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Abstract

Ebert’s hat problem with two colors and equal probabilities has, remarkable,
the same optimal winning probability for three and four players. This paper
studies Ebert’s hat problem for three and four players, where the probabilities
of the two colors may be different for each player. Our goal is to maximize the
probability of winning the game and to describe winning strategies. We obtain
different results for games with three and four players. We use the concept of an
adequate set. The construction of adequate sets is independent of underlying
probabilities and we can use this fact in the analysis of our general case. The
computational complexity of the adequate set method is dramatically lower
than by standard methods.

Keywords: information theory, coding theory, cooperative games, computational
complexity.

msc: 91A12, 68Q11.

1 Introduction

Gardner (1961) formulated hat puzzles. They have got an impulse by Ebert (1998).
Buhler (2002) stated: “It is remarkable that a purely recreational problem comes so
close to the research frontier”. Also articles: Robinson (2001), Blum (2001) and
Poulos (2001) about this subject got broad attention. This paper studies generalized
Ebert’s hat problem for three and four players. The probabilities of the two colors
may be different for each player, but known to all the players. All players guess
simultaneously the color of their own hat observing only the hat colors of the other
players. It is also allowed for each player to pass: no color is guessed. The team wins
if at least one player guesses his or her hat color correctly and none of the players
has an incorrect guess. Our goal is to maximize the probability of winning the game
and to describe winning strategies. The symmetric two color hat problem (equal
probability 0.5 for each color) with N = 2k − 1 players is solved in Ebert, Merkle,
and Vollmer (2003), using Hamming codes, and with N = 2k players in Cohen et al.
(1997) using extended Hamming codes. Burke, Gustafson, and Kendall (2002)
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try to solve the symmetric hat problem with N = 3,4,5,7 players using genetic
programming. Their conclusion: The N -prisoners puzzle (alternative names: hat
problem, hat game) gives evolutionary computation and genetic programming a
new challenge to overcome. Lenstra and Seroussi (2005) show that in the symmetric
case of two hat colors, and for any value of N , playing strategies are equivalent to
binary covering codes of radius one.

Krzywkowski (2010) describes applications of the hat problem and its variations,
and their connections to different areas of science. We have an open problem2 :
If the hat colors are not equally likely, how will the optimal strategy be affected?
We will answer this question and our method gives also interesting results in the
symmetric case. In section 2 we define our main tool: an adequate set. In sections 3
and 6 we obtain results for three and four person two color hat game, where each
player i may have different probabilities (pi ,qi) to get a specific colored hat. In
sections 4 and 7 we obtain results for the asymmetric three and four person two
color hat game, where each player has the same set of probabilities (p,q) to get
a specific colored hat, but the probabilities are different. In sections 5 and 8 we
find old and new results for the well known symmetric case p = q = 1

2 . Section 9
gives a comparison between generalized three and four person hat game. Section
10 handles with computational complexity. Central in all our investigations are
adequate sets.

2 Adequate set

In this section we have N players and q colors. The N persons in our game are
distinguishable, so we can label them from 1 to N . We label the q colors 0,1, . . . , q−1.
The probabilities of the colors are known to all players. The probability that color i
will be on a hat of player j is pi,j (

∑q−1
i=0 pi,j = 1). Each possible configuration of the

hats can be represented by an element of

B = {b1b2 . . .bN | bi ∈ {0,1, . . . , q − 1} , i = 1,2, . . . ,N } .

The S-code represents what the N different players sees. Player i sees q-ary code
b1 . . .bi−1bi+1 . . .bN with decimal value si =

∑i−1
k=1 bkq

N−k−1 +
∑N

k=i+1 bkq
N−k , a value

between 0 and qN−1 − 1.
Let S be the set of all S-codes:

S =
{
s1s2 . . . sN | si =

i−1∑
k=1

bkq
N−k−1 +

N∑
k=i+1

bkq
N−k , bi ∈ {0,1, . . . , q − 1}, i = 1,2, . . . ,N

}
.

Each player has to make a choice out of q+1 possibilities: 0=’guess color 0’, 1=’guess
color 1’, . . . , q − 1 =’guess color q − 1’, q=’pass’.

2Johnson, 2001, The Hat Problem.
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2. Adequate set

We define a decision matrix D =
(
ai,s

)
1≤i≤N,0≤s≤qN−1−1 where ai,s ∈ {0,1, . . . , q}.

The meaning of ai,s is: player i sees S-code s and takes decision ai,s (guess a color or
pass). We observe the total probability (sum) of our guesses. For each b1b2 . . .bN in
B we have:

If
(
a1,s1

∈ {q,b1}
)
∧ · · · ∧

(
aN,sN ∈ {q,bN }

)
∧¬

(
a1,s1

= · · · = aN,sN = q
)

then

sum = sum+ pb1,1pb2,2 · · ·pbN ,N .

Any choice of the ai,s in the decision matrix determines which cases b1b2 . . .bN
have a positive contribution to sum (we call them good cases) and which cases don’t
contribute positive to sum (we call them bad cases).

Definition 1 – Let A ⊂ B. A is adequate to B \A if for each q-ary element x in B \A
there are q − 1 elements in A which are equal to x up to one fixed q-ary position.

Theorem 1 – Bad cases are adequate to good cases.

Proof. Any good case has at least one ai,s not equal to q. Let this specific ai,s have
value bi0 . Then our good case generates q − 1 bad cases by only changing the value
bi0 in any value of 0,1, . . . , q − 1 except bi0 . □

The notion of an adequate set is the same idea as the concept of strong covering,
introduced by Lenstra and Seroussi (2005). The number of elements in an adequate
set will be written as das (dimension of adequate set). Adequate sets are generated
by an adequate set generator (ASG). See Appendix A for an implementation in a
VBA/Excel program. Given an adequate set, we obtain a decision matrix D =

(
ai,s

)
by the following procedure.

Procedure DMG (Decision Matrix Generator):
Begin Procedure
For each element in the adequate set:

• Determine the q-ary representation b1b2 . . .bN

• Calculate S-codes si =
∑i−1

k=1 bkq
N−k−1 +

∑N
k=i+1 bkq

N−k (i = 1, . . . ,N )

• For each player i: fill decision matrix with ai,si = bi (i = 1, . . . ,N ), where each
cell may contain several values.

Matrix D is filled with bad colors. We can extract the good colors by considering
all ai,s with q − 1 different bad colors and then choose the only missing color. In all
situations with less than q − 1 different bad colors we pass. When there is an ai,s
with q different bad colors all colors are bad, so the first option is to pass. But when
we choose any color, we get a situation with q − 1 colors. So in case of q bad colors
we are free to choose any color or pass. The code for pass is q, but in our decision
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matrices we prefer a blank, which supports readability. The code for ‘any color or
pass will do’ is defined q+ 1, but we prefer a "⋆" for readability.
End Procedure.

This procedure is implemented in the VBA/Excel program DMG in Appendix B.

3 Generalized three person two color hat game

Three distinguishable players are randomly fitted with a white (code 0) or black
(code 1) hat. Each player i has his own probabilities pi and qi to get a white
respectively a black hat, where 0 < pi < 1, pi + qi = 1 (i = 1,2,3). All probabilities
are known to all players. Part of the strategy is that the players give themselves an
identification: 1, 2 and 3.

Our goal is to maximize the probability of winning the game and to describe
winning strategies.

