ≤ 0⇐⇒ |CB ·Y | ≤ µ |CB|

since cY (∅) = 0. We conclude by observing that µ = minC⊂A,C,∅
|C·Y |
|C| ≤

|A·Y |
|A| ≤ α. □

A generalisation of a theorem of Tao

We can also use Theorem 2 to generalise the previous results and obtain the follow-
ing theorem which is also a generalisation of Tao (2013, Theorem 1.2).

Theorem 4 – Consider a discrete group G acting on X. Let A,Y be nonempty finite
subsets respectively of G and X such that |A| ≥ |Y |. Assume that

µ = inf
S∈Pfin(G)\{∅}

|S ·Y |
|S |

> 0 and there exists ε > 0 such that |A ·Y | ≤ (2− ε)µ |Y | .

Then, there exists a finite subgroup H of G such that Y is contained in the disjoint union
H ·Y of H-orbits with

|H | ≤ (
2
ε
− 1) |Y | and |H ·Y | ≤ µ(

2
ε
− 1) |Y | .
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Proof. Set λ = µ(1− ε
2 ). By definition of µ, we must have

cY (S) = |S ·Y | −λ |S | ≥ (µ−λ) |S | ≥ µ
ε
2
|S | ≥ 0 (13)

for any finite subset S ⊂ G. From the hypotheses |A ·Y | ≤ (2− ε)µ |Y | and |A| ≥ |Y |,
we obtain

cY (A) = |A ·Y | −µ(1− ε
2

) |A| ≤ (2− ε)µ |Y | −µ(1− ε
2

) |Y | = µ(1− ε
2

) |Y | . (14)

Let H be the unique atom for cY containing 1. By Theorem 2, we know that H is a
finite subgroup of G and cY (H) ≤ cY (A). We must have by (13) and (14)

|H | ≤
2
εµ

cY (H) ≤ 2
εµ

cY (A) ≤ (
2
ε
− 1) |Y |

as desired. We also get

cY (H) = |H ·Y | −µ(1− ε
2

) |H | ≤ cY (A) ≤ µ(1− ε
2

) |Y | .

Therefore

|H ·Y | ≤ µ(1− ε
2

) |H |+µ(1− ε
2

) |Y | .

Since µ = infS∈Pfin(G)\{∅}
|S·Y |
|S | and H ∈ Pfin(G) \ {∅}, we should have µ |H | ≤ |H ·Y |

which gives

|H ·Y | ≤ (1− ε
2

) |H ·Y |+µ(1− ε
2

) |Y | .

By gathering the occurrences of |H ·Y |, we finally obtain the announced upper
bound for |H ·Y |

|H ·Y | ≤ µ(
2
ε
− 1) |Y | . □

6.2 Group representations and the submodular functions γY
If we consider a representation (ρ,V ) of G and a finite-dimensional k-subspace
W = ⟨Y ⟩ in V , we can get an analogue of Theorem 2 and of Theorem 3. The proof
relies on the same arguments and is thus omitted here.

Theorem 5 – Consider a finite-dimensional subspace Y ⊂ V and set

µ = inf
A∈Pfin(G)\{∅}

dim(A ·Y )
|A|

.

Then
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• either µ = 0

• or for any λ ∈ [0,µ], there exists a finite subgroup H of G containing GY such that

dim(A ·Y ) ≥ λ |A|+ dim(H ·Y )−λ |H | ≥ λ |A|+ dim(Y )−λ |H |

for any subset A in G.

Theorem 6 – Consider A a finite nonempty subset of G and Y a finite-dimensional
k-subspace of V . Assume that

dim⟨A ·Y ⟩ ≤ α |A|

with α ∈R≥0. Then, there exists a nonempty subset B in A such that

dim⟨CB ·Y ⟩ ≤ α |CB|

for any finite subset C of G.

6.3 Group action context and submodular functions dA

A generalisation of a theorem of Petridis and Tao

Recall that for any fixed nonempty finite subset A in G and any λ ≥ 0, the submod-
ular function dA is defined on Pfin(X) by dA(Y ) = |A ·Y | − λ |Y |. Observe that the
function dA is not left invariant in general as defined but this is nevertheless the
case when G is Abelian (see Subsection 4.3). The function dA is not nonnegative for
any λ ≥ 0 but this becomes true when λ ∈ [0,1] because we have for any non empty
subset A ⊂ G and any Y ⊂ X the inequality |A ·Y | ≥ |Y | ≥ λ |Y |.

