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Abstract

In this paper, we study the Cauchy problem of Boltzmann equation with
soft potential in modulation spaces. Our aim is to obtain the global existence
of solution to the space-homogeneous Boltzmann equation. To realize this goal,
the boundedness of Boltzmann operator in modulation space is established. In
addition, Banach fixed-point theorem is applied with careful estimate of time
integral for the contraction mapping.

Keywords: Global well-posedness, Boltzmann equation, Modulation space.

msc: 35Q20, 35A01, 42B35.

1 Introduction

In last decades, the study of kinetic models for granular flow3 attracted many math-
ematicians. Depending on the external conditions (geometry, gravity, interactions
with surface of a vessel), granular system may be in a variety of regimes, displaying
typical features of solids, liquids or gases and also producing quite surprising ef-
fects4. In the case of rapid, dilute flows, the binary collisions between particles may
be considered the main mechanism of inter-practice interactions in the system. In
this paper, we study a model in the space homogeneous regime, described by the
following equation: ∂tf −∆vf =Q(f , f )(v, t), v ∈Rn, t > 0,

f (v,0) = f0(v),
(1)

1Department of Mathematics and Statistics, The University of Toledo, Toledo, OH 43606, USA
2Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201,

USA
3Cercignani, 1995, “Recent developments in the mechanics of granular materials”;

Jenkins, 1998, “Kinetic theory for nearly elastic spheres”.
4Umbanhowar, Melo, and Swinney, 1996, “Localized excitations in a vertically vibrated granular

layer”.
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where f is the distribution function of particle, depending only on the microscopic
velocity v and time t, and Q(f , f ) the Boltzmann operator is defined in section 1.2.

Gamba, Panferov, and Villani5 studied Boltzmann equation with hard sphere
case for (1) and obtained solution in L1

2(Rn)∩L LogL(Rn) space, where the spaces
are defined as below:

L1
2(Rn) =

{
f :

∫
R
n
f (v)(1 + |v|2)dv <∞

}
,

and

L LogL(Rn) =
{
f :

∫
R
n
f logf dv <∞

}
.

For the solutions near Maxwellian in the L2-framework, Caflisch6 studied the
spatially-dependent nonlinear Boltzmann equation for soft potential case. More
precisely, Caflisch obtained solution in Hα , which is defined by

Hα =
{
f : ∥f ∥α =: sup

ξ
eα|ξ |

2
4∑
s=1

(∫
T

3
|∇sf (x,ξ)|2dx

) 1
2
<∞

}
,

where f is periodic in spatial variable x ∈ T3 = (R/2πZ)3,ξ ∈ R3 is microscopic
velocity.

Duan and Yu7 studied the relativistic Boltzmann equation for soft potential in
weighted HN Sobolev spaces. One could refer to Ukai and Asano (1982) and Yang
and Yu (2016) for more detail about soft potential near Maxwellian.

Now we turn to review some results for the partial differential equations in
modulation spaces. There are many mathematicians working on this research area
extensively for decades. For instance, Wang, Han, and Huang (2009) investigated
the global well-posedness and scattering for the derivative nonlinear Schrödinger

equation with small rough data in modulation spaces M
3
2
2,1. Also, Wang and Huang

(2007) studied the Cauchy problems for the generalized BO, KDV and NLS equations
and obtained the global well-posedness of solution with small rough data in certain
modulation spaces. For the nonlinear heat equation and Navier-Stokes equation,
Iwabuchi8 obtained solutions in modulation spaces with negative derivative indices.
For more about the study of partial differential equations in modulation spaces, see
Baoxiang, Lifeng, and Boling (2006) and Wang, Huo, et al. (2011) and the references
therein.

5Gamba, Panferov, and Villani, 2004, “On the Boltzmann equation for diffusively excited granular
media”.

6Caflisch, 1980, “The Boltzmann equation with a soft potential”.
7Duan and Yu, 2017, “The relativistic Boltzmann equation for soft potentials”.
8Iwabuchi, 2010, “Navier–Stokes equations and nonlinear heat equations in modulation spaces with

negative derivative indices”.
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However, there are few literature studying on Boltzmann equation in modulation
spaces. In this paper, we try to make an effort to step forward in this direction.
Compared with the above literature, which worked on Boltzmann equation in
Sobolev spaces near Maxwellian, while our interest focus on the homogenous
Boltzmann equation with soft potential, and the Cauchy problems with initial data
near vacuum in modulation space.

Our strategy is to apply the Banach fixed-point theorem on Ψ (f ) which is defined
by

Ψ (f )(t) =: et∆f0 +
∫ t

0
e(t−τ)∆Q(f , f )dτ.

To do so, we need to prove Ψ (f ) is a contraction mapping. Firstly, the boundedness
of Ψ in modulation space is one of major parts to prove the contraction. In turn,
the boundedness of Boltzmann operator in modulation space becomes fundamen-
tally important. Actually, we establish our own estimates of Boltzmann operator
which are off-diagonal estimates, i.e. Lp-Lq and lσ -lν , whose proofs are shown in
Proposition 3. With this in hand, we make great effort to compute the time integral
estimate, see (44) and (61), which leads to the boundeness of Ψ in modulation space
globally in time.

We firstly set our notations and definitions.

1.1 General notations and definitions

• Given f ∈S Schwartz class, its Fourier transform F f = f̂ is defined by

f̂ (ξ) =
∫
R
n
e−ix·ξf (x)dx,

and its inverse Fourier transform is defined by F −1f (x) = f̂ (−x).

