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Abstract

This paper introduces an infinite-dimensional adaptation of the Minimal
Residual method for solving the neutron transport equation in spherical geome-
try. The method is based on a novel splitting strategy of the collision operator,
designed to account for the distinct characteristics of the transport operator. We
provide both theoretical and numerical analyses of the algorithm, demonstrating
its convergence and computational efficiency. Compared to previous approaches
Tizaoui 2007b, 2009, our method offers improved accuracy and a significant
reduction in computational cost, particularly for large-scale systems. These
results underline the potential of the MR method in solving complex transport
problems, with applications in nuclear physics and engineering.

Keywords: Neutron transport equation, Integro-differential operators, Splitting,
Minimal Residual method.
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1 Introduction

Neutron transport problems are crucial in many industrial and scientific applica-
tions, such as nuclear reactor simulations, where they are traditionally solved using
diffusion equations Brisbois et al. 1974; Cox, Harris, and E. L. Horton 2019; E. Hor-
ton, Kyprianou, and Villemonais 2020; Larsen and Morel 1978; Mohanakrishnan,
Singh, and Umasankari 2021. However, these approaches, while computationally
efficient, do not capture the directional behavior of neutrons accurately Akesbi
and Lesaint 1995; Duderstadt and Hamilton 1976; Tizaoui 2007b, 2009. To model
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neutron populations in complex geometries, particularly spherical geometry, the
transport equation — an integro-differential equation — must be solved. The nu-
merical resolution of this equation has been a subject of extensive study Anli et al.
2017; Kophazi and Turzo 2018; Lewis and Miller 1993; Mokhtar-Kharroubi 1993;
Siewert and Grandjean 1979, with iterative algorithms playing a central role in
improving computational efficiency.

Direct discretization of the transport equation leads to large, nearly full linear
systems due to the integral operator’s contribution, making it computationally
expensive. To overcome this challenge, iterative methods aim to separate the
integral term and solve a hyperbolic partial differential equation at each iteration.
Despite their advantages, these methods face two significant difficulties:

• Slow convergence of the iterative algorithms, especially when solving large-
scale problems Akesbi and Lesaint 1995; Manteuffel 1980.

• A large number of unknowns in the discretized system, which can be over-
whelming even with fine angular resolution.

To address these issues, a splitting strategy for the collision operator Tizaoui
2007b has been proposed, leading to algorithms such as the Jacobi and Gauss-Seidel
methods in infinite dimensions Tizaoui 2009. Studies have shown that the Gauss-
Seidel method converges faster than the Jacobi method and performs at least as
well as traditional methods like the diffusion synthetic acceleration (DSA) method
Akesbi and Lesaint 1995; Anli et al. 2017; Kophazi and Turzo 2018; Larsen and
Morel 1978.

However, due to the non-self-adjoint nature of the operators involved in the
transport equation, conventional methods like the conjugate gradient algorithm
cannot be directly applied. In response, we explore the adaptation of the Minimal
Residual method, which is particularly suited to non-self-adjoint systems. This
approach aims to accelerate convergence while remaining independent of the dis-
cretization method used Bell and Glasstone 1970; Duderstadt and Hamilton 1976;
Siewert and Grandjean 1979.

This paper is structured as follows: Section 2 introduces the mathematical model
of the neutron population and defines the functional spaces required to ensure
well-posed boundary conditions and the existence of unique solutions. Section 3
revisits the splitting method for the collision operator Tizaoui 2007b, 2017. Section
4 presents the infinite-dimensional adaptation of the Minimal Residual method
based on the splitting strategy and provides a theoretical analysis of its convergence
and efficiency. Section 5 presents the numerical results, comparing the proposed
method with existing approaches Tizaoui 2007b, 2009.
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2. Mathematical Model

2 Mathematical Model

The behavior of neutrons within a nuclear reactor core is determined by their
transport and interactions with atomic nuclei. These interactions—comprising
scattering, absorption, and fission—are fundamental to sustaining a controlled
chain reaction. Consequently, solving the neutron transport equation in spherical
geometry is critical for the design, analysis, and safety assessment of nuclear reactors
Ahmet and Fikret 2015; Bussac and Reuss 1978; Khattab and Larsen 1991; Tizaoui
2007b, 2009, 2017. The neutron transport equation in spherical coordinates is given
by