We get the following theorem which generalises Tao (2013, Theorem 4.1). It has
to be compared with Theorem 3.

Theorem 7 – Assume G is Abelian. Consider A a non empty finite subset of G and Y a
non empty finite subset of X. Assume that

|A ·Y | ≤ α |Y |

with α ∈R≥0. Then, there exists a nonempty subset Z in Y such that

|AC ·Z | ≤ α |C ·Z |

for any finite subset C of G.

Proof. Define the map qY ,A such that

qY ,A :
{ Pfin(Y ) \ {∅} →Q>0

S 7−→ |A·S |
|S |
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and its minimum µ. Let Z ⊂ Y such that µ = |A·Z |
|Z | . Now consider the function

dA defined on Pfin(X) by dA(S) = |A · S | − µ |S |. The function dA is submodular and
G-invariant because G is Abelian. We have dA(Z) = 0 and for any S ⊂ Y we get
dA(S) ≥ 0. As in the proof of Theorem 3, the function dA is not nonnegative on
Pfin(X) in general. For any nonempty finite subset S of X and any g ∈ G, we can
write

dA(Z ∪ g−1S) + dA(Z ∩ g−1S) ≤ dA(Z) + dA(g−1S) ≤ dA(S)

because dA(Z) = 0 and dA(g−1S) = dA(S). We also have dA(Z ∩ g−1S) ≥ 0 because
Z ∩ g−1S ⊂ Z ⊂ Y which implies that dA(Z ∪ g−1S) ≤ dA(S) for any g ∈ G and any
S ∈ Pfin(X). By G-invariance, this gives

dA(gZ ∪ S) ≤ dA(S) (15)

for any g ∈ G and any S ∈ Pfin(X). Now, let us consider a subset C of G such that
C = {g1, g2, . . . , gm} and C♭ = {g1, g2, . . . , gm−1}. We get for any S ′ ∈ Pfin(X)

dA((C ·Z)∪ S ′) = dA((gm ·Z)∪ ((C♭ ·Z)∪ S ′)) ≤ dA((C♭ ·Z)∪ S ′))

by applying (15) with g = gm and S = (C♭ ·Z)∪ S ′. By induction on m we finally
obtain

dA((C ·Z)∪ S ′) ≤ dA(S ′)

for any S ′ ∈ Pfin(X). In particular,S for S ′ = ∅, we get since dA(∅) = 0

dA(C ·Z) ≤ 0⇐⇒ |A · (C ·Z)| −µ |C ·Z | ≤ 0⇐⇒ |AC ·Z | ≤ µ |C ·Z | .

We conclude by observing that µ = minS⊂Y ,S,∅
|A·S |
|S | ≤

|A·Y |
|Y | ≤ α. □

Under the hypotheses of Theorem 7, we get the following interesting corollary.

Corollary 3 – Assume G is Abelian and |A ·Y | ≤ α |Y |. Then, there exists a nonempty
subset Z in Y such that for any integer n ≥ 1 we have

|An ·Z | ≤ αn |Z | .

Proof. By applying Theorem 7, we get a subset Z of Y such that |AC ·Z | ≤ α |C ·Z |
for any finite subset C of G. In particular, with C = {1}, this gives |A ·Z | ≤ α |Z |, that
is the corollary for n = 1. Consider an integer n ≥ 2 and assume by induction that
we have

∣∣∣An−1 ·Z
∣∣∣ ≤ αn−1 |Z | . We then get

|An ·Z | =
∣∣∣A ·An−1 ·Z

∣∣∣ ≤ α
∣∣∣An−1 ·Z

∣∣∣ ≤ αn |Z |

where the first inequality is obtained by applying Theorem 7 with C = An−1 and the
second one is the induction hypothesis. □
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Behavior of the atoms for the submodular function dA

The function dA defined on Pfin(X) by dA(Y ) = |A ·Y | −λ |Y | is submodular nonneg-
ative for any λ ∈ [0,1] and left invariant when G is Abelian (see Subsection 4.3).
In contrast to Examples 4 and 5, the corresponding atoms and cores depend on
λ and on the definition of the action. Our goal in this paragraph is to show that,
roughly speaking, the cardinality of fragments is bounded by |A| for small values of
λ whereas for values of λ close to 1 and when the action is free, the cardinality of
fragments become larger than |A|.

