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Abstract

We revisit, in an elementary way, the classical statement of various “Main
Conjectures” for p-class groups HK and p-ramified torsion groups TK of abelian
fields K , in the non semi-simple case p | [K : Q]. The classical “algebraic” defini-
tion of the p-adic isotypic components, H alg

K,ϕ , used in the literature, is inappro-
priate with respect to analytical formulas. For that reason we have introduced, in
the 1970’s, an “arithmetic” definition, H ar

K,ϕ , in perfect correspondence with all
analytical formulas and giving a natural “Main Conjecture”, still unproved for
real fields in the non semi-simple case. The two notions coincide for relative class
groups H −K and groups TK since transfer maps are injective, in p-extensions for
these groups, but not necessarily for real class groups. Numerical evidence of
the gap between the two notions is given (Examples Appendix A.2 on p. 175,
Appendix A.2 on p. 178) and PARI calculations corroborate that the true Real
Abelian Main Conjecture writes #H ar

K,ϕ = #(EK /ÊK FK )eϕ0 (ϕ = ϕ0ϕp, ϕ0 of
prime-to-p order, ϕp of p-power order, eϕ0 being the corresponding idempo-

tent), in terms of units EK , ÊK (units of the strict subfields) and FK (Leopoldt’s
cyclotomic units). A recent approach, conjecturing the capitulation of HK in
some auxiliary cyclotomic extensions K(µℓ), ℓ ≡ 1 (mod 2pN ) prime, proves the
difficult non semi-simple real case.
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Notion of abelian arithmetic ϕ-objects G. Gras

Foreword and preliminary remarks

This survey provides improvements, new results, numerical illustrations (with
programs using PARI2) and some history, regarding our original articles3. These
two papers were written, in French, with illegible fonts due to the use of "typits" on
typewriters and hand written characters, for mathematical symbols ! So they were
hardly accessible and only Gras (1977a) is cited in replacement of them. This survey
also mentions, in Subsection 1.1, pioneering references, as well as some significant
Leopoldt’s papers on cyclotomy4, written in german in the 1950/1960’s.

In this presentation, the definitions of various p-adic isotypic components deal
with irreducible p-adic characters ϕ = ϕ0ϕp (ϕ0 of prime-to-p order, ϕp of p-power
order and eϕ0

being the semi-simple idempotent associated to ϕ0).
As the Referee pointed out, one must avoid any confusion with the Iwasawa Main

Conjecture, dealing for instance with cyclotomic Zp-extensions of abelian fields.
So, the conjectures for the case of finite abelian extensions are supposed to

give, in the real case, the most precise analytic information #H ar
K,ϕ = #(EK /ÊK FK )ϕ0

,

in terms of units EK := EK ⊗Zp, ÊK := ÊK ⊗Zp (units of the strict subfields) and
FK := FK⊗Zp (cyclotomic units), which will be specified later; this conjecture will be
called “Finite Abelian Main Conjectures” in this paper (FAMC for short). This may
be legitimate since beyond the Iwasawa Main Conjecture, after the Mazur–Wiles
Main Theorem and generalizations, our purposes and conjectures deal always with
finite abelian extensions K/Q, without any hypothesis on the degree, a context
which, of course, must apply to the finite layers of the cyclotomic Zp-extension.

Moreover, Thaine’s technique and our new philosophy, using capitulation of
classes in auxiliary cyclotomic extensions K(µℓ), strengthen the interest of the finite
cases.

The FAMC, giving analytic expressions of annihilators and orders of p-adic
isotypic components of class groups, that we revisit here, were first stated (especially
in the non semi-simple case) in our papers mentioned above (but not in Gras (1977a),
as erroneously stated by some authors), and that we have given at the meeting
“Journées arithmétiques de Caen” Gras (1977b) as it is correctly recalled for instance
in Solomon5 and Ribet6.

This gives the occasion to mention that Gras (1977a), only recalling the state-
ments of the conjectues in the semi-simple case, is especially devoted to a method

2Group, 2016, PARI/GP, version 2.9.0.
3Gras, 1976, “Application de la notion de ϕ-objet à l’étude du groupe des classes d’idéaux des

extensions abéliennes”;
Gras, 1977b, “Étude d’invariants relatifs aux groupes des classes des corps abéliens”.

4Leopoldt, 1954, “Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper”;
Leopoldt, 1962, “Zur Arithmetik in abelschen Zahlkörpern”.

5Solomon, 1990, “On the class groups of imaginary abelian fields”.
6Ribet, 2008a, “Bernoulli numbers and ideal classes”.
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Foreword and preliminary remarks

using formal series, giving non-trivial congruences when p-adic L-functions have a
trivial zero; for instance we proved the following complement of Ankeny–Artin–
Chowla–Kudo congruences7 or Washington (1997, Theorem 5.37)):

Proposition 1 – Let f ≡ 0 (mod 3) be the conductor of a real quadratic field K ; we
consider the case f /3 ≡ −1 (mod 3) (“special case” when 3 splits in the mirror field
K ′ := Q(

√
−f /3)). Let ε = t +u

√
f , t,u > 0, be the fundamental unit of K and let h and

h′ be the class numbers of K and K ′ , respectively. Then h·t ·u + h′ ≡ 0 (mod 3).

A program, in Appendix A.1, only checks this congruence. But this analytic
result, which seems unknown, is perhaps off topic for our purpose, even if the
tricky case, given by the mirror character ψ∗ of ψ = ψ0ψp, always intervenes in
such context (see, e.g., Gras (1987, Théorème (0.2) (iii)), after the general case8, then
Theorems 8, 9 when ψ0 =ω yielding ψ∗ =ωψ−1 = ψ−1

p ).
The conjecture has been proven in the semi-simple case, then in the non semi-

simple one for imaginary relative class groups and mainly in the framework of
Iwasawa’s theory (a large overview on the precise proofs and classical references are
given in Washington (1997, Chapters 6, 8, 13, 15)).

The non semi-simple real case was less understood because of a problematic
definition of p-adic isotypic components for p-adic characters ϕ and of cyclotomic
units; but at the time, we proposed another more natural conjectural context, still
unproved, for which the definition of “Arithmetic ϕ-objects” has become essential
since the distinction between “Algebraic” definitions (classical framework) and
“Arithmetic” definitions is crucial regarding analytic formulas (we shall give more
comments in Remarks 3).

Let G := Gal(Qab/Q) be the Galois group of the maximal abelian extension Q
ab

of Q and denote by K a subfield of finite degree of Q
ab. In fact, since abelian

arithmetic deals with invariants defined in cyclic fields “K = Kχ”, indexed by
rational characters χ, for which Kχ is the subfield of Qab fixed by χ, there is no
restriction to take cyclic K’s in any result or comment; conversely, K define an
unique rational character χ.

The present article is divided into the following three parts, after an Introduction
giving a brief description about the story (rather prehistory) that led to the numerous
approaches giving, under some assumptions, proofs of a “Main Theorem”:

(i) An algebraic part giving a systematic study of families (MK )K of Z[G ]-modules
and of the Zp[G ]-modulesMK := MK⊗Zp, including the non semi-simple case

p | [K : Q]. This study leads to the definition of sub-modulesM alg
ϕ (algebraic)

andM ar
ϕ (arithmetic), indexed by the set of irreducible p-adic characters ϕ of

G .

7Ankeny, Artin, and Chowla, 1952, “The class number of real quadratic fields”;
Kudo, 1975, “On a class number relation of imaginary abelian fields”.

8Gras, 1986, “Théorie des genres analytique des fonctions L p-adiques des corps totalement réels”.
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The difference betweenM alg
ϕ (used in all the literature) andM ar

ϕ is that the
first one relates to algebraic norms νk/k′ :=

∑
σ∈Gal(k/k′) σ ∈ Z[Gal(k/k′)] for

their properties in relative sub-extensions of K/Q, while the second one uses
arithmetic norms Nk/k′ , the gap being given by the relation:

νk/k′ = Jk/k′ ◦Nk/k′ ,

where the transfer maps Jk/k′ are often non injective in p-extensions (see § 3.3
for examples justifying Definition 2 for the statement of the FAMC and § 4.3
for the main properties). Moreover, the “arithmetic” point of view is naturally
related to the formula:

#MK =
∏
ϕ∈ΦK

#M ar
ϕ (Theorems 3 and 5),

where the #M ar
ϕ ’s have (conjecturally) analytic expressions, contrary to the

#M alg
ϕ ’s which do not always fulfill this formula.

(ii) An arithmetic part where we apply the above results to p-class groups HK ,
K real or imaginary, then to torsion groups TK of the Galois group of the
maximal p-ramified (i.e., unramified outside p and non-complexified) abelian
pro-p-extension of K real. For a survey about abelian p-ramification, see Gras
(2019c, Appendix).

For rational characters χ and p-adic characters ϕ | χ, we define the “Class

Invariants” malg
ϕ (H ) (algebraic), mar

ϕ (H ), mar
ϕ (T ) (arithmetic) then, in § 8.2, the

corresponding “Analytic Invariants” man
ϕ (H ), man

ϕ (T ) suggested by the analytic
formulas of the arithmetic χ-components deduced from Leopoldt’s Theorem 1
(cf. Theorems 7, 12, 14) and we develop the problem of their comparison. We
conjecture a new annihilation theorem for H ar

ϕ in the real non semi-simple
case (Conjecture 1).

In § 7.6, we shed new light on the proof of the FAMC in the real semi-simple
case for K , in the spirit of Thaine’s theorem described in Washington’s book,
and we give numerical illustrations. It becomes clear that the knowledge of the
sole cyclotomic unit ηK of K contains, by means of very elementary arithmetic,
all the information on annihilation and orders of the ϕ-components of its
p-class group. A new observation is that Thaine’s method9 uses auxiliary cy-
clotomic extensions K(µℓ) with ℓ prime totally split in K , while our approach10

9Thaine, 1988, “On the ideal class groups of real abelian number fields”.
10Gras, 2023a, “Algebraic norm and capitulation of p-class groups in ramified cyclic p-extensions”;

Gras, 2023b, “The Chevalley–Herbrand formula and the real abelian Main Conjecture (New crite-
rion using capitulation of the class group)”;

Gras, 2024b, “The real abelian main conjecture in the non semi-simple case”.
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1. Introduction and brief historical survey

uses same auxiliary extensions, but with ℓ totally inert in K , which assumes
K ∩Q(µp∞ ) = Q, the case K ∩Q(µp∞ ) ,Q being considered separately.

(iii) An illustration, of the semi-simple case, is given with cyclic cubic fields for
p ≡ 1 (mod 3), as well as a PARI program computing the above invariants,
which was not possible in the 1970’s. After a first writing of this paper, more
computations have been done and confirm the theoretical claims.

Since numerical experiments have some importance and take much place, we
report in the Appendix, PARI programs, tables and explanations for their use;
the programs may be copied and pasted from any pdf-file.

1 Introduction and brief historical survey

1.1 Main bibliographic reminders

It is difficult to give here the full story of such a subject, from Bernoulli, Kummer,
Herbrand classical context, the initiating work of Iwasawa, Leopoldt, Greenberg, on
the conjecture, then the deep results obtained by Ribet, Mazur, Wiles, Thaine, Rubin,
Kolyvagin, Solomon, Greither, Coates, Sinnott, among others, on cyclotomy and
p-adic L-functions. Several papers also give the Iwasawa formulation of the Main
Theorem (see, e.g., Greenberg11), in terms of p-adic L-functions, a generalizable
feature to many fields. The fundamental difference, regarding finite p-extensions,
is that, in Iwasawa’s theory, capitulation kernels are hidden in statements using
pseudo-isomorphisms, whence only giving results for the projective limit of the p-
class groups in the Zp-extensions and, in general, no precise information is available
in the finite layers. It’s quite clear in a numerical setting that any possible structure
occurs in the first layers, up to the algebraic regularity predicted by Iwasawa’s
theory; see for instance the numerical computations given in Kraft–Schoof–Pagani12.
An enlightening result about capitulation kernels is given in Grandet–Jaulent13.

Let’s give less known contributions of the beginnings:
We refer, for a very nice story of pioneering works, to Ribet14, for detailed proofs

of Iwasawa Main Conjecture to Washington15 following techniques initiated by

11Greenberg, 1975, “On p-adic L-functions and cyclotomic fields”;
Greenberg, 1977, “On p-adic L-functions and cyclotomic fields. II”.

12Kraft and Schoof, 1995, “Computing Iwasawa modules of real quadratic number fields”;
Pagani, 2022, “Greenberg’s conjecture for real quadratic fields and the cyclotomic Z2-extension”.

13Grandet and Jaulent, 1985, “Sur la capitulation dans une Zℓ-extension”, Théorème, p. 214.
14Ribet, 2008a, “Bernoulli numbers and ideal classes”;

Ribet, 2008b, Modular constructions of unramified extensions and their relation with a theorem of
Herbrand (Class groups and Galois representations).

15Washington, 1997, Introduction to Cyclotomic Fields, Chap. 15.
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Thaine then Kolyvagin, Ribet (exposed by Lang16). A Bourbaki Seminar, by Perrin-
Riou17, gives a significant lecture, with an impressive bibliography, on the works
of Kolyvagin, also Perrin-Riou18, the survey of Rubin19, and others about the Main
Conjectures for number fields and elliptic curves.

The story is also given in the famous Mazur–Wiles paper20, where the attribution
of the various statements of the conjecture, in the semi-simple case, is accurately
discussed (see Mazur and Wiles (1984, § 1 and § 10 (i, ii)) for more comments on
the works of Iwasawa, Leopoldt, Greenberg and us), even if some references are
missing.

Finally, proofs of our conjecture for the relative p-class groups H − and the real
torsion groups T of the Galois groups of the maximal abelian p-ramified pro-p-
extensions were given in Solomon (1990, Theorem II.1) for H − and p , 2, then in
Greither (1992, Theorems A, B, C, 4.14, Corollary 4.15) for H −, T with p ≥ 2 and
H +, but in a semi-simple context.

Let’s mention the proof by Rubin21, from the Kolyvagin Euler systems22 used in
above proofs.

Many complementary works about the order or the annihilation of the Hϕ’s, for
irreducible p-adic characters ϕ, were published before or after the decisive proofs23.
Mention a result of Oriat using reflection theorem24.

16Lang, 1990, Cyclotomic fields. I and II. With an appendix by Karl Rubin: The main conjecture.
17Perrin-Riou, 1990, Travaux de Kolyvagin et Rubin.
18Perrin-Riou, 1998, “Systèmes d’Euler p-adiques et théorie d’Iwasawa”.
19Rubin, 2000, Euler Systems (Hermann–Weyl lectures).
20Mazur and Wiles, 1984, “Class fields of abelian extensions of Q”.
21Rubin, 1990, The main conjecture, Appendix to Cyclotomic fields I, II, by Lang, S..
22Kolyvagin, 2007, Euler Systems.
23All, 2013, “On p-adic annihilators of real ideal classes”;

All, 2017, “Gauss sums, Stickelberger’s theorem and the Gras conjecture for ray class groups”;
Belliard and Martin, 2014, “Annihilation of real classes”;
Belliard and Nguyen Quang Do, 2005, “On modified circular units and annihilation of real classes”;
Gillard, 1976, Sur le groupe des classes des extensions abéliennes réelles;
Gras, 1977a, “Classes d’idéaux des corps abéliens et nombres de Bernoulli généralisés”;
Gras, 1979a, “Annulation du groupe des ℓ-classes généralisées d’une extension abélienne réelle de

degré premier à ℓ”;
Gras, 2018a, “Annihilation of torZp (G ab

K,S ) for real abelian extensions K/Q”;
Greither and Kučera, 2014, “Eigenspaces of the ideal class group”;
Greither and Kučera, 2015, “Annihilators for the class group of a cyclic field of prime power degree

III”;
Greither and Kučera, 2021, “Washington units, semispecial units, and annihilation of class groups”;
Jaulent, 2021, “Annulateurs de Stickelberger des groupes de classes logarithmiques”;
Jaulent, 2023, “Annulateurs circulaires des groupes de classes logarithmiques”;
Oriat, 1981, “Annulation de groupes de classes réelles”;
Oriat, 1986, “Lien algébrique entre les deux facteurs de la formule analytique du nombre de classes

dans les corps abéliens”.
24Oriat, 1986, “Lien algébrique entre les deux facteurs de la formule analytique du nombre de classes

dans les corps abéliens”, Théorème, p. 333.
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In the same way, it is hopeless to outline all generalizations giving “Main Con-
jectures” in other contexts than the absolute abelian case25, using essentially the
technique of Kolyvagin’s Euler systems, if any; an expository book may be Coates
and Sujatha (2006) for recent works, but excluding the story of the origins of the
Main Conjecture as explained in Solomon–Greither papers, Washington’s book and
Ribet’s Lectures.

In another direction, we refer to enlargements of the algebraic/arithmetic as-
pects of p-adic characters in the area of metabelian Galois groups by Jaulent, with
applications to class groups and units (see for instance Jaulent (1981, Théorème
1 and consequences), Jaulent (1984, 1986) in a class field theory context, then
Lecouturier (2018) and Schaefer and E. Stubley (2019) in a geometric or Galois
cohomology context).

Due to the huge number of articles dealing with the concept of “Main Conjec-
ture”, many recent (or not) articles may have escaped our notice. We hope that the
following new presentation of the “elementary” abelian case, with a properly stated
FAMC, will serve as a model for generalizations.

1.2 Introduction of Arithmetic ϕ-objects

Nevertheless, all these works deal with an algebraic definition of the isotypic compo-

nents
�
H

alg
ϕ (for irreducible p-adic characters ϕ) or

�
H

alg
χ (for rational characters χ);

that is to say, when GK := Gal(K/Q) =: ⟨σχ⟩ is cyclic, of order gχ (i.e., K = Kχ is the
fixed field by the kernel of a rational character χ):

�
H

alg
χ :=HK /H

Pχ(σχ)
K ,�

H
alg
ϕ :=HK ⊗Zp[GK ] Zp[µgχ ] ≃HK /H

Pϕ(σχ)
K , for all ϕ | χ,

with the Zp[GK ]-action σ ∈ GK 7→ ψ(σ ) (ψ | ϕ of order gχ), where Pϕ is the corre-
sponding local cyclotomic polynomial dividing the global cyclotomic polynomial
Pχ of gχ-th roots of unity. We shall use instead similar definitions giving modules
of same order:

H
alg
χ := Ker(Pχ(σχ)) & H alg

ϕ := Ker(Pϕ(σχ)).

25Bullach et al., 2021, “Dirichlet L-series at s = 0 and the scarcity of Euler systems”;
Burns et al., 2023, “On Euler systems for the multiplicative group over general number fields”;
Coates and Li, 2020, “Non-vanishing theorems for central L-values of some elliptic curves with

complex multiplication”;
Darmon, 1995, “Thaine’s method for circular units and a conjecture of Gross”;
Dasgupta and Kakde, 2023, “On the Brumer-Stark Conjecture”;
Dasgupta, Kakde, et al., 2023, “The residually indistinguishable case of Ribet’s method for GL2”;
Kezuka and Li, 2023, “Non-vanishing of central L-values of the Gross family of elliptic curves”;
Mazur and Rubin, 2011, “Refined class number formulas and Kolyvagin systems”;
Viguié, 2011, “Contribution à l’étude de la conjecture de Gras et de la conjecture principale

d’Iwasawa, par les systèmes d’Euler (Thèse: Université de Franche–Comté)”.

115



Notion of abelian arithmetic ϕ-objects G. Gras

The corresponding norm characterization of H alg
χ being (Theorem 2):

H
alg
χ := {x ∈HK , νK/k(x) = 1, ∀k & K} ,

where νK/k = JK/k ◦NK/k is the algebraic norm with the disadvantage of possible
non injective maps JK/k when p | [K : k].

Put K = K ′K0, where g0 := [K0 : Q] is prime to p and [K ′ : Q] = pn, n ≥ 0. We
prove (Theorem 4 (ii)) that from the above expression one gets:

H
alg
ϕ =

(
H

alg
χ

)
ϕ0

= ({x ∈HK , νK/k(x) = 1, ∀k & K})ϕ0
,

(where ϕ0 is above the prime-to-p part ψ0 of ψ =: ψ0ψp, where ψp is of order pn, and
where ( )ϕ0

denotes a ϕ0-component obtained with the corresponding semi-simple
idempotent eϕ0

of G0 := Gal(K0/Q)), contrary to our definitions that will be the
crucial ones in the sequel:H

ar
χ := {x ∈HK , NK/k(x) = 1, ∀k & K},

H ar
ϕ :=

(
H ar
χ

)
ϕ0

= ({x ∈HK , NK/k(x) = 1, ∀k & K})ϕ0
.

where NK/k is the arithmetic norm. See § 2.2 about this characterizations ofH alg
ϕ and

H ar
ϕ using local cyclotomic polynomials Pϕ , whence giving structures of modules

over cyclotomic rings, then for a summary of the main properties and results of the
paper.

In the non semi-simple case p | [K : Q], the distinction between algebraic and
arithmetic ϕ-components is not done in the literature. This does not matter for
relative p-class groups H −K and torsion p-groups TK of abelian p-ramification since
we will prove that the two notions coincide (Theorems 6, 11); so the case of these
invariants is definitely solved, contrary to that of ϕ-components of p-class groups
of real fields K in the non semi-simple case deduced from the “χ-formulas” given
in Theorem 14 and the important relation that we talked about:

#HK =
∏
ϕ∈ΦK

#H ar
ϕ (Theorems 3, 5).

We compare the two definitions H alg, H ar in § 3.3 and Appendix A.2, with nu-
merical illustrations showing the gap between them and involving capitulation
phenomenon of p-classes in p-extensions (the detailed examples Appendix A.2 on
p. 175, Appendix A.2 on p. 178 may be read right now).

1.3 Relation between the modules HK and TK
If one considers, in the abelian real case, the Zp[G ]-modules TK , one gets, for them,
an easier annihilation theorem from the p-adic Mellin transform of Stickelberger
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elements (see § 6.2). Moreover, for K0 ⊆ k′ ⊆ k ⊆ K , the norm maps Nk/k′ are
surjective and the transfer maps Jk/k′ are injective under Leopoldt’s conjecture262728

(collected in Gras (2005, Theorem IV.2.1)); so this family behaves as that of relative
class groups, which allows an obvious statement of the FAMC and then its proof
with similar techniques, as done for instance in Greither (1992).

The order of the p-group TK is closely related to Coates’s approach29 of the
p-adic L-functions “at s = 1” and a particularity of TK is its interpretation by means
of the three Zp[G ]-modules H cyc

K , RK andWK ; see Gras (2005, Lemma III.4.2.4)
leading to the exact sequence (17) and the formula #TK = #H cyc

K × #RK × #WK ,
whereWK is an easy canonical invariant depending on local p-roots of unity, RK is
the normalized p-adic regulator30 and H cyc

K a subgroup of HK , equal to HK , except
“the part” corresponding to the maximal unramified extension contained in the
cyclotomic Zp-extension of K , which simply depends on ramification of p in K .

The order of the group RK is, up to an obvious factor, the classical p-adic
regulator which intervenes in the p-adic analytic formulas due to the pioneering
works of Kubota–Leopoldt on p-adic L-functions, then that of Amice–Fresnel–
Barsky and Fresnel31, then Coates, Ribet and many other; see a survey in Gras32

and a lecture in Ribet33 where is used the beginnings of the concept of p-adic
pseudo-measures of Mazur, developed by Serre34 and that we have used for a genus
theory35). See in Gras (2016, 2019a) more complete studies and conjectures about
RK and TK .

At this time was stated the Iwasawa formalism of the Main Conjecture by
Greenberg (1975, 1977) after Iwasawa36.

1.4 Unsolved non semi-simple abelian conjecture

Let K/Q be a real cyclic extension with a non-trivial maximal p-sub-extension (non
semi-simple case). Let EK (resp. FK ) be the group of units (resp. of Leopoldt’s

26Gras, 1982, “Groupe de Galois de la p-extension abélienne p-ramifiée maximale d’un corps de
nombres”, Théorème I.1.

27Gras, 1983, “Logarithme p-adique et groupes de Galois”.
28Jaulent, 1986, “L’arithmétique des ℓ-extensions (Thèse d’état)”;

Jaulent, 1998, “Théorie ℓ-adique globale du corps de classes”;
Nguyen Quang Do, 1986, “Sur la Zp-torsion de certains modules galoisiens”.

29Coates, 1977, p-adic L-functions and Iwasawa’s theory.
30Gras, 2018b, “The p-adic Kummer–Leopoldt Constant: Normalized p-adic Regulator”, Lemma 3.1.
31Fresnel, 1967, Nombres de Bernoulli et fonctions L p-adiques.
32Gras, 1980, Sur la construction des fonctions L p-adiques abéliennes.
33Ribet, 1979, “Fonctions L p-adiques et théorie d’Iwasawa (par P. Satgé, d’après un cours de K. Ribet

1977/78)”.
34Serre, 1978, “Sur le résidu de la fonction zêta p-adique d’un corps de nombres”.
35Gras, 1986, “Théorie des genres analytique des fonctions L p-adiques des corps totalement réels”;

Gras, 1987, “Pseudo-mesures associées aux fonctions L de Q”.
36Iwasawa, 1964, “On some modules in the theory of cyclotomic fields”.

117



Notion of abelian arithmetic ϕ-objects G. Gras

cyclotomic units) then EK = EK ⊗Zp and FK = FK ⊗Zp; let ÊK be the subgroup of
EK generated by the Ek ’s for all k & K .

It would remain to prove our conjecture Gras (1977b, § III) for the p-adic charac-
ters ϕ | χ of K =: Kχ saying that (see Remarks 3, 8):

#H ar
ϕ = wϕ ·#(EK /ÊKFK )ϕ0

, wϕ ∈ {1,p},

where:

H ar
ϕ :=

{
x ∈HK , xPϕ(σχ) = 1 & NK/k(x) = 1, ∀k & K

}
and:

(EK /ÊKFK )ϕ0
= (EK /ÊKFK )eϕ0 :=

{
ε̃ ∈ EK /ÊKFK , ε̃Pϕ(σχ) = 1

}
,

where Pϕ is the local cyclotomic polynomial attached to ϕ and σχ a generator of
Gal(K/Q) (ϕ = ϕ0ϕp, ϕ0 of prime-to-p order, ϕp of p-power order, from Remark

1). The module EK /ÊKFK is called an algebraic χ-object since it is annihilated
by all the relative algebraic norms νK/k , which explains that its ϕ-component is
given by its ϕ0-component; indeed, one proves, Theorem 4 (ii), that (EK /ÊKFK )ϕ =

(EK /ÊKFK )ϕ0
. Thus, the ϕ-components (EK /ÊKFK )ϕ0

are algebraic ϕ-objects, but
the ϕ-class groups H ar

ϕ must be defined in the arithmetic sense, which should be
subject to a philosophical interpretation that we ignore since transfer maps of the
form Ek/ÊkFk → EK /ÊKFK are trivial.

2 Abelian extensions

The idea of definition of the ϕ-objects owes a lot to the work of Leopoldt37 and their
writing, in french, by Oriat38. Some outdated notations in these papers and ours
are modified, after changing ℓ into p (e.g., Ωp 7→Qp, Ω̂p 7→Cp, Γ 7→Zp).

2.1 Characters

Let Qab be the maximal abelian extension of Q contained in an algebraic closure Q

of Q; let Qp be the p-adic field and Qp an algebraic closure of Qp containing Q. We
put G := Gal(Qab/Q)):

37Leopoldt, 1954, “Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper”;
Leopoldt, 1962, “Zur Arithmetik in abelschen Zahlkörpern”.

38Oriat, 1975a, “Quelques caractères utiles en arithmétique”;
Oriat, 1975b, “Sur l’article de Leopoldt “Über Einheintengruppe und Klassenzahl reeller abelscher

Zahlkörper””.
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2. Abelian extensions

Notations 1 – Let Ψ be the set of irreducible characters of G , of degree 1 and finite
order, with values in Qp. We define the sets of irreducible p-adic characters Φ , for a
prime p ≥ 2, the set X of irreducible rational characters and the sets of irreducible
characters ΨK , ΦK , XK , of K ⊂Q

ab.
The notation ψ | ϕ | χ, for ψ ∈ Ψ , ϕ ∈ Φ , χ ∈X , means that ϕ is a term of χ and

ψ a term of ϕ.
Let s∞ ∈ G be the complex conjugation and ψ ∈ ΨK ; if ψ(s∞) = 1 (resp. ψ(s∞) =

−1), we say that ψ is even (resp. odd) and we denote by Ψ +
K (resp. Ψ −K ) the corre-

sponding subsets of characters. Since Ψ ±K is stable by any conjugation, this defines
Φ±K , X ±K .

Let χ ∈ X ; we denote by gχ, Kχ, Gχ =: ⟨σχ⟩, fχ, Q(µgχ ), the order of any ψ | χ,
the subfield of Qab fixed by Ker(χ) := Ker(ψ), Gal(Kχ/Q), the conductor of Kχ, the
field of values of the characters, respectively.

In most developments, we suppress the indices χ, it being understood that K
and χ correspond to each other and that the p-adic characters ϕ divide χ.