µ

r2
∂
∂r

(
r2u(r,µ)

)
+

1
r

∂
∂µ

[(
1−µ2

)
u(r,µ)

]
+ σu(r,µ) =

∫ 1

−1
k(µ,µ′)u(r,µ′)dµ′

+ S(r,µ), (1)

for all (r,µ) ∈ (0,R)× (−1,1), with the boundary condition

u(R,µ) = 0 ∀µ < 0. (2)

Here, r is the radial distance from the center of the spherical domain, µ is the cosine
of the angle between the neutron velocity and the radial vector, σ is the scattering
cross-section (assumed to be constant), k(µ,µ′) is the scattering kernel, and S(r,µ) is
a given non-negative source term in L2(Ω). The equation can also be written in a
non-conservative form

µ
∂u
∂r

(r,µ) +
1−µ2

r
∂u
∂µ

(r,µ) + σu(r,µ) =
∫ 1

−1
k(µ,µ′)u(r,µ′)dµ′ + S(r,µ). (3)

To facilitate analysis and numerical approximation, the problem (1)–(2) is reformu-
lated as an operator equation. Let Ω = (0,R)× (−1,1). The goal is to find the neutron
flux u : Ω→ R+ satisfying{

T u(r,µ) = Ku(r,µ) + S(r,µ), for all (r,µ) ∈Ω,

u ∈W
(4)

where

• T is the transport operator, defined by

T u(r,µ) =
µ

r2
∂
∂r

(
r2u(r,µ)

)
+

1
r

∂
∂µ

[(
1−µ2

)
u(r,µ)

]
+ σu(r,µ),

• K is the integral collision operator with a positive kernel k, given by

Ku(r,µ) =
∫ 1

−1
k(µ,µ′)u(r,µ′)dµ′ ,
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• S(r,µ) is the source term.

• The solution u belongs to the function space

W :=
{
u ∈ L2(Ω)

∣∣∣ µ

r2
∂
∂r

(r2u(r,µ)) +
1
r

∂
∂µ

[(1−µ2)u(r,µ)] ∈ L2(Ω),

and u(R,µ) = 0 ∀µ < 0
}
. (5)

The transport operator T represents the movement and interaction of neutrons
within the domain, while the collision operator K accounts for scattering events.
The boundary condition u(R,µ) = 0 ensures that no neutrons enter the domain from
the outer boundary for directions where µ < 0. This mathematical framework allows
for a detailed analysis of neutron behavior in nuclear reactors and serves as the
foundation for further numerical and theoretical studies.

We make the following hypothesis:

(H1) ρ (Θ) <
c
2

, with Θ = T −1K and 0 < c ≤ 1, where ρ designates the spectral radius.

(H2) k is nonnegative and bounded function.

Remark 1 – The operator L defined by

L :=
µ

r2
∂
∂r

(
r2u (r,µ)

)
+

1
r

∂
∂µ

[(
1−µ2

)
u (r,µ)

]
is defined, then T −1 exists and the operator T −1K is compact Mokhtar-Kharroubi
1993; Tizaoui 2017.

3 Splitting Method

In the previous section, we laid the foundation for the neutron transport prob-
lem by defining the transport operators on the domains Ω1 and Ω2. To solve this
problem efficiently, we introduce a splitting method, which involves decomposing
the transport operator into several simpler operators. This approach allows us to
treat the problem more effectively by separating it into coupled subproblems, thus
facilitating its numerical resolution. Below, we provide a detailed explanation of
this splitting method and its application to our problem. We define the neutron
transport operator T1 (respectively T2) on the domains Ω1 = (0,R)× (0,1) (respec-
tively Ω2 = (0,R)× (−1,0)). Let Kij , for i, j ∈ {1,2}, be the integral operators whose
kernels are defined as:

kij (r,µ,µ′) = k (µ,µ′)×1Ωi
(r,µ)×1Ωj

(r,µ′) ,
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3. Splitting Method

where 1Ωi
is the indicator function of Ωi , i ∈ {1,2}. From this, we deduce that

Kij (u) = K
(
u ×1Ωj

)
×1Ωi

, i ∈ {1,2}.