More precisely, we have the following result.

Proposition 8 – Let G be a group acting on X (we do not assume that G is Abelian) and
A ⊂ G.

1. Assume that λ < 1/ |A|. Then every fragment Y for dA verifies |Y | ≤ |A|.

2. Assume that the action of G on X is free and A ⊂ G is such that |X | ≥ |A|.
For every µ ≤ 1 and Y ⊂ X such that |Y | < µ|A|, Y is not a fragment for dA for every
λ verifying

0 ≤ |X | − |A|
|X | −µ|A|

≤ λ ≤ 1

In particular, when µ > 1− 1
|A| , the fragments are of cardinality at least |A| for any

function dA such that

λ ≥ |X | − |A|
|X | −µ|A|

≥ |X | − |A|
|X | − |A|+ 1

.

Proof. Assume that λ < 1/ |A|. If we assume |Y | ≥ |A|+ 1, we get for any y ∈ Y

|A ·Y | −λ|Y | ≥ (1−λ)|Y | ≥ (1−λ)(|A|+ 1) = |A| −λ+ 1−λ |A| > |A| −λ ≥ dA({y})

because
∣∣∣A · {y}∣∣∣ ≤ |A|. This gives the contradiction dA({y}) < dA(Y ). Let us now

consider the situation of 2. The freeness of the action insures us that |A · Y | ≥ |A|.
Hence we get for the function dA corresponding to λ

dA(Y ) = |A ·Y | −λ|Y | ≥ |A| −λ|Y | > |A| −µλ|A|.

By observing that

λ ≥ |X | − |A|
|X | −µ|A|

⇐⇒ |A| −µλ|A| ≥ (1−λ)|X |

and dA(X) = (1−λ)|X |, we get that Y cannot be a fragment. □

Thus, atoms and fragments indeed strongly depend on λ and are in general not
easy to determine explicitly.
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7 Other generalisations

It is possible to define submodular functions on a lattice (S,∨,∧) by the inequalities
f (a∧ b) + f (a∨ b) ≤ f (a) + f (b) for every a,b ∈ S. In particular, one can consider
the lattice (Pkfin(V ),+,∩) of finite-dimensional vector subspaces of a linear repre-
sentation V of G. If f is a submodular function such that m = inf{0},Y∈Pkfin(V ) f (Y )
exists. We define a fragment for f as a k-vector subspace W ∈ Pkfin(V ) which is
not reduced to {0} and such that f (W ) = m and an atom for f as a fragment with
minimal dimension. All the atoms have the same dimension and we have a linear
analogue of Lemma 2 whose proof is similar.

Lemma 3 – If W1 and W2 are two atoms of f then W1 = W2 or W1 ∩W2 = {0}.

Fix (ρ,V ) a linear representation of an Abelian group G and A a non empty subset
of G. The map dA of Subsection 4.3 can be adapted to a G-invariant submodular
map δA

δA :
{
Pkfin(V )→R

Y 7−→ |A ·Y | −λdimY

Using γA we obtain group representation versions of the results in Subsection 6.3
when (ρ,V ) is a representation of G.

Theorem 8 – Assume G is Abelian. Consider A a non empty finite subset of G and Y a
finite-dimensional k-subspace of V . Assume that

dim(A ·Y ) ≤ αdim(Y )

with α ∈R≥0. Then, there exists a k-subspace Z , {0} in Y such that

dim(AC ·Z) ≤ αdim(C ·Z)

for any finite subset C of G.

Corollary 4 – Assume G is Abelian and dimA · Y ≤ αdimY . Then, there exists a
k-subspace Z , {0} in ⟨Y ⟩ such that for any integer n ≥ 1 we have

dim(An ·Z) ≤ αn dimZ.

References

Bachoc, C., A. Couvreur, and G. Zémor (2018). “Towards a function field version of
Freiman’s Theorem”. Algebraic Combinatorics 1 (4), pp. 501–521 (cit. on p. 76).

Beck, V. and C. Lecouvey (2017). “Additive combinatorics methods in associative
algebras”. Confluentes Mathematici 9 (1), pp. 3–27 (cit. on p. 76).