• ∥f ∥Lpx =
(∫

R
n |f |pdx

) 1
p
.

• |{aj }|lr =
( ∑
j∈Zn
|aj |r

) 1
r
, |ξ |∞ = max |ξi |,ξ = (ξ1, · · · ,ξn) ∈Rn.

• Let A > 0,B > 0, A ≲ B means there exists a positive constant c independent of
the main parameters such that A ≤ cB. A ∼ B means A ≲ B and B ≲ A.
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1.2 Definitions of Q(g, f) (see Gamba, Panferov, and Villani (2004)
and Glassey (1996))

In this part, we introduce the definition of Boltzmann operator which takes the
form:

Q(g,f )(v, t) =
∫
R
n

∫
Sn−1

f (v′ , t)g(v′∗, t)
1

|v − v∗|γ
b(v − v∗,σ )dσdv∗

−
∫
R
n

∫
Sn−1

f (v, t)g(v∗, t)
1

|v − v∗|γ
b(v − v∗,σ )dσdv∗

=: Q+(g,f )(v, t)−Q−(g,f )(v, t),

(2)

where

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

and −1 ≤ γ < n, b(u,σ )
def
= b

(
u
|u| · σ

)
, let cosθ = u

|u| · σ, assume 0 ≤ b(cosθ) ≤ c |cosθ|

(angular cutoff), c is a generic constant. Note
∫
Sn−1 b(v − v∗,σ )dσ ∼ 1.

• We call Q+(g,f ) the gain term and Q−(g,f ) the loss term separately.

• Q+(g,f ) has another expression:

Q+(g,f )(v, t) =
∫
R
n

∫
Sn−1

f (v +
u′ −u

2
, t)g(v − u

′ +u
2

, t)
1
|u|γ

b(u,σ )dσdu,

where u′ = |u|σ.

• Also, Q−(g,f ) ∼ f · (g ∗ 1
|v|γ ).

• Usually, we call it hard potential if γ ∈ [−1,0], especially, when γ = −1, we call
it hard sphere case; and soft potential if γ ∈ (0,n), which is the case we are
going to focus on in this paper.

For more information about Boltzmann operator, see Chen and He (2019) , Duan
and Yu (2017), He, Chen, Fang, et al. (2021a) , Ukai and Asano (1982) , and Yang
and Yu (2016) .

1.3 Definition of modulation space

Let us recall the definition of modulation spaces Ms
p,q(R

n)9 .

9Wang, Huo, et al., 2011, Harmonic analysis method for nonlinear evolution equations, I.
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Let ρ ∈ S (Rn) which is Schwartz space, ρ : Rn → [0,1] be a smooth function
verifying ρ(ξ) = 1 for |ξ |∞ ≤ 1/2 and ρ(ξ) = 0 for |ξ |∞ ≥ 1. Let ρk be the translation
of ρ,

ρk(ξ) = ρ(ξ − k), k ∈Zn, (3)

Denote

σk(ξ) = ρk(ξ)
( ∑
k∈Zn

ρk(ξ)
)−1
, k ∈Zn, (4)

and

□k := F −1σkF , k ∈Zn, (5)

The operators {□k}k∈Zn are said to be frequency-uniform decomposition operators.
For k ∈Zn, we denote |k| = |k1|+ · · ·+ |kn|,⟨k⟩ = 1 + |k|.

Let −∞ < s <∞,0 ≤ p,q ≤∞, we define

Ms
p,q(R

n) =
{
f ∈S

′
(Rn) : ∥f ∥Ms

p,q
<∞

}
, (6)

∥f ∥Ms
p,q

:=
( ∑
k∈Zn
⟨k⟩sq∥□kf ∥

q
p

)1/q
, (7)

Ms
p,q(Rn) is said to be the modulation space. In this paper, we consider onlyM0

p,q(Rn)
type space.

Now we introduce other notations and assumptions which will be used in our
proof of main theorem before we narrate it.
Denote

• α =:
n
2

(
1
ν
− 1
σ

), β =:
n
2

(
1
p
− 1
r

).

• ∥f ∥Y =: sup
t∈[0,∞)

∥f (t)∥M0
p,σ (Rn).

• ∥f ∥Zr,ν =: sup
t∈[0,∞)

tα(1 + t)β−α∥f (t)∥M0
r,ν (Rn).

• ∥f ∥X =: sup
t∈[0,∞)

∥f (t)∥M0
p,σ (Rn) + sup

t∈[0,∞)
tα(1 + t)β−α∥f (t)∥M0

r,ν (Rn),

i.e., ∥f ∥X = ∥f ∥Y + ∥f ∥Zr,ν .
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We also need to make the following assumptions.
Assumption: Let 0 < α ≤ 1

2 ,β ≥ 1,n ≥ 3,0 < γ < n,1 < p < r,1 < ν < σ, and there exist
(p1,p2,q, p̃, r̃, ν̃) such that

1
p2

+ n−γ
n ≤

1
r ,

1
p1

+ 1
p2

= 1
r̃ , p1 ≥ r > 1,

r̃
q = 1

p̃ −
n−γr̃
n , p̃r̃ ≥ r,1 < p̃ < n

n−γr̃ ,

q′ ≥ r, 1
q + 1

q′ = 1,

1 < r̃ < p < r <∞,

(8)

and 

1 < ν < σ < ν̃ <∞,
1
ν̃ = 2

ν − 1,

n
2 ( 1
σ −

1
ν̃ ) + 2α ≤ 1,

n
2 ( 1
ν −

1
ν̃ ) +α ≤ 1.

