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Abstract

We give a conjecture for the asymptotic growth rate of the number of inde-
composable summands in the tensor powers of representations of finite monoids,
expressing it in terms of the (Brauer) character table of the monoid’s group of
units. We prove it under an additional hypothesis. We also give (exact and
asymptotic) formulas for the growth rate of the length of the tensor powers
when working over a good characteristic. As examples, we compute the growth
rates for the full transformation monoid, the symmetric inverse monoid, and
the monoid of 2 by 2 matrices. We also provide code used for our calculation.

Keywords: Tensor products, asymptotic behavior, monoid and semigroup represen-
tations.
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1 Introduction

1.1 Growth problems

Throughout let M be a finite monoid, and let k be a splitting field for M of charac-
teristic p > 0. For a kM-module V, we are interested in the quantity

b(n) =MV (n) = # M-indecomposable summands in V®"
counted with multiplicity. In particular, we ask the following questions:

(1) Can we find a formula for b(n), or more generally a formula for an asymptotic
expression a(n) with b(n) ~ a(n)? (Here b(n) ~ a(n) if they are asymptotically
equal: b(n)/a(n) RN 1.)

(2) Can we understand the rate of geometric convergence by quantifying how fast
|b(n)/a(n) — 1| converges to 0?
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(3) Similarly, can we bound the variance |b(n) —a(n)|?

The questions (1)—(3) above are a special case of growth problems, which following
Lacabanne, Tubbenhauer, and Vaz (2024) we may define for any additive Krull-
Schmidt monoidal category. The growth problems and related questions for various
categories have been recently studied in e.g. Coulembier, Etingof, and Ostrik (2024),
Coulembier et al. (2024), He (2025), Khovanov, Sitaraman, and Tubbenhauer (2024),
Lacabanne, Tubbenhauer, and Vaz (2023, 2024), Lachowska et al. (2024), and
Larsen (2024). In particular, if our monoid M is a group, then the situation is
well-understood from He (2025, Theorem 1), which gives an expression for the
asymptotic formula a(n) in terms of the (Brauer) character table. A main goal of this
paper is to generalize this result to an arbitrary finite monoid.

In addition to studying b(n), which counts the number of indecomposable
summands of V®", we also ask the analogue of the questions (1)—(3) for the related
quantity I(n) = [(V®"), where [(W) denotes the length of W, i.e. the number of
composition factors. If kM is semisimple, then b(n) =I(n).

1.2 A conjecture and evidence

Let G denote the group of units of M. Let Z/(G) denote the set of elements g in
G which act as scalars on V, and denote the corresponding scalars by wy(g). Let
g1, 1 <t < N be a complete set of representatives for the p-regular conjugacy classes
of G (if p = 0, these are all the conjugacy classes). If V is a kM-module, recall from
Lacabanne, Tubbenhauer, and Vaz (2024, Section 2) that the corresponding fusion
graph I is the (oriented and weighted) graph whose vertices are indecomposable
kM-modules which are summands of V®", for some n > 0, and that there is an edge
of weight m from the vertex V; to the vertex V; if V; occurs m times in the direct
sum decomposition of V ® V;. The corresponding (potentially countably infinite)
adjacency matrix is called the action matrix. If V is a kM-module, let Resg(V)
denote the kG-module that comes from restricting the action on V. Let A% denote
any second largest eigenvalue (in terms of modulus) of the action matrix of V. We
use the usual capital O notation. We conjecture that the asymptotic growth rate
a(n) is the same as that of Resg (V). We note that if M = G is a group, Conjecture 1
recovers the statement of He (2025, Theorem 1).

Conjecture 1 — Suppose V is such that no element apart from 1 € M acts as identity,
then

1. The asymptotic formula is

a<n>=|15| S Si(wvlg)" (dim V)Y, (1)
ez
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1. Introduction

where S, is the sum over entries of the column corresponding to gi'' in the (irre-
ducible) Brauer character table. In other words, V has the same asymptotic growth
rate as the kG-module Resg(V), cf. He (2025, Theorem 1).