100



References

Diderrich, G. T. (1973). “On Kneser’s addition theorem in groups”. Proceedings of
the American Mathematical Society 38 (3), pp. 443–451 (cit. on p. 76).

Eliahou, S. and C. Lecouvey (2009). “On linear versions of some addition theorems”.
Linear and multilinear algebra 57 (8), pp. 759–775 (cit. on p. 76).

Freiman, G. A. (1973). “Foundations of a structual theory of set addition”. Transla-
tion of Math. Monographs 37 (cit. on pp. 78, 83).

Grynkiewicz, D. J. (2013). Structural additive theory. 30. Springer (cit. on p. 75).
Hamidoune, Y. O. (1984). “On the connectivity of Cayley digraphs”. European

Journal of Combinatorics 5 (4), pp. 309–312 (cit. on p. 77).
Hou, X.-D., K. H. Leung, and Q. Xiang (2002). “A generalization of an addition

theorem of Kneser”. Journal of Number Theory 97 (1), pp. 1–9 (cit. on p. 76).
Lecouvey, C. (2014). “Plünnecke and Kneser type theorems for dimension estimates”.

Combinatorica 34 (3), pp. 331–358 (cit. on p. 76).
Mirandola, D. and G. Zémor (2015). “Critical pairs for the product singleton bound”.

IEEE Transactions on Information Theory 61 (9), pp. 4928–4937 (cit. on p. 76).
Murphy, B. (2016). “Group actions in arithmetic combinatorics”. PhD thesis. Uni-

versity of Rochester (cit. on p. 76).
Murphy, B. (2019). “Group action combinatorics”. arXiv preprint arXiv:1907.13569

(cit. on pp. 76–78, 81, 82).
Nathanson, M. B. (1996). Additive number theory. 164. Springer New York (cit. on

pp. 75, 76).
Ruzsa, I. (Jan. 2009). “Sumsets and structure”. Combinatorial Number Theory and

Additive Group Theory (cit. on pp. 77, 79, 84).
Tao, T. (2008). “Product set estimates for non-commutative groups”. Combinatorica

28 (5), pp. 547–594 (cit. on p. 77).
Tao, T. (2013). “Noncommutative sets of small doubling”. European Journal of Com-

binatorics 34 (8), pp. 1459–1465 (cit. on pp. 75, 76, 94, 95, 97).

101



Contents

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2 Group actions and representations context . . . . . . . . . . . . . . 77
3 Extensions and limits of standard techniques . . . . . . . . . . . . 78

3.1 Orbit decomposition method for a group action . . . . . . . 79
3.2 Counterexample to Kneser’s theorem for group action . . . 80
3.3 Symmetry sets and upper bounds . . . . . . . . . . . . . . . 81
3.4 Action of a product subset of G on a subset of X . . . . . . 84

4 Submodular functions . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Combinations of submodular functions . . . . . . . . . . . 86
4.3 Fundamental examples of submodular functions . . . . . . 87

5 Fragments and atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Definitions and general properties . . . . . . . . . . . . . . 89
5.2 Invariant submodular functions on groups . . . . . . . . . 89
5.3 Invariant submodular functions for group actions . . . . . 90

6 Generalising results in additive group theory with submodular func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Group action context and submodular functions cY . . . . 92
6.2 Group representations and the submodular functions γY . 96
6.3 Group action context and submodular functions dA . . . . 97

7 Other generalisations . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

i


	1 Introduction
	2 Group actions and representations context
	3 Extensions and limits of standard techniques
	3.1 Orbit decomposition method for a group action
	3.2 Counterexample to Kneser's theorem for group action
	3.3 Symmetry sets and upper bounds
	3.4 Action of a product subset of G on a subset of X

	4 Submodular functions
	4.1 Background
	4.2 Combinations of submodular functions
	4.3 Fundamental examples of submodular functions

	5 Fragments and atoms
	5.1 Definitions and general properties
	5.2 Invariant submodular functions on groups
	5.3 Invariant submodular functions for group actions

	6 Generalising results in additive group theory with submodular functions
	6.1 Group action context and submodular functions cY
	6.2 Group representations and the submodular functions γY
	6.3 Group action context and submodular functions dA

	7 Other generalisations
	References
	Contents