(9)

Remark 1 – It is not hard to see that the indices set satisfying (8) and (9) is
nonempty. For instance, one can take

(n,γ,α,σ , r,ν) = (15,
19
2
,

1
16
,
38
35
,
3
2
,
16
15

),

and

(p1,p2,q, p̃, r̃, ν̃) = (
3
2
,
15
2
,3,

8
5
,
5
4
,
8
7

).

Now we are in the position to state the main theorem.

Theorem 1 – Under the above assumption, there exists sufficiently small δ > 0 such that
for any f0 with ∥f0∥M0

p,σ (Rn) ≤ δ, (1) possesses a unique global solution in X, where

X =:
{
f ∈ C([0,∞),M0

p,σ (Rn) : ∥f ∥X ≤ c1δ, for some constant c1.
}

Remark 2 – Compared with Iwabuchi (2010) , the nonlinear term Q(f ,g) in this
paper, which represents the phenomenon of collision of microscopic particles and
has applications in statistical background, is quite different from the one in Iwabuchi
(2010) . Besides, the estimate of the nonlinear term Q(f ,g) is more complicated
than the one in Iwabuchi (2010) .
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2. Some lemmas

2 Some lemmas

In this section, we would like to cite some useful lemmas. The first one is about the
properties of et∆ in modulation spaces.

Lemma 1 – (Iwabuchi (2010)) Let 1 ≤ q,r,σ ,ν ≤∞, s ∈R.
(i) If q ≥ r, there exists a constant c > 0 such that

∥et∆f ∥Ms
q,σ
≤ c(1 + t)−

n
2 ( 1

r −
1
q )∥f ∥Ms

r,σ
. (10)

(ii) If σ ≤ ν, there exists a constant c > 0 such that

∥et∆f ∥M0
q,σ
≤ c(1 + t−

n
2 ( 1

σ −
1
ν ))∥f ∥M0

q,ν
. (11)

Also, the following property for modulation space is useful.

Lemma 2 – (Wang, Huo, et al. (2011)) There exists a constant c > 0 which is indepen-
dent of p,q, such that

∥□kf ∥Lq ≤ c∥□kf ∥Lp , 1 < p ≤ q ≤∞. (12)

Remark 3 – Comparing with the counterpat in Besov space,

∥∆kf ∥Lq ≤ C2nk( 1
p−

1
q )∥∆kf ∥Lp , 1 < p ≤ q <∞, (13)

we see that the operator ∆k (see Bergh and Löfström (2012) , He and Chen (2021) ,
He, Chen, Fang, et al. (2021b)) results in the increase of the derivative, i.e. we need
higher order derivative to control Lq. However, for the operator □k , we do not need
higher order derivative to control higher integral index which is an advantage in
modulation space.

Finally, we need the following notations and property of S±[ψ] which will be used
in the estimate of the gain term Q+(g,f ) in modulation space.
Denote

S[ψ](v,v∗) =
∫
Sn−1

ψ(v′)b(u,σ )dσ, u = v − v∗, v′ =
v + v∗

2
+
|v − v∗|

2
σ, (14)

and

S±[ψ](v,v∗) =
∫
{±u·σ>0}

ψ(v′)b(u,σ )dσ, (15)

then we have the following boundedness estimate of S± in Lebesgue spaces.

Lemma 3 – (Gamba, Panferov, and Villani (2004)) The operators

S+ : Lq(Rn)→ L∞(Rnv∗ ,L
q(Rnv )),

S− : Lq(Rn)→ L∞(Rnv ,L
q(Rnv∗ )),

are bounded for every 1 ≤ q ≤∞.
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3 Estimate of Boltzmann operator in modulation
spaces

In this section, we would like to establish estimates of Boltzmann operator with soft
potential in modulation spaces. We will split the procedure into two parts which
are the estimate of gain term Q+(g,f ) and the estimate of the loss term Q−(g,f ).

3.1 Estimate of the gain term Q+(g,f )

To estimate the gain term, we will prove the off-diagonal estimates Lp-Lq and lσ -lν ,
which are very useful to deal with the nonlinear term estimate in section 4.

Lemma 4 – For 1 < p̃ < n
n−pγ ,1 < p <∞,

1
p + 1

p′ = 1, 1
q + 1

q′ = 1, we have the following
estimate for the gain term Q+(g,f )

|⟨Q+(g,f ),ψ⟩| ≲ ∥g∥Lq′ · ∥f ∥Lpp̃ · ∥ψ∥Lp′ , (16)

i.e.