2. |b(n)/a(n) —1| € O(|A%¢¢/dim V|" + n~¢), for some constant ¢ > 0, and
3. |b(n) —a(n)| € O(A%|" + n?) for some constant d > 0.

Remark 1 - When working with group representations V, we generally require
that V be faithful. The requirement that no elements apart from 1 € M acts as
identity should be seen as the replacement of this requirement in the more general
setting.

The reason we expect Conjecture 1 to be true is the following: The collection
G of indecomposable kM-modules which are kG-modules (that is, M \ G acts as 0)
forms a tensor ideal in the sense that if K € G and V is any kM-module, then V®XK is
a direct sum of modules in G. By the technical machinery introduced in Lacabanne,
Tubbenhauer, and Vaz (2024), our conjecture that G determines the asymptotic
growth rate is roughly equivalent to the conjecture that every vertex in the fusion
graph has a path to G, which we suspect is true based on experimental evidence.

As evidence for Conjecture 1, over fixed finite fields k (e.g. F1;) we computed
the growth rates of all projective indecomposable kM-modules, where M is either
a monoid of order <7 (34129 of these) or is the direct product T5 x L where T3 is
the full transformation monoid on 3 elements, and L is a monoid of order <5 (273
of these). We were not able to find a counterexample to formula (1). To compute
the growth rates, we used GAP’s Smallsemi package to obtain the multiplication
table for the monoids of small order, and from these we constructed the monoid
algebras in Magma as matrix algebras. Finally, we computed the action matrix as
in the appendix of He (2025). We performed the calculations over finite fields as
Magma’s Meataxe algorithm for decomposing modules is much slower over Q.

Remark 2 — The code used in this paper is available on the Github expository He
and Tubbenhauer (2025).

1.3 Main results

In Theorem 1, we prove Conjecture 1 under the hypothesis that some projective kG-
module is injective as a kM-module. While the hypothesis is somewhat restrictive,
it is satisfied by important classes of monoids such as the full transformation
monoids T, (in characteristic 0), the monoid of 2 x 2 matrices M(2, q) (over defining
characteristic), and all monoids with semisimple monoid algebra. We compute
asymptotic formulas for these examples in section 4. In addition, we obtain general
(exact and asymptotic) formulas for /(1) when the characteristic of k does not divide
the order of any of M’s maximal subgroups. As b(n) = [(n) when kM is semisimple,
we obtain a formula for b(n) in this case, which generalizes He (2025, Theorem 3).
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2 Growth rate in general

We say a function f satisfies f € ©’(g) if there exists a constant A € R, such that
A-g(n) < f(n) < g(n) for all n> ngy for some fixed ny € N. We can say the following
about a general semigroup representation:

Proposition 1 — Let S be a finite semigroup, and V be a finite dimensional kS-module.
Then

b(n),l(n) € ©®'((dim V)").

Proof. The upper bound is immediate, and it remains to justify the lower bound.
Moreover, b(n) < I(n), so it remains to justify the lower bound for b(n).

To this end, let M(m, k) denote the monoid of m x m matrices with values in k. Let
GL(m, k) denote the invertible matrices in M(m, k). As in Coulembier, Ostrik, and
Tubbenhauer (2024), O(M(m, k)) is a subcoalgebra in O(GL(m, k)) and the category
of kM(m, k)-modules can be identified with the category of polynomial k GL(m, k)-
modules, so the number of summands over M(m, k) is the same as the number of
summands over GL(m, k).

Now, any finite semigroup S with #S = m can be realized in M(m,F,) (via the
regular representation over F;), so we get a bound of b(n) from below by b(n) for
M(m,F,) which is the same as for GL(m,[F,), by the above. The desired lower bound
now follows from Coulembier, Ostrik, and Tubbenhauer (2024, Proposition 2.2).]

We focus solely on monoids for the remainder of the paper. However, the
following example demonstrates that for general semigroups, there might be a
final basic class represented by the null representation (which does not exist for a
monoid), allowing the application of standard theory, as discussed in Lacabanne,
Tubbenhauer, and Vaz (2024).