Thus, we obtain a splitting of the integral operator K in the form:

K =
2∑

i=1

2∑
j=1

Kij .

Note that Kij is an operator acting on L2(Ω), using only the values of u on Ωj , such
that Kiju has its support in Ωi . The problem (4) is then split into two coupled
problems, defined respectively on Ω1 and Ω2, with solutions u1 and u2. This
method involves adjusting boundary conditions on Γ = (0,R) × {0} (see Tizaoui
2007b). The solution u of (4) is then given by the form u = (u1,u2), where u1 and u2
are the solutions of the coupled system

(
T1 −K11 −K12
−K21 T2 −K22

)(
u1
u2

)
=

(
S1
S2

)
, (6)

with Si = S ×1Ωi
for i ∈ {1,2}.

The idea in Tizaoui 2009 is to introduce and study various algorithms, based on
a splitting of the collision operator, adapted from the Jacobi and Gauss-Seidel
methods. We aim to develop a method that ensures a good convergence rate without
requiring any additional parameter calculation.
Let θij = T −1

i Kij and S̃i = T −1
i Si , where i, j ∈ {1,2}. The system (6) can then be

written as(
I −θ11 θ12
θ21 I −θ22

)(
u1
u2

)
=

(
S̃1
S̃2

)
. (7)

Applying the diagonal preconditioning method to this system, we obtain(
I − (I −θ11)−1θ12

− (I −θ22)−1θ21 I

)
︸                                             ︷︷                                             ︸

A

(
u1
u2

)
︸ ︷︷ ︸

X

=
(
− (I −θ11)−1 S̃1
− (I −θ22)−1 S̃2

)
︸                  ︷︷                  ︸

B

. (8)

Remark 2 – For all i ∈ {1,2}, we have ∥θij∥2 = ∥T −1
i Kij∥2 ≤ ρ

(
θij = T −1

i Kij

)
. Then

|| θij ||2≤
c
2

for (i, j) ∈ {1,2} × {1,2} . (9)

Remark 3 – From (9), we deduce

∥ (I −θii)
−1θij∥ ≤ ∥ (I −θii)

−1 ∥ × ∥θij∥2,
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which leads to

∥ (I −θii)
−1θij∥ ≤

c
2

+∞∑
p=0

∥θp
ii∥2 ≤

c
2

1
1− c

2
=

c
2− c

=: d. (10)

The implicit definition of θij through the operator equation is consistent with
the explicit form used for the majoration. This explicit form is derived from the
underlying system and is crucial for bounding the terms as shown in this remark.
Both the implicit and explicit definitions of θij are fully compatible and provide a
consistent framework for the analysis presented.

Remark 4 – The operator matrix A is invertible, as the operators I −θ11 and I −θ22
are nonsingular, as shown in the previous remarks. This guarantees the invertibility
of A.

4 Minimal Residual Algorithm

The Minimal Residual algorithm is a widely used iterative method for solving large,
sparse systems of equations, which are common in many scientific and engineering
applications. It is particularly effective for symmetric indefinite systems, where
traditional direct methods may be computationally expensive. By minimizing
the residual vector at each step, this algorithm progressively refines the solution,
making it an efficient tool for large-scale numerical simulations.

4.1 Benchmark or Algorithm Overview

In this subsection, we present an overview of the Minimal Residual algorithm, high-
lighting its key features, such as its ability to solve large, sparse systems efficiently
and its applicability in fields such as computational fluid dynamics and structural
simulations. The algorithm’s main advantage is its iterative nature, which allows
for the progressive improvement of the solution while keeping computational costs
low.