Let X be an adequate set and P (X) is the probability generated by the adequate
set. The adequate set X dominates the adequate set Y if P (X) ≤ P (Y ). We also define:
X dominates the adequate set Y absolutely if P (X) < P (Y ). We use the abbreviation
DOM for domination. An adequate set A is non-dominated by a collection C of
adequate sets when A dominates each element of C. Adequate sets X and Y are
isomorphic when there is a bijection from {1,2,3} to itself which transforms X into
Y . The decision matrices are then also isomorphic.

A player i with pi < qi gets an asterix: when observing such a player we have to
flip the colors: white becomes black and vice versa. In such a way we have without
loss of generality pi ≥ qi (i = 1,2,3).

The next step is to renumber the players in such a way that p1
q1
≥ p2

q2
≥ p3

q3
,

which is equivalent to p1 ≥ p2 ≥ p3. So: 1 > p1 ≥ p2 ≥ p3 ≥ 1
2 or, equivalently:

0 < q1 ≤ q2 ≤ q3 ≤ 1
2 . We define decision matrices:

α :

00 01 10 11
1 0
1 0
1 0

δ :

00 01 10 11
0 1

0 1
0 1

ϵ :

00 01 10 11
0 0 0 0

⋆ ⋆
⋆ ⋆
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3. Generalized three person two color hat game

Theorem 2 – Given 0 < q1 ≤ q2 ≤ q3 ≤ 1
2 we have:

Case q2 = 1
2 q2 < 1

2

1
q1

> 1
q2

+ 1
q3

p1 > 3
4 p1 > 3

4
ϵ ϵ

1
q1

< 1
q2

+ 1
q3

3
4 p1 + q1q2q3

(
1
q2

+ 1
q3
− 1

q1

)
> p1 > 3

4
α,δ δ

1
q1

= 1
q2

+ 1
q3

3
4 p1 > 3

4
α,δ,ϵ δ,ϵ

where in each case we give the optimal probability in the first line and the optimal decision
matrices in the second line.

Proof. We shall show that the following sets are absolute dominant:

• {4,5,6,7} when 1
q1

> 1
q2

+ 1
q3

,

• {3,4} and {0,7} when 1
q1

< 1
q2

+ 1
q3

with p2 = 1
2 ,

• {3,4} when 1
q1

< 1
q2

+ 1
q3

with p2 > 1
2 ,

• {4,5,6,7}, {3,4} and {0,7} when 1
q1

= 1
q2

+ 1
q3

with p2 = 1
2 ,

• {4,5,6,7} and {3,4} when 1
q1

= 1
q2

+ 1
q3

with p2 > 1
2 .

Let das be the dimension of an adequate set (number of elements in the set). Obvi-
ously, there are no adequate sets with das < 2. When das = 2, we find 4 adequate
sets (use ASG), independent of the underlying probabilities: {0,7}, {1,6}, {2,5} and
{3,4}. We notice that {1,6}, {2,5} and {3,4} are isomorphic: they can be obtained
from any of the three by renumbering the players. E.g. interchanging players 1
and 3 in binary codes of {1,6} gives {3,4} and interchanging players 2 and 3 in {1,6}
gives {2,5}.

We are looking for optimal adequate sets. An adequate set consist of bad cases.
We want to maximize the winning probability, so we minimize the adequate set
probability.

The next table shows the 4 adequate sets and probabilities:

{0,7} p1p2p3 + q1q2q3 = A
{1,6} p1p2q3 + q1q2p3 = B
{2,5} p1q2p3 + q1p2q3 = C
{3,4} p1q2q3 + q1p2p3 = D
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We have:

A−B = q1q2q3

(
p1

q1

p2

q2
− 1

)(
p3

q3
− 1

)
B−C = q1q2q3

(
p2

q2
−
p3

q3

)(
p1

q1
− 1

)
A−C = q1q2q3

(
p1

q1

p3

q3
− 1

)(
p2

q2
− 1

)
B−D = q1q2q3

(
p1

q1
−
p3

q3

)(
p2

q2
− 1

)
A−D = q1q2q3

(
p3

q3

p2

q2
− 1

)(
p1

q1
− 1

)
C −D = q1q2q3

(
p1

q1
−
p2

q2

)(
p3

q3
− 1

)
So we have: A ≥ B ≥ C ≥D: the adequate set {3,4} dominates all other adequate sets
when das=2.

When das = 3, we get (using the adequate set generator) 24 adequate sets (see
Appendix C), all absolutely dominated by {0,7}, {1,6}, {2,5} or {3,4}.

When das = 4 we get the situation in Appendix D.
When das > 4 then always one or more of the sets {0,7}, {1,6}, {2,5}, {3,4} is

included (we don’t need the ASG).

Adequate set {0,7} has value A and decision matrix α. Adequate set {3,4} has
value D and decision matrix δ. Adequate set {4,5,6,7} has value p1 and decision
matrix ϵ. Using DMG (Appendix B) we find α,δ and ϵ.

We first consider the battle between {3,4} and {4,5,6,7}. {3,4} is the winner when
p1q2q3 + q1p2p3 < q1, so: 1

q1
< 1

q2
+ 1

q3
. {4,5,6,7} is the winner when 1

q1
> 1

q2
+ 1

q3
.

Case 1: 1
q1

> 1
q2

+ 1
q3

. So q1 < q2; we get: 1 > p1 > p2 ≥ p3 ≥ 1
2 ≥ q3 ≥ q2 > q1 > 0.

Consider Appendix D. To obtain absolute dominance we have to exam-
ine the adequate sets {0,3,5,6} and {1,2,4,7}. For the set {0,3,5,6}, the
probability is q1 + (p1 − q1)(p2p3 + q2q3) > q1.

Similarly, for the set {1,2,4,7}, its probability is also greater than q1.

So {4,5,6,7} is absolute dominant with winning probability 1− q1 = p1 and
decision matrix ϵ, where 1

q1
> 1

q2
+ 1

q3
≥ 4, so p1 > 3

4 .

Case 2: 1
q1

< 1
q2

+ 1
q3

. There are 4 potential dominant sets: {0,7}, {1,6}, {2,5}, {3,4}.
The last three are isomorphic and because of A ≤ B ≤ C ≤ D we analyze
the battle between A and D.

Case 2.1: α and δ are both optimal: A = D. So:(
p3

q3

p2

q2
− 1

)(
p1

q1
− 1

)
= 0

⇔
((
p2 = q2 =

1
2

)
∧

(
p3 = q3 =

1
2

))
∨

(
p1 = q1 =

1
2

)
(Cont. next page)
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4. Asymmetric three person two color hat game

⇔
(1

2
= p3 = p2 ≤ p1 < 1

)
∨

(
p1 = p2 = p3 =

1
2

)
⇔

(1
2

= p3 = p2 ≤ p1 < 1
)

⇔p2 =
1
2

and optimal probability is 1− (p1q2q3 + q1p2p3) = 3
4 .

Case 2.2: Only δ optimal: A < D. So: p2 > 1
2 . We note: {1,6}, {2,5} and {3,4} are

isomorphic, but this doesn’t imply B = C = D: the probabilities are
not always invariant by a bijection of the players. We have A < D and
B ≤ C ≤D. When B or C are equal to D then D is absolute dominant
(up to isomorphic) otherwise B ≤ C < D and D is absolute dominant.
Optimal probability: 1− (p1q2q3 +q1p2p3) = p1 +q1q2q3( 1

q2
+ 1

q3
− 1

q1
) >

p1. And 1
q1

= 1
q2

+ 1
q3

< 4, so p1 > 3
4 .