Example 1 - Let S be the semigroup with underlying set G; U G, U {0}, with multi-
plication such that G; = Z/27Z, G, = S; and GG, = {0}. The monoid algebra CS is
semisimple with 7 simple modules: the trivial module, the one-dimensional null
representation Z on which S acts as 0, and the simple modules for G; = Z/27Z and
G, = S; respectively, extended so that elements outside G (resp. G;) in S act as 0.
Let X be the CS-module corresponding to the non-trivial one-dimensional simple
CGy-module, and let Y be the CS-module corresponding to the two-dimensional
simple ‘standard representation’ of CG,. If we set V =Y @ X, then the vertex Z is a
sink node in the fusion graph of V which determines the asymptotic growth rate.
We note that whenever Z shows up in the graph, it is a final basic class (FBC) in the
sense of Lacabanne, Tubbenhauer, and Vaz (2024, Definition 5.5) (which we also
recall below) and we must have a(n) = (dim V)".
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Figure 1 — The fusion graph and action matrix for V = Y & X. The vertex colored in
cyan is the null representation. In this case a(n) = 3".

3 Main results

3.1 Counting summands

In this section we focus on b(n). As before, if V is a kM-module let Resg (V) denote
the kG-module that comes from restriction of V. If W is a kG-module, let Indg(W)
denote the induced kM-module on which elements in M \ G act as 0. We write
P(W) for the projective cover of W. We note that induction and restriction give
inverse equivalences between the category of kG-modules and the full subcategory
of kM-modules with all nonunits acting as 0. Let T'® denote the subgraph in the
fusion graph I for V induced by the vertices Indg(P(W)) where W is an irreducible
kG-module.

Let 1"(1; denote the projective cell in the fusion graph for Resg(V'), then 1"(1; and TG
are isomorphic as graphs, as we have

V ®Indg(P(W)) = Indg(Res(V)® P(W)). (2)

Recall from Lacabanne, Tubbenhauer, and Vaz (2024, §4) that a final basic class
(FBC) of a fusion graph is a strongly-connected component whose PF dimension (=
spectral radius of the adjacency submatrix in the case when it is finite, the only case
we need) is maximal among all strongly-connected components, and moreover has
no path to any other strongly-connected component with maximal PF dimension.
If there is no path leaving the FBC at all, we say it is final in the whole graph. The
following theorem establishes Conjecture 1 under the assumption that some module
in T'C is injective.

Theorem 1 — Suppose that V is a kM-module such that

i) No element apart from 1 € M acts as the identity, and

ii) There is an irreducible kG-module W such that Indg(P(W)) is an injective kM-
module,
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then the statements of Conjecture 1 hold.

Proof. Let TC be the subgraph of T as above, then it is strongly connected since
Resg (V) is faithful by assumption i), and the projective cell in the fusion graph of a
faithful kG-module is strongly-connected, cf. the proof of Lacabanne, Tubbenhauer,
and Vaz (2024, Proposition 4.22)). We will first show that the growth problem for
V is sustainably positive recurrent in the sense of Lacabanne, Tubbenhauer, and Vaz
(2024, Definition 5.5), with ré being the unique final basic class (FBC) This allows
us to invoke Lacabanne, Tubbenhauer, and Vaz (2024, Theorem 5.10) from which
the statements of the theorem easily follow.

We can see that I'C is a basic class because it has PF dimension equal to dim V/
(since TG = l"g and PFdim FGP =dimResg(V)=dim V), which is the maximal possible
since b(n) grows as some multiple of (dim V)". It is moreover final (in fact, final in
I') by (2) and the fact that the tensor product of any kG-module with a projective
kG-module is projective.