The Minimal Residual method, introduced by Axelsson 1996, is an iterative tech-
nique designed to solve symmetric indefinite systems by minimizing the residual
vector at each iteration. This method is especially useful for large-scale problems
where direct methods are too costly or impractical. The algorithm is defined as
follows to solve the system (8)

1. Start by selecting X0, calculating the initial residual r0 = B −AX0, and setting
p0 = r0, q0 =Ap0.
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4. Minimal Residual Algorithm

2. For k = 0,1, . . . until ∥rk∥2 < ε, perform the following steps:

αk = ⟨rk ,qk⟩
⟨qk ,qk⟩ ,

Xk+1 = Xk +αkpk ,
rk+1 = rk −αkqk ,

βk+1 = − ⟨Ar
k+1,qk⟩
⟨qk ,qk⟩ ,

pk+1 = rk+1 + βk+1pk ,
qk+1 =Ark+1 + βk+1qk .

This algorithm aims to minimize the function

E(X) = ∥B −AX∥22,

which represents the squared error between the current approximation of the
solution and the exact solution. By iteratively improving the approximation of Xk ,
the algorithm seeks to reduce this error and converge to the true solution.

4.2 Convergence of the Minimal Residual Algorithm

In this section, we examine the convergence properties of the Minimal Residual
algorithm. To this end, we first establish some essential notation and preliminary
results. Let ⟨·, ·⟩ denote the standard inner product in L2(Ω)× L2(Ω), and let ∥ · ∥2
represent the corresponding L2(Ω)-norm. With this notation in place, we focus on
the iterative solution of the system of equations. The Minimal Residual method
is widely regarded as one of the most efficient iterative techniques for solving
large-scale systems, particularly those involving symmetric indefinite matrices.
By minimizing the norm of the residual at each iteration, the algorithm achieves
progressive refinement of the approximate solution, making it highly effective for
tackling computationally challenging problems.

Proposition 1 – Let Xk be constructed by the algorithm described above, starting from
X0. For k ≥ 0, the following estimate for the residual holds:

E(Xk+1) ≤ E(Xk)
(
1− ⟨r

k ,Ark⟩
⟨rk , rk⟩

⟨rk ,Ark⟩
⟨Ark ,Ark⟩

)
. (11)

Proposition 2 – Under the assumptions (H1) and (H2), for all X, the operatorA satisfies

⟨AX,X⟩ ≥ (1− d)⟨X,X⟩ and ⟨AX,X⟩ ≥ 1
1 + d

⟨AX,AX⟩, (12)

where d =
c

2− c
.
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Proof. Let X = (u1,u2). We have

⟨AX,X⟩ = ∥X∥22 − ⟨(I −θ11)−1θ12u2,u1⟩ − ⟨(I −θ22)−1θ21u1,u2⟩.

Using (10), we obtain

⟨AX,X⟩ ≥
(
1− c

2− c

)
∥X∥22,

thus proving the left-hand inequality in (12). To prove the right-hand inequality of
(12), assume ξ > 0, and we have

⟨AX,X⟩ − ξ⟨AX,AX⟩ = (1− ξ)∥X∥22

− (1− 2ξ)
[
⟨(I −θ11)−1θ12u2,u1⟩+ ⟨(I −θ22)−1θ21u1,u2⟩

]
− ξ

[
⟨(I −θ22)−1θ21u1, (I −θ11)−1θ21u1⟩

+ ⟨(I −θ11)−1θ12u2, (I −θ11)−1θ12u2⟩
]
. (13)

Choosing ξ > 1
2 , and using (10), we derive the inequality

⟨AX,X⟩ − ξ⟨AX,AX⟩ ≥
(
1 + d − ξ(1 + d)2

)
∥X∥22.

By selecting ξ such that 1 + d − ξ(1 + d)2 = 0, we obtain ξ = 1
1+d . Therefore, the

right-hand inequality of (12) is also proven. □

The next theorem illustrates the convergence of the Minimal Residual algorithm
and how A can occur.