∥Q+(g,f )∥Lp ≲ ∥g∥Lq′ · ∥f ∥Lpp̃ . (17)

Proof. By the definitions of Q+(g,f ) and S±[Ψ ], following Gamba, Panferov, and
Villani (2004) ( see (4.2) in page 519), we can write the dual form as below:

|⟨Q+(g,f ),ψ⟩| =
∣∣∣∣∫

R
n
Q+(g,f )ψdv

∣∣∣∣
=
∣∣∣∣∫

R
n
v

∫
R
n
v∗

f (v)g(v∗)
1

|v − v∗|γ

∫
Sn−1

ψ(v′)b(v − v∗,σ )dσdvdv∗
∣∣∣∣

=
∣∣∣∣∫

R
n
v

f (v)
∫
R
n
v∗

g(v∗)
1

|v − v∗|γ
(S+[ψ](v,v∗) + S−[ψ](v,v∗))dvdv∗

∣∣∣∣.
(18)

In order to get an estimate of |⟨Q+(g,f ),ψ⟩|, we only need to estimate the term
associated with S+[ψ](v,v∗) which satisfies∫

R
n
v

f (v)
∫
R
n
v∗

g(v∗)
1

|v − v∗|γ
S+[ψ](v,v∗)dvdv∗

≲

∫
R
n
v∗

g(v∗)dv∗ ·
∥∥∥∥ f (v)
|v − v∗|γ

∥∥∥∥
L
p
v

·
∥∥∥∥S+[ψ](v,v∗)

∥∥∥∥
L∞(Rnv∗ ,L

p′ (Rnv ))

≲

∫
R
n
v∗

g(v∗)dv∗ ·
∥∥∥∥ f (v)
|v − v∗|γ

∥∥∥∥
L
p
v

· ∥ψ∥Lp′

≲∥g∥
L
q′
v∗
·
∥∥∥∥ f (v)
|v − v∗|γ

∥∥∥∥
L
q
v∗L

p
v

· ∥ψ∥Lp′ ,

(19)

8



3. Estimate of Boltzmann operator in modulationspaces

where we applied Hölder’s inequality in v with 1
p + 1

p′ = 1 and v∗ with 1
q + 1

q′ = 1
separately in the second line and the last line, we also applied Lemma 3 with
1
p + 1

p′ = 1 in the third line.

We now continue to estimate the term
∥∥∥∥ f (v)
|v−v∗ |γ

∥∥∥∥
L
q
v∗L

p
v

.

Rewrite∥∥∥∥ f (v)
|v − v∗|γ

∥∥∥∥
L
q
v∗L

p
v

=
(∫

R
n
v∗

(∫
R
n
v

|f (v)|p

|v − v∗|pγ
dv

) q
p
dv∗

) p
q ·

1
p
, (20)

by Lemma 5, let h = |f |p, we have∥∥∥∥Iαh∥∥∥∥
L
q
p
v∗

≲ ∥h∥Lp̃ , (21)

where p
q = 1

p̃ −
n−pγ
n .

Thus,∥∥∥∥ f (v)
|v − v∗|γ

∥∥∥∥
L
q
v∗L

p
v

≲ ∥|f |p∥
1
p

Lp̃
= ∥f ∥Lpp̃ , (22)

then the desired result is immediate. □

Remark 4 – We imposed the conditions on the indices in Lemma 4 as follows:
p
q = 1

p̃ −
n−pγ
n ,

1 < p̃ < n
n−pγ ,

(23)

which implies q
p > p̃⇔ q > pp̃ > p.

For the gain term Q+(g,f ), we also have the following estimate in the modulation
context.

Proposition 1 – With the same assumption as in Lemma 4, and additionally, 1
σ = 2

ν −1,
then

∥Q+(g,f )∥M0
p,σ
≲ ∥g∥M0

q′ ,ν
· ∥f ∥M0

p̃p,ν
. (24)

Proof. Note by the duality property for modulation space10 ,

∥Q+(g,f )∥M0
p,σ

= sup
∥ψ∥

M0
p′ ,σ ′
≤1
|⟨Q+(g,f ),ψ⟩|,

9
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we have

|⟨Q+(g,f ),ψ⟩|

=
∣∣∣∣ ∑
k∈Zn

∑
|l|∞≤1

⟨□kQ+(g,f ),□k+lψ⟩
∣∣∣∣

≲
∑
k∈Zn

∑
|l|∞≤1

∑
i∈Zn

∑
j∈Zn

∣∣∣∣⟨□kQ+(□ig,□jf ),□k+lψ⟩
∣∣∣∣ · 1|k−i−j |≤k0(n)

≲
∑
k∈Zn

∑
|l|∞≤1

∑
i∈Zn

∑
j∈Zn

∣∣∣∣⟨Q+(□ig,□jf ),□k□k+lψ⟩
∣∣∣∣ · 1|k−i−j |≤k0(n),

(25)

where we have used a fact: when |k − i − j | ≥ k0(n), where k0(n) depends only on
dimension n, we have □kQ+(□ig,□jf ) = 0, due to

□kQ
+(□ig,□jf )

=
∫
R
n

∫
Sn−1
□k[□jf (v +

u′ −u
2

) ·□ig(v − u
′ +u
2

)] · 1
|u|γ

b(u,σ )dσdu,
(26)

where □k ,□i ,□j are all about v variable, i.e. □vk ,□
v
i ,□

v
j , and u′ = |u|σ.

Applying Lemma 4 yields that

|⟨Q+(g,f ),ψ⟩|

≲
∑
k∈Zn

∑
i∈Zn

∑
j∈Zn
∥□ig∥Lq′ · ∥□jf ∥Lpp̃ · ∥□kψ∥Lp′ · 1|k−i−j |≤k0(n).

(27)

Let ∥□kψ∥Lp′ =: ck ,∥□jf ∥Lpp̃ =: bj ,∥□ig∥Lq′ =: ai ,
then ∑

k∈Zn

∑
i∈Zn

∑
j∈Zn

ck · bj · ai · 1|k−i−j |≤k0(n)

≲|ck |lσ ′
( ∑
k∈Zn

(
∑
i∈Zn

∑
j∈Zn

ai · bj · 1|k−i−j |≤k0(n))
σ
) 1
σ

≲|ck |lσ ′ · |ai |lν · |bj |lν ,

(28)

where we applied Hölder’s inequality with 1
σ + 1

σ ′ = 1 in the second line and Young’s
inequality with 1

σ = 2
ν − 1 in the third line separately.