Next, we claim that under the assumptions of the theorem any vertex Z inI' has a
path to TC. For 1 > 0, the set V,, C V®" of all vectors v € V®" on which M \ G acts as
zero is a submodule. To see this, note that V,, is clearly a vector subspace (it contains
0, so is nonempty), and if v € V,, for all m € M\ G and n € M we have m(nv) =0
because mn € M \ G, and so nv € V,,. By assumption i), V, is nonzero for n large
enough, say n = |[M \ G|, since for any m € M \ G acts non-invertibly and we can find
v,, € V such that m-v,, = 0, and then the basic tensor over all v,,’s is in V,,. Thus, for
some n large enough, V®" contains a nonzero submodule V’ = V,, on which all non-
units act as zero. Because Resg(V) is faithful, any projective indecomposable kG-
module P appears in some tensor power of Resg(V) (see Bryant and Kovacs (1972,
Theorem 2)), say (Res¢(V))®K. Now Resg(V’® V&) = Resg(V’) ® (Resg(V))®* has a
projective indecomposable summand, and so V' ® V& C V&, has a summand of
the form Indg(P(W)) for some irreducible kG-module W (all nonunits act as zero
on V' ® V&, 50 we recover the same module by restriction followed by induction).
By assumption ii), we may take Ind(P(W)) to be injective, and so it is a summand
of V®k+1)  This shows that the trivial module k has a path to IG;since Z=Z®k
and T'C is final in T, in fact any indecomposable kM-module Z has a path to T'C (we
know for N large enough, k® V®N has a summand in T'C, so Z®@k® V&N does too).

Now it follows, by the same proof as Lacabanne, Tubbenhauer, and Vaz (2024,
Proposition 5.7), that the growth problem for V is sustainably positive recurrent
with the FBC also final in I'. Statements (2) and (3) of Conjecture 1 now follow from
Lacabanne, Tubbenhauer, and Vaz (2024, Theorem 5.10). The first statement follows
by the same proof as He (2025, Theorem 1), after adapting the statement about left
eigenvectors in He (2025, Lemma 7) by using (Brauer) characters of monoids rather
than characters of groups (the right eigenvectors are the same). For a definition of
the Brauer characters of monoids we refer to Steinberg (2023, §5). O

Remark 3 -
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1. When kM is semisimple, condition i) in Theorem 1 is equivalent to the re-
quirement that no generalized conjugacy class in M apart from that of the
identity has character value dim V. Condition ii) is automatically satisfied in
this case. We will be able to say much more if kM semisimple, see Theorem 2
below.

2. If char k {|G|, then Indg(P(W)) = Indg(W) for any irreducible kG-module W.

3. We require condition ii) so that, assuming also condition i) holds, V®" will
contain a summand in T'C for n large enough. We suspect that this is always
true, which would imply Conjecture 1, but we do not know how to prove it in
general. See also subsection 4.3 below.

3.2 Counting lengths

We now turn to study the related statistic of I(n). Let V be a kM-module. To
compute I(n) we count the multiplicities now in the Grothendieck ring Gy(kM)
defined via short exact sequences, which coincides with the additive Grothendieck
ring if kM is semisimple (in this case [(n) = b(n)).

Let ey,...,e, denote a complete set of idempotent representatives for the reg-
ular J-classes of M, and let Gel,..., Ge,,, denote the corresponding maximal sub-
groups. We assume from now that p { |G, | for all 1 <i < m. For a kM-module
V, let ¢;V denote the kG, -module defined via restriction. Recall from Stein-
berg (2016a, Theorem 6.5) that the map Res : Go(kM) — []iL; Go(kG,,) given by
Res([V])=([e1V],...,[e,, V]) is a ring isomorphism. Let L denote the matrix corre-
sponding to Res, called the decomposition matrix, with respect to the bases Irr (M)
and i, Irri(G,,) respectively. Moreover, the character table X(M) of M is the
transpose of the change of basis matrix between the basis of irreducible characters
and the basis of indicator functions on the generalized conjugacy classes, and may
be obtained as X(M) = LT X where X is the block diagonal matrix with the blocks
being the character tables of G,,1 < i < m (see Steinberg (2016a, Corollary 7.17)).

If V is a kM-module, let N(V) denote the analogue of action matrix for I(n).
That is, with respect to the basis of isomorphism classes of irreducible kM-modules
Irrp (M) = {Sy,...,S,}, the (i,j)-th entry of N(V) is the composition multiplicity
[V®S;:S;]. Aright eigenvector of N(e; V) may be identified with an element x in
the Grothendieck ring Gy(kG,,), considered as a vector with respect to the basis
Irri(G,). By naturally identifying Go(kG,,) with a subset of 17, Go(kG;), x can be
identified with a longer vector x with respect to the basis | J;~, Irri(G,,) which is
supported on that subset.

