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Abstract

Following an idea of J. Shapiro, we give a simple proof of the fact that
an element of the Gordon Hedenmalm class Φ such that Φ(∞) =∞ defines a
contractive composition operator CΦ on the space H2 of Dirichlet series.
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1 Introduction

In this note, we deal with the space H2 of Dirichlet series which has been first
introduced in Gordon and Hedenmalm (1999). Recall that a Dirichlet series:

f (s) =
+∞∑
n=1

ann
−s (an, s ∈C)

belongs to H2 if and only if the complex sequence (an)n⩾1 satisfies the following
growth condition:

+∞∑
n=1

|an|2 <∞

The space H2 is a complex Hilbert space when it is equipped with the norm:

∥f ∥ =

+∞∑
n=1

|an|2
1/2
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Such a Dirichlet series is absolutely convergent on the half-plane:

C1/2 := {s ∈C ; Re(s) > 1/2}

and, for every s ∈C1/2, the point evaluation function:

δs :
{
H2 −→ C

f 7−→ f (s)

is bounded and ∥δs∥ =
√
ζ(2Re(s)).

For every non-negative real number θ, we denote by Cθ the half space Re(s) > θ
(and for the special case θ = 0, we put C0 = C+).

The paper Gordon and Hedenmalm (1999) initiated the study of various spaces
of Dirichlet series. The reader can also see for instance Bayart (2002a) for the
Hardy spaces Hp or Bailleul and Lefèvre (2013) for two classes of Bergman spaces
of Dirichlet series.

Let D be the space of Dirichlet series which admit a representation by a con-
vergent Dirichlet series on some half-plane. It is well-known from Gordon and
Hedenmalm (1999, Theorem B) that an analytic function Φ : C1/2 −→ C1/2 defines a
bounded composition operator on H2 if and only if the two following conditions
are fullfilled:

(a) Φ is of the form:

Φ(s) = c0s+ϕ(s)

where c0 is a non-negative integer and ϕ ∈ D;

(b) Φ has an analytic extension to C+ (also denoted by Φ) such that ϕ converges
uniformly in Cε for every ε > 0 and has the following properties:

(i) if c0 ⩾ 1, then either ϕ(C+) ⊂C+ or ϕ(s) = iτ for some τ ∈R;

(ii) if c0 = 0, ϕ(C+) ⊂C1/2.

The Gordon-Hedenmalm class consists in the class of functions satisfying both
(a) and (b).

The aim of this paper is to give a new proof of the boundedness of the composi-
tion operator CΦ when the integer c0 is positive. The proof is inspired from that of
Littlewood’s Subordination Principle Shapiro (1993) in the context of power series.
This is the result we are going to prove in section 3 (Gordon and Hedenmalm (1999,
Theorem B) when Φ(∞) =∞).
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2. Boundedness of multipliers

Theorem 1 – Let Φ be an analytic function such that ϕ(C+) ⊂C+ of the form:

Φ(s) = c0s+ϕ(s)

where c0 is a positive integer and ϕ ∈ D. Then the composition operator CΦ defines a
bounded linear operator on H2 such that ∥CΦ∥ = 1.

The boundedness of multiplication operators onH2 plays a key role in the proof
of the above theorem. To define such an operator:

Mψ :
{
H2 −→ H2

f 7−→ f ψ

the symbol ψ must belong to the set of multipliers of H2, that is:

M =
{
ψ ∈ D ; ∀f ∈ H2, ψf ∈ H2

}
It is well-know from Hedenmalm, Lindqvist, and Seip (1997) that the set of multi-
pliersM is equal to the space H∞ of bounded Dirichlet series on C+ (and that the
multiplication operators are bounded on H2). It is the aim of section 2 to give a
shortest proof of this result by using the boundedness of the point evaluation on
H2.

Theorem 2 (Hedenmalm, Lindqvist, and Seip (1997), Theorem 3.1) – Let M be
the set of multipliers of H2. ThenM =H∞ and for every φ ∈ H∞, ∥Mφ∥ = ∥φ∥∞.