Thus,

|⟨Q+(g,f ),ψ⟩| ≲ ∥ψ∥M0
p′ ,σ ′
· ∥g∥M0

q′ ,ν
· ∥f ∥M0

p̃p,ν
, (29)
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i.e.,

∥Q+(g,f )∥M0
p,σ
≲ ∥g∥M0

q′ ,ν
· ∥f ∥M0

p̃p,ν
. (30)

□

3.2 Estimate of the loss term Q−(g,f )

Let us turn to estimate the loss term Q−(g,f ) = f · (g ∗ 1
|v|γ ). The estimate of the loss

term is straightforward. We mainly make use of the product formula and Young’s
inequality. In addition, the property of Riesz potential is exploited as well.

Proposition 2 – If 1
p1

+ 1
p2

= 1, 1
p2

+ n−γ
n ≤

1
r ,

1
σ = 2

ν − 1,p,p1,p2, r > 1,0 < γ < n, then
the following inequality holds:

∥Q−(g,f )∥M0
p,σ
≲ ∥f ∥M0

p1 ,ν
· ∥g∥M0

r,ν
. (31)

Proof. First of all,

∥□kQ−(g,f )∥Lp

=
∥∥∥∥□k(f · (g ∗ 1

|v|γ
))
∥∥∥∥
Lp

≲
∑
i,j∈Zn

∥∥∥∥□k(□if · (□jg ∗ 1
|v|γ

))
∥∥∥∥
Lp

≲
∑
i,j∈Zn

∥□if ∥Lp1 ·
∥∥∥∥□jg ∗ 1

|v|γ
∥∥∥∥
Lp2
· 1|k−i−j |≤k0(n),

(32)

where 1
p1

+ 1
p2

= 1
p .

Note 1
p2

+ n−γ
n ≤

1
r , then by Lemma 5 and Lemma 2, we get

∥□kQ−(g,f )∥Lp ≲
∑
i,j∈Zn

∥□if ∥Lp1 · ∥□jg∥Lr · 1|k−i−j |≤k0(n). (33)

Denote ai =: ∥□if ∥Lp1 ,bj =: ∥□jg∥Lr , ci =:
∑
j∈Zn

bj · 1|i−j |≤k0(n),

10Wang and Huang, 2007, “Frequency-uniform decomposition method for the generalized BO, KdV
and NLS equations”.
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then it follows that( ∑
k∈Zn

(
∑
i,j∈Zn

ai · bj · 1|k−i−j |≤k0(n))
σ
) 1
σ

≲
( ∑
k∈Zn

(
∑
i∈Zn

ak−i ·
∑
j∈Zn

bj · 1|i−j |≤k0(n))
σ
) 1
σ

≲|{ai} ∗ {ci}|lσ

≲|ai |lν |ci |lν ,

(34)

where 1
σ = 2

ν − 1.
Thus,

∥Q−(g,f )∥M0
p,σ
≲ ∥f ∥M0

p1 ,ν
· ∥g∥M0

r,ν
. (35)

□

Combining Lemma 2 , Proposition 1 and Proposition 2 leads to the following key
proposition.

Proposition 3 – Assume p > 1,p2 > 1, 1
p1

+ 1
p2

= 1
p ,

1
q + 1

q′ = 1,q,q′ ,p1,p2,p > 1, 0 < γ <
n and

1
p2

+ n−γ
n ≤

1
r ,p1 ≥ r > 1,

p
q = 1

p̃ −
n−pγ
n , 1 < p̃ < n

n−pγ , p̃p ≥ r,

q′ ≥ r,
1
σ = 2

ν − 1,

(36)

then we have

∥Q(g,f )∥M0
p,σ
≲ ∥g∥M0

r,ν
· ∥f ∥M0

r,ν
. (37)

In particular,

∥Q(f , f )∥M0
p,σ
≲ ∥f ∥2

M0
r,ν
. (38)

4 Global existence

With the boundedness of Boltzmann operator with soft potential in modulation
space, we are ready to prove the global existence of (1). In this process, we adopt

12



4. Global existence

Banach fixed-point theorem11 . Concretely, we will show Ψ (f ) is a contraction
mapping, and off-diagonal estimates of Boltzmann operator in Proposition 3 come
into play when dealing with the nonlinear Boltzmann term, see (40). Besides, the
time integral is carefully calculated to prove the boundedness of Ψ globally in time.

Proof. Inspired by Iwabuchi (2010) , we consider the solution in the following
integral form:

Ψ (f )(t) =: et∆f0 +
∫ t

0
e(t−τ)∆Q(f , f )dτ.

We are going to show

∥Ψ (f )∥X ≲ ∥f0∥M0
p,σ (Rn) + ∥f ∥2X . (39)

Firstly, we would like to estimate ∥Ψ (f )∥Y .
Estimate ∥Ψ (f )∥Y .
Let ν̃ satisfy 1

ν̃ = 2
ν − 1. Applying Lemma 1, we have

∥Ψ (f )∥Y

≲∥f0∥M0
p,σ (Rn) + sup

t>0

∫ t

0
∥e(t−τ)∆Q(f , f )∥M0

p,σ (Rn)dτ

≲∥f0∥M0
p,σ (Rn) + sup

t>0

∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
∥Q(f , f )∥M0

r̃ ,ν̃ (Rn)dτ,

(40)

where 1
σ −

1
ν̃ > 0, i.e., 1 < σ < ν̃, and 1

r̃ −
1
p > 0, i.e., 1 < r̃ < p, 1

ν̃ = 2
ν − 1.