Lemma 1 - Let V be a kM module with character x and assume p{|G,|,1 <i < m.

1. The right eigenvectors of N(V) are columns of L™'X, where X is the block di-
agonal matrix of character tables, with eigenvalues the character values at the
corresponding generalized conjugacy classes.
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2. The left eigenvectors of N(V) are columns of the character table X(M) of M, with
eigenvalues the corresponding character values.

Proof. First we prove a). For 1 <i < m, let Go(kM); denote the inverse image of
Go(kG,,) (identified as a subset of H}Ll GO(kGe].)) under the restriction map. That is,
it is the ideal in Go(kM) consisting of elements [W] such that [e;W] = 0 for j = i. We
have the commutative diagram

Go(kM); == Gy (kG,,) [Y] L [e;Y]

N(V)-J lN(e,-V)‘ N(V)-l IN(er)-

Go(kM); X5 Go(kG,)  [VeY] = [(VeY)=[eVeeY]

where we think of Gy(kG,,) as a subset of H;-':l GO(kGe].) and of the elements in the
Grothendieck rings as column vectors. It follows that if x is a right eigenvector for
M(e; V), L™ is a right eigenvector for N (V) with the same eigenvalue. By He (2025,
Theorem 3), since p {|G,,| for 1 <i < m, x corresponds to the complex conjugate of a
column of the character table of some G,,, so the claim follows.

For b), note that X(M) is by definition the transpose of the change of basis matrix
between the basis of irreducible characters and the basis of indicator functions. If
Irri (M) ={S4,...,S,}, we have

[V®S;: 5] xv(my)x(my)
xm)T : = :
[VeS;:S,] xv(mz)x;j(m;)

where 1 <j <zand xy and x; denote the characters for V and S; respectively, and
my,...,m, are representatives for the generalized conjugacy classes of M. Taking
the i-th entry, we get: (i-th column of X(M)) - (j-th column of M) = xv (m;)x;(m;),
but this just says that the i-th column of X(M) is left eigenvector of N(V) with
eigenvalue xy (m;). O

For 1 <i<m,let Ci,l,...,Ci,ki denote the conjugacy classes of Gei, and pick a
complete set of representatives g; y,...,g; x, for these classes. Let V be a kM-module
with character xy. By Lemma 1, when p {|G,,|, 1 <i < m each conjugacy class C; ;
is canonically associated with a pair of left and right eigenvectors with eigenvalue
xv(8i,j)- We will refer to these as the (i, j)-th row of (X(M))T and the (i, j)-th column
of L™'X,, respectively. If G,, is a maximal subgroup of M, extending notation from
before we let Zy(G,,) denote the elements g € G, which act as scalars on V, and
let wy(g) denote the corresponding scalar. We will write k(n) for an asymptotic
expression of /(n).

Theorem 2 — Let V be a kM module with character xy and assume p{|G,|,1 <i < m.
Let S,-’]- denotes the sum over the (i, j)-th column of L71X, then
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1. the exact growth rate of I(n) is

m
i=1 |

ki
Z Ci IS (x(8: )" (3)
:1

e;

2. An asymptotic formula for [(n) of V is

I(n) ~k(n) := Z (dim V)" Z ICi 1S, (wV(gi,j))n' (4)

= Gl
i=1 J~gz,]€ZV(Gel-)

3. We have |l(n)/k(n) - 1| € O((|Xsec|/dim V)”), where xgoc is any second largest
character value (in terms of modulus) of x v, and

4. We have |I(n) — k(n)| € O((Ixsec)™)-

Proof. For the eigenvalue x(g;;), choose the left eigenvector w to be the (7, )-th
row of (X(M))T, which as recalled above is the same as XTL, and choose the right
eigenvector v; ; to be the (i, j)-th column of L7'X, normalized by a factor of ICi ;I/IGe, .
From eigendecomposition we get

(N(V))" = Zw}:jvi,j()(v(gi,j))n-

i=1

We have wT]v” =1 and if we sum over the column of v; ; T] corresponding to the
trivial kM-module we get |C; ;|S; ;/|G,,|- Statement (1) now follows as in Lacabanne,
Tubbenhauer, and Vaz (2023, Theorem 6). Statements (2), (3) and (4) follow by
noting that for n large, the terms in the summation with |xv(g; ;)| = dim V will
dominate. O

Remark 4 - If M = G is a group, then if p { |G| Theorem 2 gives

N
1) = o) = 72 SIS ()"
t=1

where for 1 <i <N, t; is a representative for the i-th conjugacy class C; of G, and
S; = S, is the sum over entries in column of the character table corresponding to g;.
Thus Theorem 2 generalizes the statement in He (2025, Theorem 3).