Case 3: 1
q1

= 1
q2

+ 1
q3

.

Optimal probability: p1 + q1q2q3( 1
q2

+ 1
q3
− 1

q1
) = p1.

Case 3.1: p2 = 1
2 .

Optimal probability: p1 = 3
4 .

Optimal decision matrices: 1
q1
≥ 1

q2
+ 1

q3
gives ϵ and 1

q1
≤ 1

q2
+ 1

q3
gives

α and δ.

Case 3.2: p2 > 1
2 .

Optimal probability: p1 and 1
q1

= 1
q2

+ 1
q3

< 4, so p1 > 3
4 .

Optimal decision matrices: 1
q1
≥ 1

q2
+ 1

q3
gives ϵ and 1

q1
≤ 1

q2
+ 1

q3
gives

δ. □

Note 1. Instead of 1
q we can also use p

q . E.g. : we get p1
q1

= p2
q2

+ p3
q3

+ 1 instead of
1
q1

= 1
q2

+ 1
q3

.

Note 2. We observe that the well-known strategy α is only dominant when
( 1
q1
≤ 1

q2
+ 1

q3
)∧ (q2 = 1

2 )⇔ (p2 = p3 = 1
2 )∧ ( 1

2 ≤ p1 ≤ 3
4 ).

4 Asymmetric three person two color hat game

In this section we study three person two color asymmetric hat game. For each
player let p be the probability to get a white hat and q be the probability to get a
black hat. Without loss of generality we may assume (asymmetric case): 1

2 < p < 1.

31



Generalized three and four person hat game T. van Uem

Theorem 3 – In asymmetric three person two color hat game we have maximal proba-
bility 1− pq of winning the game, with decision matrix:

00 01 10 11
0 1

0 1
0 1

Proof. Use the result of Case 2.2 ( 1
q1

< 1
q2

+ 1
q3

)∧ (p2 > 1
2 ) in Theorem 2. Optimal

probability is 1− (p1q2q3 + q1p2p3) = 1− pq. □

5 Symmetric two color three person hat game

In this section we focus on the symmetric hat game with two colors and three players.
Each player has a white hat with probability 1

2 and a black hat with probability 1
2 .

Theorem 4 – For symmetric three person two color hat game the maximal probability is
3
4 and the optimal decision matrices are:

00 01 10 11
0 1

0 1
0 1

and

00 01 10 11
1 0
1 0
1 0

Proof. Use result in Case 2.1 ( 1
q1

< 1
q2

+ 1
q3

)∧ (p2 = 1
2 ) in Theorem 2. □

6 Generalized four person two color hat game

Four distinguishable players are randomly fitted with a white or black hat. The code
for a white hat is 0 and for a black hat is 1. Each player i has his own probabilities
pi and qi to get a white respectively a black hat, where 0 < pi < 1, pi + qi = 1 (i =
1,2,3,4). All probabilities are known to all players. Part of the strategy is that the
players give themselves an identification: 1, 2, 3 and 4.

Our goal is to maximize the probability of winning the game and to describe
winning strategies.

A player i with pi < qi gets an asterix: when observing such a player we have to
flip the colors: white becomes black and vice versa. In such a way we have without
loss of generality pi ≥ qi (i = 1,2,3,4).

The next step is to renumber the players in such a way that p1
q1
≥ p2

q2
≥ p3

q3
≥

p4
q4

, which is equivalent to p1 ≥ p2 ≥ p3 ≥ p4. So: 1 > p1 ≥ p2 ≥ p3 ≥ p4 ≥ 1
2 or,

equivalently: 0 < q1 ≤ q2 ≤ q3 ≤ q4 ≤ 1
2 . Using ASG with das < 4 we get no adequate

sets.
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6. Generalized four person two color hat game

Lemma 1 – {6,7,8,9} dominates all adequate sets with das = 4.

Proof. When das = 4 we get, using ASG, 40 adequate sets, see appendix E. In the
same Appendix we see that all sets are dominated by another set, except {6,7,8,9}.
The proof of each dominance relation proceeds along the same lines. We give one
example: nr 2. dominates nr 1.
{0,2,13,15}DOM {0,1,14,15}
1, 14 ≥ 2, 13 0001 1110 ≥ 0010 1101(
p1
q1
.p2
q2
− 1

)(
p1
q1
− p2

q2

)
≥ 0. □

Lemma 2 – When das = 5 we get 8 non-dominated adequate sets:

S0 0 11 13 14 15
S1 1 10 12 14 15
S2 2 9 12 13 15
S3 3 8 12 13 14
S4 4 9 10 11 15
S5 5 8 10 11 14
S6 6 8 9 11 13
S7 7 8 9 10 12

where Sx is the shortcut for the adequate set starting with an x.

Proof. When das = 5 we get, using ASG, 560 adequate sets. We use the inclusion
principle: we look for subsets of these 560 sets in the set of 40 adequate sets with
das = 4. This procedure is realized in the program ASG45 (see appendix F). In this
way we eliminate 480 dominated adequate sets. The output of ASG45 (80 non-
dominated sets) is shown in appendix G, where we also show that Sx (x = 0,1, . . . ,7)
are the only non-dominated sets when das = 5. □

Lemma 3 – When das > 5 we find one non-dominated adequate set:

{8,9,10,11,12,13,14,15}.

Proof. When das >5 then only dominated sets are found, with one exception: das = 8.
Use the inclusion principle: a subset is found in the das = 5 adequate sets; this
procedure can be automated in programs ASG56, ASG57,. . . , ASG516, analogue to
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program ASG45. Using ASG58 we get 10 (out of 10310) non-dominated sets :

0 1 2 3 4 5 6 7
0 1 2 3 8 9 10 11
0 1 4 5 8 9 12 13
0 2 4 6 8 10 12 14
0 3 5 6 9 10 12 15
1 2 4 7 8 11 13 14
1 3 5 7 9 11 13 15
2 3 6 7 10 11 14 15
4 5 6 7 12 13 14 15
8 9 10 11 12 13 14 15

They are all dominated (use from top to bottom the four different positions principle)
by the last one. For example first and second element:

{0,1,2,3,8,9,10,11}DOM {0,1,2,3,4,5,6,7}
4 5 6 7 ≥ 8 9 10 11

0100 0101 0110 0111 ≥ 1000 1001 1010 1011

(01− 10)00 + (01− 10)01 + (01− 10)10 + (01− 10)11 ≥ 0

which results in: p1
q1
− p2

q2
≥ 0.

We abbreviate the last one by its first element: S8. □

The optimal set when das = 4: {6,7,8,9} is noted by its last element: S9. Our goal
is to prove: {S7,S8,S9} dominates all adequate sets. We make use of the following
Lemmas:

Lemma 4 – {S7,S9} dominates S6.

Proof. S7 = {7,8,9,10,12} dominates S6 = {6,8,9,11,13} when:

7 10 12 ≤ 6 11 13

0111 1010 1100 ≤ 0110 1011 1101

(−p1q2q3 + q1p2q3 + q1q2p3)(p4 − q4) ≤ 0(
−
p1

q1
+
p2

q2
+
p3

q3

)(
p4

q4
− 1

)
≤ 0.