Theorem 1 – Under the assumptions (H1) and (H2), the Minimal Residual method
converges, and the residual decays at least at the following exponential rate

E(Xk) ≤ ckE(X0). (14)

Proof. By inserting the inequalities of Proposition 2 into (11), we get

E(Xk+1) ≤ cE(Xk), (15)

and consequently (14). Since c ∈ (0,1), then E(Xk) converges towards 0 when k goes
to infinity. Using the left-hand inequality of (12), we get

∥Xk+1 −A−1B∥22 ≤
1

1− d
⟨AXk+1 −B,Xk+1 −A−1B⟩; (16)
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5. Numerical results

so that

∥Xk+1 −A−1B∥2 ≤
1

√
1− d

√
E(Xk+1), (17)

which means Xk+1→ X with AX = B. Hence, the Minimal Residual method con-
verges. □

5 Numerical results

In this section, we are mainly interested in solving the following neutron transport
problem: Find u : (0,R)× (−1,1)→ R+ such that

 µ∂u
∂r (r,µ) + 1−µ2

r
∂u
∂µ (r,µ) + σu(r,µ) =

σc
2

∫ 1

−1
u(r,µ′)dµ′ + S(r,µ),

u(R,µ) = 0, ∀ µ < 0.
(18)

5.1 Discretization

The presence of spatial and angular derivatives in the studied equation imposes
significant constraints on the choice of the numerical method. To ensure a consistent
and efficient discretization while limiting the number of degrees of freedom for
computational feasibility, we have adopted a specific scheme for each mesh element.
This scheme is designed to preserve the fundamental properties of the continuous
equation while meeting the requirements of simplicity and robustness in numerical
processing. To this end, we define a suitable discrete space, denoted by Vh, which
consists of functions whose restriction to each rectangle Ωij is expressed in the form
a + br + brµ, where a and b are real numbers. This structure effectively captures
spatial and angular variations while maintaining computational complexity at a
reasonable level. Let the integers N ≥ 1 and M ≥ 1. We discretize the intervals
(−1,1) and (0,R) as follows

−1 = µ−M < µ−M+1 < · · · < µ0 = 0 < µ1 < · · · < µM = 1,

0 = r0 < r1 < r2 < · · · < rN−1 < rN = R.

We adopt the following notations:

Ω =
⋃
i,j

Ωij , where Ωij = [ri , ri+1]× [µj ,µj+1],

τ = µj+1 −µj , µj+ 1
2

=
µj +µj+1

2
,

9
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h = ri+1 − ri , ri+ 1
2

=
ri + ri+1

2
.

The average values mij and γi,j are defined as:

mij =
1
hτ

∫ ri+1

ri

∫ µj+1

µj

u(r,µ)dµdr,

γi,j =
1
τ

∫ µj+1

µj

u(ri ,µ)dµ,

for all (i, j) ∈ [0,N − 1]× [0,M − 1]. It is straightforward to prove that:

mi,j =
1
2

(
γi+1,j +γi,j

)
, ∀(i, j) ∈ [0,N − 1]× [0,M − 1]. (19)

On the space Vh, the function u(r,µ) can be written as:

u(r,µ) =
2
h

ri+1 −
rµ

µj+ 1
2

mi,j −
2
h

ri+1 −
r

µj+ 1
2

γi+1,j . (20)

5.2 Resolution onΩ2

In the processing on Ω2, the values of γi+1,j are known, so we will look for the
values of γi,j and mij . We consider the following algorithm: Find uk+1 ∈ V such that

µ
∂uk+1

∂r
(r,µ) +

1−µ2

r
∂uk+1

∂µ
(r,µ) + σuk+1(r,µ) =

σc
2

∫ 0

−1
uk+1 (r,µ′)dµ′

+
σc
2

∫ 1

0
uk (r,µ′)dµ′ + S (r,µ) . (21)

This is equivalent to

µ
∂uk+1

∂r
(r,µ) +

1−µ2

r
∂uk+1

∂µ
(r,µ) + σuk+1(r,µ) =

σc
2

p=−1∑
p=−M

∫ µp+1

µp

uk+1 (r,µ′)dµ′

+
σc
2

p=M−1∑
p=0

∫ µp+1

µp

uk (r,µ′)dµ′ + S (r,µ) . (22)

By integrating (22) over Ωij , and dividing by hτ , we get:
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5. Numerical results

1
hτ

∫ ri+1

ri

∫ µj+1

µj

µ
∂uk+1

∂r
(r,µ)drdµ+

1
hτ

∫ ri+1

ri

∫ µj+1

µj

1−µ2

r
∂uk+1

∂µ
(r,µ)drdµ(Cont. next page)

+ σmk+1
ij =

σc
2

p=−1∑
p=−M

mk+1
ip + Sk

ij , (23)

where

Sk
ij =

σc
2

p=M−1∑
p=0

mk
ip +

1
hτ

∫ ri+1

ri

∫ µj+1

µj

S (r,µ)drdµ.