Remark 1 – In the non semi-simple case, let χ be the rational character defining
K . Recall that K = K ′K0, where g0 := [K0 : Q] is prime to p and [K ′ : Q] = pn, n ≥ 1.
The field of values of ψ | χ is Q(µg0p

n ), direct compositum of the form Q(µg0
)Q(µpn );

thus ψ = ψ0ψp, ψ0 of order g0, ψp of order pn and χ = χ0χp, χ0 ∈ XK0
above ψ0,

χp ∈XK ′ above ψp.
Similarly, in Qp(µg0

)Qp(µpn ), irreducible p-adic characters ϕ | χ are of the form
ϕ0ϕp, ϕp = χp since Gal(Qp(µpn )/Qp) ≃Gal(Q(µpn )/Q).

The set X has the following easy property considered as the “Main theorem” for
rational components (e.g., Leopoldt (1954, Chap. I, § 1, 1)):

Theorem 1 – Let K/Q be a finite abelian extension and let (Aρ)ρ∈XK , (A′ρ)ρ∈XK be two
families of positive numbers, indexed by the set XK of irreducible rational characters of
K . If for all subfields k of K , one has

∏
ρ∈Xk A

′
ρ =

∏
ρ∈Xk Aρ, then A′ρ = Aρ for all ρ ∈XK .

The interest of this property is that analytic formulas (giving for instance orders
AK of some finite p-adic invariants AK of abelian fields K) may be canonically de-
composed under identities AK =

∏
ρ∈XK Aρ, to be compared with algebraic relations

#AK =
∏
ρ∈XK #Aρ for suitable Zp[G ]-modules Aρ, so that #Aρ = Aρ for all ρ; the

corresponding FAMC being the same statement, replacing rational characters ρ
by p-adic ones ϕ, under the existence of natural relations #Aρ =

∏
ϕ|ρ #Aϕ and

Aρ =
∏
ϕ|ρAϕ for suitable Zp[G ]-modules Aϕ (e.g., in the case where Aρ = ⊕ϕ|ρAϕ);

the main problem being precisely what definition for the isotypic components Aρ
and Aϕ .
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Notion of abelian arithmetic ϕ-objects G. Gras

2.2 Main results of the article

Let M = (MK )K∈K be a family of Z[G ]-modules, indexed with the setK of finite
abelian extensions K and provided with the arithmetic norms NK/k and transfer
maps JK/k , for any k ⊆ K , where JK/k ◦NK/k =νK/k ∈Z[Gal(K/k)] (algebraic norm).
We associate with M the family of Zp[G ]-modulesM := M⊗Zp.

We will give more definitions and details in Section 3.1 with the study of the
notion of G -families, but we take note of the fact that, in the class field theory
framework about p-class groups and generalizations, the following remarks are of
great specific significance:

Remarks 1 – (i) Let Hnr
k and Hnr

K be the p-Hilbert class fields of k and K , re-
spectively; then the map Gal(Hnr

K /K)→ Gal(Hnr
k /k), given by the restriction

of the Artin automorphisms, corresponds, by class field theory, to the map
NK/k : HK → Hk (from norms of ideals) which is surjective as soon as the
p-sub-extension of K/k is totally ramified, which is almost always the case in
the present abelian theory; more precisely, this is always the case when K = Kχ,
since then K is the compositum of K0, of prime-to-p degree, with K ′ cyclic of
p-power degree over Q, thus totally ramified.

(ii) On the contrary, the transfer map JK/k , corresponding to extension of classes
(from that of ideals), is not necessarily injective in p-extensions; if this fact
is well known precisely in Hnr

k /k (but Hnr
k is not abelian over Q), it is very

frequent in totally ramified abelian p-extensions as K/K0, described above; a
fact less known which has interesting consequences (see, e.g., in Gras39 for
an extensive study of capitulation phenomena, where numerical experiments
show that capitulation is a common occurrence contrary to what one might
think).

We will define (see Definition 1, 2, 3 and Remark 3) various χ-components Malg
χ ,

Mar
χ , M alg

χ , M ar
χ , χ ∈ X , and the associated ϕ-components M alg

ϕ , M ar
ϕ , ϕ ∈ Φ , as

follows:

Let Pχ be the global gχth cyclotomic polynomial, let Pϕ be the local cyclotomic
polynomial associated with ϕ | χ (so that Pχ =

∏
ϕ|χ Pϕ in Zp[X]), and let K = Kχ

39Gras, 2023a, “Algebraic norm and capitulation of p-class groups in ramified cyclic p-extensions”;
Gras, 2023b, “The Chevalley–Herbrand formula and the real abelian Main Conjecture (New crite-

rion using capitulation of the class group)”;
Gras, 2024b, “The real abelian main conjecture in the non semi-simple case”.
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2. Abelian extensions

with Gχ =: ⟨σχ⟩; then:

Malg
χ :=

{
x ∈MK , x

Pχ(σχ) = 1
}
, M

alg
χ := Malg

χ ⊗Zp,

M
alg
ϕ :=

{
x ∈M alg

χ , xPϕ(σχ) = 1
}
,

Mar
χ := {x ∈MK , NK/k(x) = 1, ∀k & K}, M ar

χ := Mar
χ ⊗Zp,

M ar
ϕ := {x ∈M alg

ϕ , NK/k(x) = 1, ∀k & K}.

So, M ar
ϕ =

{
x ∈MK , x

Pϕ(σχ) = 1 & NK/k(x) = 1, ∀k & K
}
, that we can restrict to

NK/kp (x) = 1 with [K : kp] = p, also equal to the ϕ0-component ofM ar
χ (notations of

Remark 1).

Being annihilated by Pχ(σχ) (resp. Pϕ(σχ)) Malg
χ andM alg

χ (resp. Malg
ϕ andM alg

ϕ )
are Z[µgχ ]-modules (resp. Zp[µgχ ]-modules), for the law defined via σ ∈ G 7→
ψ(σ ) ∈ µgχ , for ψ | χ (resp. ψ | ϕ).

We have proved the following results, justifying the above arithmetic norm
definitions Mar andM ar:

(i) Let’s denote by ν the algebraic norms; then:

• Malg
χ = {x ∈MK , νK/k(x) = 1, ∀k & K} (Theorem 2),

• M alg
χ =

⊕
ϕ|χM

alg
ϕ , M ar

χ =
⊕

ϕ|χM
ar
ϕ (Theorems 4, 5).

(ii) Assume that K/Q is cyclic and MK finite:

(ii’) If, for all sub-extensions k/k′ of K/Q, the norm maps Nk/k′ are surjective,
then:

• #MK =
∏
ρ∈XK #Mar

ρ (Theorem 3),

(ii”) Let K/K0 be the maximal p-sub-extension of K ; if, for all sub-extensions
k/k′ of K/K0, the norm maps Nk/k′ are surjective, then:

• #M ar
χ =

∏
ϕ|χ #M ar

ϕ (Theorem 5).

The above conditions of surjectivity of the norms are automatically fulfilled
for the families H (class groups), H = H⊗Zp (p-class groups) and T (torsion
groups of abelian p-ramification).

(iii) Applying this to H and T , we obtain:

(iii’) For all characters χ ∈X −, we have:

• Har
χ = Halg

χ and H ar
ϕ =H alg

ϕ , ∀ϕ | χ (Theorem 6);
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• #Har
χ = #Halg

χ = 2αχ · wχ ·
∏
ψ|χ

(
−1

2 B1(ψ−1)
)

(Theorem 7), in terms of
generalized Bernoulli numbers.

(iii”) For all characters χ ∈X +, we have:

• Har
χ ⊆ Halg

χ and H ar
ϕ ⊆ H

alg
ϕ , ∀ϕ | χ (see examples Appendix A.2 on

p. 175, Appendix A.2 on p. 178 for strict inclusions);

• #Har
χ = wχ ·

(
EK : ÊKFK

)
(Theorem 14), in terms of cyclotomic units, where

ÊK := ⟨Ek ⟩k&K .

(iii”) For all even characters χ, we have:

• T ar
χ = T alg

χ and T ar
ϕ = T alg

ϕ , ∀ϕ | χ (Theorem 11);

• #T ar
χ = w cyc

χ ·
∏
ψ|χ

1
2 Lp(1,ψ) (Theorem 12), in terms of p-adic L-functions.

(iv) The Arithmetic Invariants of finite Zp[G ] modulesMK are defined by means
of the obvious algebraic writing of Zp[µgχ ]-modules:

M ar
ϕ ≃

∏
i≥1

Zp[µgχ ]
/
p
nar
ϕ,i (M )

ϕ , mar
ϕ (M ) :=

∑
i

nar
ϕ,i (M ),

where pϕ is the maximal ideal of Zp[µgχ ]; the definition of the Analytic In-
variants man

ϕ (M ) comes directly from the formulas of #M ar
χ given above in

(iii), taking into account the decompositions M ar
χ =

⊕
ϕ|χM

ar
ϕ , whence the

statement of the FAMC:

mar
ϕ (M ) =man

ϕ (M ),

for all ϕ ∈ Φ (Section 8, Conjecture 3).

3 Definition and study of the ϕ-objects

We shall give, in this section, the general definition of θ-objects, θ being an ir-
reducible character (rational or p-adic), the Galois modules which intervene in
the definition of the θ-objects being not necessarily finite, as it is the case for
unit groups; finally, the prime p is arbitrary and we shall emphasize on the non
semi-simple framework.

3.1 The Algebraic and Arithmetic G -families

LetK be the family of finite extensions K of Q, contained in Q
ab, of Galois group

GK . We assume to have a family M = (MK )K∈K of (multiplicative) Z[G ]-modules,
indexed byK (fulfilling some natural conditions and called a G -family).
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3. Definition and study of the ϕ-objects

In general there exist two families of G -homomorphisms, indexed by the set of
sub-extensions K/k, NK/k : MK →Mk (arithmetic norms), JK/k : Mk →MK (arith-
metic transfers). For all sub-extensions K/k, we put

νK/k :=
∑

σ∈Gal(K/k)

σ ∈Z[Gal(K/k)] (algebraic norm).

We consider the three following conditions:

(a) For all K ∈K , MGal(Qab/K)
K = MK (so, for x ∈MK and σ ∈ G , xσ = xσK , where

σK ∈ GK is the restriction of σ to K).

(b) For all sub-extension K/k, the arithmetic maps NK/k and JK/k are G -module
homomorphisms fulfilling the transitivity formulas:

NK/k ◦NL/K = NL/k and JL/K ◦ JK/k = JL/k ,

for all k,K,L ∈K , k ⊆ K ⊆ L.

(c) For all sub-extension K/k, JK/k ◦NK/k =νK/k on MK .

Definitions 1 – (i) If M = (MK )K∈K only fulfills condition (a), we shall say that
the family (M,ν ) is an algebraic G -family; one may only use Galois theory in
K/k and the algebraic norms νK/k ∈Z[Gal(K/k)].

(ii) If moreover, there exist two families (N) and (J) (canonically associated with
M) fulfilling conditions (b) and (c), we shall say that the family (M,N,J) is an
arithmetic G -family.

The following properties of MK andMK := MK ⊗Zp are elementary:

Proposition 2 – (i) For all K ∈K , νK/K , NK/K , JK/K are the identity, id, on MK .

(ii) If the map NK/k is surjective or if the map JK/k is injective, then NK/k◦JK/k = [K : k].

Remark 2 – Note that cohomology is only of algebraic nature (case (i) of the above
definitions) since, using the G -family (H,ν ) for class groups HK , we have, for
instance in the case of a cyclic extension K/k of Galois group G =: ⟨σ⟩:

H1(G,HK ) ≃ Ker(νK/k)
/
H1−σ
K , H2(G,HK ) ≃HG

K

/
νK/k(HK );

in general νK/k(HK ) is not isomorphic to NK/k(HK ) ⊆Hk , even if NK/k is surjective.
The fact that JK/k may be non-injective will be the main phenomenon in this survey.

Examples 1 – The most straightforward examples of such arithmetic G -families
MK are the following ones:
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(i) the group EK of units of K ,for which maps JK/k are injective;

(ii) the class group HK of K , or the p-class group HK ;

(iii) the torsion group TK of the Galois group of the maximal p-ramified abelian
pro-p-extension of K ;

(iv) the group-algebra A[GK ], where A is a commutative ring; then A[GK ] is a
A[G ]-module if one puts σ ·Ω = σKΩ (product in A[GK ]), for all Ω ∈A[GK ]
and σ ∈ G . The maps NK/k and JK/k are defined by A-linearity by NK/k(σK ) :=
σk and, for σk ∈ Gk , by JK/k(σk) :=

∑
τ∈Gal(K/k) τ · σ ′k =νK/k · σ ′k =νK/kσ ′k , where

σ ′k is any extension of σk in GK . So, for σK ∈ GK , νK/k(σK ) =
(∑

τ∈Gal(K/k) τ
)
·

σK =νK/kσK .

3.2 Definition of the G -modules Malg
χ , Mar

χ ,M alg
ϕ ,M ar

ϕ

We shall use for instance A ∈ {Z, Zp} and we recall, in the two Subsections 3.2, 3.2,
some well-known facts that may be omitted by the reader.

The Γκ
A

-conjugation

Let χ ∈ X . Let Pχ(X) ∈ Z[X] be the gχth global cyclotomic polynomial. Let κ
A

be the field of quotients of A; so, Γκ
A
,χ := Gal(κ

A
(µgχ )/κ

A
) is isomorphic to a

subgroup of (Z/gχZ)×.
One defines, following Serre40, the Γκ

A

-conjugation on Ψ by putting, for all
τ ∈ Γκ

A
,χ and ψ ∈ Ψ , ψ | χ, ψτ := ψa, where a ∈ Z is a representative of τ in

(Z/gχZ)×. Then the ψτ (σχ) are the conjugates of ψ(σχ) inκ
A

(µgχ )/κ
A

. This defines
the irreducible characters over κ

A
(with values in A), θ =

∑
τ∈Γκ

A
,χ
ψτ .

Correspondence between characters and cyclotomic polynomials

Let χ ∈X . Inκ
A

[X], Pχ splits into a product of irreducible distinct polynomials Pχ,i ;
each Pχ,i splits into degree 1 polynomials over κ

A
(µgχ ) and is of degree [κ

A
(µgχ ) :

κ
A

].
If ζi ∈ µgχ is a root of Pχ,i , the other roots are the ζτi for τ ∈ Γκ

A
,χ; thus, these sets

of roots are in one by one correspondence with the sets of the form (ψτ (σχ))τ∈ΓκA ,χ
,

ψτ | χ, ψτ ∈ Ψ of order gχ, describing a representative set of characters for the
Γκ

A

-conjugation. One may index, non-canonically, the irreducible divisors of Pχ in

40Serre, 1998, Représentations linéaires des groupes finis, 5ième éd., corr. et augm. de nouveaux exercices.
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κ
A

[X] by means of the characters θ obtained from the characters ψ ∈ Ψ of orders
gχ and by choosing a generator σχ of Gχ. Put:

Pθ :=
∏
ψ|θ

(X −ψ(σχ)) ∈A[X]. (1)

Thus Pχ =
∏
θ|χ Pθ ; for A = Zp we get Pχ =

∏
ϕ∈Φ ,ϕ|χ Pϕ , for A = Z, Pχ is irreducible.

So, A[Gχ]/(Pθ(σχ)) ≃A[X]/(Xgχ −1, Pθ(X)) ≃A[µgχ ]; then any module annihilated
by Pθ(σχ) is a A[µgχ ]-module; the law is realized, for ψ | θ, via σ ∈ Gχ 7→ ψ(σ ) ∈ µgχ .

The Z[µgχ ]-modules Malg
χ and the Zp[µgχ ]-modulesM alg

ϕ

We fix a prime p and consider the set Φ of irreducible p-adic characters of G .

Definition 1 – Let M = (MK )K∈K be a G -family of Z[G ]-modules (cf. Subsection
3.1) and letM := M⊗Zp = (MK )K∈K . Put, for χ ∈X , K = Kχ and let ϕ | χ, ϕ ∈ Φ :

Malg
χ :=

{
x ∈MK , x

Pχ(σχ) = 1
}
,

M
alg
χ := Malg

χ ⊗Zp =
{
x ∈MK , x

Pχ(σχ) = 1
}
,

M
alg
ϕ :=

{
x ∈MK , x

Pϕ(σχ) = 1
}
.

So,M alg
ϕ is a sub-Zp[µgχ ]-module ofMK (or ofM alg

χ ), for the law σ ∈ GK 7→ ψ(σ ),

ψ | ϕ, and the elements ofM alg
ϕ are called algebraic ϕ-objects.

From relation (1), the polynomials Pϕ depend on the choice of the generator σχ
of Gχ, but we have the following property:

Lemma 1 – The Definitions 1, of the Z[µgχ ]-modules Malg
χ and the Zp[µgχ ]-modules

M
alg
ϕ , do not depend on the choice of σχ.

Proof. Let ϕ | χ. We have Pϕ(σχ) =
∏
ψ|ϕ(σχ−ψ(σχ)) and, for a > 0 with gcd(a,gχ) = 1,

let σ ′χ =: σ aχ another generator of Gχ giving the relation P ′ϕ(σ ′χ) =
∏
ψ|ϕ(σ ′χ −ψ(σ ′χ));

one must compare Pϕ(σχ) and P ′ϕ(σ ′χ). Then:

P ′ϕ(σ aχ) =
∏
ψ|ϕ

(σ aχ −ψ(σ aχ)) =
∏
ψ|ϕ

[
(σχ −ψ(σχ))× (σ a−1

χ + · · ·+ψa−1(σχ))
]
,

and similarly, writing 1 ≡ aa∗ (mod gχ), where a∗ > 0 represents an inverse of a
modulo gχ, we have, from σχ = (σ aχ)a

∗
:

Pϕ(σχ) =
∏
ψ|ϕ

[
(σ aχ −ψ(σ aχ))× (σ a(a∗−1)

χ + · · ·+ψa(a∗−1)(σχ))
]
.
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Since P ′ϕ(σ ′χ) ∈ Pϕ(σχ)Zp[Gχ] and Pϕ(σχ) ∈ P ′ϕ(σ ′χ)Zp[Gχ] the invariance of the
definition of the ϕ-objects follows, as well as that of χ-objects since Pχ =

∏
ϕ|χ Pϕ .□

Now we introduce a property of algebraic norms, only related to that of the
group algebra Z[G ].

Characterization of Malg
χ ,M alg

χ , with algebraic norms

For any χ ∈ X , we have defined Malg
χ and M alg

χ . We then have the following
characterization, only valid for rational characters, but which will allow another
definition of χ-objects (that of “Arithmetic” χ-objects), even in the global case of
G -families M of Z[G ]-modules (as M ∈ {E,H, . . .}), the corresponding definition for
M = M⊗Zp being trivial:

Theorem 2 – Let M be a G -family of Z[G ]-modules and for K = Kχ, χ ∈ X , let

Malg
χ :=

{
x ∈MK , x

Pχ(σχ) = 1
}
. Then: Malg

χ = {x ∈MK , νK/k(x) = 1, for all k & K} ,

M
alg
χ = {x ∈MK , νK/k(x) = 1, for all k & K}

(one may limit the norm conditions to νK/kℓ (x) = 1 for all prime divisors ℓ of [K : Q],
where kℓ ⊂ K is such that [K : kℓ] = ℓ).

Proof. With a contribution of a personal communication from Jacques Martinet (October
1968). We need three preliminary lemmas:

Lemma 2 – Let n ≥ 1 and let q be an arbitrary prime number. Denote by Pn the nth
cyclotomic polynomial in Z[X]; then:

(i) Pn(Xq) = Pnq(X), if q | n;

(ii) Pn(Xq) = Pnq(X)Pn(X), if q ∤ n.

Proof. Obvious for (i), (ii) by means of comparison of the sets of roots of these
polynomials. □

Lemma 3 – Let n = ℓ1 · · ·ℓt , t ≥ 2, the ℓi ’s being distinct prime numbers. Then for all
pair (i, j), i , j, there exist Aji and Aij in Z[X], such that AjiP n

ℓi
+AijP n

ℓj
= 1.

Proof. This can be proved by induction on t ≥ 2.
If t = 2, n = ℓ1ℓ2 and:

P n
ℓ2

= Pℓ1
= Xℓ1−1 + · · ·+X + 1, P n

ℓ1
= Pℓ2

= Xℓ2−1 + · · ·+X + 1.
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Let’s call “geometric polynomial” any polynomial in Z[X] of the form Xd +Xd−1 +
· · ·+X + 1, d ≥ 0, including the polynomial 0. Then if P and Q , 0 are geometric, the
residue R of P modulo Q is geometric with residue (P −R)Q−1 ∈ Z[X]; indeed, if
m ≥ n and m+ 1 = q(n+ 1) + r, 0 ≤ r < n, we get:

Xm + · · ·+X + 1

= (Xn + · · ·+X + 1)×
[
Xm+1−(n+1) +Xm+1−2(n+1) + · · ·+Xm+1−q(n+1)

]
+ 1 +X + · ·+Xr−1

(if r ≥ 1, otherwise the residue R is 0). In particular, the gcd algorithm gives
geometric polynomials; as the unique non-zero constant geometric polynomial is 1,
it follows that if P and Q are co-prime polynomials in Q[X], gcd(P ,Q) = 1 and the
Bézout relation takes place in Z[X], which is the case for the geometric polynomials
Pℓ1

and Pℓ2
.

Suppose t ≥ 3. Let ℓi , ℓj , q, be three distinct primes dividing n; put n′ := n
q ; by

induction, since ℓi and ℓj divide n′, there exist polynomials A′ji ,A
′i
j in Z[X], such

that A′ji (X)P n′
ℓi

(X) +A′ij (X)P n′
ℓj

(X) = 1, thus, A′ji (Xq)P n′
ℓi

(Xq) +A′ij (Xq)P n′
ℓj

(Xq) = 1. But

Lemma 2 (ii) gives:

P n′
ℓi

(Xq) = P n
ℓi

(X)P n′
ℓi

(X) & P n′
ℓj

(Xq) = P n
ℓj

(X)P n′
ℓj

(X),

which yields A′ji (Xq)P n
ℓi

(X)P n′
ℓi

(X) +A′ij (Xq)P n
ℓj

(X)P n′
ℓj

(X) = 1.

We have proved the co-maximality, in Z[X], of any pair of ideals (P n
ℓi

(X)),

(P n
ℓj

(X)), i , j (the case n = ℓ giving the prime ideal (Pℓ(X)Z[X])). □

Lemma 4 – Let n =
∏t
i=1 ℓ

ai
i > 1, ai ≥ 1; put Nn,ℓ(X) :=

∑ℓ−1
i=0X

n
ℓ i for any prime ℓ divid-

ing n. Then there exist polynomials Aℓ(X) ∈Z[X] such that Pn(X)=
∑
ℓ|nAℓ(X)Nn,ℓ(X)

and
〈
Nn,ℓ(X), ℓ | n

〉
Z[X]

= Pn(X)Z[X].

Proof. Assume by induction on n that Pn(X) =
∑
ℓ|nAℓ(X)Nn,ℓ(X) (with t fixed), and

let q | n; we have, from Lemma 2 (i):

Pnq(X) = Pn(Xq) =
∑
ℓ|n
Aℓ(X

q)Nn,ℓ(X
q).

Since we have Nn,ℓ(Xq) =
∑ℓ−1
i=0X

n
ℓ q i =Nnq,ℓ(X), we obtain that if the lemma is true

for n, it is true for nq for all q | n. It follows that if the property is true for all
square-free integers n, it is true for all n > 1. So we may assume n square-free to
prove the lemma by induction on t.
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If n = ℓ1, Pℓ1
(X) = Xℓ1−1 + · · · + X + 1 = Nℓ1,ℓ1

(X) and the claim is obvious. If
n = ℓ1ℓ2 · · ·ℓt , t ≥ 2, with distinct primes, put nk = n

ℓk
for all k; by assumption,

Pnk (X) =
∑

1≤s≤t
s,k

Aks (X)Nnk ,ℓs (X), hence:

Pnk (X
ℓk ) = Pnkℓk (X)Pnk (X) = Pn(X)Pnk (X) =

∑
1≤s≤t
s,k

Aks (X
ℓk )Nn,ℓs (X),

whence Pn(X)Pnk (X) ∈
〈
Nn,ℓ(X), ℓ | n

〉
Z[X]

, for all k; since t ≥ 2, Lemma 3 applies; a

Bézout relation in Z[X] between any two of the Pnk (say Pni and Pnj ) yields Pn(X)×1 ∈
⟨Nn,ℓ(X), ℓ | n⟩

Z[X], giving the result.
We have proved that the ideal generated, in Z[X], by the Nn,ℓ(X), ℓ | n, contains

Pn(X)Z[X]. Let’s see that Pn(X) contains that ideal; it is sufficient to see that for all
ℓ | n, Nn,ℓ(X) = Pℓ(X

n
ℓ ); any root of unity ζn of order n (i.e., root of Pn(X)), is a root

of Nn,ℓ(X) since ζ
n
ℓ
n = ζℓ , 1 and

∑ℓ−1
i=0 ζ

i
ℓ = 0; then Pn(X) | Nn,ℓ(X) in Z[X] (monic

polynomials). □

We apply this to Pχ(σχ) = Pgχ (σχ) and to Ngχ ,ℓ(σχ) = νKχ/kℓ , where kℓ is, for all
ℓ | gχ, the unique sub-extension of K = Kχ such that [K : kℓ] = ℓ. The theorem
immediately follows. □

Application to the definition of Mar
χ

Let M be an arithmetic G -family, provided with norms N and transfer maps J with
J ◦N =ν.

Definition 2 – By analogy with Theorem 2 giving, for χ-objects, the characteriza-

tion Malg
χ := {x ∈MK ,νK/k(x) = 1, for all k & K} andM alg

χ = Malg
χ ⊗Zp, we define the

modules of arithmetic χ-objects: Mar
χ := {x ∈MK , NK/k(x) = 1, for all k & K} ⊆Malg

χ

M ar
χ := Mar

χ ⊗Zp.

Then Mar
χ is a sub-Z[µgχ ]-module of Malg

χ andM ar
χ is a sub-Zp[µgχ ]-module of

M
alg
χ , with laws defined via the choice of ψ | χ (resp. ψ | ϕ).

We have Mar
χ = Malg

χ as soon as the JK/k ’s are injective, for all k & K or simply for
the kℓ’s. One verifies easily that if the norms NK/kℓ

are surjective for all prime ℓ | gχ,

then Malg
χ /Mar

χ has exponent a divisor of
∏
ℓ|gχℓ, whenceM alg

χ /M ar
χ of exponent 1 or

p.
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3.3 Comparison with classical definitions

In all classical papers, the θ-components Mθ (θ rational or p-adic, above ψ ∈ Ψ ) is
defined, in an abelian field K of Galois group GK , by:

Mθ := M⊗
A[GK ] A[θ],

where A[θ] := A[ψ] is the ring of values of θ over A; the action being defined via
(σ,x) ∈ GK ×Mθ 7→ xψ(σ ) ∈Mθ . We shall compare this definition with Definition
2 considering irreducible p-adic characters ϕ. We have the classical algebraic
definition of ϕ-objects attached toM , that is to say, the largest quotient such that
Gχ acts by ψ (Greither (1992, Definition, p. 451), Perrin-Riou (1990, § 1.3), Mazigh
(2017)):

M̂ϕ :=M ⊗
Zp[Gχ] Zp[µgχ ] ≃M /M Pϕ(σχ)

Another viewpoint41, is to define M̂ ϕ as the largest sub-Zp[Gχ]-module ofM ,
such that Gχ acts by ψ. Whence, one obtains our basic definition:

M̂ ϕ := {x ∈M , xPϕ(σχ) = 1} =M alg
ϕ ;

the exact sequence 1→ M̂ ϕ =M alg
ϕ −→M −→M Pϕ(σχ) → 1 giving the equalities

#M̂ϕ = #M̂ ϕ = #M alg
ϕ for finite modules.

Moreover, our forthcoming Definition 3 ofM ar
ϕ :

M ar
ϕ :=M alg

ϕ ∩M ar
χ (with Definition 2 ofM ar

χ ),

introduces another kind of computations. Indeed, the Main Theorem on abelian
fields in the literature is concerned by algebraic definitions similar to M̂ϕ or M̂ ϕ ,
but our conjecture given in the 1970’s usedM ar

ϕ and new analytic expressions giving
#M ar

χ , justifying the conjectural values of #M ar
ϕ for finiteMK ’s.

It is immediate to verify that, in the non semi-simple case p | gχ, (M alg
ϕ :M ar

ϕ )
is equal to the order of the capitulation kernel of JK/kp , where kp is the subfield of

K = Kχ such that [K : kp] = p. In the semi-simple case p ∤ #Gχ,M ≃Mϕ

⊕[
M Pϕ(σχ)

]
whatever the definitions (see again Examples of Appendix A.2).

3.4 Arithmetic factorization of #MK and #MK

Let M be an arithmetic G -family where all the Z[G ]-modules MK , K ∈K , are finite;
then we can state:

41Solomon, 1990, “On the class groups of imaginary abelian fields”, § II.1, pp. 469–471.
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Theorem 3 – (i) Let K/Q, K = Kχ, be a cyclic extension and assume that, for all
sub-extension k/k′ of K/Q, Nk/k′ is surjective. Then:

#MK =
∏
ρ∈XK

#Mar
ρ ,

where Mar
ρ := {x ∈MKρ , NKρ/k(x) = 1, ∀k & Kρ} (Definition 2).

(ii) Assuming only the cyclicity of the p-Sylow subgroup of GK , one obtains, #MK =∏
ρ∈XK #M ar

ρ .

Proof. One may replace the Mk , k ⊆ K , by the finite Zℓ[GK ]-modulesMk := Mk ⊗Zℓ ,
for all primes ℓ dividing #MK , using the previous results, then globalizing at the
end. Two classical elementary lemmas are necessary; to obtain both (i) and (ii), we
work with the prime p.