S9={6,7,8,9} dominates S6= {6,8,9,11,13} when:

7 ≤ 11 13

0111 ≤ 1011 1101

(p1q2q3 − q1p2q3 − q1q2p3)q4 ≤ 0
p1

q1
−
p2

q2
−
p3

q3
≤ 0. □
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6. Generalized four person two color hat game

Lemma 5 – {S7,S9} dominates S5.

Proof. S7 = {7,8,9,10,12} dominates S5 = {5,8,10,11,14} when:

7 9 12 ≤ 5 11 14

0111 1001 1100 ≤ 0101 1011 1110(
−
p1

q1
+
p2

q2
+
p4

q4

)(
p3

q3
− 1

)
≤ 0.

S9= {6,7,8,9} dominates S5= {5,8,10,11,14} when:

6 7 9 ≤ 5 10 11 14

0110 0111 1001 ≤ 0101 1010 1011 1110(
p1

q1
−
p2

q2

)(
p3

q3
−
p4

q4

)
≥

p1

q1
−
p2

q2
−
p4

q4
. □

Lemma 6 – {S7,S9} dominates S4.

Proof. S7 = {7,8,9,10,12} dominates S4 = {4,9,10,11,15} when:

7 8 12 ≤ 4 11 15

0111 1000 1100 ≤ 0100 1011 1111(
p1

q1
−
p2

q2
− 1

)(
p3

q3

p4

q4
− 1

)
≥ 0.

S9={6,7,8,9} dominates S4= {5,9,10,11,15} when:

6 7 8 ≤ 4 10 11 15

0110 0111 1000 ≤ 0100 1010 1011 1111(
p1

q1
−
p2

q2

)(
p3

q3
− 1

)
p4

q4
≥

p1

q1
−
p2

q2
− 1. □

Lemma 7 – {S7,S9} dominates S3.

Proof. S7={7,8,9,10,12} dominates S3= {3,8,12,13,14} when:

7 9 10 ≤ 3 13 14

0111 1001 1010 ≤ 0011 1101 1110(
p1

q1
−
p3

q3
−
p4

q4

)(
p2

q2
− 1

)
≥ 0.
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S9= {6,7,8,9} dominates S3={3,8,12,13,14} when:

6 7 9 ≤ 3 12 13 14

0110 0111 1001 ≤ 0011 1100 1101 1110(
p1

q1
−
p3

q3

)(
1 +

q4

p4
−
p2

q2

q4

p4

)
≤ 1.

When p1
q1
− p3

q3
− p4

q4
≥ 0 then S7 dominates S3. So we consider p1

q1
− p3

q3
− p4

q4
≤ 0 and get

in the S9 dominates S3 case:(
p1

q1
−
p3

q3

)(
1 +

q4

p4
−
p2

q2

q4

p4

)
≤

p4

q4
(1 +

q4

p4
−
p2

q2

q4

p4
) =

p4

q4
−
p2

q2
+ 1 ≤ 1.

□

Lemma 8 – {S7,S9} dominates S2.

Proof. After some calculations we get: S7 dominates S2 when(
p1

q1
−
p3

q3
− 1

)(
p2

q2

p4

q4
− 1

)
≥ 0.

S9 dominates S2 when(
p1

q1
−
p3

q3

)(
1 +

p4

q4
−
p2

q2

p4

q4

)
≤ 1.

When p1
q1
− p3

q3
≥ 1 then S7 dominates S2. So we consider p1

q1
− p3

q3
≤ 1 and get in the S9

dominates S2 case:(
p1

q1
−
p3

q3

)(
1 +

p4

q4
−
p2

q2

p4

q4

)
≤ 1 +

p4

q4

(
1−

p2

q2

)
≤ 1.

□

Lemma 9 – {S7,S9} dominates S1.

Proof. After some calculations we get: S7 dominates S1 when(
p1

q1
−
p4

q4
− 1

)(
p2

q2

p3

q3
− 1

)
≥ 0.

S9 dominates S1 when(
p1

q1
−
p4

q4

)(
1−

p2

q2

p3

q3

)
+
(
p1

q1
−
p2

q2

)
p4

q4
+
(
p2

q2
−
p4

q4

)
p3

q3
≥ 1.
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6. Generalized four person two color hat game

When p1
q1
− p4

q4
≥ 1 then S7 dominates S1. So we consider p1

q1
− p4

q4
≤ 1 and get in the S9

dominates S1 case:(
p1

q1
−
p4

q4

)(
1−

p2

q2

p3

q3

)
+
(
p1

q1
−
p2

q2

)
p4

q4
+
(
p2

q2
−
p4

q4

)
p3

q3

≤
(
p1

q1
−
p4

q4

)(
1−

p2

q2

p3

q3

)
+
(
p1

q1
−
p2

q2

)
p3

q3
+
(
p2

q2
−
p4

q4

)
p3

q3

=
(
p1

q1
−
p4

q4

)(
1−

p2

q2

p3

q3
+
p3

q3

)
≤ 1 +

(
1−

p2

q2

)
p3

q3
≤ 1. □

In the next lemma we use{S6,S9} instead of {S7,S9}, which gives no problems for
{S7,S9} dominates S6.

Lemma 10 – {S6,S9} dominates S0.

Proof. After some calculations we get: S6 dominates S0 when(
p4

q4
(
p1

q1
− 1)− 1

)(
p2

q2

p3

q3
− 1

)
≥ 0.

S9 dominates S0 when(
p1

q1
− 1

)(
1−

p2

q2

p3

q3

)
p4

q4
+
(
p1

q1
−
p2

q2

)
+
(
p2

q2
− 1

)
p3

q3
≤ 1.

When p4
q4

(p1
q1
− 1) ≥ 1 then S6 dominates S0. So we consider p4

q4

(
p1
q1
− 1

)
≤ 1 and get in

the S9 dominates S0 case:(
p1

q1
− 1

)(
1−

p2

q2

p3

q3

)
p4

q4
+
(
p1

q1
−
p2

q2

)
+
(
p2

q2
− 1

)
p3

q3

≤
(
p1

q1
− 1

)(
1−

p2

q2

p3

q3

)
p4

q4
+
(
p1

q1
−
p2

q2

)
p3

q3
+
(
p2

q2
− 1

)
p3

q3

=
(
p1

q1
− 1

)
p4

q4
+
(
p1

q1
− 1

)
p3

q3

(
1−

p2

q2

p4

q4

)
≤ 1. □

All these Lemmas leads us to

Theorem 5 – When 1
q1
≤ 1

q2
+ 1

q3
− 1 then maximal winning probability is

p1 + q1q2q3

(
1
q2

+
1
q3
− 1
q1

)
≥ p1 + q1q2q3

37



Generalized three and four person hat game T. van Uem

with optimal decision matrix:

000 001 010 011 100 101 110 111
0 0 1 1

0 0 1 1
0 0 1 1

⋆ ⋆

(⋆ means: any color or pass; stars are independent)
When 1

q2
+ 1

q3
− 1 ≤ 1

q1
≤ 1

q2
+ 1

q3
+ 1

q4
− 1 then maximal winning probability is

p1 + q1q2q3q4

(
1
q2

+
1
q3

+
1
q4
− 1
q1
− 1

)
,

a value between p1 and p1 + q1q2q3, with optimal decision matrix:

000 001 010 011 100 101 110 111
0 0 0 0 1

0 ⋆ 1 1
0 ⋆ 1 1
0 ⋆ 1 1

When 1
q1
≥ 1

q2
+ 1

q3
+ 1

q4
− 1 then maximal winning probability is p1 with optimal

decision matrix:

000 001 010 011 100 101 110 111
0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

Proof. The preceding Lemmas invite us to make a comparison between S7, S8 and
S9. After some calculations we get:

S9 is winner when (S9 dominates S8) and (S9 dominates S7):
( 1
q1
≤ 1

q2
+ 1

q3
)∧ ( 1

q1
≤ 1

q2
+ 1

q3
− 1) = ( 1

q1
≤ 1

q2
+ 1

q3
− 1)

Maximal probability: 1− (p1q2q3 + q1p2p3) = p1 + q1q2q3( 1
q2

+ 1
q3
− 1

q1
) ≥ p1 + q1q2q3.