Using the equations (19) and (20), the equality (23) becomes

σ − 2
hµj+ 1

2

︸         ︷︷         ︸
C−1
j >0

mk+1
ij +

2
hµj+ 1

2

γk+1
i+1,j =

σc
2

p=−1∑
p=−M

mk+1
ip + Sk

ij .

Hence, we have for the expression mk+1
ij

mk+1
ij =

σc
2
Cj

p=−1∑
p=−M

mk+1
ip +Cj

− 2
hµj+ 1

2

γk+1
i+1,j + Sk

ij

 . (24)

We put

Xk
i =

p=−1∑
p=−M

mk
ip

S̃k
ij = Cj

(
− 2
hµ

j+ 1
2

γk+1
i+1,j + Sk

ij

)
.

Hence, we have

mk+1
ij = Cj

σc
2
Xk+1
i + S̃k

i,j . (25)

Remember that all the terms S̃k+1
i,j are known.

Before determining the unknowns mk+1
ij , we first propose the determination of the

11
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auxiliary unknowns Xk+1
i by summing over the index j (−M ≤ j ≤ −1). We then

deduce
1− σc

2

j=−1∑
j=−M

Cj

︸            ︷︷            ︸
ω−1


Xk+1
i =

j=−1∑
j=−M

S̃k
i,j . (26)

Consequently

Xk+1
i = ω

j=−1∑
j=−M

S̃k
i,j . (27)

For i fixed in [0,N − 1], equation (27) gives the values of Xk+1
i , then using (25), we

determine the terms mk+1
ij . Finally, we determine the values of γk+1

i,j by the equality
(19). The numerical resolution on the sub-domain Ω2 is then completed.

5.3 Resolution onΩ1

Similarly, for the resolution on Ω1, we will first use the symmetry equality u (0,µ) =
u (0,−µ), which will allow us to know γ0,j = γ0,−j for j ≥ 0. Then, we proceed as
on Ω2 except that the direction of travel on the characteristics is opposite. This
statement therefore means that the terms γi,j are known and the terms γi+1,j and
mij are unknown. In this case, we take the expression of u in the following form

u (r,µ) =
2
h

−ri +
1

µj+ 1
2

rµ

mij +
2
h

ri+ 1
2
− 1
µj+ 1

2

rµ

γi,j .
For more details, the reader is referred to, for example, Tizaoui 2007b, 2017.

Remark 5 – The above numerical scheme can be generated for collision kernels of
the form:

k(r,µ,µ′) = C(r)
l=Nk∑
l=1

αl(µ)αl(µ
′)

with positive measurable and bounded function C and Nk ∈ N⋆ . One of the kernels
taking this form is Thomson’s kernel:

k(µ,µ′) =
9σ
16

[(
1−

µ2

3

)(
1−

µ′2

3

)
+

8
9
µ2µ′2

]
.
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5. Numerical results

5.4 Numerical Tests

For the numerical experiments presented, we consider the domain Ω = (0,1)×(−1,1),
with a spatial step size h = 1

500 and a time step size τ = 1
10 . Due to the computational

cost and space limitations of this study, we have chosen not to perform excessive
refinement of the angular variable in our discretization. We have ensured that the
current level of refinement captures the essential features of the solution while
maintaining the accuracy of the method. The source term is chosen in the following
form.

S(r,µ) = 1 +µ+ σ [µ (r − e−σr ) + (1− c) (1 + r + e−σr )] .

For this choice of S, the exact analytical solution of the test is given by:

u(r,µ) = 1 + r + rµ+ e−σr .