Lemma 5 – Assume that p ∤ [k : k′]. If Nk/k′ :Mk −→Mk′ is surjective (resp. if Jk/k′ :
Mk′ −→Mk is injective), then Jk/k′ is injective (resp. Nk/k′ is surjective).

Proof. From Proposition 2, we know that Nk/k′ ◦ Jk/k′ = [k : k′]; whence the proofs
since [k : k′] is invertible modulo p. □

Put GK = G0 ⊕H , where G0 is a subgroup of prime-to-p order and H (cyclic of
order pn) is the p-Sylow subgroup of GK . Let K0 (resp. K ′n) be the field fixed by H
(resp. G0).

The set of subfields of K is of the form {Kρi , ρi ∈ XK , 0 ≤ i ≤ n}, where ρi is the

rational character above ψi := ψ0ψ
pn−i
p , where ψp ∈ ΨK ′n is of order pn and ψ0 ∈ ΨK0

;
thus Kρi is the compositum Kρ0

K ′i :

Schema I

pi

Kn=KKρn

Kρi

K ′n

KiK ′i

Kρ0
K0K ′0 =Q

G0

H

g0G0

LetM ∗Kρi
:= Ker(NKρi

/Kρi−1
), 1 ≤ i ≤ n, then putM ∗Kρ0

:=MKρ0
. By assumption, we

have the exact sequences of Zp[GK ]-modules:

1 −→M ∗Kρi
−−−→MKρi

NKρi /Kρi−1−−−−−−→MKρi−1
−→ 1, 1 ≤ i ≤ n. (2)
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3. Definition and study of the ϕ-objects

One considers them as exact sequences of Zp[G0]-modules. The idempotents of
this algebra are, for all ρ0 ∈XK0

, of the form:

eρ0
=

1
#G0

∑
σ∈G0

ρ0(σ−1)σ ∈Zp[G0].

From Leopoldt (1954) and Leopoldt (1962, Chap. V, § 2), as the norm maps
are surjective and the transfer maps injective, regarding the sub-extensions k/k′ of
prime-to-p degrees in K/Q, we get the following canonical identifications:

Lemma 6 – Let M be an arithmetic G -family whose elements MK are Zp[G0 ⊕H]-

modules in the above sense. ThenM
eρ0
Ki
≃M

eρ0
Kρi

and (M ∗Ki )
eρ0 ≃ (M ∗Kρi

)eρ0 .

Proof. For all i, we identifie Gal(Ki /K ′i ) with G0 acting by restriction and put G0 :=
G0/g0, where g0 := Gal(Kn/Kρn ). Thus, by abuse of notation, we identify νKi /Kρi
with νKn/Kρn =: νg0

; moreover, since the degrees of these extensions are prime
to p, we may identify NKi /Kρi

with NKn/Kρn
=: Ng0

and JKi /Kρi
with JKn/Kρn =: Jg0

.

Thus Ng0
is surjective and Jg0

injective. One computes that eρ0
=
νg0

#g0
eρ0

, where

eρ0
:=

1

#G0

∑
σ∈G0

ρ0(σ−1)σ ∈Zp[G0]; but we have:

νg0
(MKi ) = Jg0

◦Ng0
(MKi ) ≃Ng0

(MKi ) ≃MKρi
; (3)

whence M
eρ0
Ki
≃ M

eρ0
Kρi

. To get (M ∗Ki )
eρ0 ≃ Ng0

(M ∗Ki )
eρ0 ≃ (M ∗Kρi

)eρ0 , it suffices to

verify that, for all i ≥ 1, Ng0
(M ∗Ki ) = M ∗Kρi

. The inclusion Ng0
(M ∗Ki ) ⊆ M

∗
Kρi

being

obvious, let x ∈M ∗Kρi
; we have x = Ng0

(y), y ∈MKi , then 1 = NKρi
/Kρi−1

◦Ng0
(y) =

Ng0
◦NKi /Ki−1

(y). Let z := NKi /Ki−1
(y), we have Ng0

(z) = 1; applying JKi−1/Kρi−1
, one

gets νg0
(z) = 1; but we have, as for (3), νg0

(MKi−1
) ≃MKρi−1

; whence z = 1, y ∈M ∗Ki
and x ∈Ng0

(M ∗Ki ). □

From Leopoldt (1954, Chap. I, § 1, 2, formula (6), p. 21) or our previous norm
computations since p ∤ #G0, we have the relations, from the surjectivity of the norms
and Lemma 5:

M
eρ0
Kρi

= {x ∈MKρi
, NKρi

/k(x) = 1 for all k, K ′i ⊆ k & Kρi },

M
∗eρ0
Kρi

= {x ∈M ∗Kρi
, NKρi

/k(x) = 1 for all k, K ′i ⊆ k & Kρi }.
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From the norm definitions of (M ar
Kρi

)ρ0
and from:

M ∗Kρi
:= {x ∈MKρi

, NKρi
/Kρi−1

(x) = 1},

it follows thatM
∗eρ0
Kρi

=M ar
ρi

, for all i ≥ 1. In the finite case, this yields, using the

above, the exact sequence (2) andM ∗K0
:=MK0

:



n∏
i=0

#M
∗eρ0
Kρi

= #M
∗eρ0
K0

n∏
i=1

#M
eρ0
Ki

#M
eρ0
Ki−1

= #M
eρ0
K ,

∏
ρ∈XK

#M ar
ρ =

∏
ρ0

#M
eρ0
K = #MK .

(4)

Which ends the proof of the theorem and gives useful relations. □

The assumption on the surjectivity of the norms is fulfilled for class groups
H (resp. p-class groups H and p-torsion groups T ), as soon as K/Q (resp. the
maximal p-sub-extension of K/Q) is cyclic, whence totally ramified, class field
theory implying the claim (see Remark 1 (i)).

The p-cyclicity is necessary as shown by K = Q(
√

6,
√

130), where p = 2 is totally
ramified (so, arithmetic norms are surjective) with class group HK of order 4, while
class groups of the three strict subfields of K , Q(

√
6), Q(

√
130), Q(

√
195) are 1,4,4,

respectively.

4 Semi-simple decomposition of Aχ := Zp[Gχ]/(Pχ(σχ))

LetM be a G -family of Zp[G ]-modules provided with norms and transfer maps
as usual. From ψ ∈ Ψ given, there exist unique ψ0, ψp ∈ Ψ such that ψ = ψ0ψp,
ψ0 of prime-to-p order and ψp of p-power order. We restrict the study to K := Kχ
for χ above ψ, so that, from the previous § 3.4, GK becomes Gχ =: G0 ⊕H of order
gχ = gχ0

pn.
We shall use what we call the “semi-simple idempotents” of Zp[Gχ]:

eϕ0
:=

1
gχ0

∑
σ∈G0

ϕ0(σ−1)σ ∈Zp[G0], (5)

where ϕ0 is the p-adic character over ψ0 and put ( )ϕ0
:= ( )eϕ0 .
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4. Semi-simple decomposition of Aχ := Zp[Gχ]/(Pχ(σχ))

4.1 Semi-simple decomposition of the Aχ-modulesM alg
χ

The algebra Aχ occurs naturally because the M alg
χ are, by definition, Zp[Gχ]-

modules annihilated by Pχ(σχ), then modules over Aχ; this algebra is an integral
domain if and only if p does not split in Q(µgχ )/Q. We shall see that it is semi-simple
even when Gχ is not of prime-to-p order.

Theorem 4 – LetM be a G -family of Zp[G ]-modules.

(i) For all χ ∈ X we get, by means of the irreducible p-adic characters ϕ ∈ Φ , the
decompositionsM alg

χ =
⊕

ϕ|χM
alg
ϕ (cf. Definition 1). Moreover, ifM ′χ is a sub-

Aχ-module ofM alg
χ , thenM ′χ=

⊕
ϕ|χM

′
ϕ , whereM ′ϕ = {x′ ∈M ′χ, x′Pϕ(σχ) = 1} ⊆

M
alg
ϕ .

(ii) The sub-Aχ-modulesM alg
ϕ , ϕ | χ, coincide with the (M alg

χ )eϕ0 ’s, where eϕ0
is the

semi-simple idempotent (5) associated to ϕ0 above the component ψ0 of prime-to-p
order of ψ | ϕ | χ. Idem for theM ′ϕ’s.

(iii) These modulesM alg
ϕ ,M ′ϕ , are canonically Zp[µgχ ]-modules by means of the choice

of ψ | ϕ and the action σ ∈ Gχ 7→ ψ(σ ) ∈ µgχ .

Proof. One may suppose that gχ ≡ 0 (mod p), otherwise we are in the semi-simple
case and the proof is obvious42.

Let ϕ1 and ϕ2 be two distinct p-adic characters dividing χ (if χ = ϕ is p-adic
irreducible, the result is trivial). Put Pϕ1

=:Q1, Pϕ2
=:Q2 in Zp[X] (cf. § 3.2 for the

definition of Pϕ). The following fundamental lemma is perhaps clear for cyclotomic
polynomials, but it is not general (e.g., for p = 5, take P = x4−2x3 + 55x2−54x+ 379,
irreducible in Z[X], giving, in Z5[X], P ≡ (x2 + 24x+ 12) · (x2 + 24x+ 17) (mod 52)
and the PARI relation bezout(x2 + 24 ∗ x + 12, x2 + 24 ∗ x + 17)=[−1/5,1/5,1]).

Lemma 7 – There exist U1,U2 ∈Zp[X] such that U1Q1 +U2Q2 = 1.

Proof. We assume that such a relation does not exist and we shall find a contradic-
tion. Since the distinct polynomials Q1 and Q2 are irreducible in Qp[X], one may
write a Bézout relation in Zp[X] of the form (with U1, U2 not both in pZp[X]):

U1Q1 +U2Q2 = pk , k ≥ 1,

choosing U1 (resp. U2) of degree less than the degree of Q2 (resp. of Q1); moreover,
since Q1 and Q2 are monic, one may suppose that (for instance):

U2 < pZp[X],

otherwise, since k ≥ 1, necessarily U1 ∈ pZp[X], which is excluded.
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Let Dχ be the decomposition group of p in Q(µgχ )/Q and let ζ ∈ µgχ be a root of
Q1 (ζ is of order gχ and the other roots are the ζa for Artin symbols σa ∈ Dχ); we
then have:

U2(ζ)Q2(ζ) = pk in Zp[µgχ ]; (6)

but Q2(X) =
∏
σa∈Dχ (X − ζa1), where ζ1 =: ζc, for some σc <Dχ; thus:

Q2(ζ) =
∏
σa∈Dχ

(ζ − ζa1) =
∏
σa∈Dχ

(ζ − ζac) =
∏
σa∈Dχ

[
ζ(1− ζac−1)

]
.

Recall that gχ = gχ0
pn, n ≥ 1. Then 1− ζac−1 is non invertible in Zp[µgχ ] if and

only if ac−1 ≡ 0 (mod gχ0
), which implies σaσc ∈Dχ since Gal(Q(µgχ )/Q(µgχ0

)) ⊆Dχ
because of the total ramification of p in the p-extension, but σa ∈Dχ implies σc ∈Dχ
(absurd). So Q2(ζ) is a p-adic unit, whence, from (6), U2(ζ) ≡ 0 (mod pk), k ≥ 1.

Denote by p the maximal ideal of Zp[µgχ ] and let Fp := Zp[µgχ ]/p be the residue

field; for any P ∈Zp[X], let P be its image in Fp[X] and let ζ be the image of ζ in Fp.
We have, in Fp[X]:

Q1 = (Q0)e, (7)

where e = pn−1(p − 1) (ramification index of p in Q(µgχ )/Q) and where Q0 is irre-

ducible in Fp[X] (i.e., the irreducible polynomial of ζ, in fact that of the image of a
generator of µgχ0

).

With these notations, any polynomial P ∈Zp[X] such that P (ζ) ≡ 0 (mod p) is
such that P ∈Q0Fp[X]; in particular, it is the case of U2, so we will have, in Fp[X]
(since U2 , 0 in Fp[X] by assumption), U2 = A (Q0)α , α ≥ 1, A , 0, Q0 ∤ A. We may
assume that A, Q0 ∈Zp[X] have same degrees as their images in Fp[X]. This yields:

U2 = AQα0 + pB, B ∈Zp[X],

thus U2(ζ) = A(ζ)Qα0 (ζ) +pB(ζ) ≡ 0 (mod pk), whence A(ζ)Qα0 (ζ) ≡ 0 (mod p). But
A(ζ) is a p-adic unit (since Q0 ∤ A), which gives:

Qα0 (ζ) ≡ 0 (mod p). (8)

Let’s show that α ≥ e; the unique case where, possibly, p | gχ and e = 1 is the case
p = 2, n = 1; this case trivially gives α ≥ e. Consider the gχ0

th cyclotomic polynomial.
Assuming e > 1, we have:

Pgχ0
(ζ) =

∏
a∈(Z/gχ0

Z)∗
(ζ − ζp

na) =
∏
a

[ζ(1− ζp
na−1) ];
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ζp
na−1 is of p-power order if and only if pna ≡ 1 (mod gχ0

); taking into account
the domain of a, this defines a0 such that pna0 ≡ 1 (mod gχ0

), whence pna0 . 1

(mod pgχ0
) and 1−ζpna0−1 ∈ p \p2, thus the fact that Pgχ0

(ζ) ∈ p \p2; it follows, from

Pgχ0
= CQ

β
0 + pD, β ≥ 1, C,D ∈ Zp[X], C(ζ) . 0 (mod p), that Pgχ0

(ζ) ≡ C(ζ)Qβ0 (ζ)

(mod pe), thus Qβ0 (ζ) ∈ p \ p2 since e > 1. This implies β = 1 and Q0(ζ) ∈ p \ p2.
The congruence (8), written Qα0 (ζ) ≡ 0 (mod pe), implies α ≥ e and U2 = A′Qe0 +

pB, where A′ := AQα−e0 ; but we also have from (7):

Q1 =Qe0 + pT , T ∈Zp[X],

hence U2 = A′ (Q1 − pT ) + pB = A′Q1 + pS, S ∈ Zp[X]. Since A , 0 may be chosen
monic by assumption, A′ , 0 is monic, U2 is of degree larger or equal to that of Q1
(absurd), whence A′ = 0 and U2 = 0, contrary to the assumption U2 < pZp[X]. □

Give now some elementary properties of the system of idempotents of the
algebra Aχ = Zp[Gχ]/(Pχ(σχ)), which may be useful for PARI computations.

Let {ϕ1, . . . ,ϕgp } be the set of distinct p-adic characters dividing χ (thus, gp |
φ(gχ0

) is the number of prime ideals dividing p in Q(µgχ0
)/Q, so that, only the case

gp = 1 is trivial for the FAMC); from the property of co-maximality, given by Lemma
7, one may write:

Zp[X]
/
(Pχ(X)) ≃

gp∏
u=1

Zp[X]/ (Qu(X)) ≃ (Zp[µgχ ])gp . (9)

There exist elements eϕu (X) ∈Zp[X], whose images modulo Pχ(X) constitute an
exact system of orthogonal idempotents of Zp[X]/(Pχ(X)). Whence the system of
orthogonal idempotents eϕu (σχ) of Zp[Gχ].

Since
(
M

alg
χ

)Pχ(σχ)
= 1, we obtain (in the algebraic meaning):

M
alg
χ =

gp⊕
u=1

(
M

alg
χ

)eϕu (σχ)
. (10)

It remains to verify that:(
M

alg
χ

)eϕu (σχ)
=M alg

ϕu =
{
x ∈M alg

χ , xPϕu (σχ) = 1
}
.

If x ∈
(
M

alg
χ

)eϕu (σχ)
, x = ye

ϕu (σχ) with y ∈M alg
χ ; then xPϕu (σχ) is ye

ϕu (σχ)Pϕu (σχ), but

eϕu (σχ)Pϕu (σχ)) ≡ 0 (mod Pχ(σχ)), whence ye
ϕu (σχ)Pϕu (σχ) = 1 since y ∈ M alg

χ and

x ∈M alg
ϕu .
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If x ∈ M alg
ϕu , then xPϕu (σχ) = 1; writing x =

∏
v x

eϕv (σχ), we get eϕv (σχ) ≡ δu,v
(mod Pϕu (σχ)), thus eϕv (σχ) ≡ 0 (mod Pϕu (σχ)) for v , u and xe

ϕv (σχ) = 1, for v , u.
Whence x = xe

ϕu (σχ).

In the algebraAχ = Zp[Gχ]/(Pχ(σχ)), we obtain two systems of idempotents, that
is to say, the images in Aχ of the eϕu,0 ∈Zp[G0], where ϕu,0 is above the component
ψu,0, of prime-to-p order, of ψu , and that of the eϕu (σχ) corresponding to ϕu . Fixing
the character ϕu =: ϕ above ψ =: ψ0ψp and its non p-part ϕ0 above ψ0, we consider
both:

eϕ0
:=

1
gχ0

∑
σ∈G0

ϕ0(σ−1)σ (11)

and eϕ0(σχ) defined as follows by means of polynomial relations in Z[X] deduced
from (9):

eϕ0(σχ) = Λϕ(σχ)
∏
ϕ′,ϕ

Pϕ′ (σχ), such that: Λϕ(X)
∏
ϕ′,ϕ

Pϕ′ (X) ≡ 1 (mod Pϕ(X));

(12)

we will denote eϕ0(σχ) simply by eϕ0 , which is legitimate by Lemma 1.

To verify that (M alg
χ )e

ϕ0 = (M alg
χ )eϕ0 , it suffices to show that eϕ0 and eϕ0

corre-
spond to the same simple factor of the algebra Aχ. For this, we remark that the
homomorphism defined, for the fixed character ϕ, by σχ 7→ ψ(σχ), ψ | ϕ, induces a
surjective homomorphism Aχ −→Zp[µgχ ] whose kernel is equal to

⊕
ϕ′,ϕAχ e

ϕ′0 .
Thus, to show that Aχeϕ0 =Aχeϕ0

, it suffices to show that ψ(eϕ0
) , 0; but, from (11),

eϕ0
is a sum of the idempotents eψ′0 = 1

gχ0

∑
σ ∈G0

ψ′0(σ−1)σ where ψ′0 | ϕ0. It follows,

since ψ = ψ0ψp, that ψ(σ ) = ψ0(σ ) and then:

ψ(eψ′0 ) =
1
gχ0

∑
σ ∈G0

ψ′0(σ−1)ψ(σ ) =
1
gχ0

∑
σ ∈G0

ψ′0(σ−1)ψ0(σ ),

which is zero for all ψ′0 except ψ′0 = ψ0 where ψ(eψ0
) = 1. Whence ψ(eϕ0

) , 0. Let

M
alg
χ as Aχ-module; on may writeM alg

χ =
⊕

ϕ|χ(M alg
χ )e

ϕ0 (from (10)) but (M alg
χ )e

ϕ0

coincides with (M alg
χ )eϕ0 =M alg

ϕ (Definition (11)); then, due to the properties of the
eϕ0 (defined by (12)):(

M
alg
χ

)eϕ0 =
{
x ∈M alg

χ , xPϕ(σχ) = 1
}

=M alg
ϕ .

Denote simply by eϕ0
any of these two semi-simple idempotents and by ( )ϕ0

any
components, not to be confused with ( )ϕ .
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4. Semi-simple decomposition of Aχ := Zp[Gχ]/(Pχ(σχ))

IfM ′χ is a sub-Aχ-module ofM alg
χ , then:

M ′ϕ := (M ′χ)eϕ0 =
{
x′ ∈M ′χ, x′Pϕ(σχ) = 1

}
.

Since Aχ eϕ0
≃Zp[µgχ ],M alg

ϕ andM ′ϕ are canonically Zp[µgχ ]-modules.
This finishes the proof of Theorem 4. □

4.2 Semi-simple decomposition of the Aχ-modulesM ar
χ

From Definition 2,M ar
χ := {x ∈MK , NK/k(x) = 1, for all k & K}. This invites to give

the following arithmetic definition:

Definition 3 – LetM be an arithmetic family of Zp[G ]-modules. Assume to be in

the non semi-simple case p | gχ (otherwise,M ar
ϕ =M alg

ϕ ). For ϕ | χ, χ ∈ X , ϕ ∈ Φ ,
we define the arithmetic Zp[µgχ ]-module:

M ar
ϕ :=M alg

ϕ ∩M ar
χ = {x ∈M alg

ϕ , NK/kp (x) = 1, with [K : kp] = p.}.

Remark 3 – So, M ar
ϕ = (M ar

χ )eϕ0 , eϕ0
being defined by (11) or (12), and M ar

ϕ is a

sub-Zp[µgχ ]-module ofM alg
ϕ . In the sequel, we use both the notationsM ar

ϕ = {x ∈

M ar
χ , x

Pϕ(σχ) = 1} and (M ar
χ )eϕ0 . We also have M ar

ϕ = {x ∈ M
eϕ0
K , NK/kp (x) = 1} =

(M ∗K )ϕ0
, in the meaning of exact sequence (2) for K/kp, since the other relative

norm conditions are trivially fulfilled for any eϕ0
-components. In recent papers,

we privilege the notations M ar
ϕ = (M ar

χ )eϕ0 =: (M ar
χ )ϕ0

, giving, for instance, the ϕ-

component (EK /ÊKFK )ϕ0
of EK /ÊKFK since this module is, as we have yet explained,

trivially an algebraic χ-object.

So, we have the arithmetic version of Theorem 4:

Theorem 5 – Let M be an arithmetic G -family of Zp[G ]-modules. Then we get, for
all χ ∈ X , the decomposition M ar

χ =
⊕

ϕ|χM
ar
ϕ . The M ar

ϕ ’s are canonically Zp[µgχ ]-
modules.

4.3 Summary of the properties of the G -familiesM alg,M ar

From Notations 1, Definitions 1, 2, 3, Theorems 3, 4, 5:

42Oriat, 1975a, “Quelques caractères utiles en arithmétique”, Part II.
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(i) Recall that Pχ (resp. Pϕ | Pχ) is the gχth global cyclotomic polynomial (resp.
the local ϕ-cyclotomic polynomial for ϕ | χ) and that:

M
alg
χ :=

{
x ∈MK , x

Pχ(σχ) = 1
}
,

M
alg
ϕ :=

{
x ∈MK , x

Pϕ(σχ) = 1
}

= (M alg
χ )eϕ0 ,

M ar
χ :=

{
x ∈M alg

χ , NK/kp (x) = 1
}
,

M ar
ϕ :=

{
x ∈M alg

ϕ , NK/kp (x) = 1
}

= (M ar
χ )eϕ0 ,

where K = Kχ, ϕ = ϕ0ϕp, ϕ0 of prime to p order, ϕp of p-power order.

Then M alg
χ =

⊕
ϕ|χM

alg
ϕ and M ar

χ =
⊕

ϕ|χM
ar
ϕ . All these components are

Zp[µgχ ]-modules via σ ∈ GK 7→ ψ(σ ), for ψ | χ, ψ | ϕ, respectively.

(ii) Assume that the maximal p-sub-extension of an abelian extension K/Q is
cyclic and such that for all its sub-extensions k/k′ , the norms Nk/k′ are surjec-
tive. Then, ifMK is finite, #MK =

∏
ρ∈XK #M ar

ρ =
∏
ϕ∈ΦK #M ar

ϕ .

5 Application to relative imaginary class groups

5.1 Arithmetic definition of relative class groups

We will apply the previous results using first odd characters χ giving Halg
χ and Har

χ .
The case of even characters requires some deepening of Leopoldt’s results43; it will
be considered in the next section.

For K ∈K , we denote by HK the class group of K in the ordinary sense. If K is
imaginary, with maximal real subfield K+, we define the relative class group of K :

Har
K
− := {h ∈HK , NK/K+(h) = 1} (13)

(the notation Har recalls that the definition of the minus part uses the arithmetic
norm and not the algebraic one νK/K+ ).

It is classical to put H+
K := HK+ ; since K/K+ is ramified for the real infinite places

of K+, class field theory implies that NK/K+ is surjective for class groups in the
ordinary sense, giving the exact sequence:

1 −→Har
K
− −−−→HK

NK/K+
−−−−−→HK+ = H+

K −→ 1

and the formula:

#HK = #Har
K
− ×#H+

K . (14)

43Leopoldt, 1954, “Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper”.
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5. Application to relative imaginary class groups

We denote by HK (resp. H ar
K
− and H +

K := HK+ ), the p-Sylow subgroup of HK
(resp. Har

K
− and H+

K ). For the Zp[G ]-modules HK , we introduce the Aχ-modules

H
alg
χ and H ar

χ for χ ∈ X , then their ϕ-components (Definitions 1, 2, 3) which are
Zp[µgχ ]-modules.

5.2 Proof of the equality Har
χ = Halg

χ , for χ ∈X −

To prove this equality and then the equalities H ar
ϕ =H alg

ϕ , ϕ | χ, it is sufficient to
consider, for any p ≥ 2 dividing [K : Q], the p-Sylow subgroups HK , K = Kχ, and to

prove the equality of the χ-components H alg
χ , H ar

χ .

Lemma 8 – Assume that H ar
χ &H

alg
χ . Then there exists a unique sub-extension Kχ′ of

K , such that [K : Kχ′ ] = p (i.e., if ψ | χ then χ′ is above ψ′ = ψp; Kχ′ is also denoted kp),

and a class h ∈H alg
χ such that h′ := NK/Kχ′ (h) fulfills the following properties:

(i) For all prime ℓ , p dividing gχ, νKχ′ /k′ℓ (h
′) = 1, where k′ℓ is the unique sub-

extension of Kχ′ such that [Kχ′ : k′ℓ] = ℓ;

(ii) JK/Kχ′ (h
′) = 1;

(iii) h′ is of order p in HKχ′ .

Proof. Indeed, if [K : Q] is prime to p, we are in the semi-simple case and H alg
χ =

H ar
χ . So we assume that p | [K : Q], whence the existence and unicity of Kχ′ .

Let h ∈H alg
χ , h <H ar

χ , and let h′ := NK/Kχ′ (h). Let ℓ | gχ, ℓ , p.

(i) We have the following diagram where kℓ is the unique sub-extension of K
such that [K : kℓ] = ℓ and then k′ℓ = kℓ ∩Kχ′ :

Schema II

Kχkℓ

k′ℓ Kχ′

h

h′ :=NK/Kχ′ (h)

ℓ

ℓ

pp

We have νK/kℓ (h) = 1 since h ∈H alg
χ ; applying NK/Kχ′ , we get νKχ′ /k′ℓ (h

′) = 1.

(ii) We have JK/Kχ′ (h
′) = JK/Kχ′ ◦NK/Kχ′ (h) =νK/Kχ′ (h) = 1 since h ∈H alg

χ .
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(iii) Since the class h′ capitulates in K , its order is 1 or p. Suppose that h′ = 1;
for ℓ , p, the maps JK/kℓ and JKχ′ /k′ℓ are injective, so NK/kℓ

(h) = 1, for all
ℓ , p dividing gχ; since moreover h′ = NK/Kχ′ (h) = 1, this yields by definition
h ∈H ar

χ (absurd). □

Lemma 9 – Let K/k be a cyclic extension of degree p and Galois group G =: ⟨σ⟩. Let
Ek and EK be the unit groups of k and K , respectively. Consider the transfer map
JK/k : Hk → HK ; then Ker(JK/k) is isomorphic to a subgroup of H1(G,EK ) ≃ E∗K /E

1−σ
K

(where E∗K = Ker(νK/k)). The group E∗K /E
1−σ
K is of exponent 1 or p.

Proof. Let Zk and ZK be the rings of integers of k and K , respectively; let cℓk(a) ∈Hk ,
with aZK =: (α)ZK , α ∈ K×. We then have α1−σ =: ε ∈ E∗K . The map, which associates
with cℓk(a) ∈ Ker(JK/k) the class of ε modulo E1−σ

K , is obviously injective.

If ε ∈ E∗K , then 1 = ε1+σ+···+σp−1
= εp+(σ−1)Ω, Ω ∈Z[G]; whence εp ∈ E1−σ

K . □

Study of the case p , 2

We are in the context of Lemma 8. Put K := Kχ and k := Kχ′ ; then K/k is of degree p
and the class h′ = NK/k(h) ∈Hk is of order p and capitulates in K .

Assume that K is imaginary (i.e., χ is odd, thus h ∈H ar
K
−); since K/k is of degree

p , 2, k is also imaginary and h′ ∈H ar
k
−.

We introduce the maximal real subfields, giving the diagram:

Schema III

KK+

k+ k

h

h′ :=NK/k(h)

2

2

pp G=⟨σ⟩

Lemma 10 – Let µ∗K be the p-torsion sub-group of E∗K , that is to say the set of p-roots
of unity ζ of K such that NK/k(ζ) = 1. Then the image of H ar

k
− ∩Ker(JK/k), by the map

Ker(JK/k)→ E∗K /E
1−σ
K of Lemma 9, is contained in the image of µ∗K modulo E1−σ

K .