S7 is winner when (S7 dominates S9) and (S7 dominates S8):
( 1
q1
≥ 1

q2
+ 1

q3
− 1)∧ ( 1

q1
≤ 1

q2
+ 1

q3
+ 1

q4
− 1) = ( 1

q2
+ 1

q3
− 1 ≤ 1

q1
≤ 1

q2
+ 1

q3
+ 1

q4
− 1)

Maximal probability:
1 − [p1q2q3q4 + q1p2p3 + q1p4(p2q3 + q2p3)] = p1 + q1q2q3q4( 1

q2
+ 1

q3
+ 1

q4
− 1

q1
− 1), a

value between p1 and p1 + q1q2q3.

S8 is winner when (S8 dominates S9) and (S8 dominates S7):
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7. Asymmetric four person two color hat game

( 1
q1
≥ 1

q2
+ 1

q3
)∧ ( 1

q1
≥ 1

q2
+ 1

q3
+ 1

q4
− 1) = ( 1

q1
≥ 1

q2
+ 1

q3
+ 1

q4
− 1)

Maximal probability: p1. □

Note 1. Conditions can also be formulated in the form p
q , e.g. 1

q2
+ 1

q3
− 1 ≤ 1

q1
≤

1
q2

+ 1
q3

+ 1
q4
− 1 becomes p2

q2
+ p3

q3
≤ p1

q1
≤ p2

q2
+ p3

q3
+ p4

q4
+ 1.

Note 2. The domination used in this section is not absolutely, so there may be more
optimal decision matrices with the same maximal probability. In sections 7 and
8 we shall use absolute domination and get all non isomorphic optimal decision
matrices.

7 Asymmetric four person two color hat game

Theorem 6 – In asymmetric four person (two color) hat game we have maximal proba-
bility 1− pq of winning the game, with two optimal decision matrices:

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0
⋆ ⋆

0 0 1 1

and:

000 001 010 011 100 101 110 111
1 0 0 1
1 0 0 1
1 0 0 1

0 1 1 0

Proof. Partial results can be obtained as a special case of the preceding section,
but we want all (non isomorphic) optimal decision matrices and therefore we use
absolute domination.

We use ASG with parameters n=4, p=0.9, das = 4 and get 40 adequate sets.
Minimum sum is 0.09 and 24 adequate sets are optimal. Appendix H shows a
sorted list of all 40 adequate sets. By definition, the construction of an adequate
set is independent of p. In Appendix H we use patterns. E.g. pattern 01210
correspondents with probability 0 ∗ q4 + 1 ∗ pq3 + 2 ∗ p2q2 + 1 ∗ p3q+ 0 ∗ p4. We get:

pattern probability
01210 (sum : 0.09) pq3 + 2p2q2 + p3q
10120 (sum : 0.154) q4 + p2q2 + 2p3q
02101 (sum : 0.666) 2pq3 + p2q2 + p4

11011 (sum : 0.73) q4 + pq3 + p3q+ p4
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Generalized three and four person hat game T. van Uem

It is not difficult to prove that 01210 absolutely dominates all other patterns when
p>q: the probability of 01210 is less than all the other probabilities.

Let Ψ (N,p) be the maximum probability of correct guessing in our asymmetric
hat game with N players.

Ψ (4,p) = 1−
(
pq3 + 2 p2q2 + p3q

)
= 1− pq = 1− p+ p2

We remark that Ψ (4,p) = Ψ (3,p) .
All 24 adequate sets with the 01210 pattern generates optimal decision matrices.

Procedure DMG gives as result with adequate set {1,3,12,14}:

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0
⋆ ⋆

0 0 1 1

where ⋆ means: any color or pass will do. This happens when player 3 sees 001 or
110, which corresponds to situations 0001, 0011, 1100, 1110. In all these situations
player 1 guesses wrong, so the guess of player 3 is irrelevant.

We concentrate on the 24 optimal decision matrices and observe 12 matrices
where one player can always pass and 12 matrices of a different structure. Appendix
H shows the two groups of 12 elements, the position of the player who can always
PASS and the CYCLE to obtain isomorphic relation with the first element of each
group: the 24 optimal adequate sets can be divided in two groups of each 12
isomorphic elements. So the first 12 rows are isomorphic to the adequate set
{1,3,12,14} and the next 12 rows are isomorphic to the adequate set {1,6,10,13} with
decision matrix:

000 001 010 011 100 101 110 111
1 0 0 1
1 0 0 1
1 0 0 1

0 1 1 0

Two adequate sets are equivalent when they have the same probability function.
All 24 optimal sets are equivalent (probability function pq3 + 2p2q2 + p3q). Two
adequate sets are isomorphic when one set can be obtained from the other set by
renumbering the players. We notice that equivalency doesn’t imply isomorphic
behavior. So in the asymmetric case we have two different optimal solutions. Both
solutions have probability 1− pq for success.

The last point is to convince ourselves that any adequate set with das > 4 doesn’t
yield better solutions. This can be done by running the program ASG with n = 4,
das = 5,6, . . . ,16: all adequate sets have probabilities greater than pq3 +2p2q2 +p3q.□
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8. Symmetric four person two color hat game

8 Symmetric four person two color hat game

Theorem 7 – For symmetric four person two color hat game we have: maximal proba-
bility is 3

4 with 5 optimal (non isomorphic) decision matrices:

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0
⋆ ⋆

0 0 1 1

000 001 010 011 100 101 110 111
1 0 0 1
1 0 0 1
1 0 0 1

0 1 1 0

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0

0 1 1 0
0 1 1 0

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0
1 0 0 1
1 0 0 1

000 001 010 011 100 101 110 111
1 1 0 0
1 1 0 0
1 1 0 0
⋆ ⋆

(Remark: When taking ’pass’ for ⋆ in the last matrix, we get the solution where one player
passes and the other three go for the well known solution of the three person game)

Proof. Appendix H gives an overview of 40 optimal adequate sets. There are 5
non-isomorphic sets. The first two base decision matrices (corresponding to row 1
and row 13) are given in section 7. The last three decision matrices, corresponding
to rows 25, 31 and 37 are generated by adequate sets {1 2 12 15} , {0 3 13 14} and {0
1 14 15}. They can be found with DMG . □
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Generalized three and four person hat game T. van Uem

9 Computational complexity

We consider the number of strategies to be examined to solve the hat problem with
N players and two colors. Each of the N players has 2N−1 possible situations to
observe and in each situation there are three possible guesses: white, black or pass.