The boundary condition is specified as:

ϕ(1,µ) := 2 +µ+ e−σ , for all µ < 0.

For each iterative method tested, iterations are stopped when the following
convergence criterion is met:

∥ϕk+1 −ϕk∥2
∥ϕk∥2

< 10−9.

In the left-hand panel of Figure 1, we plot the exact solution, and in the right-
hand panel, we plot the corresponding source term for σ = 10 and c = 0.9.

Figure 1 – On the left, the exact solution u(r,µ), and on the right, the source term
for σ = 10 and c = 0.9.
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There are two sets of tests: one for a fixed value of σ , and another for a fixed
value of c. In each case, we compare the number of iterations required for conver-
gence using the Minimal Residual algorithm and the Gauss-Seidel method Tizaoui
2009.

Figure 2 shows, as a function of c (0 < c ≤ 1), the number of iterations required
for convergence using the Gauss-Seidel method and the Minimal Residual Method,
with σ fixed at 50. Figure 3 illustrates the number of iterations for convergence as a
function of c near 1, with σ fixed at 50, for both the Gauss-Seidel and the Minimal
Residual Methods. Figure 4 presents the number of iterations with respect to σ at a
fixed value of c = 0.98, using the same example as in the previous figures.
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Figure 2 – Comparison of the iterations number at σ = 50 (0 < c < 1).
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5. Numerical results
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Figure 3 – Comparison of the number of iterations for σ = 50 and c ≈ 1.
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Figure 4 – Comparison of the iterations number c = 0.98.

Observing the numerical results, we deduce that the Minimal Residual algorithm
is efficient compared to the Gauss-Seidel method, and consequently, it outperforms
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the methods presented in Akesbi and Lesaint 1995; Tizaoui 2007b, 2009.

6 Conclusion

In the present work, an infinite-dimensional adaptation of the Minimal Residual
method for solving the stationary neutron transport equation in spherical geometry
is presented. This method offers a robust and efficient solution framework, with a
theoretical proof of its convergence rate and numerical results illustrating its advan-
tages over existing methods Akesbi and Lesaint 1995; Tizaoui 2007b, 2009. Notably,
the convergence of the algorithm is shown to be independent of the discretization
choice, highlighting its flexibility and robustness. Building on these results, ongoing
efforts aim to accelerate the algorithm through preconditioning techniques Tizaoui
2007a, 2021 and to further validate its performance through extensive numerical ex-
periments, paving the way for significant advancements in computational methods
applied to neutron transport and their practical applications.

Acknowledgements

The author would like to thank:

• Karim Liviu Trabelsi, Associate Professor of Applied Mathematics at DR2I,
IPSA, for providing excellent working conditions,

• Laurent Bletzacker for his valuable advice.

References

Ahmet, B. and A. Fikret (2015). “Criticality calculations with PN approximation
for certain scattering parameters of Anli-GünGör and Henyey-Greenstein phase
functions in spherical geometry”. Kerntechnik 80, pp. 161–166 (cit. on p. 3).

Akesbi, S. and P. Lesaint (1995). “Discontinuous finite elements for the 1-d transport
equation acceleration by diffusion method”. Transport Theory and Statistical
Physics. 24 (4,5), pp. 31–751 (cit. on pp. 1, 2, 16).

Anli, F. et al. (2017). “Exact Solution of the Neutron Transport Equation in Spherical
Geometry”. Kerntechnik 82 (1), pp. 132–135 (cit. on p. 2).

Axelsson, O. (1996). Iterative solution methods. Cambridge University Press (cit. on
p. 6).

Bell, G. I. and S. Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold
(cit. on p. 2).

Brisbois, J. et al. (1974). Computational methods for graphite gas cooled reactors shield-
ing: comparison with shielding measurements made during start-up tests. Tech. rep.
CEA, Paris (France); Electricité de France, Paris (France) (cit. on p. 1).