Remark 5 - As we observed in the beginning of the section, if kM is semisimple
then b(n) = I(n), so Theorem 2 gives a refinement of the result of Theorem 1 in this
case. In particular, if no element other than 1 act as identity on M, then the second
statement of Theorem 2 recovers the formula of a(n) in Theorem 1 in this case: this
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is because the submatrix of L corresponding to the group of units G is the identity
matrix, so Si,j is exactly a column of the character table of G. Of course, if kM is
semisimple then we must have p {|G,,| for all 1 <i < m, so Theorem 2 applies (see
e.g. Steinberg (2016a, Theorem 5.19)).

4 Examples

4.1 Full transformation monoids T,,, and symmetric inverse
monoids [,

Let T,, and I,, denote the full transformation monoid and the symmetric inverse
monoid on m elements, respectively. In both cases the group of units is G = S,,,.

Proposition 2 — Suppose that either
1. p=0and M =T,, or
2. ptmland M = I,,,.
Let V be a kM-module on which no element other than 1 acts as identity. Then we have

Lm/2] ]

— : n _

b(n) ~ a(n) = ; TR (dim V)" = k(n) ~ I(n). (5)
Proof. We know that kI, is semisimple under the assumptions of the theorem (see
Steinberg (2016a, Corollary 9.4)). By Steinberg (2016b, Corollary A.3), if W is any
kS,,-module which is not the sign representation, then Indg(W) is injective as a
kT,,-module. Thus the assumptions of Theorem 1 are satisfied for both T, and I,,,,
and the asymptotic formula for S, given in Coulembier, Etingof, and Ostrik (2024,
Example 2.3) now implies the result for a(n). The statement about k(n) follows from
Theorem 2. U

Remark 6 — One might expect that for T,, we can also weaken the requirement that
p = 0to p t m!. However, this is nontrivial to show, as monoid algebras need not have
the same structure as we vary between characteristics that do not divide the order

of any maximal subgroup. However, for p sufficiently large the result of Proposition
2 will hold.

Since kI, is semisimple when p { m!, the exact formula for b(n) = I(n) can be
calculated from Theorem 2. For example, if V is the irreducible CI3-module with
character values 0,1,2,0, 3,1, 0, then using the character table and decomposition
matrix for CI3 which can be found in Steinberg (2016a, Example 9.17), in this case
we obtain

b(n)=2-3"1-2"4+1.
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4. Examples

We plot below in Figure 2 the fusion graph and action matrix for the 12-
dimensional projective kT;-module in characteristic 0, and in Figure 3 give the
ratio b(n)/a(n) in this case. In this case A%¢¢ =2, so0 A°¢¢/dim V = 1/6, which explains
the rapid convergence. We provide python code in He and Tubbenhauer (2025) to
generate the multiplication table of T,, and then set up the regular representation
of kT,, in Magma. As usual, we approximated the characteristic zero behavior by
doing the computation in a large enough finite field.
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Figure 2 — The fusion graph and action matrix for the unique 12-dimensional
projective kTy-module in characteristic 0. The modules are labelled with their
dimensions, and the projective cell T'C is coloured in cyan.
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Figure 3 — The ratio b(n)/a(n) for the unique 12-dimensional projective kTy-module
in characteristic 0. Here a(n) = 5/12-12" and A%¢¢ = 2.

4.2 Matrix monoids M(2,q)

Let M(2,9) = M(2,F,) denote the monoid of 2 x 2 matrices with entries in F,, and
let G = GL(2,9) be its group of units. We know from Kovacs (1992) that when
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ptIGl = (4> - 1)(g* - q), kM(2,q) is semisimple. If q is odd, let € denote the unique
element of order 2 in the center Z(G) of G.