So we have (32N−1
)
N

possible strategies. Krzywkowski [14] shows that is suffices to

examine (32N−1−2)
N

strategies.
The adequate set method has to deal where {i1, i2, .., idas} with 0 ≤ i1 < i2 < . . . <

idas ≤ 2N − 1.
The number of strategies for fixed das is the number of subsets of dimension

das of {0,1, . . . ,2N − 1}:
(2N
das

)
. But we have to test all possible values of das. So the

correct expression is:
∑

das
(2N
das

)
= 2(2N ). To get an idea of the power of the adequate

set method, we compare the number of strategies (brute force, Krzywkowski and
adequate set method):

N (32N−1
)
N

(32N−1−2)
N

2(2N )

4 1.80E + 15 2.80E + 11 65536
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Sub adequate_sets() 

Dim c() As Integer: Dim d() As Integer: Dim i() As Integer: Dim j() As Integer: Dim check() As Integer 

n = 3: H = 2 ^ n - 1: das = 2 

ReDim c(0 To H, 1 To n) As Integer: ReDim d(1 To n) As Integer 

ReDim i(1 To das) As Integer: ReDim j(1 To das, 1 To n) As Integer: ReDim check(0 To H) As Integer 

' for each number from 0 to H: first calculate binary digits 000 ..... 111 and put it in matrix c: 

For k = 0 To H: g = k 

    For Z = 1 To n:  c(k, Z) = g Mod 2:  g = g \ 2 

    Next Z 

Next k 

x = 0 ' x: row in Excel where result is displayed 

For i1 = 0 To H - das + 1  ' adequate set: {i_1,i_2..,i_das} 

i(1) = i1  ' VBA-EXCEL can't handle with an array in for to next 

For i2 = i1 + 1 To H - das + 2: i(2) = i2 

For k = 1 To das: g = i(k) 'binary digits for adequate set: 

        For Z = 1 To n: j(k, Z) = g Mod 2: g = g \ 2: Next Z 

Next k 

' check on adequate set property: each element of B has distance 0 or 1 to A 

For k = 0 To H:   check(k) = 0 

    For m = 1 To das  ' distance<2 

    If Abs(c(k, 1) - j(m, 1)) + Abs(c(k, 2) - j(m, 2)) + Abs(c(k, 3) - j(m, 3)) < 2 Then check(k) = 1 

    Next m 

Next k 

State = 1 

For k = 0 To H:   State = State * check(k) 

Next k 

If State = 1 Then x = x + 1  '  state=1 means: we found an adequate set; go to next row in Excel sheet 

 For k = 1 To das:   If State = 1 Then Cells(x, k) = i(k): ' shows elements of adequate set 

 Next k 

Next i2: Next i1 

End Sub 

A. ASG three persons

A ASG three persons
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Sub decision_matrix_generator() 

Dim d() As Integer: Dim i() As Integer: Dim a() As Integer: Dim b() As Integer 

n = 3: m = 2 ^ (n - 1) - 1: das = 2 

ReDim d(1 To n) As Integer: ReDim i(1 To das) As Integer 

ReDim a(1 To n, 0 To m) As Integer: ReDim b(1 To n, 0 To m) As Integer 

i(1) = 1: i(2) = 6  'adequate set: 

For s = 1 To n: For k = 0 To m 

a(s, k) = 0    'counts number of zero's in cell (s,k) 

b(s, k) = 0      'count number of one's in cell (s,k) 

Next k: Next s 

For k = 1 To das:  g = i(k) 

            For Z = n To 1 Step -1: d(Z) = g Mod 2: g = g \ 2 

            Next Z  'd(1)d(2)d(3) is binary representation of g 

        If d(1) = 0 Then a(1, 2 * d(2) + d(3)) = a(1, 2 * d(2) + d(3)) + 1 'update a(.,.) and b(.,.): 

        If d(1) = 1 Then b(1, 2 * d(2) + d(3)) = b(1, 2 * d(2) + d(3)) + 1 

        If d(2) = 0 Then a(2, 2 * d(1) + d(3)) = a(2, 2 * d(1) + d(3)) + 1 

        If d(2) = 1 Then b(2, 2 * d(1) + d(3)) = b(2, 2 * d(1) + d(3)) + 1 

        If d(3) = 0 Then a(3, 2 * d(1) + d(2)) = a(3, 2 * d(1) + d(2)) + 1 

        If d(3) = 1 Then b(3, 2 * d(1) + d(2)) = b(3, 2 * d(1) + d(2)) + 1 

Next k 

For k = 1 To das: Cells(1, k + 2) = i(k): Next k 

For s = 1 To n 

For k = 0 To m 

If a(s, k) + b(s, k) = 0 Then Cells(x + s, k + 1) = 2   'code 2: pass 

If a(s, k) >= 1 And b(s, k) = 0 Then Cells(x + s, k + 1) = 1  '0's are bad cases, so we need a 1 

If b(s, k) >= 1 And a(s, k) = 0 Then Cells(x + s, k + 1) = 0 

If a(s, k) >= 1 And b(s, k) >= 1 Then Cells(x + s, k + 1) = " *" 'any guess or pass will do 

Next k 

Next s 

End Sub 

Generalized three and four person hat game T. van Uem

B DMG three persons
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C. Adequate sets, three players, das = 3

C Adequate sets, three players, das = 3

1 0 1 6 

2 0 1 7 

3 0 2 5 

4 0 2 7 

5 0 3 4 

6 0 3 7 

7 0 4 7 

8 0 5 7 

9 0 6 7 

10 1 2 5 

11 1 2 6 

12 1 3 4 

13 1 3 6 

14 1 4 6 

15 1 5 6 

16 1 6 7 

17 2 3 4 

18 2 3 5 

19 2 4 5 

20 2 5 6 

21 2 5 7 

22 3 4 5 

23 3 4 6 

24 3 4 7 
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Generalized three and four person hat game T. van Uem

D Dominated sets, three persons, two colors, das = 4

1 3 5 7 q3 1 3 6 7 > P ({1,6}) 1 5 6 7 > P ({1,6})
2 3 5 7 > P ({2,5}) 2 3 6 7 q2 2 5 6 7 > P ({2,5})
3 4 5 7 > P ({3,4}) 3 4 6 7 > P ({3,4}) 4 5 6 7 q1
1 3 5 6 > P ({1,6}) 2 3 5 6 > P ({2,5}) 3 4 5 6 > P ({3,4})
1 2 5 7 > P ({2,5}) 1 2 6 7 > P ({1,6}) 1 3 4 7 > P ({3,4})
1 4 6 7 > P ({1,6}) 2 3 4 7 > P ({3,4}) 2 4 5 7 > P ({2,5})
1 2 3 5 > P ({2,5}) 1 2 3 6 > P ({1,6}) 1 2 5 6 > P ({1,6})
1 3 4 5 > P ({3,4}) 1 3 4 6 > P ({3,4}) 1 4 5 6 > P ({1,6})
2 3 4 5 > P ({3,4}) 2 3 4 6 > P ({3,4}) 2 4 5 6 > P ({2,5})
1 2 4 7 ≥ q1 1 2 4 5 > P ({2,5}) 1 2 4 6 > P ({1,6})
1 2 3 4 > P ({3,4}) 0 3 5 7 > P ({0,7}) 0 3 6 7 > P ({0,7})
0 5 6 7 > P ({0,7}) 0 3 5 6 ≥ q1 0 1 3 7 > P ({0,7})
0 1 5 7 > P ({0,7}) 0 1 6 7 > P ({0,7}) 0 2 3 7 > P ({0,7})
0 2 5 7 > P ({0,7}) 0 2 6 7 > P ({0,7}) 0 3 4 7 > P ({0,7})
0 4 5 7 > P ({0,7}) 0 4 6 7 > P ({0,7}) 0 1 3 6 > P ({1,6})
0 1 5 6 > P ({1,6}) 0 2 3 5 > P ({2,5}) 0 2 5 6 > P ({2,5})
0 3 4 5 > P ({3,4}) 0 3 4 6 > P ({3,4}) 0 1 2 7 > P ({0,7})
0 1 4 7 > P ({0,7}) 0 2 4 7 > P ({0,7}) 0 1 2 3 p1
0 1 2 5 > P ({2,5}) 0 1 2 6 > P ({1,6}) 0 1 3 4 > P ({3,4})
0 1 4 5 p2 0 1 4 6 > P ({1,6}) 0 2 3 4 > P ({3,4})
0 2 4 5 > P ({2,5}) 0 2 4 6 p3