16



References

Bussac, J. and P. Reuss (1978). Traité de neutronique. Paris: Hermann (cit. on p. 3).
Cox, A. M. G., S. C. Harris, and E. L. Horton (2019). “Multi-species Neutron Trans-

port Equation”. J. Stat. Phys. 176th ser., pp. 425–455 (cit. on p. 1).
Duderstadt, J. J. and L. J. Hamilton (1976). Nuclear Reactor Analysis. John Wiley &

Sons (cit. on pp. 1, 2).
Horton, E., A. E. Kyprianou, and D. Villemonais (2020). “Stochastic methods for

the neutron transport equation I: Linear semigroup asymptotics”. The Annals of
Applied Probability. 30(6), pp. 2573–2612 (cit. on p. 1).

Khattab, K. M. and E. W. Larsen (1991). “Synthetic acceleration methods for linear
transport problems with highly anisotropic scattering”. Nucl. Sci. and Eng. 107,
pp. 217–227 (cit. on p. 3).

Kophazi, J. and I. Turzo (2018). “Adaptive mesh refinement for spherical geometries
in neutron transport”. Annals of Nuclear Energy 120, pp. 25–37 (cit. on p. 2).

Larsen, E. W. and J. E. Morel (1978). “Asymptotic derivation of the diffusion approx-
imation for neutron transport”. Journal of Computational Physics 37, pp. 287–308
(cit. on pp. 1, 2).

Lewis, E. E. and W. F. Miller (1993). Computational Methods of Neutron Transport.
American Nuclear Society (cit. on p. 2).

Manteuffel, T. A. (1980). “An incomplete factorization technique for positive definite
linear systems”. Mathematics of Computation 34, pp. 473–497 (cit. on p. 2).

“Chapter 5 - Methods of solving neutron transport equation” (2021). In: Physics
of Nuclear Reactors. Ed. by P. Mohanakrishnan, O. P. Singh, and K. Umasankari.
Academic Press, pp. 263–329 (cit. on p. 1).

Mokhtar-Kharroubi, M. (1993). “On the approximation of a class of transport
equations”. Transport Theory and Statistical Physics 22 (4), pp. 561–570 (cit. on
pp. 2, 4).

Siewert, C. E. and P. Grandjean (1979). “Three Basic Neutron-Transport Problems in
Spherical Geometry”. Nuclear Science and Engineering 70 (1), pp. 68–75 (cit. on
p. 2).

Tizaoui, A. (2007a). “Polynomial preconditioning and the Generalized Minimal
Residual algorithm solver for the 2-D Boltzmann transport equation”. C. R. Acad.
Sci. I 345, pp. 177–181 (cit. on p. 16).

Tizaoui, A. (2007b). “Splitting operator for solving the neutron transport equation
in 1-D spherical geometry”. Int. J. Math. Stat. 1, pp. 31–45 (cit. on pp. 1–3, 5, 12,
16).

Tizaoui, A. (2009). “Iterative methods for solving the neutron transport equation in
1-D spherical geometry”. J. Fusion Energ. 28 (4), pp. 342–345 (cit. on pp. 1–3, 5,
14, 16).

Tizaoui, A. (2017). Transport neutronique et préconditionnement. Presses Academiques
Francophones (cit. on pp. 2–4, 12).

17



The Minimal Residual Method- Neutron transport A. Tizaoui

Tizaoui, A. (2021). “Incomplete factorization preconditioning and GMRES algo-
rithm applied to the 1-D neutron transport equation”. Int. J. Math. Stat. 1, pp. 8–
20 (cit. on p. 16).

18



Contents

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Splitting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Minimal Residual Algorithm . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Benchmark or Algorithm Overview . . . . . . . . . . . . . . 6
4.2 Convergence of the Minimal Residual Algorithm . . . . . . 7

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Resolution on Ω2 . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Resolution on Ω1 . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

i


	1 Introduction
	2 Mathematical Model
	3 Splitting Method
	4 Minimal Residual Algorithm
	4.1 Benchmark or Algorithm Overview
	4.2 Convergence of the Minimal Residual Algorithm

	5 Numerical results
	5.1 Discretization
	5.2 Resolution on Ω₂
	5.3 Resolution on Ω₁
	5.4 Numerical Tests

	6 Conclusion
	Acknowledgements
	References
	Contents