Applying Proposition 3 with r̃ , ν̃, i.e., r̃ , ν̃ play the same role as p,σ accordingly in
Proposition 3, we get

∥Q(f , f )∥M0
r̃ ,ν̃
≲ ∥f ∥2

M0
r,ν
, (41)

where the indices satisfy the assumptions as below:

1
p2

+ n−γ
n ≤

1
r ,

1
p1

+ 1
p2

= 1
r̃ , p1 ≥ r > 1,

r̃
q = 1

p̃ −
n−γr̃
n , p̃r̃ ≥ r, 1 < p̃ < n

n−γr̃ ,

q′ ≥ r, 1
q + 1

q′ = 1,

1
ν̃ = 2

ν − 1,

(42)

11Brezis, 2011, Functional analysis, Sobolev spaces and partial differential equations.
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Global well-posedness of homogeneous Boltzmann equation J. Chen and C. He

where the intermediate indices (p1,p2,q, p̃) are defined in section 3.
Combining (40) and (41) yields that

∥Ψ (f )∥Y

≲∥f0∥M0
p,σ (Rn) + sup

t>0

∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
∥f (τ)∥2

M0
r,ν (Rn)

dτ

≲∥f0∥M0
p,σ (Rn) + ∥f ∥2Zr,ν·sup

t>0

∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ.

(43)

Before we proceed, we need the following claim.
Claim 1: If n

2 ( 1
σ −

1
ν̃ ) + 2α ≤ 1, and β ≥ 1, then

sup
t>0

∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ <∞. (44)

Remark 5 – Since 1
σ −

1
ν̃ > 0, we have in fact 0 < α ≤ 1

2 .

Proof of Claim 1. Note that we can rewrite the integral term in (44) as the sum of
the following four terms:∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

=
∫ t

2

0

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )
· 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

+
∫ t

t
2

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )
· 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

+
∫ t

2

0

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

+
∫ t

t
2

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

=:J1 + J2 + J3 + J4.

(45)
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4. Global existence

Case 1: 0 < t ≤ 100.
For J1, note that (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−

n
2 ( 1

r̃ −
1
p )
≲ 1, we get

J1 ≲

∫ t
2

0

1
τ2α ·

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )
dτ

≲t−
n
2 ( 1

σ −
1
ν̃ ) τ

1−2α

1− 2α

∣∣∣∣ t2
0

≲t−
n
2 ( 1

σ −
1
ν̃ )+1−2α

≲1,

(46)

since n
2 ( 1
σ −

1
ν̃ ) + 2α ≤ 1.

For J2, similarly, using the fact (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−
n
2 ( 1

r̃ −
1
p )
≲ 1, we have

J2 ≲t
−2α

∫ t

t
2

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )
dτ

≲t1−
n
2 ( 1

σ −
1
ν̃ )−2α

≲1,

(47)

since 1− n
2 ( 1
σ −

1
ν̃ )− 2α ≥ 0,0 < t ≤ 100.

For J3, again note (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−
n
2 ( 1

r̃ −
1
p )
≲ 1, it follows that

J3 ≲

∫ t
2

0
1 · 1
τ2α · 1 dτ

≲
τ1−2α

1− 2α

∣∣∣∣ t2
0

∼t1−2α

≲1,

(48)

since 1− 2α ≥ 0, i.e., α ≤ 1
2 .

For J4, note 1− 2α ≥ n
2 ( 1
σ −

1
ν̃ ) > 0, (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−

n
2 ( 1

r̃ −
1
p )
≲ 1,

then we have

J4 ≲

∫ t

t
2

1
t2α

dτ

∼ τ
1−2α

1− 2α

∣∣∣∣tt
2

≲t1−2α

≲1.

(49)
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Global well-posedness of homogeneous Boltzmann equation J. Chen and C. He

Case 2: t > 100.
For J1, note when 0 < τ ≤ t

2 , we have 1 + t − τ ≥ 1 + t
2 ≥

1
2 (1 + t), t − τ ≥ t

2 ≥
1
4 (1 + t), it

follows that∫ t
2

0

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
p )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ

≲(1 + t)−
n
2 ( 1

σ −
1
ν̃ )(1 + t)−

n
2 ( 1

r̃ −
1
p )
∫ t

2

0

1
τ2α ·

1

(1 + τ)2(β−α)
dτ.

(50)

For the integral term in the second line of (50), we have∫ t
2

0

1
τ2α ·

1

(1 + τ)2(β−α)
dτ

=
∫ 1

0

1
τ2α ·

1

(1 + τ)2(β−α)
dτ +

∫ t
2

1

1
τ2α ·

1

(1 + τ)2(β−α)
dτ

=J1
1 + J2

1 .

(51)

For J1
1 , we have

J1
1 ≲

∫ 1

0

1
τ2α dτ

=
τ1−2α

1− 2α

∣∣∣∣1
0

≲1,

(52)

where we used the fact 1− 2α > 0, i.e., α < 1
2 .