We have 62 adequate sets, where 54 are absolutely dominated by {0,7}, {1,6}, {2,5}
or {3,4}.
Probability of {4,5,6,7} is q1p2p3 + q1p2q3 + q1q2p3 + q1q2q3 = q1.
For the set {0,3,5,6}, we obtain that its probability is

p1p2p3 + p1q2q3+q1p2q3 + q1q2p3

= q1(p2q3 + q2p3 + p2p3 + q2q3) + (p1 − q1)(p2p3 + q2q3)

= q1 + (p1 − q1)(p2p3 + q2q3) ≥ q1.

Similarly, for the set {1,2,4,7}, its probability verifies

p1p2q3 + p1q2p3+q1p2p3 + q1q2q3

= q1(p2p3 + q2q3 + p2q3 + q2p3) + (p1 − q1)(p2q3 + q2p3)

= q1 + (p1 − q1)(p2q3 + q2p3) ≥ q1.
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E. Four persons, das = 4

E Four persons, das = 4

Nr. adequate set dominated by nr.:

1 0 1 14 15 2

2 0 2 13 15 3

3 0 3 13 14 12

4 0 4 11 15 5

5 0 5 11 14 6

6 0 6 11 13 18

7 0 7 8 15 8

8 0 7 9 14 9

9 0 7 10 13 10

10 0 7 11 12 19

11 1 2 12 15 12

12 1 3 12 14 20

13 1 4 10 15 14

14 1 5 10 14 17

15 1 6 8 15 22

16 1 6 9 14 17

17 1 6 10 13 18

18 1 6 11 12 19

19 1 7 10 12 27

20 2 3 12 13 24

21 2 4 9 15 22

22 2 5 8 15 23

23 2 5 9 14 24

24 2 5 10 13 25

25 2 5 11 12 31

26 2 6 9 13 27

27 2 7 9 12 34

28 3 4 8 15 29

29 3 4 9 14 30

30 3 4 10 13 31

31 3 4 11 12 34

32 3 5 8 14 33

33 3 6 8 13 34

34 3 7 8 12 40

35 4 5 10 11 36

36 4 6 9 11 37

37 4 7 9 10 39

38 5 6 8 11 40

39 5 7 8 10 40

40 6 7 8 9 x
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Sub ASG45() 

    Dim m5() As Integer: Dim m4() As Integer: Dim c() As Integer: Dim check() As Integer 

    Dim i() As Integer: Dim j() As Integer: Dim d() As Integer 

    n = 4    'four players 

    H = 2 ^ n - 1    '2^n elements in B 

    ReDim c(0 To H, 1 To n) As Integer: ReDim check(0 To H) As Integer 

    ReDim i(1 To 5) As Integer: ReDim j(0 To H, 1 To n) As Integer 

    ReDim m5(1 To 560, 1 To 5) As Integer 

    ReDim d(1 To n) As Integer 

    ReDim m4(1 To 40, 1 To 4) As Integer 

    das = 5 

    For k = 0 To H 

        g = k 

        For Z = 1 To n: c(k, Z) = g Mod 2:  g = g \ 2: Next Z 

    Next k 

    x = 0 

    For i1 = 0 To H + 1 - das: i(1) = i1 

    For i2 = i1 + 1 To H + 2 - das: i(2) = i2 

    For i3 = i2 + 1 To H + 3 - das: i(3) = i3 

    For i4 = i3 + 1 To H + 4 - das: i(4) = i4 

    For i5 = i4 + 1 To H + 5 - das: i(5) = i5 

        For k = 1 To das 

        g = i(k)  'binary digits for adequate set: 

        For Z = 1 To n: j(k, Z) = g Mod 2: g = g \ 2: Next Z 

    Next k 

    ' check on adequate set property; each element of B has distance 0 or 1 to A 

    For k = 0 To H 

        check(k) = 0 

        For m = 1 To das   ' distance<2 

            If Abs(c(k, 1) - j(m, 1)) + Abs(c(k, 2) - j(m, 2)) + Abs(c(k, 3) - j(m, 3)) + Abs(c(k, 4) - j(m, 4)) < 2 

Then check(k) = 1 

Generalized three and four person hat game T. van Uem

F Program: four persons, das = 4 versus das = 5
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        Next m 

    Next k 

        State = 1    'potential adequate set 

    For k = 0 To H 

        State = State * check(k) 

    Next k 

    If State = 1 Then 

        x = x + 1 

        For k = 1 To das 

            m5(x, k) = i(k) 

        Next k 

    End If 

    Next i5: Next i4: Next i3: Next i2: Next i1 

    das = 4:     x = 0 

    For i1 = 0 To H + 1 - das: i(1) = i1 

    For i2 = i1 + 1 To H + 2 - das: i(2) = i2 

    For i3 = i2 + 1 To H + 3 - das: i(3) = i3 

    For i4 = i3 + 1 To H + 4 - das: i(4) = i4 

    For k = 1 To das 

        g = i(k)  'binary digits for adequate set: 

        For Z = 1 To n: j(k, Z) = g Mod 2: g = g \ 2: Next Z 

    Next k 

    ' check on adequate set property; each element of B has distance 0 or 1 to A 

    For k = 0 To H 

        check(k) = 0 

        For m = 1 To das   ' distance<2 

            If Abs(c(k, 1) - j(m, 1)) + Abs(c(k, 2) - j(m, 2)) + Abs(c(k, 3) - j(m, 3)) + Abs(c(k, 4) - j(m, 4)) < 2 

Then check(k) = 1 

        Next m 

    Next k 

        State = 1    'potential adequate set 

F. Program: four persons, das = 4 versus das = 5
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    For k = 0 To H 

        State = State * check(k) 

    Next k 

    If State = 1 Then 

        x = x + 1 

        For k = 1 To das 

            m4(x, k) = i(k) 

        Next k 

    End If 

     Next i4: Next i3: Next i2: Next i1 

    Z = 0 

    For x = 1 To 560 

        Max = 0 

    For y = 1 To 40 

        t = 0 

        For n = 1 To 4 

            If (m4(y, n) - m5(x, 1)) = 0 Or (m4(y, n) - m5(x, 2)) = 0 Or (m4(y, n) - m5(x, 3)) = 0 Or (m4(y, n) - 

m5(x, 4)) = 0 Or (m4(y, n) - m5(x, 5)) = 0 Then t = t + 1 

        Next n 

        If t = 4 Then Max = 4 

    Next y 

    If Max = 0 Then 

        Z = Z + 1 

        For k = 1 To 5 

            Cells(Z, k) = m5(x, k) 