Proof. Let q be the map E∗K → E∗K /E
1−σ
K . Denote by x 7→ x the complex conjugation in

K . If h′ ∈H ar
k
−∩Ker(JK/k), then Nk/k+(h′) = 1 andνk/k+(h′) = h′h′ = 1; if h′ = cℓk(a) we

then have aa = aZk , a ∈ k×, and aZKaZK = aZK , with aZK = (α)ZK and aZK = (α)ZK ,
α ∈ K× (since a and a become principal in K), which yields relations of the form
α1−σ = ε, α1−σ = ε, ε,ε ∈ E∗K . From the relation aa = aZk , one obtains, in K , αα = ηa,
η ∈ EK , then α1−σα1−σ = η1−σ , giving εε = η1−σ .
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5. Application to relative imaginary class groups

From Hasse (1985, Satz 24), ε = ε+ ζ, ε+ ∈ EK+ , ζ ∈ µK . So q(εε) = q(ε+2) = 1.
Since p is odd and E∗K /E

1−σ
K of exponent divisor of p, ε+ ∈ E1−σ

K ; since ε ∈ E∗K , we
have ζ ∈ E∗K , whence:

q(ε) = q(ζ) ∈ q(µ∗K ) = µ∗K /(E
1−σ
K ∩µ∗K ),

and the lemma. □

Lemma 11 – The group q(µ∗K ), of order 1 or p, is of order p if and only if µ∗K = ⟨ζ1⟩ and
E1−σ
K ∩ ⟨ζ1⟩ = 1, where ζ1 is of order p.

Proof. A direction being obvious, assume that q(µ∗K ) = µ∗K /(E
1−σ
K ∩µ∗K ) is of order p

and let ζ be a generator of µ∗K (necessarily, ζ , 1). If ζ ∈ k, then NK/k(ζ) = ζp, so
ζp = 1 and ζ = ζ1 ∈ k.

If ζ < k, K = k(ζ); it follows that ζ1 ∈ k and that ζp ∈ k, since [K : k] = [Q(ζ) :
k ∩Q(ζ)] = p; thus K/k is a Kummer extension of the form K = k( p

√
ζr ), ζr of order

pr , r ≥ 1, ζ = ζr+1, and ζ1−σ = ζ1, giving NK/k(ζ) = ζp = 1, hence ζ = ζ1 ∈ k (absurd).
So we have ζ = ζ1 ∈ k and E1−σ

K ∩µ∗K ⊆ ⟨ζ1⟩. Thus, q(µ∗K ) being of order p, necessarily
E1−σ
K ∩µ∗K = 1. □

Lemma 12 – If H ar
k
− ∩Ker(JK/k) , 1, this group is of order p and K/k is a Kummer

extension of the form K = k( p
√
a), a ∈ k×, aZk = ap, the ideal a of k being non-principal

(such a Kummer extension is said to be “of class type”).

Proof. If h′ ∈H ar
k
− ∩Ker(JK/k), h′ := cℓk(a) , 1, this means that aZK = αZK , α ∈ K×;

so α1−σ = ε, ε ∈ E∗K ; from Lemma 11, q(ε) = q(ζ1)λ, hence ε = ζλ1 η
1−σ , η ∈ EK , whence

α1−σ = ζλ1 η
1−σ and in the equality aZK = αZK one may suppose α chosen modulo

EK such that α1−σ = ζλ1 ; moreover we have λ . 0 (mod p), otherwise α should be
in k and a should be principal. Thus α1−σ = ζ′1 of order p and αp = a ∈ k×, whence
K = k(α) is the Kummer extension k( p

√
a); we have aZK = apZK , hence aZk = ap, since

extension of ideals is injective. □

We shall show now that the context of Lemma 12 is not possible for a cyclic
extension K/Q, which will apply to K = Kχ:

Schema IV

K=k( p
√
a)K ′

k′ k

K0Q

p

pn−1
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Since K = k( p
√
a), with aZk = ap, only the prime ideals dividing p can ramify in

K/k. Consider the above decomposition of the extension K/Q for p , 2, with K/K0
and K ′/Q cyclic of p-power degree pn, K/K ′ and K0/Q of prime-to-p degree, and
let ℓ be a prime number totally ramified in K ′/Q (such a prime does exist since
GK ′ ≃ Z/pnZ); this prime is then totally ramified in K/K0, hence in K/k, which
implies ℓ = p and p is the unique ramified prime in K ′/Q.

This identifies the extension K ′/Q. Its conductor is pn+1, n ≥ 1, since p , 2;
thus K ′ is the unique sub-extension of degree pn of Q(µpn+1 ) and k′ is the unique
sub-extension of degree pn−1 of Q(µpn ) (in other words, K ′ is contained in the
cyclotomic Zp-extension). Since ζ1 ∈ k, one has µpn ⊂ k, µpn+1 ⊂ K and µpn+1 1 k, so
K = k(ζ) = k( p

√
ζp), with ζ of order pn+1.

It suffices to apply Kummer theory which shows that k( p
√
a) = k( p

√
ζp) implies

a = ζλpbp, with p ∤ λ and b ∈ k×; so aZk = bpZk = ap, whence a = bZk principal
(absurd).

So in the case p , 2, for K/Q imaginary cyclic and K/k cyclic of degree p, we have
the relation H ar

k
− ∩Ker(JK/k) = 1 (injectivity of JK/k on the relative p-class group).

Case p = 2

The extension K/Q is still imaginary cyclic, k is necessarily equal to K+ and σ is the
complex conjugation s∞.

From Hasse (1985, Satz 24) the “index of units” Q−K is trivial in the cyclic
case; thus for all ε ∈ E∗K , ε = ε+ζ, ε+ ∈ k, ζ root of unity of 2-power order; then
NK/k(ε) = 1 yields ε+2 = 1, thus ε+ = ±1 and ε = ζ′ = ±ζ; since K/Q is cyclic, whence
Q(ζ)/Q cyclic, we shall have ε ∈ {1,−1, i,−i}. Recall that h′ = NK/k(h) ∈ Ker(JK/k),
h′ = cℓk(a) , 1, with aZK = αZK and α1−σ = ε ∈ E∗K . One may assume ε ∈ {−1, i,−i}
(ε , 1 since α < k×):

(i) Case ε = −1. Then α1−σ = −1, α2 =: a ∈ k×, α < k×, and we get the Kummer
extension K = k(

√
a) with aZk = a2, a non-principal (Kummer extension of

class type).

(ii) Case ε = ±i. Then α1−σ = ±i with −1 = (±i)1−σ ; one may assume α1−σ = i. This
yields α2i−1 ∈ k×. Put α2 = ic, c ∈ k×; it follows a2ZK = α2ZK = cZK , hence
a2 = cZk .

Let τ be a generator of GK ; one has α2τ = iτcτ = −icτ = −cτ−1α2, hence α2τ = α2d,
d := −cτ−1 ∈ k×; we obtain (αZK )2τ = (αZK )2dZK , thus a2τZK = a2ZKdZK giving
a2τ = a2dZk .

If d ∈ k×2, d = e2, e ∈ k×, and aτ ∼ a saying that h′ is an invariant class in k/Q.
If d < k×2, the relation α2τ = α2d shows that d = (ατ−1)2 ∈ K×2; from Kummer

theory, since K = k(
√
d) = k(i), one obtains d = −δ2, δ ∈ k×, and a2τ = a2δ2ZK , still

giving aτ = aδZk and an invariant class in k/Q.
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5. Application to relative imaginary class groups

But K is the direct compositum over Q of k = K+ and Q(i) and must be cyclic,
so [k : Q] is necessarily odd and an invariant class in k/Q is of odd order giving the
principality of a in k (absurd).

So, only case (i) is a priori possible.
Consider the following diagram, with K/K0 and K ′/Q cyclic of 2-power order,

then K/K ′ and K0/Q of odd degree, where we recall that aZk = a2 with a non-
principal and aZK = αZK , α ∈ K×. Similarly, since K/k is only ramified at 2, then
K/K0 and K ′/Q are totally ramified at 2, the conductor of K ′ is a power of 2, say
2r+1, r ≥ 1 (K ′ is an imaginary cyclic subfield of Q(µ2r+1 )):

Schema V

K=k(
√
a)K ′

k′ k = K+

K0Q

2 ⟨s∞ ⟩

The Kummer extension K ′/k′ is 2-ramified of the form K ′ = k′(
√
a′), a′ ∈ k′×. So

we have a′Zk′ = a′2 or a′Zk′ = a′2p′ , where p′ | 2 in k′ . But all the subfields of Q(µ2∞ )
have a trivial 2-class group; thus, one may suppose that a′ is, up to k′×2, a unit or
an uniformizing parameter of k′. Then K = k(

√
a′) is not of class type (absurd); so

h′ = 1. Whence:

Proposition 3 – For an imaginary cyclic extension K/Q and a sub-extension K/k of
degree p (i.e., k = kp), H ar

k
− ∩Ker(JK/k) = 1 if p , 2 (the relative classes of k do not

capitulate in K), then Ker(JK/K+ ) = 1 if p = 2 (the real 2-classes of k = K+ do not
capitulate in K).

Using the order formula (14) yields:

Corollary 1 – We get

JK/K+(HK+ ) ≃H +
K =HK+ = NK/K+(HK )

and the direct sum

HK =H ar
K
−
⊕

JK/K+(HK+ ) ≃H ar
K
−
⊕
H +
K .

We have obtained the following result about relative class groups:

Theorem 6 – Let K = Kχ be an imaginary cyclic field of maximal real subfield K+. Let
p be any prime number and set H = H⊗Zp. Define:

H ar
K
− := {h ∈HK ,NK/K+(h) = 1}, H alg

K
− := {h ∈HK ,νK/K+(h) = 1}.

Then H ar
K
− =H alg

K
−, H ar

ϕ =H alg
ϕ for all ϕ ∈ Φ−K .
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Proof. For all subfield k of K with [K : k] = p, JK/k is injective on H ar
k
− if p , 2 and

JK/K+ is injective on HK+ for p = 2; so νK/k = JK/k ◦NK/k yields H ar
K
− =H alg

K
− from

Definition 2, whence Har
K
− = Halg

K
− by globalization. □

We shall write simply H−K for the two notions “alg” and “ar” in the cyclic case.

Using Theorem 4 we may write, for all χ ∈X −, #H alg
χ = #H ar

χ =
∏
ϕ|χ #H ar

ϕ .

Corollary 2 – Let K/Q be an imaginary cyclic extension. Then:

#H+
K =

∏
ρ∈X +

K
#Har

ρ & #H−K =
∏
ρ∈X −K

#Har
ρ .

Proof. To apply Theorem 3, we shall prove that all the arithmetic norms are surjec-
tive in any sub-extension k/k′ of K/Q; we do this for each p-class group; so the proof
of the surjectivity is only necessary in the sub-extensions k/k′ of p-power degree;
then we use the fact that this property holds as soon as k/k′ is totally ramified at
some place. This comes from Remark 1 about cyclic extensions. So Theorem 3
implies #HK =

∏
ρ∈XK #Har

ρ .
From (14), #HK = #H−K ×#H+

K and we can also apply Theorem 3 to the maximal
real subfield K+ of K , giving #H+

K =
∏
ρ∈X +

K
#Har

ρ , whence the formulas taking into

account the relation Har
ρ = Halg

ρ for odd characters (Theorem 6). □

5.3 Computation of #Har
χ for χ ∈X −

For an arbitrary imaginary extension K/Q, we have (e.g., from44 or45), in terms of
generalized Bernoulli numbers, the formula:

#H−K =Q−Kw
−
K

∏
ψ∈Ψ −K

(
−1

2 B1(ψ−1)
)
, B1(ψ−1) :=

1
fχ

∑
a∈[1,fχ[

ψ−1(σa)a,

where w−K is the order of the group of roots of unity of K and Q−K the index of units;
from46, Q−K = 1 when K = Kχ. Recall that Har

χ := {h ∈HK , NK/k(x) = 1, for all k & K};
then:

Theorem 7 – Let χ ∈X −, let gχ be the order of χ, fχ its conductor; then

#Har
χ = #Halg

χ = 2αχ ·wχ ·
∏
ψ|χ

(
−1

2 B1(ψ−1)
)
,

where αχ = 1 (resp. αχ = 0) if gχ is a 2-power (resp. if not) and:

44Hasse, 1985, Über die Klassenzahl abelscher Zahlkörper. Mit einer Einleitung zur Reprintausgabe von
Jacques Martinet. p. 12.

45Washington, 1997, Introduction to Cyclotomic Fields, Theorem 4.17.
46Hasse, 1985, Über die Klassenzahl abelscher Zahlkörper. Mit einer Einleitung zur Reprintausgabe von

Jacques Martinet. Satz 24.
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(i) wχ = 1 if Kχ is not an imaginary cyclotomic field;

(ii) wχ = ℓ if Kχ = Q(µℓn ), ℓ , 2 prime, n ≥ 1;

(iii) wχ = 2 if Kχ = Q(µ4) for ℓ = 2.

Proof. We use Oriat (1975b, Proposition III (g)) or Leopoldt (1954, Chap. I, § 1 (4))
recalled in Theorem 1; it is sufficient to prove that for any imaginary cyclic extension
K/Q, #H−K =

∏
ρ∈X −K

(
2αρ ·wρ ·

∏
ψ|ρ

(
−1

2 B1(ψ−1)
))

, the expected equality will come
from Theorem 6 and the relation:

#H−K =
∏
ρ∈X −K

#Har
ρ .

So, it remains to prove that
∏
ρ∈X −K

(
2αρ ·wρ

)
= w−K .

Consider the following diagram, where K/K0 and K ′/Q are cyclic of 2-power
degree and where K/K ′ and K0/Q are of odd degree:

Schema VI

KK ′

K ′+ K+

K0Q

22

As K+ and K ′+ are real, αρ = 0, except when gρ is a 2-power, hence for the unique
ρ0 defining K ′ for which αρ = 1; whence

∏
ρ∈X −K

2αρ = 2.
If K does not contain any cyclotomic field different from Q, then w−K = 2, more-

over, all the wρ are trivial and the required equality holds in that case. So, let Q(µℓn ),
n ≥ 1, be the largest cyclotomic field contained in K ; this yields two possibilities:

Schema VII

KK+

Q(µℓn )+ Q(µℓn )

Q Q(µℓ)Q(µℓ)+

K+ K

Q(µ4)Q

ℓ , 2 ℓ = 2

If ℓ , 2,
∏
ρ∈X −K

wρ = ℓn (due to the n odd characters defined by the Q(µpi ),
1 ≤ i ≤ n) and, for ℓ = 2, this gives

∏
ρ∈X −K

wρ = 2; whence the result (cf. Hasse (1985,
Chap. III, § 33, Theorem 34 and others)). □

145



Notion of abelian arithmetic ϕ-objects G. Gras

Remark 4 – We have #H−K =
Q−Kw

−
K

2n
−
K

∏
ρ∈X −K

#Halg
ρ , for any imaginary extension K ,

where n−K is the number of imaginary cyclic sub-extensions of K of 2-power degree
and w−K is the 2-part of wK (resp. 1

2wK ) if Q(µ4) 1 K (resp. Q(µ4) ⊂ K). See Gras
(1976, Remarque II 2, p. 32).

5.4 Annihilation theorem for H −K
Before significant improvements by means of Stickelberger’s elements (leading to
the construction of p-adic measures, to index formulas and annihilators of various
invariants), Iwasawa47 proves the following formula for the cyclotomic fields K =
Q(µpn ), p , 2, n ≥ 1, of Galois group GK :

#H−K = (Z[GK ]− : BKZ[GK ]∩Z[GK ]−) ,

where Z[GK ]− := {Ω ∈ Z[GK ], (1 + s∞)Ω = 0}, s∞ being the complex conjugation,
and BK := 1

pn
∑
a∈[1,pn[,p ∤a aσ

−1
a where σa ∈ GK denotes the corresponding Artin

automorphism.
This formula does not generalize for arbitrary imaginary extension K/Q (see the

counterexample given in Gras (1976, p. 33)). Many contributions have appeared48;
for more precise formulas, see Sinnott (1980) or Washington (1997, § 6.2, § 15.1),
among many others. Nevertheless, we gave in Gras (1976) another definition in the
spirit of the ϕ-objects which succeeded to give a correct formula.

General definition of Stickelberger’s elements

Let K ∈K \ {Q}. Let fK =: f > 1 be the conductor of K and let Q(µf ) be the corre-
sponding cyclotomic field. Define the more suitable writing of the Stickelberger
element defined in Gras (1978, Chap.IV, § 1) or Gras (1980, Chap.I, § 1), from the
study of partial zêta-functions in Coates (1977, §§ 2.1, 3.2), and that leads to a new
normalized definition of Gauss sums; in the summation, integers a are prime to f
and Artin symbols are taken over Q:

B
Q(µf ) := −

f∑
a=1

(
a
f
− 1

2

)Q(µf )

a

−1

.

Note that the part
∑f
a=1

(
Q(µf )
a

)−1
is the algebraic norm ν

Q(µf )/Q which does not

modify the image of B
Q(µf ) by ψ, for ψ ∈ Ψ , ψ , 1.

47Iwasawa, 1962, “A class number formula for cyclotomic fields”.
48All, 2013, “On p-adic annihilators of real ideal classes”;

All, 2017, “Gauss sums, Stickelberger’s theorem and the Gras conjecture for ray class groups”;
Coates, 1977, p-adic L-functions and Iwasawa’s theory;
Gillard, 1974, Relations de Stickelberger;
Gras, 1978, “Sommes de Gauss sur les corps finis”;
Leopoldt, 1962, “Zur Arithmetik in abelschen Zahlkörpern”.
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5. Application to relative imaginary class groups

We shall use two arithmetic G -families: the G -family M, for which MK = Z[GK ]
and the G -family S defined by:

SK := BKZ[GK ]∩Z[GK ],where

BK := N
Q(µf )/K (B

Q(µf ))=−
f∑
a=1

(
a
f
− 1

2

)(K
a

)−1
.

(15)

Lemma 13 – For any c, prime to 2f , let BcK :=
(
1− c

(K
c

)−1)
BK ; then BcK ∈Z[GK ].

Proof. We have:

BcK =
−1
f

∑
a

[
a
(K
a

)−1
− ac

(K
a

)−1 (K
c

)−1]
+

1− c
2

∑
a

(K
a

)−1
.

Let a′c ∈ [1, f ] be the unique integer such that a′c c ≡ a (mod f ); put:

a′c c = a+λa(c)f , λa(c) ∈Z;

using the bijection a 7→ a′c in the summation of the second term in between [ ] and

the relation
(K
a′c

)(K
c

)
=

(K
a

)
, this yields:

BcK =
−1
f

∑
a

a
(K
a

)−1
−
∑
a

a′c c
(K
a′c

)−1(K
c

)−1
+

1− c
2

∑
a

(K
a

)−1

=
−1
f

∑
a

[
a− a′c c

](K
a

)−1
+

1− c
2

∑
a

(K
a

)−1

=
∑
a

[
λa(c) +

1− c
2

](K
a

)−1
∈Z[GK ].

We have λf −a(c) + 1−c
2 = −

(
λa(c) + 1−c

2

)
, which proves that:

BcK = B′cK (1− s∞), B′cK ∈Z[GK ], (16)

useful in the case p = 2 and giving NK/K+(BcK ) = 0. □

Definition 4 – Let K be an imaginary abelian field. Put:

AK := {Ω ∈Z[GK ], ΩBK ∈Z[GK ]}

(AK is an ideal of Z[GK ] and SK := BKAK (cf. (15)). Denote by ΛK ∈ AK the least
rational integer such that ΛKBK ∈Z[GK ]; thus ΛK | 2f , where f is the conductor of
K .

For K = Kχ, χ ∈X −, we put AKχ =: Aχ and ΛKχ =: Λχ.
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Since we will only use images by ψ ∈ Ψ − of elements of Q[GK ], we can ne-

glect, by abuse, the term
∑f
a=1

1
2

(
K
a

)−1
in some reasonings and computations, using

1
f

∑f
a=1 a

(
K
a

)−1
instead of BK .

Note that for any odd c prime to f :(
1− c

(K
c

)−1) f∑
a=1

1
2

(K
a

)−1
∈Z[GK ],

and that such considerations only concerns the case p = 2 when f is an odd prime
power with [Q(µf ) : K] odd (see Example A.3 with K = Q(µ47)).

Lemma 14 – Let ασ be the coefficient of σ ∈ GK in the writing of
∑f
a=1 a

(
K
a

)−1
on the

canonical basis GK of Z[GK ]; in particular, we have α1 =
∑
a, σa |K =1 a. Then ασ ≡ cα1

(mod f ), where c is a representative modulo f such that σc = σ−1. Thus, we have
ΛK = f

gcd(f ,α1) .

Proof. The first claim is obvious and ΛK is the least integer Λ such that Λα1
f ∈ Z,

since Λ
∑f
a=1

a
f

(
K
a

)−1
∈Z[GK ] if and only if Λασ

f ∈Z for all σ ∈ GK , thus, for instance,
for σ = 1. □

Proposition 4 – (i) The ideal AK of Z[GK ] is a free Z-module; a Z-basis is given by
the set

{
· · · ,

(
K
a

)
− a, · · · ; ΛK

}
, for the representatives a of (Z/fZ)× \ {1}.

(ii) If K/Q is cyclic, then AK is the ideal of Z[GK ] generated by
(
K
c

)
− c and ΛK , where(

K
c

)
is any generator of GK .

Proof. See Gras (1976, p. 35–36). □

Study of the algebraic G -families MK := Z[GK ], SK := BKAK

We then have (where Mχ and Sχ are ideals of MK ):{
MK = Z[GK ], SK = BK Aχ,
Mχ = {Ω ∈Z[GK ], Pχ(σχ)Ω = 0}, Sχ = BKAχ ∩Mχ

Lemma 15 – We have

Mχ =
∏

ℓ|gχ , ℓprime

(1− σ gχ/ℓχ )Z[GK ], aχ := ψ(Mχ) =
∏
ℓ|gχ

(
1−ψ(σχ)gχ/ℓ

)
.

Then Sχ gives rise to an ideal bχ multiple of aχ.
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5. Application to relative imaginary class groups

Proof. See Gras (1976, Lemmes II.8 and II.9, pp. 37/39). □

The computation of bχ needs to recall the norm action on Stickelberger’s ele-
ments; because of the similarity of the result for the norm action on cyclotomic
numbers, we recall, without proof, the following classical formulas (see, e.g., Gras
(2018a, Section 4)):

Lemma 16 – Let f > 1 and m | f , m > 1, be any modulus; let Q(µf ), Q(µm) ⊆Q(µf ), be
the corresponding cyclotomic fields. Let:

B
Q(µf ) := −

f∑
a=1

(
a
f
− 1

2

)Q(µf )

a

−1

, η
Q(µf ) := 1− ζf .

We have, where N
Q(µf )/Q(µm) : Q[G

Q(µf )] −→Q[G
Q(µm)]:

N
Q(µf )/Q(µm)

(
B
Q(µf )

)
= Ω ·B

Q(µm),

N
Q(µf )/Q(µm)

(
η
Q(µf )

)
= ηΩ

Q(µm),

where Ω :=
∏
p|f , p∤m

(
1−

(
Q(µm)
p

)−1
)
.

We can conclude by the following49:

Theorem 8 – Let χ ∈X − and let ψ | χ, ψ ∈ Ψ . The Z[µgχ ]-module Halg
χ = Har

χ is anni-

hilated by the ideal B1(ψ−1)(ψ(σa)− a,Λχ) of Z[µgχ ], where σa :=
(
K
a

)
is any generator

of GK (Lemma 14, Proposition 4). The ideal (ψ(σa) − a,Λχ) is the unit ideal except if
K ,Q(µ4) is an extension of Q(µp) of p-power degree and if Λχ ≡ 0 (mod p), in which
case, this ideal is a prime ideal pχ | p in Q(µgχ ). If K = Q(µ4), this ideal is the ideal (4).

Theorem 9 – Let ϕ ∈ Φ− and let ψ | ϕ, ψ ∈ Ψ . Then the Zp[µgχ ]-module H alg
ϕ =H ar

ϕ

is annihilated by the ideal B1(ψ−1)(ψ(σa)−a,Λχ) of Zp[µgχ ], where σa is any generator of
GK . The ideal (ψ(σa)−a,Λχ) of Zp[µgχ ] is the unit ideal except if K ,Q(µ4) is extension
of Q(µp) of p-power degree, if Λχ ≡ 0 (mod p) and if λ = 1 in the writing ψ = ωλψp
(where ω is the Teichmüller character and ψp of p-power order), in which case, this ideal
is the prime ideal of Zp[µgχ ]. If K = Q(µ4), this ideal is the ideal (4).

49Gras, 1976, “Application de la notion de ϕ-objet à l’étude du groupe des classes d’idéaux des
extensions abéliennes”, Théorèmes II.5, II.6.
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We have detailed, in Appendix A.3, the case of K := Kχ = Q(µ47) by computing
#Hχ by means of the Bernoulli number with some annihilation properties.

In Gras (1978, Chap. IV, § 2 & Théorème IV1) and Gras (1979b, Théorèmes 1,
2, 3), we have given improvements of the annihilation for 2-class groups but it is
difficult to say if the case p = 2 is optimal or not.

By way of example, we cite the following under the above context:

Theorem 10 – Let χ ∈ X − and let ψ | ϕ | χ with ψ = ψ0ψ2, ψ0 , 1 of even order, ψ2

of 2-power order. The Z2[µgχ ]-module Hϕ
/
JK/K+(H +

ϕ′ ) is annihilated by
(

1
2 B1(ψ−1)

)
,

where H +
ϕ′ := {h ∈HK+ , xPϕ′ (σχ) = 1}, with ϕ′ ∈ Φ+ above ψ′ := ψ0ψ

2
2 .

6 Application to torsion groups of abelian p-ramifica-
tion

Let K be a totally real number field, non necessarily abelian, and let TK be the
torsion group of the Galois group of the maximal p-ramified abelian pro-p-extension
H

pr
K of K . Under Leopoldt’s conjecture, we have TK = Gal(Hpr

K /K
cyc), where K cyc is

the cyclotomic Zp-extension of K .

Let Hnr
K be the p-Hilbert class field and let Hbp

K be the Bertrandias–Payan field50;

the Zp-module T bp
K := Gal(Hbp

K /Kcyc) is the Bertrandias–Payan module (Nguyen
Quang Do (1986, Sec. 4), Jaulent (1990, Sec. 2 (b))).

Schema VIII
TK

T
bp
K

HK

UK /EK

tor(UK /EK )

H
pr
KKcycHnr

K H
bp
KRK WKH

cyc
K

Kcyc

Hnr
KKcyc∩Hnr

K

K

Let Kv be the completion of K at the place v. The above diagram is related to
the exact sequence:

1→WK −→ tor
Zp

(
UK

/
EK

) logp
−−−→RK := tor

Zp

(
logp (UK )

/
logp(EK )

)
−→ 0 (17)

50Bertrandias and Payan, 1972, “Γ -extensions et invariants cyclotomiques”.
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where UK denotes the group of local units at p, EK = EK ⊗Zp is identified with

its diagonal image in UK , WK :=
(⊕

v|p µp(Kv)
)
/µp(K) (see Gras (2005, § III.2, (c),

Fig. 2.2, Lemma III.4.2.4) and Gras (2018b)).
Since [Qp(µpe ) : Qp] = (p − 1)pe−1, for K fixed there are only finite number of

primes p such thatWK , 1; for K totally real µp(K) = 1 for all p > 2. For instance, if
K = Q(

√
m) is a real quadratic field, then for p = 2,WK ≃ µ2 ×µ2/µ2 (2 split in K) or

µ4/µ2 (m ≡ −1 (mod 8)); for p = 3,WK ≃ µ3 if and only if m ≡ −3 (mod 9).
In all the sequel, we assume that K is abelian real.

6.1 Computation of #TK
The order of the Zp[GK ]-module TK is given, analytically, by the residue at s = 1 of
the p-adic ζ-function of K , whence by the values at s = 1 of p-adic L-functions of
the non-trivial characters of K (after51); see for instance52 for analytic context.

In conclusion we can write, up to p-adic units:

#TK = #H cyc
K ×#RK×#WK ∼ [K ∩ Q

cyc : Q]
∏
ψ,1

1
2 Lp(1,ψ). (18)

Since the arithmetic family of these Zp[G ]-modules TK , for real K ’s, follows the
most favorable properties (i.e. surjectivity of the norms, injectivity of the transfer
maps in relative sub-extensions), we can state, in a similar context as for Theorems
6:

Theorem 11 – For all χ ∈X + (resp. ϕ =: ϕ0ϕp | χ), K = Kχ, then:
T ar
χ = T alg

χ = {x ∈ TK , xPχ(σχ) = 1}
= {x ∈ TK , NK/k(x) = 1, for all k & K},

T ar
ϕ = T alg

ϕ = {x ∈ TK , xPϕ(σχ) = 1} = (T ar
χ )ϕ0

.

Moreover, if K/Q is real, #TK =
∏
ρ∈XK #T ar

ρ =
∏
ϕ∈ΦK #T ar

ϕ .

We denote simply T ar
χ (resp. T ar

ϕ ) these components in the algebraic or arith-
metic senses. In the analytic point of view, we have the analogue of Theorems 7
and 14 (see some p-adic formulas about Lp-functions, from classical papers53 and a
broad presentation in Washington (1997, Theorems 5.18, 5.24)):

51Coates, 1977, p-adic L-functions and Iwasawa’s theory, Appendix.
52Gras, 2019a, “Heuristics and conjectures in direction of a p-adic Brauer-Siegel theorem”, § 3.4,

formula (3.8).
53Amice and Fresnel, 1972, “Fonctions zêta p-adiques des corps de nombres abéliens réels”;

Gras, 1980, Sur la construction des fonctions L p-adiques abéliennes;
Kubota and Leopoldt, 1964, “Eine p-adische Theorie der Zetawerte. I: Einführung der p-adischen

Dirichletschen L-Funktionen”.
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Theorem 12 – Let χ ∈ X + \ {1}. Then #T ar
χ ∼ w cyc

χ
∏
ψ|χ

1
2 Lp(1,ψ), where w cyc

χ is as
follows, from analytic formula (18):

(i) w cyc
χ = 1 if K is not a subfield of Qcyc;

(ii) w cyc
χ = p if K is a subfield of Qcyc.