For J2
1 , we have

J2
1 ≲

∫ t
2

1

1
τ2α ·

1

(1 + τ)2(β−α)
dτ

≲

∫ t
2

1

1
τ2β dτ

=
τ1−2β

1− 2β

∣∣∣∣ t2
1

∼ 1−
( t

2

)1−2β

≲ 1,

(53)
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where we used the fact 1− 2β < 0, i.e., β > 1
2 .

For J2, agian using the fact that (1 + t − τ)−
n
2 ( 1

r̃ −
1
p )
≲ 1, we have

J2 ≲t
−2α · (1 + t)−2(β−α)

∫ t

t
2

1

(t − τ)
n
2 ( 1

σ −
1
ν̃ )
dτ

≲t−2β
∫ t

2

0

1

τ
n
2 ( 1

σ −
1
ν̃ )
dτ

≲t−2β+1− n2 ( 1
σ −

1
ν̃ )

≲1,

(54)

since 1− n
2 ( 1
σ −

1
ν̃ )− 2β < 0 and t > 100.

For J3, similarly, note (1 + t − τ)−
n
2 ( 1

r̃ −
1
p )
≲ 1, we get

J3 ≲

∫ t
2

0

1
τ2α ·

1

(1 + τ)2(β−α)
dτ ≲ 1. (55)

For J4, note when

t
2
< τ < t, (1 + t − τ)−

n
2 ( 1

r̃ −
1
p )
≲ 1, (1 + τ)−2(β−α) ∼ (1 + t)−2(β−α), τ−2α ∼ t−2α ,

then it follows that

J4 ≲t
−2α · t−2(β−α) · t

2
∼t1−2β

≲1,

(56)

since β > 1
2 and t > 100.

Collecting all the above estimates involving J1 to J4, Claim 1 is immediate.
Consequently,

∥Ψ (f )∥Y ≲ ∥f0∥M0
p,σ

+ ∥f ∥2Zr,ν . (57)

Now we turn to estimate the other term related to Zr,ν .
Estimate of ∥Ψ (f )∥Zr,ν .
On the one hand , by Lemma 1, we have

∥et∆f0∥Zr,ν ≲ sup
t∈(0,∞)

tα(1 + t)β−α(1 +
1
t

)α · 1
(1 + t)β

∥f0∥M0
p,σ (Rn) ≲ ∥f0∥M0

p,σ (Rn), (58)
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Global well-posedness of homogeneous Boltzmann equation J. Chen and C. He

where 1 < p < r, and 1 < ν < σ.
On the other hand, for the integral term, note 1

ν −
1
ν̃ > 0, 1

r̃ −
1
r > 0, we have

∥∥∥∥∫ t

0
e(t−τ)∆Q(f , f )dτ

∥∥∥∥
Zr,ν

≲sup
t>0

tα(1 + t)β−α
∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )
∥Q(f , f )∥M0

r̃ ,ν̃ (Rn)dτ.

(59)

Note by Proposition 3, see also (41), assume (42), we get

∥Q(f , f )∥M0
r̃ ,ν̃ (Rn) ≲ ∥f ∥

2
M0
r,ν (Rn)

,
1
ν̃

=
2
ν
− 1,

which implies that

∥∥∥∥∫ t

0
e(t−τ)∆Q(f , f )dτ

∥∥∥∥
Zr,ν

≲∥f ∥2Zr,ν sup
t>0

tα(1 + t)β−α
∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ.

(60)

Now we need another claim.
Claim 2: If n

2 ( 1
ν −

1
ν̃ ) +α ≤ 1,ν < ν̃, r̃ < r and β ≥ 1, then

sup
t>0

tα(1+t)β−α
∫ t

0

(
1+

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ <∞. (61)
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Proof of Claim 2. Note that we can rewrite the integral term in (61) as

tα(1 + t)β−α
∫ t

0

(
1 +

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

) 1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ

=tα(1 + t)β−α
∫ t

2

0

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ

+ tα(1 + t)β−α
∫ t

t
2

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ

+ tα(1 + t)β−α
∫ t

2

0

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ

+ tα(1 + t)β−α
∫ t

t
2

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )

1
τ2α

1

(1 + τ)2(β−α)
dτ

=:J5 + J6 + J7 + J8.

(62)

Case 1: 0 < t ≤ 100.
For J5, note

(t − τ)−
n
2 ( 1

ν −
1
ν̃ ) ≲ t−

n
2 ( 1

ν −
1
ν̃ ), (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−

n
2 ( 1

r̃ −
1
r ) ≲ 1,

we have

J5 ≲t
α · 1 · t−

n
2 ( 1

ν −
1
ν̃ )
∫ t

2

0

1
τ2α dτ

≲tα · t−
n
2 ( 1

ν −
1
ν̃ ) τ

1−2α

1− 2α

∣∣∣∣ t2
0

≲t1−α−
n
2 ( 1

ν −
1
ν̃ )

≲1,

(63)

since 1− 2α > 0, i.e., α < 1
2 , and 1−α − n

2 ( 1
ν −

1
ν̃ ) ≥ 0,0 < t ≤ 100.