Proposition 3 (Matrix monoids M(2, q) in nonmodular characteristic) — Suppose
p1|Gland V is a kM(2, q)-module. We have

7 +=D" g noo:
B (dim V)" if € acts as scalar on Resg(V),
a(n) = » (6)
—_— . 1 n
@@= (dim V)" else.

If q is even, then we are always in the second case.

Proof. Since M(2, q) is semisimple, by Theorem 1 (or Theorem 2) in this case a(n) is
determined by the character table of G, which can be found in e.g. Fulton and Harris
(1991, §5.2). The sum over the dimensions of irreducible kG-modules is q2(q -1),
and when g is odd the sum over the column of the character table corresponding
to € is g — 1. The sum over all other columns in the center vanishes, yielding our
formula. g

Next we consider M(2, g) in defining characteristic.

Proposition 4 (Matrix monoids M(2, q) in defining characteristic) — Let g = p" be
a prime power where p is also the characteristic of k. If V is a k M(2, q)-module on which
no element other than 1 acts as identity, then

(p+1)" 11y .(d; noo
a(n) = g )(=T) (1 + q( 1) ) (dim V)" if € acts as scalar on Resg(V)

(p+1)" :
7T (dim V)" else.

If q is even, then we are always in the second case.

Proof. Let G = GL(2, g) be the group of units of kM(2,q). By Kouwenhoven (1993,
Theorem 4 and Theorem 12), most of the projective indecomposable kG-modules
are injective when considered as k M(2, g)-modules. So condition ii) in Theorem 1 is
satisfied, and it suffices to compute the asymptotic formula for a faithful kG-module.
Thus, the statement of the proposition follows from He (2025, Theorem 13). O

We give in Figure 4 below the fusion graph and action matrix for the unique
four-dimensional projective k M(2, 3)-module in defining characteristic. We also plot
the ratio b(n)/a(n) in this case in Figure 5. In this case a second largest eigenvalue is
AseC =1,
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Figure 4 — The fusion graph and action matrix for the unique four-dimensional
projective k M(2, 3)-module in characteristic 3. The modules are labelled with their
dimensions, and the projective cell T” is coloured in cyan.
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Figure 5 — The ratio b(n)/a(n) for the unique four-dimensional projective kM(2, 3)-
module in characteristic 3. Here a(n) = (1/4+1/12(-1)")-4" and A% = 1.

4.3 An example where Theorem 1 does not apply

Condition ii) in the statement of Theorem 1 is somewhat restrictive: it is already not
satisfied when the monoid is N = {1, x,0} where x?> = 0, and of the 35 nonisomorphic
monoids of order 4, 9 do not satisfy the condition in characteristic 0. Generalizing
the example of N, if M is any monoid with group of units G, the direct product
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M x N (where N may be replaced with any nontrivial nilpotent monoid) will not
satisfy condition ii), as any kG-module gets a non-split self-extension from the
nilpotent element x and so cannot be injective. (These counterexamples were
communicated to us by Walter Mazorchuk.)

However, experimentation with monoids of small order (see subsection 1.2)
gives evidence that V, when condition i) is satisfied, will still reach I'? even when ii)
is not satisfied. As an example, let M = T3 x N where Tj; is the full transformation
monoid on 3 elements and N = {1, x, 0} as above. There is a unique four-dimensional
kM-module V satisfying condition i), in characteristic 31. In this case we get
a(n) = 2/3-4" as predicted by Equation 1 despite condition ii) not being fulfilled. The
fusion graph and action matrix for V are given below, showing that the projective
cell is still reached.

y
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‘V
1\
cococo~o
—hRNWwoo

(=l Y )
O, OO
OWH—OO

ANy
Ly \
&
-
¢
(&
CWHR—O

Figure 6 — The fusion graph and action matrix for the unique four-dimensional
projective k(T3 x N)-module V, in characteristic 31. The modules are labelled with
their dimensions, and the projective cell T'® is coloured in cyan.
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