6.2 Annihilation theorem for TK

An annihilator of TK is given by the following statement54 which does not assume
any hypothesis on K (real) and p and gives again the following results (recall for
instance Gras (1979a), Oriat (1981)):

Theorem 13 – Let K be a real abelian field of conductor fK . Let fn be the conductor of
Ln := KQ(µqpn ), n large enough, where q = p or 4 as usual. Let c ∈Z be prime to 2pfK .
For all a ∈ [1, fn], prime to fn, let a′c ∈ [1, fn] be the unique integer such that a′c c ≡ a
(mod fn) and put a′c c − a = λna (c)fn, λna (c) ∈Z. Then consider:

AK,n(c) :=
fn∑
a=1

λna (c)a−1
(K
a

)
=: A′K,n(c)(1 + s∞) ∈Zp[GK ],

where s∞ is the complex conjugation and A′K,n(c) =
∑fn/2
a=1 λ

n
a (c)a−1

(
K
a

)
.

Let AK (c) := lim
n→∞

[∑fn
a=1λ

n
a (c)a−1

(K
a

)]
=: A′K (c)(1 + s∞); then:

(i) For p , 2, A′K (c) annihilates the Zp[GK ]-module TK .

(ii) For p = 2, the annihilation holds for 2AK (c) and 4A′K (c).

It is immediate, using these formulas modulo a suitable power of p, to compute
annihilators; examples are given in Appendix A.4.

Remarks 2 – (i) In practice, when the exponent pe of TK is known, one can
take n = n0 + e, where n0 ≥ 0 is defined by [K ∩Qcyc : Q] =: pn0 , and use the
annihilators AK,n(c), A′K,n(c); but any n ≫ 0 is suitable. When K = Kχ, the
annihilator limit AK (c) is related to p-adic L-functions via the formula:

ψ(AK (c)) = (1−ψ(c))Lp(1,ψ), for ψ | χ.

If gχ is not a p-power, one can choose c such that 1−ψ(c) is invertible giving
ψ(AK (c)) ∼ Lp(1,ψ); if gχ = pn, n ≥ 1, ψ(AK (c)) ∼ πχLp(1,ψ), where πχ is an
uniformizing parameter in Qp(µpn ).

This theorem is the analog of Theorem 9, using Bernoulli’s numbers, linked to
Lp(0,ωψ−1), instead of Lp(1,ψ).

54Gras, 2018a, “Annihilation of torZp (G ab
K,S ) for real abelian extensions K/Q”, Theorem 5.5.
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7. Application to class groups of real abelian fields

(ii) Some other annihilation theorems exist for the Jaulent logarithmic class
group55; then Jaulent (2023) is related to Greenberg’s conjecture and, when K
contains µp, Jaulent (2021) obtains that the Stickelberger ideal annihilates the
imaginary component of the logarithmic class group and that its reflection
annihilates the real component of the Bertrandias–Payan module. It will be
interesting to formulate a “FAMC” about the ϕ-components of these modules.

(iii) Using Gras (1986, Théorème (0.3)) and Gras (1987, Théorème (0.2)), we know
that the normalized valuation of p-adic L-functions fulfills the condition
vp( 1

2 Lp(s,ψ)) ≥ C for all s ∈ Zp, for some explicit constant C and that either
there is equality for all s ∈Zp or strict inequality for all s ∈Zp. Thus, when
equality holds, one obtains other orders and annihilation theorems (e.g., that
of Hilbert’s kernels of K-theory for p ∈ {2,3} in Gras (2024a)).

7 Application to class groups of real abelian fields

Denote by E the G -family for which EK , K ∈K , is the group of absolute value of
the global units of K , the Galois action being defined by |ε|σ = |εσ | for any unit
ε and any σ ∈ G . As we explain in the beginning of the Appendix for explicit
computations, conjugates of algebraic numbers are managed by PARI in a coherent
manner corresponding to an (unknown) embedding of Q in C; thus | | is, for us, the
real absolute value, taken after a fixed embedding K →R, or after PARI numerical
results.

The EK ’s are free Z-modules of rank [K : Q]− 1 for real fields K .

7.1 The Leopoldt χ-units

In Leopoldt (1954, 1962) are defined unit groups, Eχ, that we shall call, as in Oriat
(1975b), the group of χ-units for rational characters χ ∈X +\{1}; from the definition
of χ-objects in K = Kχ and the results of the previous sections we can write, where
νmay be replaced by N:

Eχ =
{
|ε| ∈ EK , |ε|Pχ(σχ) = 1

}
=

{
|ε| ∈ EK ,νK/k(|ε|) = 1, for all k & K

}
. (19)

What follows is also available in Leopoldt (1954, 1962) and Oriat (1975b).

Definitions 2 – (i) For any cyclic real field K = Kχ, denote by ÊK the subgroup
of EK generated by the Ek’s for all the subfields k & K (or simply by each of
the kℓ such that [K : kℓ] = ℓ | [K : Q], ℓ prime).

55Jaulent, 2021, “Annulateurs de Stickelberger des groupes de classes logarithmiques”;
Jaulent, 2023, “Annulateurs circulaires des groupes de classes logarithmiques”.
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(ii) Let QK =
(
EK :

⊕
ρ∈XK

Eρ
)

where Eρ is the group of ρ-units (Definition (19))

and, for all ρ ∈X +, let Qρ =
(
EKρ : ÊKρ

⊕
Eρ

)
.

(iii) Let φ be the Euler totient function and put, for ρ ∈X +:
qρ =

∏
ℓ|gρℓ

φ(gρ )
ℓ−1 , if gρ is not a prime-power,

qρ = ℓ
φ(gρ )
ℓ−1 −1 = ℓℓ

n−1−1, if gρ is a prime power ℓn, n ≥ 1,

q1 = 1.

Set qK =
(

gg−2∏
ρ∈XK dρ

) 1
2
, where g := [K : Q] and dρ is the discriminant of Q(µgρ ).

Lemma 17 – (i) We have ÊKρEρ = ÊKρ
⊕

Eρ, for all ρ ∈X +.

(ii) For all cyclic real field K , QK =
∏
ρ∈XKQρ, Gras (1976, pp. 72–75).

(iii) For all cyclic real field K , qK =
∏
ρ∈XK qρ, Gras (1976, pp. 76–77).

Proof. (i) One may find various equivalent definitions of the χ-units and their
properties in Leopoldt (1954, Chap. 5, § 4) or Oriat (1975b); but knowing the
norm characterization (19) of Eχ, the proof of (i) is obvious.

(ii) This may be proved locally; for this, we use the G -family EK := EK ⊗Zp, for
any prime p and Eχ ≃ Eχ ⊗Zp defined as above. Then one uses, inductively,
Lemma 17 (i) with characters ψ | ϕ | χ, written as ψ = ψ0ψp (ψ0 of prime-to-p
order, ψp of non-trivial p-power order). Let kp be the subfield of K of relative
degree p. We implicitly consider the χ0-components for the rational (semi-
simple) character above ψ0, which allows to write for instance (ÊK )χ0

= (Ekp )χ0

and any integer A replaced by its p-part (Ap); in what follows, we omit the
indices χ0 and p.

Assume to have proved Qkp :=
(
Ekp :

⊕
ρ̂∈Xkp

Eρ̂

)
=

∏
ρ̂∈Xkp

Qρ̂; then:

Qkp ×Qχ =
(
Ekp : ⊕ρ̂∈XkpEρ̂

)
× (EK : ÊK ⊕Eχ)

=
(
Ekp ⊕Eχ : ⊕ρ̂∈XkpEρ̂ ⊕Eχ

)
× (EK : Ekp ⊕Eχ)

= (EK : ⊕ρ∈XKEρ) =QK .

(iii) From Hasse (1985, § 15, p. 34, (2), p. 35). □
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7.2 The Leopoldt cyclotomic units

For the main definitions and properties of cyclotomic units, see Leopoldt (1954, § 8
(1)) or Oriat (1975a).

Definitions 3 – (i) Let χ ∈X + of conductor fχ; we define the “cyclotomic num-

bers” Cχ :=
∏
a∈Aχ (ζa2fχ −ζ

−a
2fχ

), with ζ2fχ := exp
(
iπ
fχ

)
, where Aχ is a half-system

of representatives, in (Z/fχZ)×, of Gal(Q(µfχ )/Kχ).

(ii) Let K be a real abelian field and let CK be the multiplicative group gener-
ated by the conjugates of |Cρ |, for all ρ ∈ XK . Then we define the group of
cyclotomic units FK := CK ∩EK and FK := FK ⊗Zp.

Recall that C2
ρ ∈ K×ρ and that any conjugate C′ρ of Cρ is such that

C′ρ
Cρ
∈ EKρ . If fρ

is not a prime power, then Cρ is a unit and FKρ = CKρ . The following formula links
the definitions of Cρ and ηρ := 1− ζfρ :

C2
ρ = (−1)#AρN

Q(ζfρ )/Kρ (1− ζfρ ) =: (−1)#AρηKρ ∈ K
×
ρ , (20)

where ηKρ = N
Q(ζfρ )/Kρ (1− ζfρ ) (e.g., Oriat (1975b, IV, § 1)).

7.3 Arithmetic computation of #Har
χ , for χ ∈X +

Using the Leopoldt formula56 and Lemma 17 (ii), (iii), we obtain (see Gras (1976,
Théorème III.1)):

Proposition 5 – For χ ∈X + \ {1}, let ∆χ =
∏
ℓ|gχ , ℓprime

(
1− σ gχ/ℓχ

)
; then

#Har
χ =

Qχ
qχ

(Eχ : C
∆χ
χ ) and #Har

χ =
1
qχ

(
EK : ÊK

⊕
C
∆χ
χ

)
for K = Kχ,

interpreting Qχ57.

To interpret the coefficient qχ, we have replaced the Leopoldt group C
∆χ
χ of

cyclotomic units by the larger group FK := CK ∩EK (Definition 3); whence the main
final result interpreting the coefficient qχ and giving the analog of Theorem 7 for
real class groups:

56Leopoldt, 1954, “Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper”, Satz 21, § 8
(4).

57Gras, 1976, “Application de la notion de ϕ-objet à l’étude du groupe des classes d’idéaux des
extensions abéliennes”, Corollaire III.1.
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Theorem 14 – For K = Kχ, χ ∈X + \ {1}, of order gχ and conductor fχ, let

Har
χ := {x ∈HK ,NK/k(x) = 1, for all k & K}.

Then:

#Har
χ = wχ

(
EK : ÊKFK

)
,

where wχ is defined as follows:

(i) Case gχ non prime-power. Then wχ = 1;

(ii) Case gχ = ℓn, ℓ , 2 prime, n ≥ 1:

(ii’) Case fχ prime-power. Then wχ = 1;

(ii”) Case fχ non prime-power. Then wχ = ℓ;

(iii) Case gχ = 2n, n ≥ 1:

(iii’) Case fχ prime-power. Then wχ = 1;

(iii”) Case fχ non prime-power. Then wχ ∈ {1,2}.

Proof. For the original proof see Gras (1976, Théorème III.2, pp. 78–85), done
by localization in the spirit of the proof of Lemma 17 using χ0-components. In
other words, let Cχ := Cχ ⊗Zp; then the claim is equivalent to prove that (EkpFkp :

Ekp ⊕C
∆χ
χ ) = qχ. For χ0 , 1, this equality becomes (EkpCkp : Ekp ⊕C

∆χ
χ ) = qχ which

simply relies on ∆χ and gives point (i); the case of a character of p-power order
depends on the Galois action on cyclotomic units, hence of the conductor of χ and
gives rise to the coefficient wχ ∈ {1, ℓ}. □

Corollary 3 – If p ∤ gχ, #Hχ =
(
Eχ : Fχ

)
=

∏
ϕ|χ

(
Eϕ : Fϕ

)
, where Eϕ = E

eϕ
K and

Fϕ =
(
⟨Cχ⟩ ⊗Zp

)eϕ now giving the semi-simple Main Theorem of the literature

#Hϕ =
(
Eϕ : Fϕ

)
.

Proof. In the semi-simple case p ∤ gχ, for any Zp[GK ]-moduleMK ,Mχ =M
eχ
K and

Mϕ =M
eϕ
K , with the usual semi-simple idempotents; thus, Ẽχ = Ẽ

eχ
χ = E

eχ
K /Ê

eχ
K F

eχ
K

= Eχ/Fχ, since Ê
eχ
K = 1. The claim for ϕ | χ is the Main Theorem known in the

semi-simple context. □

Remarks 3 – The viewpoint given by Theorem 14, which appears to have been
ignored, seems more convenient than formulas trying to use Sinnott’s cyclotomic

units. Indeed, compare with Greither (1992, Theorem 4.14) using instead H alg
χ

(in a partial semi-simple context as explained in Remark 8) and Sinnott’s group of
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7. Application to class groups of real abelian fields

cyclotomic units, larger than classical Leopoldt’s group of Definition 3, but which
gives rise to intricate index formulas. For the Iwasawa context, see for instance
Nguyen Quang Do and Lescop (2006).

Moreover, as we have mentioned in Gras (1977b, Remark III.1), an analytic

formula for #H alg
χ , χ ∈X +, does not seem obvious (if any) because of capitulation

aspects (see the examples of Appendix A.2).

Theorem 14 suggests a new and simpler statement of the FAMC for the Hϕ’s,
especially in the non semi-simple real case (see § 8.2 for the corresponding analytic
values).

Recent publications58 greatly strengthen the definition of the FAMC, using the
algebraic χ-objects Ẽχ := EK /ÊKFK with the semi-simple decompositions:

Ẽχ =
⊕
ϕ|χ
Ẽϕ =

⊕
ϕ|χ

{
x̃ ∈ Ẽχ, x̃Pϕ(σχ) = 1

}
=

⊕
ϕ|χ

(Ẽχ)ϕ0
.

7.4 Interpretations from class field theory and regulators

Let K ∈K be a real cyclic field defining χ ∈X + in what follows. To simplify some
diagrams in this subsection, we assume to be in the case whereWK = 1 andK∩Qcyc =
Q, which gives TK = T bp

K (cf. Diagram of Section 6) and #TK ∼
∏
ψ|χ,ψ,1

1
2 Lp(1,ψ)

(Formula (18)). Otherwise, formulas are modified by means of standard coefficients
or indices which do not modify the philosophy of the results/conjectures; moreover
the character of WK , related to local cyclotomic Teichmüller ones, gives trivial
information for conjectural aspects.

The Galois groupRK ⊆TK may be compared with a larger “cyclotomic regulator”
R

cyc
K interpreted as a Galois group only depending of χ. For this purpose, the

following diagram of the maximal abelian pro-p-extension Kab of K is necessary
(from Gras (2005, III.4 (d) & Diagram III.4.4.1) with our present notations), where
H ta
K is the maximal tamely ramified abelian pro-p-extension of K and F×v the p-Sylow

subgroup of the multiplicative group of the residue field of the tame place v; let
L :=Hpr

K H
ta
K :

58Gras, 2023a, “Algebraic norm and capitulation of p-class groups in ramified cyclic p-extensions”;
Gras, 2023b, “The Chevalley–Herbrand formula and the real abelian Main Conjecture (New crite-

rion using capitulation of the class group)”;
Gras, 2024b, “The real abelian main conjecture in the non semi-simple case”.
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Schema IX ∏
v∤p F

×
v

UK

Ẽχ ÊKFK

KabL L(χ)

EK

UK/EK

Zp⊕TK

H
pr
K

H ta
KHnr

K

HK

K

In this diagram, class field theory interprets Gal(Kab/H ta
K ) as the Zp-module UK

of principal local units at p (isomorphic to the direct product of the inertia groups
of the p-places) and Gal(Kab/L) as the Zp-module EK := EK ⊗Zp (embedded both in
UK and the product

∏
v∤p F

×
v of the inertia groups of the tame places, with suitable

Artin maps described in Gras (2005, § III.4.4.5.1)).
Now, put U ∗K := {u ∈ UK , NK/Q(u) = ±1}; since K is real, EK is of finite index in

U ∗K and tor
Zp

(UK /EK ) =U ∗K /EK ≃RK .

Assume Kcyc ∩Hnr
K = K to simplify; so H ta

K ∩K
cyc =Hnr

K then F :=H ta
K K

cycHnr
K is

fixed by U ∗K and F ∩Hpr
K = KcycHnr

K . Recall the exact sequence 1→R ram
K →RK →

Rnr
K → 159, due to genus theory; so, a sub-extension of L/F may be unramified.

We have moreover Gal(F/KcycHnr
K ) ≃Gal(L/Hpr

K ) ≃
(∏

v∤pF
×
v

)
/EK :

Schema X

Zp

Kcyc
HK

KcycHnr
K H

pr
K

F L L(χ) Kab

∏
v∤pF

×
v

K Hnr
K

H ta
K

U ∗K

RK≃U ∗K /EK

RK

TK EK

Ẽχ ÊKFK

R
cyc
K

UK

UK/Ek

UK/EK

Define, under the previous assumptions, Rcyc
K := U ∗K /ÊKFK , which yields, for

χ , 1 and K = Kχ, the Zp[GK ]-modules isomorphism:

RK ≃R
cyc
K /Ẽχ. (21)

59Gras, 2021, “Algorithmic complexity of Greenberg’s conjecture”, § 2 & Figure 3.
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7. Application to class groups of real abelian fields

We then haveRcyc
K ≃Gal(L(χ)/F), where L(χ) is the subfield of Kab fixed by the

image of ÊKFK .

Remark 5 – Let χ ∈ X + \ {1}, K = Kχ; assume to simplify that WK = 1, wχ = 1 in
Theorem 14, K ∩Qcyc = Q and Kcyc ∩Hnr

K = K :

(i) Theorem 14 and isomorphism (21) give the χ-components:

#Ẽχ = #Rcyc
K

/
#RK = #H ar

χ and #T ar
χ = #Rcyc

χ .

The Aχ-modules T ar
χ and Rcyc

χ (resp. Ẽχ and H ar
χ ) are not necessarily iso-

morphic as shown by the following excerpt giving cyclic cubic fields K
such that Rχ is of 7-rank 2 and T ar

χ of 7-rank ≥ 3 implying Hχ , 1 with
Hχ ≃Z/7Z×Z/7Z for the followings (no example of 7-rank ≥ 4 exists in the
interval considered):

x^3+x^2 -39666*x -2582719 7- torsion group : [7 ,7 ,7]
x^3+x^2 -43300*x -3411104 7- torsion group : [7^2 ,7 ,7]
x^3+x^2 -13226*x -508479 7- torsion group : [7^3 ,7 ,7]
x^3+x ^2 -427660*x -31551829 7- torsion group : [7^4 ,7 ,7]
x^3+x ^2 -2033484*x -966131001 7- torsion group : [7^2 ,7^2 ,7]

(ii) The sub-diagram given by the extension Kab/Kcyc, opens an access way for an
interpretation of the FAMC for even characters or at least for an annihilation
theorem of H ar

ϕ by Ẽϕ , in the spirit of Thaine’s theorem (see § 7.6, Conjectures

1, 2). Indeed, Ẽχ has same order as H ar
χ and the units may be seen diagonally

embedded in the (infinite) product of the places of K . Remark that Ẽϕ is a
sub-module ofRcyc

ϕ (quotientRϕ) but H ar
ϕ is the quotient of T ar

ϕ , byRϕ .

7.5 Annihilation conjecture for real p-class groups

Before any proof of the conjectural equality #H ar
ϕ = #Ẽϕ0

= #(EK /ÊKFK )ϕ0
(giving a

Main Theorem for ϕ ∈ Φ+
K ), it will be interesting to prove that any annihilator of

Ẽϕ0
annihilates H ar

ϕ , which will be more precise than the annihilators of T ar
ϕ (see

Theorem 6.2, Remarks 2, 5).
To our knowledge, the best known annihilation theorem of real p-class groups is

Thaine’s Theorem60, Washington (1997, Theorem 15.2) saying that any annihilator
of EK /F ′K (for a suitable definition of the group of cyclotomic units F ′K ) is an
annihilator of HK . But Thaine’s Theorem only concerns the semi-simple case.

Mention also annihilation theorems by Solomon61, which are not often optimal
because of vanishing of Euler factors; we have discussed this in Gras (2018a). Finally

60Thaine, 1988, “On the ideal class groups of real abelian number fields”.
61Solomon, 1992, “On a construction of p-units in abelian fields”.
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mention the numerous papers of Greither and Kučera, like Greither and Kučera
(2014, 2015, 2021), on the annihilation of real class groups, using special units
or/and giving information on the Fitting ideals.

Conjecture 1 – Let χ ∈X + be distinct from 1, let K = Kχ, and let ϕ | χ. Any element
of Z[µgχ ] (resp. Zp[µgχ ]) annihilating EK /ÊKFK (resp. (EK /ÊKFK )ϕ0

), annihilates Har
χ

(resp. H ar
ϕ ).

In this direction, we state the following lemma, giving some obvious prerequi-
sites on the subject.

Lemma 18 – Let MK , K = Kχ, be a torsion-free Z[GK ]-module such that MK ⊗Qp is
Qp[GK ]-monogenic and M′K a sub-module of finite index of MK such that Pχ(σχ)Z[GK ]

annihilates MK /M′K . Then (MK /M
′
K )ϕ :=((MK /M′K )⊗Zp)ϕ≃Zp[µgχ ]/p

λϕ
ϕ , λϕ ≥ 0, for

all ϕ | χ.

Proof. By assumption, MK /M′K is a finite Z[µgχ ]-module, of the form Z[µgχ ]/A,

A , 0; so MK /M
′
K ≃ (Z[µgχ ]/A) ⊗Zp, giving MK /M

′
K ≃

⊕
ϕ|χ

[
Zp[µgχ ]/p

λϕ
ϕ

]
, with

the usual correspondence between primes p | p and p-adic characters ϕ | χ; whence
the claim. □

Let MK := EK and M ′K := ÊKFK . Taking into account orders and the fact that
(Pχ(σχ)) annihilates EK /ÊKFK , the lemma is coherent with an annihilation theorem
of the H ar

ϕ ’s from the results of § 7.4.

Remark 6 – As the Referee pointed out about a possible confusion, the Galois-
module EK is not necessarily monogenic, as Galois module, in the non semi-simple
case. The reader may consider one of the two degree-9 cyclic fields K of conductor
19 · 229 (class groups Z/3Z from PARI), with principal cubic subfield k of con-
ductor 19; application of the Chevalley–Herbrand fixed-points formula62 in cyclic
p-extensions K/k,

#H g
K = #Hk ×

∏
q eq

[K : k] (Ek : Ek ∩NK/k(K×))
,

and the classicl exact sequence defining H g
K (obtained from the invariant class of

AK , A1−σ
K =: (αK ) 7→NK/k(αK ) =: εk),

1→ JK/kHk ·H ram
K −→H g

K −→ Ek ∩NK/k(K
×)/NK/k(EK )→ 1

(g = Gal(K/k) = ⟨σ⟩, eq is the ramification index, H ram
K is the subgroup of HK

generated by the ramified primes), lead, here, to #H g
K = #HK = 3, then (Ek :

Ek ∩NK/k(K×)) = 9 whence NK/k(EK ) = E 3
k , an obstruction for monogenicity of

EK . Theorem 14(ii ′′) gives EK = FK but wχ = 3.
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Only EK /ÊK and its quotients EK /ÊKFK are monogenic in the non semi-simple
case, which is the only property that we need in all the paper.

7.6 Mysterious link between cyclotomic units and classes

The brief overview, that we give now, must be completed by technical elements
that the reader can find especially in Washington (1997, § 15.2, 15.3) (all of them
borrow from classical arithmetic) and in the references that we talked about, giving
systematic generalizations of “Euler systems”.

To simplify, consider the real semi-simple case for p > 2 withK = Kχ of conductor
f ; for ϕ | χ, we need to establish arithmetic links between Ẽϕ = Eϕ/Fϕ and Hϕ ,
where Eϕ =: ⟨εϕ⟩Zp[µgχ ] and Fϕ =: ⟨ηϕ⟩Zp[µgχ ] is built from Leopoldt’s cyclotomic

units (Definitions 3). But Ẽϕ has, a priori, no obvious connection with class groups,

except the analytic equality
∏
ϕ|χ #Hϕ =

∏
ϕ|χ #Ẽϕ (Corollary 3).

The trick, for the proof of the FAMC, consists in using a context of “analytic
genus theory”, by means of auxiliary cyclic ℓ-ramified extensions K(µℓ) of degree
multiple of the exponent λpe, e ≥ 1, of HK .

Let ℓ ∤ f , ℓ ≡ 1 (mod 2λpN ), N ≫ e, totally split in K ; put L0 = Q(µℓ) and
L := L0K :

Let ηf ℓ = 1− ζf ℓ, ηf = 1− ζf , ηℓ = 1− ζℓ and consider the cyclotomic numbers

ηL := N
Q(µf ℓ)/L

(
ηf ℓ

)
, ηK := N

Q(µf )/K (ηf ); by assumption on the total splitting of ℓ

in K/Q, NL/K (ηL) = 1 (cf. Lemma 16). We remark that ηf ℓ ≡ ηf (mod πℓ) where
πℓ := ηℓ is an uniformizing parameter at the place above ℓ in L0, so that ηL ≡ ηK
(mod πℓ), giving a ℓ-adic link between ηK and ηL which will be fundamental for the
congruences (25):

Schema XI

⟨s⟩ ℓ − 1

GK
Q(µf ℓ)L

ηLπℓ
L0 =Q(µℓ) ηf ℓ

K
ηK

Q(µf )
ηf

Q

A main step is to apply Hilbert’s Theorem 90 (Kummer’s Theorem63), saying
that ηL = αs−1

L , where s is a generator of Gal(L/K) and αL ∈ L
× is such that (αL) ∈ I⟨s⟩L ,

62Chevalley, 1933, “Sur la théorie du corps de classes dans les corps finis et les corps locaux”,
pp. 402-406.

63Kummer, 1855, “Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke”, p. II.
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where I denotes ideal groups; since αL is defined modulo K×, we can take αL integer
in L, or at least ℓ-integer, whence:

(αL) = JL/K (aK )LΩℓ
0 , (22)

where aK ∈ IK may be taken prime to ℓ, where L0 is a fixed prime ideal dividing ℓ
in L and:

Ωℓ =
∑
τ∈GK rτ τ

−1, rτ ≥ 0; (23)

thus, since NL/K (L0) = l0, L0 | l0 | ℓ in L/K :

(αK ) := (NL/K (αL)) = aℓ−1
K l

Ωℓ
0 . (24)

But aℓ−1
K is principal, whence l

Ωℓ
0 principal, Ωℓ seen in Z[GK ].

The following property elucidates the “mysterious link” giving an information
that we can “project” on each ϕ-component of HK and obtain the annihilation of
the ϕ-class of l0 by the ϕ-component of Ωℓ:

Lemma 19 – Except a finite number of primes ℓ, the ideal LΩℓ
0 of (22) gives a non-

trivial relation, in the meaning that Ωℓ in (23) is not of the form λνL/L0
, λ ≥ 0, giving

l
Ωℓ
0 = (ℓ)λ in (24).

Proof. Assume that Ωℓ = λνL/L0
; the character of LΩℓ

0 = (πλℓ ) is the unit one and
any non-trivial ϕ-component αL,ϕ of αL is prime to ℓ, thus congruent, modulo any
L | ℓ, to ρl ∈Z, ρl . 0 (mod ℓ) (residue degrees 1 in L/Q). Since Ls = L, we obtain
ηL,ϕ = αs−1

L,ϕ ≡ 1 (mod L); but ηK,ϕ ≡ ηL,ϕ (mod πℓ) leads to ηK,ϕ ≡ 1 (mod l), for
all l | ℓ, giving ηK,ϕ ≡ 1 (mod ℓ) (absurd for almost all ℓ). □

Reducing modulo νL/L0
, one may get Ωℓ , 0, “minimal” in an obvious sense,

with rτ ≥ 0 but not all zero. Consider
ασL
π
rσ
ℓ

(prime to L0) modulo L0 for σ ∈ GK , and

the conjugations αsL = αLηL and
πsℓ
πℓ

=
1− ζ

gℓ
ℓ

1− ζℓ
≡ gℓ (mod πℓ), where gℓ is a primitive

root modulo ℓ such that ζsℓ =: ζ
gℓ
ℓ ; one gets: ασLπrσℓ

s =
αsσL
π
srσ
ℓ

≡
ησLα

σ
L

(gℓπℓ)rσ
≡
ησL
grσℓ

 ασLπrσℓ
 (mod L0),

whence
ησL
grσℓ
≡ 1 (mod L0) since

ασL
π
rσ
ℓ

is congruent to a prime-to-ℓ rational number:

grσℓ ≡ η
σ
L ≡ η

σ
K (mod l0), for all σ ∈ GK . (25)
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So we have obtained a non-trivial relation between the classes of the conjugates
of l0, computable from ηK and its conjugates; indeed, put ησK ≡ aσ ≡ gρσℓ (mod l0)
gives rσ ≡ ρσ (mod (ℓ − 1)) and an annihilation of HK by

∑
σ∈GK ρσσ

−1. Recall that
αL is also given by an explicit Hilbert resolvent allowing explicit computations.