        Next k 

    End If 

Next x 

End Sub 

 

 

Generalized three and four person hat game T. van Uem
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Nr. adequate set: non-dom d(80) d(560) X Nr. adequate set: non-dom d(80) d(560)

1 0 1 2 4 15 2 X 48 2 4 6 9 14 49

2 0 1 2 8 15 5 X 49 2 4 7 9 14 58

3 0 1 3 5 14 4 X 50 2 5 8 10 11 51

4 0 1 3 9 14 6 X 51 2 5 8 10 14 52

5 0 1 4 8 15 9 X 52 2 5 8 11 14 56

6 0 1 5 9 14 11 X 53 2 5 9 12 13 54

7 0 2 3 6 13 8 X 54 2 5 9 12 15 55

8 0 2 3 10 13 10 X 55 2 5 9 13 15 57

9 0 2 4 8 15 28 X 56 2 5 10 11 14 78

10 0 2 6 10 13 12 X 57 2 5 12 13 15 59

11 0 3 5 9 14 30 X 58 2 6 7 9 14 75

12 0 3 6 10 13 45 X 59 2 9 12 13 15 S2

13 0 4 5 6 11 14 X 60 3 4 8 12 13 61

14 0 4 5 11 12 15 X 61 3 4 8 12 14 62

15 0 4 6 11 12 16 X 62 3 4 8 13 14 67

16 0 5 6 11 12 73 X 63 3 4 9 10 11 64

17 0 7 8 9 10 18 X 64 3 4 9 10 15 65

18 0 7 8 9 12 19 X 65 3 4 9 11 15 66

19 0 7 8 10 12 20 X 66 3 4 10 11 15 76

20 0 7 9 10 12 80 X 67 3 4 12 13 14 72

21 0 7 11 13 14 22 X 68 3 5 6 7 8 69

22 0 7 11 13 15 23 X 69 3 5 6 8 15 70

23 0 7 11 14 15 24 X 70 3 5 7 8 15 71

24 0 7 13 14 15 25 X 71 3 6 7 8 15 77

25 0 11 13 14 15 S0 X 72 3 8 12 13 14 S3

26 1 2 3 7 12 27 X 73 4 5 6 11 12 {4,5,10,11,12}

27 1 2 3 11 12 29 X 74 4 5 7 10 13 {4,5,10,11,13}

28 1 2 4 8 15 {1,2,4,9,15} X 75 4 6 7 9 14 {4,6,9,11,14}

29 1 2 7 11 12 31 X 76 4 9 10 11 15 S4

30 1 3 5 9 14 {1,3,5,10,14} X 77 5 6 7 8 15 {5,6,8,11,15}

31 1 3 7 11 12 46 X 78 5 8 10 11 14 S5

32 1 4 5 7 10 33 X 79 6 8 9 11 13 S6

33 1 4 5 10 13 34 X 80 7 8 9 10 12 S7

34 1 4 7 10 13 35 X

35 1 5 7 10 13 74 X Legenda:

36 1 6 8 9 11 37 X In column "non-dom" we have the non-dominated sets

37 1 6 8 9 13 38 X

38 1 6 8 11 13 39 X Column "d(80)" gives the domination relations in the set of 

39 1 6 9 11 13 79 X 80 adequate sets (set 1 is dominated by set 2 etc.)

40 1 6 10 12 14 41 X

41 1 6 10 12 15 42 X Column "d(560)" gives the domination relations using  in the 

42 1 6 10 14 15 43 X original 560 adequate sets (set 28 is dominated by {1,2,4,9,15} )

43 1 6 12 14 15 44 X

44 1 10 12 14 15 S1 X Note: We have comparised   sets with differs in one element.

45 2 3 6 10 13 {2,3,7,12,13} X Most of them can be found in the 80-set.

46 2 3 7 11 12 {2,3,7,12,13} X The elements in the last column can easily be found by running

47 2 4 6 7 9 48 X  ASG55 with max=4 (4 hits).

G. Output: four persons, das = 4 versus das = 5

G Output: four persons, das = 4 versus das = 5
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Generalized three and four person hat game T. van Uem

H Four persons, das = 4, sorted list, p = 0.9

row   
adequate 
set prob.     pattern PASS CYCLE BASE 

1 1 3 12 14 0.09 0 1 2 1 0 3 (1) {1,3,12,14} 

2 1 5 10 14 0.09 0 1 2 1 0 2 (23)   

3 1 6 9 14 0.09 0 1 2 1 0 1 (13)   

4 2 3 12 13 0.09 0 1 2 1 0 4 (34)   

5 2 5 10 13 0.09 0 1 2 1 0 1 (143)   

6 2 6 9 13 0.09 0 1 2 1 0 2 (243)   

7 3 4 11 12 0.09 0 1 2 1 0 1 (143)   

8 3 7 8 12 0.09 0 1 2 1 0 2 (23)(14)   

9 4 5 10 11 0.09 0 1 2 1 0 4 (234)   

10 4 6 9 11 0.09 0 1 2 1 0 3 (24)   

11 5 7 8 10 0.09 0 1 2 1 0 3 (14)   

12 6 7 8 9 0.09 0 1 2 1 0 4 (134)   

13 1 6 10 13 0.09 0 1 2 1 0   (1) {1,6,10,13} 

14 1 6 11 12 0.09 0 1 2 1 0   (23)   

15 1 7 10 12 0.09 0 1 2 1 0   (13)   

16 2 5 9 14 0.09 0 1 2 1 0   (34)   

17 2 5 11 12 0.09 0 1 2 1 0   (243)   

18 2 7 9 12 0.09 0 1 2 1 0   (143)   

19 3 4 9 14 0.09 0 1 2 1 0   (234)   

20 3 4 10 13 0.09 0 1 2 1 0   (24)   

21 3 5 8 14 0.09 0 1 2 1 0   (134)   

22 3 6 8 13 0.09 0 1 2 1 0   (14)   

23 4 7 9 10 0.09 0 1 2 1 0   (24)(13)   

24 5 6 8 11 0.09 0 1 2 1 0   (14)(23)   

25 1 2 12 15 0.154 1 0 1 2 0   (1) {1,2,12,15} 

26 1 4 10 15 0.154 1 0 1 2 0   (23)   

27 1 6 8 15 0.154 1 0 1 2 0   (13)   

28 2 4 9 15 0.154 1 0 1 2 0   (234)   

29 2 5 8 15 0.154 1 0 1 2 0   (14)   

30 3 4 8 15 0.154 1 0 1 2 0   (14)(23)   

31 0 3 13 14 0.666 0 2 1 0 1   (1) {0,3,13,14} 

32 0 5 11 14 0.666 0 2 1 0 1   (23)   

33 0 6 11 13 0.666 0 2 1 0 1   (234)   

34 0 7 9 14 0.666 0 2 1 0 1   (13)   

35 0 7 10 13 0.666 0 2 1 0 1   (14)   

36 0 7 11 12 0.666 0 2 1 0 1   (13)(24)   

37 0 1 14 15 0.73 1 1 0 1 1 4 (1) {0,1,14,15} 

38 0 2 13 15 0.73 1 1 0 1 1 3 (34)   

39 0 4 11 15 0.73 1 1 0 1 1 2 (24)   

40 0 7 8 15 0.73 1 1 0 1 1 1 (14)   
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