For J6, note

(1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−
n
2 ( 1

r̃ −
1
r ) ≲ 1, (1 + t)β−α ≲ 1,
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we have

J6 ≲t
α(1 + t)β−α

∫ t

t
2

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

1
τ2α dτ

≲tα · 1 · t−2α
∫ t

t
2

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )
dτ

≲t−α
∫ t

2

0

1

τ
n
2 ( 1

ν −
1
ν̃ )
dτ

≲t−α+1− n2 ( 1
ν −

1
ν̃ )

≲1,

(64)

since n
2 ( 1
ν −

1
ν̃ ) +α ≤ 1,0 < t ≤ 100, i.e.,

tα(1 + t)β−α
∫ t

t
2

1

(t − τ)
n
2 ( 1

ν −
1
ν̃ )

1

(1 + t − τ)
n
2 ( 1

r̃ −
1
r )
· 1
τ2α ·

1

(1 + τ)2(β−α)
dτ ≲ 1. (65)

For J7, by the fact that (1 + t − τ)−
n
2 ( 1

r̃ −
1
r ) ≲ 1, we have

J7 ≲ t
α · 1 ·

∫ t
2

0

1
τ2α dτ ≲ t

α · t1−2α ∼ t1−α ≲ 1, (66)

since α < 1.
For J8, note (1 + τ)−2(β−α) ≲ 1, (1 + t − τ)−

n
2 ( 1

r̃ −
1
r ) ≲ 1, we get

J8 ≲ t
α · 1 · t−2α

∫ t

t
2

dτ ≲ t1−α ≲ 1, (67)

since 1−α > 0.
Case 2: t > 100.
For J5, note when 0 < τ ≤ t

2 ,

1 + t − τ ≥ 1 +
t
2
≥ 1

2
(1 + t), t − τ ≥ t

2
≥ 1

4
(1 + t),

it follows that

J5 ≲t
α(1 + t)β−α(1 + t)−

n
2 ( 1

ν −
1
ν̃ )(1 + t)−

n
2 ( 1

r̃ −
1
r )
∫ t

2

0

1
τ2α ·

1

(1 + τ)2(β−α)
dτ

≲tβ−
n
2 ( 1

ν −
1
ν̃ )(1 + t)−

n
2 ( 1

r̃ −
1
r )

≲1,

(68)
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where β − n
2 ( 1
ν −

1
ν̃ )− n

2 ( 1
r̃ −

1
r ) ≤ 0, since 1 < r̃ < p < r.

For J6, we have

J6 ≲(1 + t)β(1 + t)−
n
2 ( 1

ν −
1
ν̃ )
∫ t

t
2

1
(1 + τ)2β dτ

≲(1 + t)β(1 + t)−
n
2 ( 1

ν −
1
ν̃ )t−2β+1

≲t1−β−
n
2 ( 1

ν −
1
ν̃ )

≲1,

(69)

where 1− β − n
2 ( 1
ν −

1
ν̃ ) ≤ 0.

For J7, note 1 + t − τ ≥ 1
2 (1 + t), we have

J7 ≲ (1 + t)β(1 + t)−
n
2 ( 1

r̃ −
1
r ) ≲ 1, (70)

where β − n
2 ( 1

r̃ −
1
r ) ≤ 0, since 1 < r̃ < p < r.

For J8, note that (1 + t − τ)−
n
2 ( 1

r̃ −
1
r ) ≲ 1, we get

J8 ≲(1 + t)βt−2β+1 ≲ t1−β ≲ 1, (71)

where β ≥ 1.
Collecting all the above estimates involving J5 to J8, Claim 2 is immediate.
Consequently,

∥Ψ (f )∥Zr,ν ≲ ∥f0∥M0
p,σ

+ ∥f ∥2Zr,ν . (72)

Combining (57) and (72), and recalling that ∥f ∥X = ∥f ∥X + ∥f ∥Zr,ν , the desired
result (39) follows immediately.

With the boundedness of estimates obtained so far, finally we arrive at proving
Ψ (f ) is a contraction mapping.
Note

Q(f , f )−Q(g,g) =Q(f , f − g) +Q(f − g,g),

we have

Ψ (f )−Ψ (g) =
∫ t

0
e(t−τ)∆(Q(f , f − g) +Q(f − g,g))dτ.

Similar to (43) and (60), recalling Claim 1 and Claim 2, we get

∥Ψ (f )−Ψ (g)∥Y ≲
(
∥f ∥Zr,ν + ∥g∥Zr,ν

)
· ∥f − g∥Zr,ν , (73)
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and

∥Ψ (f )−Ψ (g)∥Zr,ν ≲
(
∥f ∥Zr,ν + ∥g∥Zr,ν

)
· ∥f − g∥Zr,ν . (74)

Note by (39), if ∥f ∥X ≤ c1δ, for some constant c1, we have

∥Ψ (f )∥X ≤ c
(
∥f0∥M0

p,σ
+ ∥f ∥2X

)
≤c(δ+ (c1δ)2)

≤c1δ.

(75)

Thus, as long as c(1 + c1δ) ≤ c1, i.e., c1 ≥ c
1−cδ , δ is small enough, we have

∥Ψ (f )−Ψ (g)∥X ≤
1
2
∥f − g∥X , if δ is sufficently small. (76)

Consequently, the contraction mapping principle12 could be applied and the proof
of the main theorem is complete. □

5 Appendix

For the completeness, we give the classcial results about the estimate of the Riesz
potential.

For 0 < α < n, we let Iα be the Riesz potential operator defined for locally
integrable functions by

Iα(f )(x) =
∫
R
n

f (y)
|x − y|n−α

dy.

Lemma 5 – Stein (2016) Assume 1 < p < n
α , f ∈ L

p(Rn), then

∥Iαf ∥Lq(Rn) ≲ ∥f ∥Lp(Rn), (77)

where
1
q

=
1
p
− α
n
. (78)
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