Remarks 4 – (i) The properties of the αL’s give rise to an homomorphism of

Zp[GK ]-modules, FK /F
pN

K →Z/pNZ [GK ], allowing reasoning for the ϕ-comp-
onents. To get more information, one varies ℓ, using Chebotarev’s Theorem
and Nakayama’s Lemma. Then the problem of the #Hϕ’s needs the knowledge
of the whole analytic formula of Theorem 14 (see the details in Washington
(1997, § 15.2, 15.3), from Thaine’s Theorem).

(ii) We will return elsewhere to the links with genus theory given by the following
fixed-points exact sequence, obtained from the invariant class of AL, A1−s

L =:
(αL) 7→NL/K (αL) =: εK :

1→ cℓL(I⟨s⟩L )⊗Zp −→H
⟨s⟩
L −→ EK ∩NL/K (L×)/NL/K (EL)→ 1

and (in the present context totally ramified) the Chevalley–Herbrand formula,

#H ⟨s⟩L = #HK ×
pn ([K :Q]−1)

(EK :EK∩NL/K (L×)) and similar formulas in the sub-extensions of
L/K (noting that the exact sequence and Chevalley–Herbrand’s formula may
be written in terms of ϕ-objects without too difficulties; cf. Gras (2023b,
2024b) and Jaulent (1986)). The reason of such a link with genus theory is the
fact that, assuming FM = EM for the subfield M of L of degree p over K we
know that NL/M (FL) = FM = EM , so that the above exact sequence reduces to
H
⟨sp⟩
L = cℓL(I⟨s

p⟩
L )⊗Zp in L/M and #H ⟨s

p⟩
L = #HM × pn ([K :Q]−1).

(iii) Any “G -family of numbers η ” satisfying, in cyclic extensions L/K , relations of

the form NL/K (ηL) = η1−FrobL/K (ℓ)
K and ηL ≡ ηK (mod

∏
l|ℓ l), for suitable primes

ℓ, is called an “Euler system”64 and gives rise to similar reasonings in many
domains.

(iv) Equations of the general form NL/K (y) = NL/K (B), giving (y) = BAs−1, are
fundamental in various questions, as Greenberg’s conjecture, in a genus theory
framework (see Gras (2018b, § 3, Algorithm)). Such equations are due to some
x ∈ K×, local norm in L/K at the ℓ-places, such that (x) = NL/K (B), giving the
relation x = NL/K (y), for some unknown y (Hasse’s norm theorem in L/K). In
various papers, as in Gras (2019b, § 7.1), we have discussed these random
aspects by computing some ideals A, so that we may conjecture the following
more precise property (see Schemas 7.4, 7.4, Lemma 19, Relations (22)–(25)).
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Conjecture 2 – Let K be a real abelian field of conductor f , of p-class group such that
H

pe

K = 1 and let ηK := N
Q(µf )/K

(
1− ζf

)
. Consider primes ℓ ≡ 1 (mod 2pN ), totally

split in K , N ≫ e; let l0 | ℓ in K and let gℓ be a primitive root modulo ℓ. When ℓ varies,
ηK provides infinitely many elements Ωℓ =

∑
σ∈GK rσσ

−1, with ησK ≡ grσℓ (mod l0), such
that the ideal generated by these relations yields annihilators of the ϕ-components H ar

ϕ
as Zp[GK ]-modules and structure informations.

The program in Appendix A.5, for cyclic cubic fields, computes the invariants
ψ(Ωℓ) ∈Z[j], j := exp(2iπ/3), from the explicit expression

∑
σ∈GK ρσσ

−1 as we have
explained, only knowing ηK , and gives tables of results.

These numerical experiments are particularly remarkable and confirm that the
Ωℓ’s define an universal ΩK which replaces, in the real case, the Stickelberger
element of the imaginary case. For this, we notice that the embeddings (injectivity
from Gras (2005, Theorem III.4.4)) of FK and EK in the direct product

∏
v∤p(F×v ⊗Zp)

(see Schemas 7.4, 7.4) govern the congruences (25) giving the relations Ωℓ involving
only FK , without any memory of the arithmetic of the auxiliary fields Q(µℓ). Then,
the Schmidt–Chevalley theorem (or local–global principle for powers, e.g., Gras
(2005, § 6.3, Theorem II.6.3.3)) claims that there are infinitely many primes ℓ, totally
split in K , giving the “good” ΩK .

From Lemma 18 giving standard structure of Eϕ and Fϕ , it is then obvious that
one obtains equalities of the ϕ-invariants mar

ϕ of Eϕ/Fϕ and Hϕ in the semi-simple
case.

Are there improvements of these techniques being able to distinguish, for in-
stance, the structures Zp[µgχ ]/pϕ ×Zp[µgχ ]/pϕ and Zp[µgχ ]/p2

ϕ ?

Remark 7 – After the writing of this paper, we have considered the phenomenon of
capitulation of p-classes in auxiliary p-extensions L/K , L/Q abelian, to give another
approach of the FAMC in any real case (semi-simple or not). We develop, in Gras
(2023b, 2024b), new promising links between:

(i) the Chevalley–Herbrand formula giving the number of “ambiguous classes”
in p-extensions L/K , L ⊂ K(µℓ), for auxiliary primes ℓ ≡ 1 (mod 2pN ) totally
inert in K (of course, if K ∩Q(µp∞ ) = Q);

(ii) the phenomenon of capitulation of HK in L;

(iii) the real FAMC #H ar
ϕ = (EK : ÊKFK )ϕ0

for all ϕ | χ.

We prove that the real FAMC is trivially fulfilled as soon as HK capitulates in L and
conjecture that there exist infinitely many such primes ℓ leading to capitulation.

64Kolyvagin, 2007, Euler Systems;
Perrin-Riou, 1990, Travaux de Kolyvagin et Rubin;
Perrin-Riou, 1998, “Systèmes d’Euler p-adiques et théorie d’Iwasawa”.
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Computations with PARI programs support this new philosophy of the FAMC
and justifies, once again, the relevance of the analytic definitions given in the 1970’s,
especially in the non semi-simple case.

8 Invariants (Algebraic, Arithmetic, Analytic)

We fix an irreducible rational character χ ∈X =X + ∪X −, of order gχ , 1, and we

apply the previous results to the Zp[µgχ ]-modules H alg
ϕ , H ar

ϕ and T ar
ϕ , for any ϕ | χ

(ϕ ∈ Φ+ for T ar
ϕ ).

8.1 Algebraic and Arithmetic Invariants malg(M ), mar(M )

Write simply that H alg
ϕ , H ar

ϕ and T ar
ϕ are finite Zp[µgχ ]-modules whatever ϕ; let

pϕ be the maximal ideal of Zp[µgχ ]:
H

alg
ϕ ≃

∏
i≥1 Zp[µgχ ]

/
p
n

alg
ϕ,i (H )

ϕ ,

H ar
ϕ ≃

∏
i≥1 Zp[µgχ ]

/
p
nar
ϕ,i (H )

ϕ ,

T ar
ϕ ≃

∏
i≥1 Zp[µgχ ]

/
p
nar
ϕ,i (T )

ϕ ,

where the nϕ,i are decreasing integers up to 0. Put:
m

alg
ϕ (H ) :=

∑
i≥1n

alg
ϕ,i (H ), m

alg
χ (H ) :=

∑
ϕ|χm

alg
ϕ (H ),

mar
ϕ (H ) :=

∑
i≥1n

ar
ϕ,i (H ), mar

χ (H ) :=
∑
ϕ|χm

ar
ϕ (H ),

mar
ϕ (T ) :=

∑
i≥1n

ar
ϕ,i (T ), mar

χ (T ) :=
∑
ϕ|χm

ar
ϕ (T ).

Whence the order formulas:

#H alg
ϕ = pϕ(1)m

alg
ϕ (H ), #H ar

ϕ = pϕ(1)mar
ϕ (H ), #T ar

ϕ = pϕ(1)mar
ϕ (T ).

8.2 Analytic Invariants man(M )

We define, in view of the statement of the FAMC, the following Analytic Invariants
man
ϕ , from the expressions given with rational characters, where valp(•) denotes the

usual p-adic valuation; the purpose is to satisfy the necessary relations implied by
Theorems 3, 4 about arithmetic components:∑

ϕ|χ
mar
ϕ (M ) =

∑
ϕ|χ

man
ϕ (M ),

for any familyM ∈ {H ,T } and χ ∈X (cf. Theorems 7, 14, 12).
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Case ϕ ∈ Φ−, ϕ | χ, for imaginary class groups

Then, Algebraic and Arithmetic Invariants coincide. The definitions given in Gras
(1976, 1977b) for K = Kχ, χ , 1, were:

(i) Case p , 2 (proven in Solomon (1990, Theorem II.1)):

(i’) K is not of the form Q(µpn ), n ≥ 1; then:

• man
ϕ (H −) := valp

(∏
ψ|ϕ

(
−1

2 B1(ψ−1)
))

.

(i”) K = Q(µpn ), n ≥ 1; let ψ = ωλψp, ψp of order pn−1 (where ω is the Teich-
müller character and λ is prime to p − 1); then:

• man
ϕ (H −) := valp

(∏
ψ|ϕ

(
−1

2 B1(ψ−1)
))

, if λ , 1,

• man
ϕ (H −) := 0, if λ = 1.

(ii) Case p = 2 (proven by Greither65, in the case gχ non 2-power and fχ odd):

(ii’) gχ is not a 2-power; then:

• man
ϕ (H −) := val2

(∏
ψ|ϕ

(
−1

2 B1(ψ−1)
))

.

(ii”) gχ is a 2-power; then:

• man
ϕ (H −) := val2

(∏
ψ|ϕ

(
−1

2 B1(ψ−1)
))

+ 1, if K ,Q(µ4),

• man
ϕ (H −) := 0, if K = Q(µ4).

Case ϕ ∈ Φ+, ϕ | χ , 1, for real class groups

From Definition 3 and Theorem 14, we consider any real cyclic field K = Kχ, where
we recall that:

ÊK := ⟨Ek ⟩k&K , FK := CK ∩EK , EK := EK ⊗Zp, ÊK := ÊK ⊗Zp, FK := FK ⊗Zp, and

Ẽχ := EK /ÊKFK , for which Ẽχ = ⊕ϕ|χ(Ẽχ)ϕ0
.

Consider the relation #H ar
χ = wχ

∏
ϕ|χ #Ẽϕ = wχ

∏
ϕ|χ #(Ẽχ)ϕ0

of Theorem 14;
we remark that wχ = p occurs only when gχ is a p-power, in which case p is totally
ramified in Q(µgχ ) and ϕ = χ, i.e., ϕ0 = 1 (which defines wϕ := wχ).

So, we may define man
ϕ (H +) and wϕ from Ẽϕ ≃Zp[µgχ ]

/
p
man
ϕ (H +)

ϕ , man
ϕ (H +) ≥ 0, as

follows (where ℓ denotes any prime):

(i) Case gχ non p-power. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ).

(ii) Case gχ = pn, p , 2, n ≥ 1:

65Greither, 1992, “Class groups of abelian fields, and the main conjecture”, Theorem B.
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(ii’) Case where fχ is a ℓ-power. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ),

(ii”) Case where fχ is not a ℓ-power. Then wϕ = p and:

• man
ϕ (H +) := valp(#Ẽϕ) + 1.

(iii) Case gχ = 2n, n ≥ 1:

(iii’) Case where fχ is a ℓ-power. Then wϕ = 1 and:

• man
ϕ (H +) := val2(#Ẽϕ),

(iii”) Case where fχ is not a ℓ-power. Then wϕ ∈ {1,2} and:

• man
ϕ (H +) ∈ {val2(#Ẽϕ),val2(#Ẽϕ) + 1}.

Case ϕ ∈ Φ+ for real p-torsion groups

From Theorem 12, we define man
ϕ (T ) as follows (proven in Greither (1992, Theorem

C), when gχ is not a 2-power):

(i) Case where gχ or fχ are not p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1,ψ)

)
.

(ii) Case where gχ and fχ are p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1,ψ)

)
+ 1.

Note that for K ⊂ Q
cyc (case (ii)), TK = 1 for trivial reasons, in particular since

T
GK
K = 166.

8.3 Finite Abelian Main Conjecture

The conjecture we gave in Gras (1976, 1977b), especially in the non semi-simple
case, where simply equality of Arithmetic and Analytic ϕ-Invariants. The main
justification of such equalities comes from the easy Theorem 1 with the arithmetic
definitions of § 8.1, the analytic definitions of § 8.2 and the arithmetic expressions
of the χ-components that we recall:

(i) Theorem 7: Har
χ = 2αχ ·wχ ·

∏
ψ|χ

(
−1

2 B1(ψ−1)
)
, for χ ∈X −,

(ii) Theorem 12: #T ar
χ = w cyc

χ ·
∏
ψ|χ

1
2 Lp(1,ψ), for χ ∈X +,

66Gras, 2005, Class Field Theory: from theory to practice, corr. 2nd ed. Theorem IV.3.3.
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(iii) Theorem 14: #Har
χ = wχ · (EK : ÊKFK ), for χ ∈X +.

Taking into account the decompositionM ar
χ =

⊕
ϕ|χM

ar
ϕ (Theorem 5), they satisfy,

for familiesM ∈ {H −,H +, T }, the equalities:

•
∑
ϕ|χm

ar
ϕ (M ) =

∑
ϕ|χm

an
ϕ (M ), for all χ ∈X .

Moreover, the annihilation properties of Theorems 8, 9, 10, 6.2, enforce the conjec-
ture as well as reflection theorems that were given, after the Leopoldt’s Spiegelung-
satz, in Gras (1998) or Gras (2005, Theorem II.5.4.5) giving a more suitable com-
parison, for instance between H ar

ϕ and T ar
ωϕ−1 , ϕ ∈ Φ−, where ω is the Teichmüller

character. See also Oriat67 for similar informations and complements.

Conjecture 3 – For any p-adic irreducible character ϕ ∈ Φ , we have:m
ar
ϕ (H ) =man

ϕ (H ) (ϕ ∈ Φ+ ∪Φ−),

mar
ϕ (T ) =man

ϕ (T ) (ϕ ∈ Φ+).

Remark 8 – Let K/Q with a maximal p-sub-extension K/K0 cyclic of degree pn,
n ≥ 1, and let Ki , K0 ⊆ Ki ⊂ K , be such that [Ki : K0] = pi . Let ψ0 ∈ ΨK0

and

let ψp ∈ ΨK of order pn; we put ψi = ψ0ψ
pn−i
p ∈ ΨKi and we consider the p-adic

characters ϕi above ψi , 0 ≤ i ≤ n.
The Main Conjecture proven in Greither (1992, Theorem 4.14, Corollary 4.15),

using Sinnott’s cyclotomic units, deals with the semi-simple context defined by
ϕ0 above ψ0 (it is indeed that of the relations (4) which do not give each #H ar

ϕi

compared with #Ẽϕi ).
In other words, in his pioneering work, Greither proves, for each ϕ0 ∈ ΦK0

, the
relation

∑n
i=0m

ar
ϕi (H

+) =
∑n
i=0m

an
ϕi (H

+), instead of our conjecture mar
ϕi (H

+) =man
ϕi (H

+)

for all i ∈ {0,1, · · · ,n}. However see many improvements by Greither–Kučera68 and
some of their other papers.

Remark 9 – It remains the problem of #H alg
χ and #H alg

ϕ , for which no obvious
analytic formula does exist in the non semi-simple real case. For instance, in
Example 1Appendix A.2 on p. 175 with p = 3, K is the compositum of k0 = Q(

√
4409)

with the degree 9 field of conductor 19, χi = ϕi (i ∈ {0,1,2}) is the character of the

field ki of degree 2 · 3i ; then one gets H alg
χi
≃Z/3Z while H ar

χi
= 1, as predicted by

67Oriat, 1981, “Annulation de groupes de classes réelles”;
Oriat, 1986, “Lien algébrique entre les deux facteurs de la formule analytique du nombre de classes

dans les corps abéliens”.
68Greither and Kučera, 2014, “Eigenspaces of the ideal class group”;

Greither and Kučera, 2015, “Annihilators for the class group of a cyclic field of prime power degree
III”.
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the conjecture and checked numerically. In Example 2 Appendix A.2 on p. 178, one

finds H alg
χ1
≃ (Z/3Z)3 while H ar

χ1
≃ (Z/3Z)2.

Of course, formulas #H alg
χ0
×#H alg

χ1
×#H alg

χ2
= #H alg

K do not hold in general for
algebraic definition of class groups. See Remark 3.

This phenomenon is due to the capitulation of p-classes in p-extensions K/K0
and we have given in Gras (2022, Conjecture 4.1) a general conjecture justified by
means of many computations.

8.4 “Iwasawa’s theory” in cyclic p-extensions

For more details and an application to classical Iwasawa’s theory for the cyclo-
tomic Zp-extensions, see Gras (1976, Chap. IV), the real case being in the spirit
of Greenberg’s conjecture; nevertheless, the results hold in arbitrary totally ramified
cyclic p-extensions of an abelian field, as follows depending of a base field real or
imaginary:

Real case

Let ψ | ϕ | χ ∈ X + and set ψ = ψ0ψp, where ψ0 is of prime-to-p order g0 and ψp of
p-power order; then, for K = Kχ, GK = G0 ⊕H in an obvious meaning. We consider
the semi-simple idempotents eϕ0

:= 1
g0

∑
σ∈G0

ϕ0(σ−1)σ , for ϕ0 above ψ0. We have:

Ẽχ := EK /ÊKFK =
⊕
ϕ|χ
Ẽϕ =

⊕
ϕ|χ

(Ẽχ)ϕ0
;

we note that (ÊK )ϕ0
≃ Eϕ′ and Ẽϕ ≃ E

eϕ0
K /Eϕ′F

eϕ0
K , where ϕ′ is above ψ0ψ

p
p and χ′

above ϕ′ . This yields (EK /EKχ′ )ϕ = (EK /EKχ′ )ϕ0
≃Zp[µgχ ] (Gras (1976, Lemma IV.1))

and the following principle taking place in the layers Kn of p-tower K/K0, of degree
pN over an abelian field K0, and totally ramified (Gras (1976, Proposition IV.1)):

Theorem 15 – Let χ ∈X + be such that gχ = g0p
n, p ∤ g0, n ≥ 2. Let χ′ , χ′′ be such that

[Kχ : Kχ′ ] = [Kχ′ : Kχ′′ ] = p. To simplify, set K := Kχ, K ′ := Kχ′ , K ′′ := Kχ′′ and assume
that NK/K ′ (FK ) = FK ′ (see Lemma 16 giving the ramification conditions). Let pϕ be the
maximal ideal of Zp[µgχ ]; put (FK /FK ∩ EK ′ )ϕ ≃ pAϕ , A ≥ 0 and, in the isomorphism
(EK ′ /EK ′′ )ϕ′ ≃Zp[µgχ/p], put, for a,b ≥ 0:

(FK ′ /FK ′ ∩EK ′′ )ϕ′ ≃ paϕ′ ≃ p
pa
ϕ , (NK/K ′ (EK )/NK/K ′ (EK )∩EK ′′ )ϕ′ ≃ pbϕ′ ≃ p

pb
ϕ .

(i) If a < pn−2 (p − 1), then A = a− b.

(ii) If a ≥ pn−2 (p − 1), then A ≥ pn−2 (p − 1)− b.
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This allows to prove again Iwasawa’s formula in the case µ = 0, see Gras (1976,
Theorems IV.1, IV.2, Remark IV.4), and gives an analytic algorithm to study the
p-class groups in the first layers, as follows:

Let k =: k0 be real of prime-to-p degree g and let kcyc =
⋃
n≥0 kn be its cyclotomic

Zp-extension. The condition µ = 0 of Iwasawa’s theory is here equivalent to the
existence of n0 ≫ 0 (corresponding to a character χn0

of order g pn0 ) such that,
for each ϕn0

-component, an0−1 < p
n0−2 (p − 1) (case (i) of Theorem 15); then the

sequence #Hχn becomes constant giving the λ-invariant and the relations Ekn−1
=

Nkn/kn−1
(Ekn )Ekn−2

, for all n≫ 0; then pλ = (Ekn : ÊknFkn ) for n≫ 0. More precisely:

pλϕ = #(Ekn /Ekn−1
Fkn )ϕ0

, n≫ 0.

This methodology does exist in terms of p-adic L-functions for abelian fields
(see, e.g., Gras (1980, Chapitre V)).

Recall that Greenberg’s conjecture for a totally real base field k (i.e., λ = µ = 0)
is equivalent to the property that the norms Nkm/kn : Hkm → Hkn , m ≥ n ≫ 0 are
isomorphisms (see other equivalent conditions in Gras (2019a, Corollary 3.4)).
Whence the result:

Theorem 16 – Let k be a real abelian field of prime-to-p degree. Then, Greenberg’s
conjecture is equivalent to (Ekn : ÊknFkn ) = constant, for all n ≫ 0, where Êkn is the
subgroup of Ekn generated by the units of the strict subfields of kn and Fkn is the group of
Leopoldt cyclotomic units (Definitions 2 (i), 3).

Imaginary case

This part Gras (1976, Proposition IV.2, Théorème IV.2) is related to relative p-class
groups for p , 2 :

Theorem 17 – Let χ ∈ X − be such that gχ = g0p
n, p ∤ g0, n ≥ 2. Let χ′ be such that

[Kχ : Kχ′ ] = p. Set K := Kχ, K ′ := Kχ′ and assume that the Stickelberger elements BK ,
BK ′ are p-integers in Q[GK ] and that NK/K ′ (BK ) = BK ′ (see Lemma 16). Put: B1(ψ−1)Zp[µgχ ] = pAϕ , A ≥ 0,

B1(ψ−p)Zp[µgχ/p] = p
pa
ϕ , a ≥ 0.

(i) If a < pn−2 (p − 1), then A = a.

(ii) If a ≥ pn−2 (p − 1), then A ≥ pn−2 (p − 1).

Remark 10 – The integers A and a are the Analytic Invariants man
ϕ (H −) and man

ϕ′ (H
−),

respectively, defined § 8.2. From Gras (1976, Remark IV.4), the Iwasawa µ-invariant
is zero as soon as there exists n0≫ 0 such that the case (i) of the theorem is satisfied
for all ϕ of Kn0

. In a Zp-extension k̃/k, this condition implies that the p-rank of the
H ar
kn

’s is bounded, a well-known result of Iwasawa’s theory given in Washington
(1997, Proposition 13.23)).
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9 Illustrations of the real FAMC with cubic fields

9.1 Specific aspects of the cubic case

For χ ∈X +, χ , 1, and Ẽχ := EK /ÊKFK , we have #H ar
χ = wχ #Ẽχ (Theorem 14), and

for ϕ | χ we have, conjecturally:

#H ar
ϕ = wϕ #Ẽϕ = wϕ #(Ẽχ)ϕ0

, wϕ ∈ {1,p}.

In another way, we have:
Ẽϕ ≃Zp[µgχ ]

/
p
man
ϕ (H )

ϕ , man
ϕ (H ) ≥ 0,

H ar
ϕ ≃

rϕ⊕
i=1

Zp[µgχ ]
/
p
mar
ϕ,i (H )

ϕ , rϕ ≥ 0, mar
ϕ,i (H ) ≥ 0,

and mar
ϕ (H ) :=

∑rϕ
i=1m

ar
ϕ,i (H ) to be compared with man

ϕ (H ).
We intend to see more precisely what happens for these analytic and arithmetic

invariants since the above equality defining man
ϕ (H ) can be fulfilled in various ways;

indeed, Ẽϕ is monogenic and H ar
ϕ may have arbitrary structure.

We will examine the case of the cyclic cubic fields K for primes p ≡ 1 (mod 3)
giving two p-adic characters ϕ | χ; in that case, ÊK = 1 and #H ar

ϕ = #(EK /FK )ϕ ; here,
ϕ = ϕ0 (semi-simple case).

For example, for p = 7, the possible structures, for the Z[j]-module EK /FK , are
of the form (with m1,m2 ≥ 0 and a prime to 7):

Z[j]
/

[(−2 + j)m1 · (3 + j)m2 · a] ,

giving the two ϕi-components Z7/7m1Z7 and Z7/7m2Z7 (from [Z[j]/(−2 + j)m1 ]⊗Z7

and [Z[j]/(3 + j)m2 ⊗Z7]), for the Ẽϕ’s.

9.2 Theoretical aspects of the computations

The PARI program computing the cyclic cubic fields K is that given in Gras (2019a,
§ 6.1).

The main PARI instructions are K = bnfinit(P,1), where P (x) is the cubic polyno-
mial defining K , G = nfgaloisconj(P) = {x,g1(x),g2(x)} for the Galois group {1,σ ,σ2},
K.fu = {ε1(x), ε2(x)} for the set of two independent units, K.clgp giving the structure
of the class group.

A crucial fact, without which the checking of the ϕ-components of the Z[j]-
modules EK /FK and HK could be misleading, is the definition of a generator σ
of GK giving the correct conjugation g(x), both for the fundamental units, the
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cyclotomic ones and the elements of the class group (see more similar comments at
the beginning of Appendix A).

It is not too difficult to find, from K.fu, a “Minkowski unit” ε and its conjugate εσ

such that ⟨ε,εσ ⟩
Z

= EK , up to a prime-to-p index, with σ given by g(x); indeed, for
the evaluation of ε(x) and ε(g(x)), at a root ρ ∈R of P , we only have a set {ρ1,ρ2,ρ3}
given in a random order by polroot(P). Any change of root gives an inconsequential
permutation (ε,εσ ) 7→ (ετ , ετσ ), for some τ ∈ GK .

For security, we test Reg1 = Reg where Reg1 is the regulator of the units ε(ρ)
and ε(g(ρ)), computed with the root ρ, and where Reg = K.reg is the true regulator
given by PARI.

Then we must write the Leopoldt cyclotomic unit η of K of conductor f (Defini-
tion 3, formula (20)) under the form η = εα+βσ , α,β ∈Z, which is easy as soon as we
have η and ησ . But η is computed by means of the analytic expression of:

|C| =
∏

a∈[1,f /2[,σa |K =1

|ζa2f − ζ
−a
2f |,

as product of the |ζa2f − ζ
−a
2f | for the prime-to-f integers a < f /2 such that σa =(

Q(µf )/Q
a

)
∈ Gal(Q(µf )/K) (which is tested using a prime qa ≡ a (mod f ) giving

σa |K = 1 if and only if qa splits in K).

(i) If f is prime, ζ2f − ζ−1
2f generates the prime ideal above f ; thus:

π := N
Q(µf )/K (ζ2f − ζ−1

2f ) = ±C2

with π3 = f η′ , η′ ∈ EK , whence π3(1−σ ) = η′1−σ = η6 := (C1−σ )6 (Proposition 5);
the program computes 3ln(C)− 1

2 ln(f ) = 1
2 ln(η′), so that, to compute η from

η3 = (
√
η′)1−σ , we must divide the regulator RegC, built over the conjugates of

C, by 3, and multiply α + j β by 1−j
3 in that case where wχ = 1.

(ii) If f is composite, we have η = C obtained via the half-system and the class
number is the product of the index of units by wχ = 3, so this appear in the
results. Indeed, for the first example f = 13 · 97, P = x3 + x2 − 420x − 1728,
HK = Z/21Z, [EK : CK ] = 7, but α + j β = −3 − 2j of norm 7; for f = 32 · 307,
P = x3 −921x−10745, HK = Z/21Z×Z/3Z, [EK : CK ] = 21, but α+ j β = −5− j
of norm 21; but in these two cases one must multiply by wχ = 3.

(iii) To define the correct conjugation, ζ2f 7→ ζσ2f =: ζq2f , for some prime q, we use

the fundamental property of Frobenius automorphisms giving yFrob(q) ≡ yq
(mod q), for any q-integer y of K , if q is inert in K/Q; using xσ = g(x), we test
the congruence g(x)−xq (mod q) to decide if σ = Frob(q) or Frob(q)2, in which

case ζσ2f = ζq2f or ζq
2

2f , giving easily the conjugate ησ .
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Conclusion

The program and the numerical results are given in Appendix A.6. For all the
experiments, the real FAMC holds.

Conclusion

Standard probabilistic approaches may confirm (or not) the classical Cohen-Lenstra-
Malle-Martinet heuristics on p-class groups, especially in the non semi-simple case.
Indeed, heuristics on the order of the whole p-class group of K = Kχ are given
by that of the components H ar

ϕ which must be compatible with that obtained for

the (EK /ÊKFK )ϕ0
’s (where ϕ = ϕ0ϕp | χ = χ0χp and where eϕ0

is the semi-simple
idempotent associated to ϕ0; see Remark 1); a remarkable fact being that the
structures are independent, but with (EK /ÊKFK )ϕ0

monogenic and H ar
ϕ arbitrary

as Zp[µgχ ]-module, which means that heuristics on the structure of H ar
ϕ is another

probabilistic problem which clearly depends on that of the filtration that we have
studied in Gras (2017) and accessible to probabilities in the spirit of Koymans–
Pagano69 and Smith70 techniques.

Then, the main problem remains a proof of the FAMC in the non semi-simple real
case using Arithmetic ϕ-objects, especially a proof that for all abelian real field K ,
with a cyclic maximal p-sub-extension, we have, for all ϕ ∈ ΦK , ϕ0 , 1 (cf. § 8.2
when [K : Q] a p-power):

#H ar
ϕ = #(EK /ÊKFK )ϕ0

:= (EK /ÊKFK )eϕ0 ,

and:

(EK /ÊKFK )ϕ0
=

{
ε̃ ∈ EK /ÊKFK , ε̃Pϕ(σχ) = 1

}
;

this definition, using Pϕ(σχ) (but not Pϕ0
(σχ) !) instead of idempotents, may be more

convenient in practice.
As we have explained in Remark 7, new tools using auxiliary cyclotomic ex-

tensions K(µℓ), ℓ ≡ 1 (mod pN ), and capitulation of HK in these extensions proves
unconditionally the Finite Real Abelian Main Conjecture; unfortunately, this capitu-
lation conjecture (existence of infinitely many such ℓ’s) is not yet proved, but is very
attractive since it governs several other arithmetic properties and we believe in this
a lot.

A Numerical examples – PARI programs

As the referee pointed out to us, explicit computations in Galois fields K need to
define an embedding of Q in C, especially with PARI; so, let’s recall that PARI

69Koymans and Pagano, 2022, “On the distribution of Cl(K)[ℓ∞] for degree ℓ cyclic fields”.
70Smith, 2022, “The distribution of ℓ∞-Selmer groups in degree ℓ twist families”.
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works in Q[x]/(P ) for an irreducible monic polynomial P defining K and gives a
list G = nfgaloisconj(P), of the form {s1(x) = x, s2(x), . . . ,sg(x)}, g := #GK , an auto-
morphism σ ∈ GK being defined by means of x 7→ s(x), where s(x) ∈ Q[x] defines
a conjugate, but nfgaloisapply(K,G[i],G[j]) (where si = G[i],sj = G[j]) computes sisj ,
and so on.

Similarly, nfgaloisapply(K,G[i],E[j]) computes the corresponding conjugate of
the unit E[j].

For instance, for P = x3 − x2 −30 ∗ x−27 (K of conductor 7 ∗13), PARI gives
G = [x,−1/3 ∗ x2 + 1/3 ∗ x + 7,1/3 ∗ x2 −4/3 ∗ x−6].

In other words, if one chooses a root ρ of P , in the list polroots(P), this defines
an embedding and the evaluations x 7→ ρ in G allow suitable computations which,
of course, depend numerically of ρ.

But usual cyclotomic definitions work in Q(ζf ) ⊂ C by means of the choice of

ζf := exp
(

2iπ
f

)
, generating the subfield K . This is problematic when one also defines

K via PARI since it is ugly to express x, formal root of P , in terms of roots of unity;
so, in the programs, conjugates of cyclotomic units are computed from the ζf ’s, and
conjugates ζaf , a ∈ (Z/fZ)×, while the units of K are computed via the instruction
K.fu, and we must find the correspondence of the two systems, which may be rough
as we have explained § 9.2, but always possible. It is what we do in the forthcoming
explicit examples when we say, for instance, that for s1 ∈ G the s1-conjugate of
a cyclotomic unit Eta is Etaˆs1 = 945628377316488.87204143, and so on. This
explains that running the programs may give, for the user, results different from
ours, without any worries.

A.1 Exceptional congruences

The program verifies the exceptional congruence described in Proposition 1, for the
conductors f up to 104:

{for(m=5 ,10^4 , if(core(m)!=m,next);if(Mod(m ,9) !=-3, next);
f= quaddisc (m);PP=x^2-f;PM=x^2+f/3; KP= bnfinit (PP ,1);
KM= bnfinit (PM ,1);hP=KP.no;hM=KM.no;E=lift(KP.fu [1]);
t=abs( polcoeff (E ,0));u=abs( polcoeff (E ,1));X=lift(Mod(hP*t*u+hM ,3));
print ("f=",f ," t=",t ," u=",u ," h=",hP ," h ’=" ,hM ," htu+h ’=" ,X))}
f=24 t=5 u=1 h=1 h ’=1 htu+h ’=0
f=60 t=4 u=1/2 h=2 h ’=2 htu+h ’=0
f=33 t=23 u=4 h=1 h ’=1 htu+h ’=0
f=168 t=13 u=1 h=2 h ’=4 htu+h ’=0
f=204 t=50 u=7/2 h=2 h ’=4 htu+h ’=0
f=69 t =25/2 u=3/2 h=1 h ’=3 htu+h ’=0
(...)
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A. Numerical examples – PARI programs

A.2 Numerical examples about the gap H ar
χ v.s. H alg

χ

Let k = Q(
√
m) be a real quadratic field and let K be the compositum of k with a

cyclic extension L of Q of p-power degree, of prime conductor ℓ; the field K is of the
form Kχ for χ ∈X + which is also irreducible p-adic. We have given in Gras (2022)

many examples of capitulations of Hk in K , giving H ar
χ &H

alg
χ .

General PARI program

One must precise the prime p > 2, the minimal required p-rank rpmin of Hk , the
length N of the sub-tower of k(µℓ)/k considered and the interval for m; the program
uses primes ℓ (in ell) congruent to 1 modulo 2pN , up to Bell; the class group (resp.
the p-class group) is computed in Ck (resp. Ckp). To compute JK/k(Hk), we represent
the p-classes of k by prime ideals q | q inert in K/k.

{p=3; rpmin =1;N=2; bm =2; Bm =10^4; Bell =10^4;
for(m=bm ,Bm ,if(core(m)!=m,next);P=x^2-m;k= bnfinit (P ,1);
Ck=k.clgp;r= matsize (Ck [2]) [2]; Ckp=List;Ekp=List;rp =0;
for(i=1,r,ei=Ck [2][i]; vi= valuation (ei ,p);
if(vi >0,rp=rp +1; ai= idealpow (k,Ck [3][i],ei/p^vi);
listput (Ckp ,ai ,rp); listput (Ekp ,p^vi ,rp)));if(rp <rpmin ,next);L0=List;
for(i=1,rp , listput (L0 ,0,i)); forprime (ell =2,Bell ,
if(Mod(ell -1 ,2*p^N)!=0 || Mod(m,ell)==0 , next);
Lq=List;for(i=1,rp ,A=Ckp[i]; forprime (q=2 ,10^5 , if(q==ell ,next);
if( kronecker (m,q)!=1 || Mod ((ell -1)/ znorder (Mod(q,ell)),p)==0 , next);
F= idealfactor (k,q);qi= component (F ,1) [1]; cij=qi;for(j=1, Ekp[i]-1,
cij= idealmul (k,cij ,A);if(Mod(j,p)==0 , next);
if(List( bnfisprincipal (k,cij)[1]) ==L0 , listput (Lq ,q,i); break (2)))));
print (" ____ "); print (); print ("m=",m ," ell =",ell ," Lq=",Lq);
for(n=0,N,R= polcompositum (P, polsubcyclo (ell ,p^n))[1];K= bnfinit (R ,1);
print (); print ("C",n ,"=" ,K.cyc);for(i=1,rp ,Fi= idealfactor (K,Lq[i]);
Qi= component (Fi ,1) [1]; print ( bnfisprincipal (K,Qi)[1])))))}

We shall consider the base field k = Q(
√

4409) (i.e., m = 4409 in the program)
with ℓ = 19, then ℓ = 1747.

Example 1

Let L be the degree 9 subfield of Q(µ19); for convenience, put k0 := k, k1 := L1k0 (resp.
k2 := L2k0), where L1 (resp. L2) is the degree 3 (resp. 9) subfield of Q(µ19). The
prime 2 splits in k0, is inert in k2/k0 and such that Q0 | 2 in k0 generatesHk0

≃Z/9Z;
considering the extensions Qi = Jki /k0

(Q0) of Q0 in ki , we test its order inHki , i = 1,2;
we are going to see that Hki ≃ Z/9Z for all i, which is supported by the fact that
Nk2/k0

(Q2) = Q9
0 but Nk2/k0

(Hk2
) =Hk0

since k2/k0 is totally ramified at 19:

C0 =[9] [4] C1 =[9] [6] C2 =[9] [0]
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where more precisely, C0 = [9] denotes the class group of k0 and, using the instruc-
tion bnfisprincipal, [4] means that the class of Q0 | 2 is h4

0, where h0 is the generator
(of order 9) given in kn.cyc by PARI; then C1 = [9], [6], is similar for k1 in which
we see a partial capitulation since the class of Q1 = Jk1/k0

(Q0) becomes of order
3. Finally, C2 = [9], [0] shows the complete capitulation of Q0 in k2. The 18 large
integers below are the coefficients, over the PARI integral basis, of a generator of Q2
in k2:
[[0] ,[ -270476874595642910 ,323533824277028894 , -236208800298303000 ,

119737461690335806 , -255607858779215282 , -198423813102857420 ,
410588865020870414 , -110028179006577678 , -449600797918214026 ,
-4906665437527948 ,10274048566854232 ,4319852458093887 ,
13258715755947394 , -6817941144899095 , -15448507867705832 ,
2623003974789062 , -3264916449440532 , -16606126998680345]]

We use obvious notations for the characters defining the fields ki , i = 0,1,2.
Since arithmetic norms are surjective (here, they are isomorphisms), the above
computations prove that:

νk2/k1
(Hk2

) = Jk2/k1
◦Nk2/k1

(Hk2
) = Jk2/k1

(Hk1
) ≃Z/3Z,

since Nk2/k1
◦ Jk2/k1

(Hk1
) = H 3

k1
, or simply Jk2/k1

(Hk1
) = H 3

k2
(partial capitulation of

Hk1
≃Z/9Z). Whence:

H ar
χ2

= {x ∈Hk2
, Nk2/k1

(x) = 1} = 1, H alg
χ2

= {x ∈Hk2
, νk2/k1

(x) = 1} =H 3
k2
≃Z/3Z.

We have Pχ2
(σχ2

) = σ6
χ2

+ σ3
χ2

+ 1 = νk2/k1
(since L is principal, the norms νki /Li

do not intervene in the definition of the H alg
χi

’s).
Similarly, we have:

νk1/k0
(Hk1

) = Jk1/k0
◦Nk1/k0

(Hk1
) = Jk1/k0

(Hk0
) ≃Z/3Z

(partial capitulation of Hk0
≃Z/9Z); whence:

H ar
χ1

= {x ∈Hk1
, Nk1/k0

(x) = 1} = 1, H alg
χ1

= {x ∈Hk1
, νk1/k0

(x) = 1} =H 3
k1
≃Z/3Z.

Thus, the formula of Theorem 3 giving:

#Hk2
= #H ar

χ0
×#H ar

χ1
×#H ar

χ2

is of the form #Hk2
= 9× 1× 1, then #Hk1

= 9× 1 since H ar
χ0

=Hk0
.

These formulas are not fulfilled in the algebraic sense, because:

#H alg
χ0
×#H alg

χ1
= 9× 3 = 33, #H alg

χ0
×#H alg

χ1
×#H alg

χ2
= 9× 3× 3 = 34.

Now we intend to check #H ar
χ1

= #(Ek1
/Êk1
Fk1

) (analytic formula of Theorem 14);
in the general definition, FK denotes the Leopoldt group of cyclotomic units of K ,
ÊK the group of units generated by the units of the strict subfields of K .
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We give numerical values of the non independent units |e0 | of k0, |ei | of L1, |Ej |
of k1, and their logarithms; they are, respectively, using standard PARI programs:

Units Logarithms
e0 =664.00150602068057486397714386165380 6.49828441757729630972016
e1 =0.2851424818297853643941198735306274 -1.25476628739511494204754
e2 =4.5070186440929762986607999237156780 1.50563588039686576534798
E1 =0.2851424818297853643941198735306274 -1.25476628739511494204754
E2 =0.2218761622631909342666800501850506 -1.50563588039686576534798
E3 =664.00150602068057486397714386165380 6.49828441757729630972016
E4 =945628377316488.87204143428389231544 34.4828707719825581974318
E5 =0.0025736519075274654929993463127951 -5.96242941301396593243487

Cyclotomic units :
{f =19*4409; z=exp(I*Pi/f);g1=lift(Mod (74956 ,f)^2);
g2=lift(Mod (4410 ,f)^3);frob =1; for(s=1,6, frob=lift(Mod (3* frob ,f));
Eta =1;
for(k=1 ,(4409 -1) /2, for(j=1 ,(19 -1) /3,as=lift(Mod(g1^k*g2^j*frob ,f));
if(as >f/2, next);Eta=Eta *(z^as -z^-as)));
print (" Eta^s",s ,"=" ,Eta ," ",log(abs(Eta))))}

Eta^s1 =945628377316488.87204143428 34.4828707719825581974318471
Eta^s2 =2433718277092.6834663091300 28.5204413589685922649969695
Eta^s3 =0.0025736519075274654929993 -5.96242941301396593243487762
Eta^s4 =1.0574978754738804652063 E -15 -34.4828707719825581974318471
Eta^s5 =4.1089390231091111982824 E -13 -28.5204413589685922649969695
Eta^s6 =388.55293409150677930552135 5.96242941301396593243487762

One obtains easily the following relations:

E1=e1 , E2=e2^-1, E3=e0 , E4 ^2= Eta^s, E5 ^2= Eta^-1,
Eta ^{s^3+1}=1 , Eta ^{s^2-s+1}=1 , giving : Eta ^(s^2)=E4 ^2* E5 ^2.

Then, one gets (Ek1
: Êk1
Fk1

) = (Ek1
: Ek0
EL1
Fk1

) = 1 as expected since H ar
χ1

= 1.
Moreover, we see that the conjugates of the cyclotomic units are not independent
(due, from Lemma 16, to norm relations in ki /k0 and ki /Li since 19 splits in k0
and 4409 splits in the Li ’s), but, with our point of view, this does not matter since
Êk1

is of Z3-rank 3 and Fk1
is of Z3-rank 2. Indeed, these relations lead to some

difficulties in χ-formulas of the literature using larger groups of cyclotomic units like
Sinnott’s cyclotomic units (see Remark 3).

To be complete, compute the classical index of Fk0
=: ⟨η0⟩ in Ek0

:

{f =4409; z=exp(I*Pi/f);Eta0 =1;g= znprimroot (f)^2; for(k=1 ,(f -1) /2,
a=lift(g^k);if(a>f/2, next);Eta0=Eta0 *(z^a-z^-a)/(z^(3*a)-z^ -(3*a)));
print (" Eta0 =",Eta0 ," log(Eta0)=", log(abs(Eta0)))}
Eta0 =3.985459685929 E -26 log(Eta0) = -58.484559758195

giving immediately log(Eta0) = −9 ∗ log(e0) from the above computation of log(e0);
whence #H ar

χ0
= (Ek0

: Êk0
Fk0

) = (Ek0
: Fk0

) = 9; obviously, 9 is the annihilator of
Ek0

/Fk0
and H ar

χ0
(Conjecture 1).
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The verification of (Ek2
: Êk2
Fk2

) = 1 is analogous since Fk2
is of Z3-rank 8, with

Nk2/k1
(Fk2

) = Fk1
, Nk2/k0

(Fk2
) = 1, Nk2/L2

(Fk2
) = 1.

Example 2

Consider the same framework, replacing 19 by the prime 1747; one obtains data
showing, as before with Q0 | 2, a partial capitulation of Hk0

in k1 (but Hk1
is not

cyclic):
C0 =[9] [4] C1 =[9 ,3 ,3] [6 ,0 ,0]

One verifies that the ideal Q1, extending Q0 in k1, is non-principal and such
that its class is h6

1 h0
2 h0

3 on the PARI basis {h1, h2, h3}:
bnfisprincipal (K ,[2 , [ -1 ,0 ,0 ,1 ,0 ,0] ,1 ,3 ,[0 ,0 ,0 ,1 ,0 ,0]]) = [6 ,0 ,0]

but its 6-power gives as expected the principality and a generator:
bnfisprincipal (K ,[64 ,0 ,0 ,21 ,0 ,0;0 ,64 ,0 ,0 ,0 ,42;0 ,0 ,64 ,0 ,21 ,0;0 ,0 ,0 ,
1 ,0 ,0;0 ,0 ,0 ,0 ,1 ,0;0 ,0 ,0 ,0 ,0 ,1])
=[[0 ,0 ,0] ,[8217190756304871153969213 ,526028282779527429138218 ,

-687786029075595676594134 ,251301709772155482917577 ,
-21032376402967976888126 , -15609327127430752932511]]

The kernel of the arithmetic norm is isomorphic to Z/3Z×Z/3Z, thus: H
ar
χ1

= {x ∈Hk1
, Nk1/k0

(x) = 1} ≃Z/3Z×Z/3Z,

H
alg
χ1

= {x ∈Hk1
, νk1/k0

(x) = 1} ≃Z/3Z×Z/3Z×Z/3Z.

since the transfer map applies H ar
χ0
≃Z/9Z onto ⟨h6

1⟩.
Formula of Theorem 3 is of the form #Hk1

= #H ar
χ0
×#H ar

χ1
= 9× 9, since we have

H ar
χ0

=Hk0
of order 9; of course a same formula with the H alg’s does not exist since

#H alg
χ0
×#H alg

χ1
= 9× 27.

Varying ℓ ≡ 1 (mod 9)

The program gives the following other results, for k = Q(
√

4409), varying only ell,
where q is the prime split in k0 = k and inert in k2:
ell =37 q=2 C0 =[9] [4] C1 =[18] [6] C2 =[18] [0]
ell =73 q=2 C0 =[9] [4] C1 =[9] [6] C2 =[171] [0]
ell =109 q=5 C0 =[9] [1] C1 =[9] [6] C2 =[9] [0]
ell =127 q=23 C0 =[9] [4] C1 =[9] [6] C2 =[9] [0]
ell =163 q=2 C0 =[9] [4] C1 =[54] [12] C2 =[54] [18]
ell =181 q=2 C0 =[9] [4] C1 =[27] [12] C2 =[81] [63]
ell =199 q=2 C0 =[9] [4] C1 =[9 ,3] [6 ,0] C2 =[27 ,3] [9 ,0]

The image ofHk0
in k1 is of order 3, except for ℓ ∈ {163,181}; thenHk0

capitulates
in k2, except for ℓ ∈ {163,181,199}. One verifies that formula of Theorem 3 holds

with the #H ar
ki

’s but not for the #H alg
ki

’s.
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A.3 Computation of #Hχ for K = Q(µ47)

Let K := Kχ be the field Q(µ47), of degree gχ = 46. From Theorem 7, we have #Hχ =

2αχ ·wχ ·
∏
ψ|χ

(
−1

2 B1(ψ−1)
)

with in that case αχ = 0, wχ = 47 where −1
2 B1(ψ−1) =

−1
2
∑46
a=1

(
a

47 −
1
2

)
ψ−1(σa) = −1

2
∑46
a=1

a
47 ψ

−1(σa).

Let’s compute #Hχ = 47 ·N
Q(µ46)/Q

(
−1

2
∑46
a=1

a
47 ψ

−1(σa)
)
:

{P= polcyclo (46);g=lift( znprimroot (47));A=0; for(n=0 ,45 ,
a=lift(Mod(g ,47)^n);A=A+x^n *(1/47*a -1/2) );B=Mod ( -1/2*A,P);
print ("47* Norm(B)=" ,47* norm(B))}
47* Norm(B)=139

Note that −47
2 B1(ψ−1) is, writing x = ζ46, the PARI integer:

4*x ^21+25* x ^20+9* x ^19+26* x^18 -19*x ^17+11* x^16 -22*x^15
+x^14 -24*x ^13+10* x ^12+6* x ^11+16* x^10 -21*x ^9+20* x^8
+8*x ^7+7* x^6 -4*x ^5+14* x^4 -12*x ^3+3* x ^2+14* x+27

Whence #Hχ = 139 and Hχ ≃ Z[µ46]/p139. Since Λχ = 47, the ideal AK is
(σa − a,47), with for instance a = 5 (Lemma 14), and then AK × 1

2 BK annihilates Hχ;
since the image of AK × 1

2 BK is the ideal
(

1
2 B1(ψ−1)

)
= p139, the annihilator of Hχ is

p139. But this ideal is not principal in Q(µ46):

{L= bnfinit ( polcyclo (46));F= idealfactor (L ,139) ;
print ( bnfisprincipal (L, component (F ,1) [1]) [1])}
[2]

showing that its class is the square of the PARI generating class. More precisely, the
class group of Q(µ46) = Q(µ23) is equal to 3; then any q47 | 47 or q139 | 139 generates
this class group.

A.4 Computation of annihilators of torsion groups TK
Consider, for p = 7, the cubic field K of conductor f = 2557 defined by the polyno-
mial P = x3 + x2 − 852x + 9281; then, using the main program of Appendix A.6, one
obtains:

HK ≃Z[j]/(1− 2j)Z[j] and EK /FK ≃Z[j]/(1− 2j)Z[j],

where (1− 2j)Z[j] is a prime p dividing 7, and TK ≃Z/72
Z×Z/7Z .

The following program, only valid for prime conductors f , computes the an-
nihilator AK (c) of TK ; it defines the classes σ kGal(Q(µ

f pN
)/K), k = 0,1,2, of Artin

symbols, giving AK (c) = A0 +A1σ +A2σ
2, then β := A0 −A2 + (A1 −A2) j, yielding

(β) = pu1p
v
2 in Z[j], up to a prime-to-p ideal:

{p=7;f =2557; N=4; pN=p^N;fpN=f*pN;c=lift( znprimroot (f));cm=Mod(c,fpN)^ -1;
g= znprimroot (f);lg=lift(Mod ((1 - lift(g))/f,pN));g=Mod(lift(g)+lg*f,fpN);
g3=g^3;G= znprimroot (pN);lG=lift(Mod ((1 - lift(G))/pN ,f));
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G=Mod(lift(G)+lG*pN ,fpN);A0 =0; A1 =0; A2 =0; for(k=1 ,(f -1) /3,
for(j=1,p^(N -1) *(p -1) ,A=g3^k*G^j;gA=g*A;ggA=g^2*A;
a=lift(A);aa=lift(A*cm);la =( aa*c-a)/fpN;A0=A0+la*Mod(a,pN)^ -1;
a=lift(gA);aa=lift(gA*cm);la =( aa*c-a)/fpN;A1=A1+la*Mod(a,pN)^ -1;
a=lift(ggA);aa=lift(ggA*cm);la =( aa*c-a)/fpN;A2=A2+la*Mod(a,pN)^ -1));
print (A0 ," ",A1 ," ",A2)}
Mod (184 , 2401) Mod (1526 , 2401) Mod (643 , 2401)

Modulo 74, A0 = 184, A1 = 1526 and A2 = 643; this yields the ideal (1−2j)3 = p3.
Necessarily, TK ≃ Z[j]/p2 ×Z[j]/p. We note that the annihilator is p3 (and not p2)
although the structure is not Z[j]/p3.

A.5 Computation of the invariants of ψ(Ωℓ)

The program computes, for cyclic cubic fields, the ψ(Ωℓ) = r1 − r2 − (r1 + 2r2) j only
with the knowledge of ηK ; here, the PARI notations become Ωℓ =: r1 + r2σ−1 + r3σ−2,
with r1 +r2 +r3 ≡ 0 (mod (ℓ−1)) because of relation (25) with NK/Q(ηK ) = 1), whence
ψ(Ωℓ) with ψ(σ ) = j; taking a primitive root gℓ modulo ℓ, the rσ ’s come from the
PARI instructions r = znlog(L[j],g), where the L[j]’s are the rationals aσ such that
ησK ≡ aσ (mod l0) in K (we use the results of Appendix A.6 to compute ηK = εα+βσ

K
and HK ).

The line Orders of components of cl(Lell) of the form (pu ,pv , ··) means that the
components of the p-class of l0, on the PARI system of generators of HK , are of
orders pu , pv , · · ·; one sees that the annihilator Ωℓ is independent on these orders,
but it is clear that, using Chebotarev’s theorem, any set of components may be
obtained.
{p=7;n=3;P=x^3+x ^2 -884540*x -393129; alpha = -112; beta = -70;
Q=y^2+y+1;k= bnfinit (Q);J=Mod(y,Q);pi= idealfactor (k,p);
pi1= component (pi ,1) [1]; pi2= component (pi ,1) [2];
K= bnfinit (P ,1);G= nfgaloisconj (P);CK=K.cyc;d= matsize (CK)[2];
CKp=List;for(i=1,d,h=p^ valuation (CK[i],p); listput (CKp ,h,i));
print ("P=",P ," p- class group =", CKp);
E=K.fu;E1=E[1]; E2= nfgaloisapply (K,G[2] ,E[1]);
F1=E1^ alpha *E2^beta;F2= nfgaloisapply (K,G[2] , F1);
F1=lift(F1);F2=lift(F2); forprime (ell =1 ,5*10^5 ,
if(Mod(ell ,p^n)!=1 || matsize ( factor (P+O(ell)))[1]!=3 , next);
g= znprimroot (ell);Lell= component ( idealfactor (K,ell) ,1) [1];
F10=Mod( polcoeff (F1 ,0) ,ell);F11=Mod( polcoeff (F1 ,1) ,ell);
F12=Mod( polcoeff (F1 ,2) ,ell);Eta1=lift(F12*x^2+ F11*x+F10);
F20=Mod( polcoeff (F2 ,0) ,ell);F21=Mod( polcoeff (F2 ,1) ,ell);
F22=Mod( polcoeff (F2 ,2) ,ell);Eta2=lift(F22*x^2+ F21*x+F20);
Leta=List; listput (Leta ,Eta1 ,1); listput (Leta ,Eta2 ,2);L=List;
for(i=1,2,A=Mod(Leta[i],P);for(a=1,ell -1,v= idealval (K,A-a,Lell);
if(v>0, listput (L,a,i))));Lr=List;for(i=1,2,r= znlog (L[i],g);
listput (Lr ,r)); print (); print (" ell =",ell ," Omega =",Lr);
X=Lr [1] - Lr [2]+( - Lr [1] -2* Lr [2])*J;
w1= idealval (k,X,pi1);w2= idealval (k,X,pi2);
Y= alpha +beta*J;W1= idealval (k,Y,pi1);W2= idealval (k,Y,pi2); print
(" Cyclotomic invariants =",W1 ,",",W2 ," Omega invariants =",w1 ,",",w2);
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Exp=List; Order = bnfisprincipal (K,Lell)[1]; for(i=1,d,
tp= valuation (CK[i],p);if( Order [i]==0 , Or =1);if( Order [i]!=0 ,
t= valuation ( Order [i],p);Or=p^(tp -t)); listput (Exp ,Or));
print (" Orders of components of cl(Lell)=", Exp))}

For P = x3 + x2 − 884540x − 393129 (conductor f = 2653621, α = −112, β = −70),
the ϕ-components of HK for p = 7 are Hϕ1

≃ Z7[j]/pϕ1
, Hϕ2

≃ Z7[j]/p3
ϕ2

; we have

Ẽϕ1
≃Z7[j]/pϕ1

, Ẽϕ2
≃Z7[j]/p3

ϕ2
.

P=x^3+x ^2 -884540*x -393129 p- class group =List ([343 ,7])
conductor f =2653621

ell =1373 Omega =List ([1162 , 1246])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =7547 Omega =List ([6888 , 1526])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =8233 Omega =List ([6496 , 742])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([49 , 7])

ell =18523 Omega =List ([11830 , 12586])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 1])

ell =22639 Omega =List ([4004 , 13104])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =30871 Omega =List ([27734 , 5390])
Cyclotomic invariants =1 ,3 Omega invariants =2 ,3
Orders of components of cl(Lell)=List ([343 , 1])

ell =39103 Omega =List ([32018 , 35812])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([49 , 7])

ell =42533 Omega =List ([1330 , 17262])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =54881 Omega =List ([44366 , 18662])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([49 , 7])

ell =58997 Omega =List ([5236 , 21938])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =72031 Omega =List ([24276 , 51884])
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Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =76147 Omega =List ([17066 , 25606])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =80263 Omega =List ([22036 , 79352])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

ell =93983 Omega =List ([69174 , 5558])
Cyclotomic invariants =1 ,3 Omega invariants =1 ,3
Orders of components of cl(Lell)=List ([343 , 7])

For P = x3 − 4792107x + 4022175142 (f = 32 · 1597369, α = −7, β = −21),
the ϕ-components of HK are Hϕ1

≃ Z7[j]/pϕ1
×Z7[j]/pϕ1

and Hϕ2
≃ Z7[j]/pϕ2

;

nevertheless, we have Ẽϕ1
≃Z7[j]/p2

ϕ1
(non-isomorphic toHϕ1

) and Ẽϕ2
≃Z7[j]/pϕ2

.
But almost all Ωℓ give the expected response (2,1) whatever the order of the

p-class of l0 | ℓ:
P=x^3 - 4792107* x + 4022175142 p- class group =List ([7 ,7 ,7])
conductor f =9*1597369

ell =1373 Omega =List ([917 , 1267])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =8233 Omega =List ([1141 , 3535])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 1, 7])

ell =49393 Omega =List ([41069 , 39277])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([1 , 7, 1])

ell =54881 Omega =List ([14357 , 31311])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,2
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =63799 Omega =List ([53977 , 53767])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =76147 Omega =List ([44912 , 73514])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([1 , 7, 7])

ell =80263 Omega =List ([20328 , 16387])
Cyclotomic invariants =2 ,1 Omega invariants =3 ,1
Orders of components of cl(Lell)=List ([1 , 7, 7])

(...)
ell =329281 Omega =List ([311136 , 189770])
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Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =331339 Omega =List ([157696 , 276465])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =343687 Omega =List ([174391 , 82173])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,2
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =363581 Omega =List ([204974 , 276584])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =384847 Omega =List ([254100 , 68887])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =396509 Omega =List ([114947 , 1540])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =403369 Omega =List ([11361 , 206458])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =408857 Omega =List ([364287 , 259343])
Cyclotomic invariants =2 ,1 Omega invariants =5 ,1
Orders of components of cl(Lell)=List ([7 , 7, 1])

ell =415717 Omega =List ([239225 , 363657])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 1, 7])

ell =417089 Omega =List ([327908 , 33957])
Cyclotomic invariants =2 ,1 Omega invariants =3 ,4
Orders of components of cl(Lell)=List ([1 , 7, 7])

ell =419147 Omega =List ([17059 , 339451])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([1 , 1, 1])

ell =426007 Omega =List ([161434 , 215859])
Cyclotomic invariants =2 ,1 Omega invariants =2 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

ell =456877 Omega =List ([361697 , 10010])
Cyclotomic invariants =2 ,1 Omega invariants =3 ,1
Orders of components of cl(Lell)=List ([7 , 7, 7])

For ℓ = 419147, one gets the first example where any prime ideal l | ℓ is principal:

bnfisprincipal (K,Lell)=
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[0 ,0 ,0] ,[1311001361541054679 ,35057663364174 ,1019317530188062]

but the invariants of Ωℓ are still (2,1) giving #Hϕ1
= 72 and #Hϕ2

= 7.

A.6 Illustrations of the FAMC

We intend to illustrate the FAMC with cyclic cubic fields and p ≡ 1 (mod 3) giving
two p-adic characters (of course, it is now a Theorem and we shall speak of the
“Finite Abelian Main Theorem”); then statistics may have some interest.

The general PARI program

The program is the following and we explain, with some examples, how to use the
numerical results checking the Finite Abelian Main Theorem; hmin = pvp means
that the program only computes fields with p-class groups CKp of order at least pvp;
then bf,Bf define an interval for the conductors f of the cyclic cubic field. Other
indications are given in the text of the program:

\p 50
{p=7; \\ Take any prime p congruent to 1 modulo 3
bf =2; Bf =10^6; hmin=p^2;
\\ Arithmetic of Q(j), j^2+j +1=0:
S=y^2+y+1; kappa = bnfinit (S);Y= idealfactor (kappa ,p);

\\ Decomposition (p)=P1*P2 in Z[j]:
P1= component (Y ,1) [1]; P2= component (Y ,1) [2];
\\ Iteration over the conductors f in [bf ,Bf ]:
for(f=bf ,Bf ,vf= valuation (f ,3);if(vf !=0 & vf !=2 , next);
F=f/3^ vf;if(core(F)!=F,next);F= factor (F);Div= component (F ,1);
d= matsize (F)[1]; for(j=1,d,D=Div[j]; if(Mod(D ,3) !=1 , break ));
\\ Computation of solutions a and b such that f=(a ^2+27* b^2) /4:
\\ Iteration over b, then over a:
for(b=1, sqrt (4*f/27) ,if(vf ==2 & Mod(b ,3) ==0 , next);A=4*f -27*b^2;
if( issquare (A ,&a)==1 ,
\\ computation of the corresponding defining polynomial P:
if(vf ==0 , if(Mod(a ,3) ==1 ,a=-a);P=x^3+x^2+(1 -f)/3*x+(f*(a -3) +1) /27);
if(vf ==2 , if(Mod(a ,9) ==3 ,a=-a);P=x^3-f/3*x-f*a/27);
K= bnfinit (P ,1); \\ PARI definition of the cubic field K
\\ Test on the p- class number #CKp regarding hmin:
if(Mod(K.no ,hmin)==0 , print ();
G= nfgaloisconj (P); \\ Definition of the Galois group G
\\ Frob = Artin symbol defining the PARI generator sigma =G[2]:
forprime (q=2 ,10^4 , if(Mod(f,q)==0 , next);
Pq= factor (P+O(q));if( matsize (Pq)[1]==1 , Frob=q; break ));X=x^Frob -G[2];
if( valuation (norm(Mod(X,P)),Frob)==0 , Frob=lift(Mod(Frob ^2,f)));
E=K.fu;Reg=K.reg; \\ Group of units , Regulator
\\ We certify that a suitable PARI unit is a Z[G]- generator of E_K:
E1=lift(E[1]);E2=lift( nfgaloisapply (K,G[2] ,E[1]));
Root= polroots (P);Rho=real(Root [1]); \\ Selecting a root of P
e1= abs( polcoeff (E1 ,0)+ polcoeff (E1 ,1)*Rho+ polcoeff (E1 ,2)*Rho ^2);
e2= abs( polcoeff (E2 ,0)+ polcoeff (E2 ,1)*Rho+ polcoeff (E2 ,2)*Rho ^2);
l1=log(e1);l2=log(e2);Reg1=l1 ^2+ l1*l2+l2 ^2; quot=Reg1/Reg;
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print (quot); \\ This quotient must be equal to 1
\\ Computation of the cyclotomic units C1 ,C2= sigma (C1):
z=exp(I*Pi/f);C1 =1; C2 =1;
\\ Case of a prime conductor f using (Z/fZ)^* cyclic ):
if( isprime (f)==1 ,g= znprimroot (f)^3;
\\ Description of a half - system :
for(k=1 ,(f -1) /6,gk=lift(g^k);sgk=lift(Mod(gk*Frob ,f));
C1=C1 *(z^gk -z^-gk);C2=C2 *(z^sgk -z^-sgk));

\\ Logarithms of C1 ,C2:
L1 =3* log(abs(C1))-log(f)/2; L2 =3* log(abs(C2))-log(f)/2;
\\ computation of the cyclotomic regulator and of the index Quot =(E:F):
RegC=L1 ^2+ L1*L2+L2 ^2; Quot =1/3* RegC/Reg); \\ Division by 3 of RegC
\\ Case of a composite conductor :
if( isprime (f)==0 , for(aa =1 ,(f -1) /2,if(gcd(aa ,f)!=1 , next);
\\ Search of a prime qa congruent to a modulo f, split in K:
qa=aa; while ( isprime (qa)==0 , qa=qa+f);
if( matsize ( idealfactor (K,qa))[1]==1 , next);
\\ The Artin symbol of aa fixes K:
C1=C1 *(z^aa -z^-aa);C2=C2 *(z^( Frob*aa)-z^-( Frob*aa)));
L1=log(abs(C1));L2=log(abs(C2)); \\ Logarithms of C1 ,C2
\\ computation of the cyclotomic regulator and the index Quot =(E:F):
RegC=L1 ^2+ L1*L2+L2 ^2; Quot=RegC/Reg);
\\ printing of the basic data of K:
print ("P=",P ," f=",f ,"=" , factor (f) ," (a,b)=" ,"(" ,a,",",b")",
" class group =",K.cyc ," sigma =", Frob); print (" Index [E_K:C_K ]=" , Quot);
\\ Annihilator alpha + sigma .beta of the quotient E/C:
alpha =(( log(e1)+log(e2))*L1+log(e2)*L2)/Reg;
beta =( log(e2)*L1 -log(e1)*L2)/Reg;

\\ In the prime case one multiply alpha +j.beta by (1-j)/3:
if( isprime (f)==1 ,
alpha0 =( alpha +beta)/3;
beta0 =(- alpha +2* beta)/3; alpha = alpha0 ;beta= beta0 );
\\ Writing of alpha and beta as reals for checking :
print ("( alpha ,beta)=" ,"(" , alpha ,", ",beta ,") ");
\\ Computation of alpha and beta as integers :
alpha =sign( alpha )* floor (abs( alpha )+10^ -6);
beta=sign(beta)* floor (abs(beta)+10^ -6);
\\ Class group (r = global rank;rp = p-rang;expo = exposant of CKp)
\\ vp = valuations of CKp , ve = valuation of the exponent expo of CKp:
CK=K.clgp;r= matsize (CK [2]) [2]; CKp=List;EKp=List;rp =0; vp =0; ve =0;
for(i=1,r,ei=CK [2][i]; vi= valuation (ei ,p);
if(vi >0,rp=rp +1; vp=vp+vi;ve=max(ve ,vi));expo=p^ve;
\\ The rp following ideals Ai generate the p- class group CKp:
Ai= idealpow (K,CK [3][i],ei/p^vi); listput (CKp ,Ai ,i); listput (EKp ,p^vi ,i));
\\ Matrices h and sh of Ai and sAi on the PARI basis of CK
L0=List;for(i=1,r, listput (L0 ,0,i));LH=List;LsH=List;
for(i=1,rp ,Ai=CKp[i];h= bnfisprincipal (K,Ai)[1];
sAi= nfgaloisapply (K,G[2] , Ai);sh= bnfisprincipal (K,sAi)[1];
print ("h=",h,", "," sigma (h)=",sh); listput (LH ,h,i); listput (LsH ,sh ,i));
\\ Determination of the Pi - valuations of ( alpha +j.beta), i=1 ,2:
Z=Mod( alpha +y*beta ,S);w1= idealval (kappa ,Z,P1);w2= idealval (kappa ,Z,P2);
print (w1 ," ",w2 ," P1 and P2 - valuations for alpha +j*beta ");
\\ Galois structure of CKp; computation of the phi - components :
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if(rp ==1 ,
u=lift(LsH [1][1]* Mod(LH [1][1] , expo)^ -1);
YY=Mod(y-u,S);v1= idealval (kappa ,YY ,P1);v2= idealval (kappa ,YY ,P2);
v1=min(v1 ,ve);v2=min(v2 ,ve);
print (v1 ," ",v2 ," P1 and P2 - valuations for H"));
if(rp ==2 ,
\\ Computation of ci(mod expo) such that Pi =( ci+j),i=1 ,2:
Sp=lift( factor (S+O(p^ve)));Sp1= component (Sp ,1) [1];
Sp2= component (Sp ,1) [2]; c1= polcoeff (Sp1 ,0);c2= polcoeff (Sp2 ,0);
\\ Coefficients of LH [1] , LsH [1] , LH [2] , LsH [2] , on the PARI basis of CK
H1=LH [1]; A1=H1 [1]; B1=H1 [2]; sH1=LsH [1]; C1=sH1 [1]; D1=sH1 [2];
H2=LH [2]; A2=H2 [1]; B2=H2 [2]; sH2=LsH [2]; C2=sH2 [1]; D2=sH2 [2];
\\ Computation of the determinants of the relations :
Delta1 =(( C1+c1*A1)*( D2+c1*B2) -(D1+c1*B1)*( C2+c1*A2));
Delta1 =lift(Mod(Delta1 ,expo));
Delta2 =(( C1+c2*A1)*( D2+c2*B2) -(D1+c2*B1)*( C2+c2*A2));
Delta2 =lift(Mod(Delta2 ,expo));
print (Delta1 ," ",Delta2 ," Determinants : Delta1 , Delta2 ");
\\ Computation of the relations defining the phi - components :
r11x=C1+c1*A1;r11y=C2+c1*A2;r12x=D1+c1*B1;r12y=D2+c1*B2;
r11x=lift(Mod(r11x ,expo));r11y=lift(Mod(r11y ,expo));
r12x=lift(Mod(r12x ,expo));r12y=lift(Mod(r12y ,expo));
r21x=C1+c2*A1;r21y=C2+c2*A2;r22x=D1+c2*B1;r22y=D2+c2*B2;
r21x=lift(Mod(r21x ,expo));r21y=lift(Mod(r21y ,expo));
r22x=lift(Mod(r22x ,expo));r22y=lift(Mod(r22y ,expo));
print (" R11 =",r11x ,"*X+",r11y ,"*Y"," R12 =",r12x ,"*X+",r12y ,"*Y");
print (" R21 =",r21x ,"*X+",r21y ,"*Y"," R22 =",r22x ,"*X+",r22y ,"*Y"));
\\ Structure of the torsion group Tp of p- ramification :
n=6; \\ Choose any n, large enough , such that p^(n+1) annihilates Tp:
LTp=List;Kpn= bnrinit (K,p^n);Hpn=Kpn.cyc;
dim= component ( matsize (Hpn) ,2);for(k=2,dim ,c= component (Hpn ,k);
if(Mod(c,p)==0 , listput (LTp ,p^ valuation (c,p),k)));
print (" Structure of the ",p,"- torsion group : ",LTp)))))}

Numerical examples

Since the approximations are in general very good, with precision \p 50, we have
suppressed useless decimals in the results. But for some conductors, the pre-
cision \p 100 may be necessary, because of a fundamental unit close to 0 (e.g.,
f = 21193, 30223). For f = 42667, \p 100 does not compute correctly and \p 150
gives a nice result for α and β; but we see that, for this example:

e1 ≈ 3062171948818717694.348000505806 and e2 ≈ 1.221295564694E−69.

Galois structure of EK /FK . Let ε be the Z[GK ]-generator of EK and let η that of
the subgroup FK of Leopoldt’s cyclotomic units; thus we have η = εα+βσ and obtain
EK /FK ≃Z[j]/(α + j β)Z[j], where j is a root of S := y2 + y + 1.

In all the sequel, from a factorization p = (r1 + j r ′1)× (r2 + j r ′2) giving the ideal
product (p) = p1p2 in Z[j], we associate, regarding the exponent pe, the two anni-
hilators ci + σ such that (ci + j) = pei (up to a prime-to-p ideal); this preserves the
definition of the ϕ1 and ϕ2-components.
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For instance, for p = 7, p1 := (−2 + j)Z[j] and p2 := (3 + j)Z[j]; writing (α + j β) =:
pu1 × p

v
2 × a, a prime to 7, we get immediately the two ϕ-components of ẼK = EK /FK

(e.g., if e = 2, the two annihilators are 19 + j and −18 + j, respectively; for p = 13, we
get 23 + j and −22 + j).

Galois structure of HK . Recall that bnfisprincipal(K,A)[1] gives the matrix of
components of the class of A on the basis {h1, . . . ,hr } given by K.clgp (in CK) and the
fact that 0 at the place i means that the corresponding component of cl(A) on hi is
trivial.

We first replace the generators of HK by generators Ai of HK , where rp ≤ r is the
p-rank. The Galois action on the Ai is computed using the following instructions,
where G[2] gives the σ -conjugate, G[1] being the identity:

h= bnfisprincipal (K,Ai)[1]; sAi= nfgaloisapply (K,G[2] , Ai);
sh= bnfisprincipal (K,sAi) [1]};

so the Galois structure of HK becomes linear algebra from the matrices given by the
program, via the relations:

h =
∏rp
i=1 h

ai
i (in h) & hσ =

∏rp
i=1 h

bi
i (in sh).

(a) Case of 7-rank r7 = 1. This case is obvious, writing h = ha1, hσ = hb1; we put
Pϕ1
≡ c1 + y (mod 7e) and Pϕ2

≡ c2 + y (mod 7e), where 7e is the exponent of HK ;

we obtain hc1+σ = hc1a+b
1 and hc2+σ = hc2a+b

1 ; so HK = Hϕ1
(resp. Hϕ2

) if and only
if c1a+ b ≡ 0 (mod 7e) (resp. c2a+ b ≡ 0 (mod 7e)). In fact one computes −a∗b + j,
where a∗ is inverse of a modulo 7e, and write (−a∗b+ j) = pui for the suitable i ∈ {1,2}.

The Galois actions are to be read in columns; for instance, the valuations in the
two lines:

v 0 P1 and P2− valuations for alpha + j ∗ beta

v 0 P1 and P2− valuations for H

give the structures Z[j]/pv1 × p
0
2 for “M = Ẽ = E /F and H ”, respectively, whence

Mϕ1
≃Z[j]/pv1,Mϕ2

= 1, and so on. First examples:

P=x^3+x^2 -104*x+371 f =313= Mat ([313 ,1]) (a,b)=(35 ,1)
Class group =[7] sigma =4
(alpha ,beta) =( -3.0000000 , -2.0000000) Index [E_K:C_K ]=7.0000000
h=[1] , sigma (h)=[2]
1 0 P1 and P2 - valuations for alpha +j*beta
1 0 P1 and P2 - valuations for H
Structure of the 7- torsion group : List ([7 ,7])

We have Ẽϕ1
≃Hϕ1

≃ (Z[j]/p1)⊗Z7 ≃Z/7Z and the conjugation hσ = h2, giving
the annihilator (−2 + j) = p1 as expected; whence the two columns given by the
program. We deduce that TK =HK

⊕
RK .
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P=x^3+x^2 -2450*x -1089 f =7351= Mat ([7351 ,1]) (a,b)=( -1 ,33)
Class group =[49] sigma =4
(alpha ,beta) =(5.0000000 ,8.0000000) Index [E_K:C_K ]=49.0000000
h=[1] , sigma (h) =[30]
2 0 P1 and P2 - valuations for alpha +j*beta
2 0 P1 and P2 - valuations for H
Structure of the 7- torsion group : List ([2401])

We have (α + j β) = (5 + 8j), thus the annihilator (19 + j) = p2
1; then hσ = h30

gives (modulo 72) the same annihilator. The ϕ2-components are trivial. Since

TK ≃Z/74
Z,RK = T 72

K , HK ≃ TK /RK ≃Z/72
Z.

The first field such that HK ≃Z/73
Z is the following:

P=x^3+x^2 -77006*x -34225 f =231019= Mat ([231019 ,1]) (a,b)=( -1 ,185)
Class group =[343] sigma =4
(alpha ,beta) =(19.0000000 ,18.0000000) Index [E_K:C_K ]=343.0000000
h=[1] , sigma (h) =[18]
0 3 P1 and P2 - valuations for alpha +j*beta
0 3 P1 and P2 - valuations for H
Structure of the 7- torsion group : List ([343 ,7])

The annihilator of HK is (−18 + j) = p3
2. The structures are similar with the ϕ2-

components since (19 + 18j) = p3
2. In that case, TK =HK

⊕
RK with HK ≃Z/73

Z

andRK ≃Z/7Z.
(b) Case of 7-rank r7 = 2 This case depends on the matrices giving:

h = [a,b], sigma(h) = [c,d] & h′ = [a′ ,b′], sigma(h′) = [c′ ,d′];

this means that the corresponding generating classes h, h′, fulfill the relations
(regarding the basis {h1,h2} of the class group) h = ha1 h

b
2 and hσ = hc1 × h

d
2 , then

h′ = ha
′

1 × h
b′
2 and h′σ = hc

′
1 × h

d′
2 . Thus we compute the conditions Hci+σ = 1, i = 1,2,

for H := hx ×h′y ; this gives the relations R11, R21 (R12, R22 are checked by security
since they must be proportional to the previous ones); whence the arrangement of
lines when the conjecture holds.

The program computes the corresponding determinants of the relation
(Determinants Delta1 Delta2); this is superfluous, but they have been computed for
verification and are not printed.
P=x^3+x^2 -3422*x -1521 f =10267= Mat ([10267 ,1]) (a,b)=( -1 ,39)
Class group =[7 ,7] sigma =2
(alpha ,beta) =( -7.0000000 , -7.0000000) Index [E_K:C_K ]=49.0000000
h=[1 ,0] , sigma (h)=[0 ,1]
h ’=[0 ,1] , sigma (h ’) =[6 ,6]
1 1 P1 and P2 - valuations for alpha +j*beta
R11 =3*X+6*Y R12 =1*X+2*Y
R21 =5*X+6*Y R22 =1*X+4*Y
Structure of the 7- torsion group : List ([49 ,7])

This case means that ẼK ≃ Z[j]/(7), giving the two non-trivial ϕ-components
of order 7. The relations, for HK , reduce to R11 and R21 Thus HK =Hϕ1

⊕
Hϕ2
≃

Z/7Z×Z/7Z,RK = T 7
K ≃Z/7Z.
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P=x^3+x^2 -55296*x -1996812 f =165889=[19 ,1;8731 ,1] (a,b)=( -322 ,144)
Class group =[294 ,2 ,2 ,2] sigma =25
(alpha ,beta) =( -32.0000000 , -20.0000000) Index [E_K:C_K ]=784.0000000
h=[6 ,0 ,0 ,0] , sigma (h)=[108 ,1 ,0 ,0]
0 2 P1 and P2 - valuations for alpha +j*beta
0 2 P1 and P2 - valuations for H
Structure of the 7- torsion group : List ([49])

HereRK = 1 and TK =HK ≃ (Z[j]/p2
2)⊗Z7 ≃Z7/72

Z7.

P=x^3+x ^2 -453576* x +117425873 f =1360729= Mat ([1360729 ,1]) (a,b)=(2333 ,1)
Class group =[98 ,14] sigma =2
(alpha ,beta) =(42.0000000 ,28.0000000) Index [E_K:C_K ]=1372.0000000
h=[1 ,0] , sigma (h)=[44 ,11]
h ’=[0 ,1] , sigma (h ’) =[7 ,11]
2 1 P1 and P2 - valuations for alpha +j*beta
R11 =14*X+7*Y R12 =11*X+30*Y
R21 =26*X+7*Y R22 =11*X+42*Y
Structure of the 7- torsion group : List ([49 ,7 ,7])

We have (α + βj) = 2 · 7 · (3 + 2j) giving the annihilator p2
1p2 which is also the

annihilator of HK . The structure is TK =HK
⊕
RK .

P=x^3+x ^2 -884540*x -393129 f =2653621= Mat ([2653621 ,1]) (a,b)=( -1 ,627)
Class group =[686 ,14] sigma =2
(alpha ,beta) =( -112.0000000 , -70.0000000) Index [E_K:C_K ]=9604.0000000
h=[2 ,0] , sigma (h)=[36 ,2]
h ’=[0 ,2] , sigma (h ’) =[0 ,4]
1 3 P1 and P2 - valuations for alpha +j*beta
R11 =74*X+0*Y R12 =2*X+42*Y
R21 =0*X+0*Y R22 =2*X +311* Y
Structure of the 7- torsion group : List ([343 ,49])

In that case, TK ≃ Z/73
Z×Z/72

Z andRK ≃ (Z/73
Z)0 × (7Z/72

Z).
(c) Larger 7-ranks. If the order 73, with 7-rank 1 or 2, is rather frequent for

the 7-class group, we find, after several days of computer, only three examples of
7-rank 3 in the interval f ∈ [7,50071423]; they are obtained with the conductors
f = 14376321,39368623,43367263, giving interesting structures (use precision
\p 100). The least cubic field with 7-rank 3 is the following:

P=x ^3 -4792107* x +4022175142 f =14376321=[3 ,2;1597369 ,1] (a,b)=( -7554 ,128)
Class group =[21 ,7 ,7] sigma =5
(alpha ,beta) =( -7.0000000 , -21.0000000) Index [E_K:C_K ]=343.0000000
h =[3 ,0 ,0] , sigma (h) =[15 ,4 ,0]
h ’=[0 ,1 ,0] , sigma (h ’) =[3 ,1 ,0]
h"=[0 ,0 ,1] , sigma (h") =[6 ,5 ,2]
2 1 P1 and P2 - valuations for alpha +j*beta
Structure of the 7- torsion group : List ([7 ,7 ,7])

Using the information on α and β, we obtain, for ẼK = EK /FK :

ẼK ≃ (Z[j]/7p2)⊗Z7 ≃ (Z[j]/p2
1 p2)⊗Z7 ≃ (Z[j]/p2

1 ×Z[j]/p2)⊗Z7,
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where p1 = (−2 + j) and p2 = (3 + j). We get the ϕ-components:

Ẽϕ1
≃ (Z[j]/p2

1)⊗Z7 ≃Z/72
Z and Ẽϕ2

≃ (Z[j]/p2)⊗Z7 ≃Z/7Z.

To obtain the two ϕ-components of HK = TK , we put H = hxh′yh′′z and we

determine the solutions of the two relationsHPϕi
(σ ) = 1, i = 1,2, that is to say,

H−2+σ = 1 and H3+σ = 1, respectively.
We then obtain the systems, considered modulo 7 since the exponent of HK is 7,

of ranks 1 and 2, respectively:

{
2x+ 3y + 6z = 0

4x+ 6y + 5z = 0
(H−2+σ = 1) &


3x+ 3y + 6z = 0

4x+ 4y + 5z = 0

z = 0,

(H3+σ = 1).

They are equivalent to:

2x+ 3y + 6z = 0 (H−2+σ = 1) & [x+ y = 0 & z = 0] (H3+σ = 1).

Which gives, considering the F7-dimensions given by the systems:

Hϕ1
≃ [(Z[j]/p1)⊗Z7]

⊕
[(Z[j]/p1)⊗Z7] & Hϕ2

≃ (Z[j]/p2)⊗Z7.

We have indeed equalities for the orders of the ϕ-components relative to ẼK and
HK , respectively, but of course with different structures of Z7[j]-modules since:

Ẽϕ1
≃Z/72

Z & Hϕ1
≃ [Z/7Z]2 .

The two other examples are similar:

P=x^3+x ^2 -13122874*x -7765825411
f =39368623=[7 ,1;79 ,1;71191 ,1] (a,b)=( -5323 ,2187)
class group =[21 ,21 ,7] sigma =4
(alpha ,beta) =(28.0000000 , -7.0000000) Index [E_K:C_K ]=1029.0000000
h =[3 ,0 ,0] , sigma (h) =[3 ,9 ,0]
h ’=[0 ,3 ,0] , sigma (h ’) =[18 ,15 ,0]
h"=[0 ,0 ,1] , sigma (h") =[15 ,6 ,4]
1 2 P1 and P2 - valuations for alpha +j*beta
Structure of the 7- torsion group : List ([7 ,7 ,7])

P=x^3+x ^2 -14455754*x -16977480367
f =43367263=[43 ,1;1008541 ,1] (a,b)=( -10567 ,1513)
class group =[273 ,7 ,7] sigma =2
(alpha ,beta) =(42.0000000 ,77.0000000) Index [E_K:C_K ]=4459.0000000
h =[39 ,0 ,0] , sigma (h) =[0 ,5 ,1]
h ’=[0 ,1 ,0] , sigma (h ’) =[156 ,6 ,5]
h"=[0 ,0 ,1] , sigma (h") =[0 ,0 ,2]
2 1 P1 and P2 - valuations for alpha +j*beta
Structure of the 7- torsion group : List ([49 ,7 ,7])
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(d) Larger primes p. Let’s give, without comments, some examples:

p=13 P=x^3+x^2 -15196*x -726047 f =45589= Mat ([45589 ,1]) (a,b)=( -427 ,1)
Class group =[169] sigma =2
(alpha ,beta) =(15.0000000 ,8.0000000) Index [E_K:C_K ]=169.0000000
h=[1] , sigma (h) =[146]
2 0 P1 and P2 - valuations for alpha +j*beta
2 0 P1 and P2 - valuations for H
Structure of the 13- torsion group : List ([169])

p=13 P=x^3+x ^2 -238516*x -7579519 f =715549= Mat ([715549 ,1]) (a,b)
=( -283 ,321)

Class group =[13 ,13] sigma =2
(alpha ,beta) =(7.0000000 , -8.0000000) Index [E_K:C_K ]=169.0000000
h =[1 ,0] , sigma (h) =[9 ,0]
h ’=[0 ,1] , sigma (h ’) =[0 ,9]
0 2 P1 and P2 - valuations for alpha +j*beta
R11 =0*X+0*Y R12 =0*X+0*Y
R21 =6*X+0*Y R22 =0*X+6*Y
Structure of the 13- torsion group : List ([13 ,13])

p=19 P=x ^3 -137271* x +45757 f =411813=[3 ,2;45757 ,1] (a,b)=( -3 ,247)
Class group =[1083] sigma =2
(alpha ,beta) =( -21.0000000 , -5.0000000) Index [E_K:C_K ]=361.0000000
h=[3] , sigma (h) =[204]
0 2 P1 and P2 - valuations for alpha +j*beta
0 2 P1 and P2 - valuations for H
Structure of the 19- torsion group : List ([361])

p=19 P=x^3+x ^2 -162636* x +25190561 f =487909=[31 ,1;15739 ,1] (a,b)=(1397 ,1)
Class group =[57 ,19] sigma =2
(alpha ,beta) =(19.0000000 ,4.19514516 E -69) Index [E_K:C_K ]=361.0000000
h =[3 ,0] , sigma (h) =[51 ,16]
h ’=[0 ,1] , sigma (h ’) =[3 ,1]
1 1 P1 and P2 - valuations for alpha +j*beta
R11 =18*X+3*Y R12 =16*X+9*Y
R21 =11*X+3*Y R22 =16*X+13*Y
Structure of the 19- torsion group : List ([19 ,19])

p=31 P=x^3+x^2 -63804*x +6181931 f =191413= Mat ([191413 ,1]) (a,b)=(875 ,1)
class group =[31 ,31] sigma =4
(alpha ,beta) =(31.0000000 , -4.10842850 E -69) Index [E_K:C_K ]=961.0000000
h=[1 ,0] , sigma (h) =[30 ,30]
h ’=[0 ,1] , sigma (h ’) =[1 ,0]
1 1 P1 and P2 - valuations for alpha +j*beta
R11 =5*X+1*Y R12 =30*X+6*Y
R21 =25*X+1*Y R22 =30*X+26*Y
Structure of the 31- torsion group : List ([31 ,31])

p=31 P=x^3+x^2 -76004*x -8090239 f =228013= Mat ([228013 ,1]) (a,b)=( -955 ,1)
class group =[961] sigma =2
(alpha ,beta) =( -11.0000000 , -35.0000000) Index [E_K:C_K ]=961.0000000
h=[1] , sigma (h) =[439]
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2 0 P1 and P2 - valuations for alpha +j*beta
2 0 P1 and P2 - valuations for H
Structure of the 31- torsion group : List ([961])
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