Note that this theorem has been generalized for a large scale of spaces of Dirichlet
series: see Bayart (2002b) for the Hardy spaces Hp and Bailleul and Brevig (2016),
Bailleul (2015) for the two classicals families of Bergman spaces.

2 Boundedness of multipliers

In the next proof, an important argument is the following:

Theorem 3 (Bohr’s lemma) – If a function f ∈ D has an analytic extension to a
bounded function on some half space Cθ then the Dirichlet series associated to f converges
uniformly on every half space Cθ′ with θ′ > θ.

By using the closed graph theorem, we can prove that the operator of multiplica-
tion by φ, denoted by Mφ, is bounded on H2.

Proof (Proof of Theorem 2). We only give a new proof of the hard part of the theorem,
that is if m ∈ M then m ∈ H∞. The idea is to use the point evaluation on H2. Let
f ∈ H2 such that:

f (s) =
+∞∑
n=1

ann
−s (an, s ∈C)
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we denote by fℓ the following partial Dirichlet series:

fℓ(s) =
∑

p+(n)⩽pℓ

ann
−s

for every non-negative integer ℓ, where p+(n) denotes the largest prime factor of n
and (pℓ)ℓ⩾1 is the increasing sequence of prime numbers. Then by Cauchy-Schwarz
inequality, we have for every σ > 0:

∑
p+(n)⩽pℓ

|an|n−σ ⩽

 ∑
p+(n)⩽pℓ

n−2σ


1/2

∥fℓ∥2

With a classical Euler product argument and by using the fact that ∥fℓ∥2 ⩽ ∥f ∥2, we
obtain:

∑
p+(n)⩽pℓ

|an|n−σ ⩽

 ℓ∏
i=1

1

1− p−2σ
i


1/2

∥f ∥2 (1)

It follows that fℓ converges on C+ and that:

∀f ∈ H2, ∀s ∈C+, |fℓ(s)| ⩽

 ℓ∏
i=1

1

1− p−2Re(s)
i


1/2

∥f ∥2

Let s ∈ C+ and φ ∈ M. Then φ ∈ H2 since 1 ∈ H2 and ∥φ∥2 ⩽ ∥Mφ∥. By induction,
we obtain:

∀k ⩾ 1,
∥∥∥φk∥∥∥

2
⩽ ∥Mφ∥k

and so:

∀k ⩾ 1,
∥∥∥φk∥∥∥1/k

2
⩽ ∥Mφ∥

Let ℓ be a positive integer. We point out that for every k ⩾ 1, the Dirichlet series φkℓ
has only coefficients bn with p+(n) ⩽ ℓ. According to (1), there exists Cs,ℓ > 0 such
that:

∀k ⩾ 1, |φkℓ (s)| ⩽ Cs,ℓ∥φk∥2

and then:

∀k ⩾ 1, |φℓ(s)| ⩽ C1/k
s,ℓ ∥Mφ∥

Letting k going to +∞, we get:

|φℓ(s)| ⩽ ∥Mφ∥
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3. A Shapiro type result

Hence (φℓ)ℓ⩾1 is a uniformly bounded sequence of H∞ so by Montel’s lemma in
this context (Bayart (2002b, Lemma 5.2)), there exists φ̃ ∈ H∞ and a subsequence
(φℓk )k⩾1 which converges uniformly to φ̃ on every half space Cε with ε > 0. We know
that φ ∈ H2 so (φℓk )k⩾1 also converges uniformly to φ on every half space C1/2+ε

with ε > 0. By uniqueness, we conclude that φ̃ is a bounded analytic extension of φ
on C+ by Bohr’s lemma, i.e. φ ∈ H∞. □

3 A Shapiro type result

The proof of Theorem 1 is also based on the following easy lemma.

Lemma 1 – Let ϕ ∈ D and α > 0. Then α−ϕ ∈ D. If in addition ϕ(C+) ⊂ C+ then
α−ϕ ∈ H∞ and ∥α−ϕ∥∞ ⩽ 1.

Proof. There exists θ > 0 such that we have the following Dirichlet series expansion
of ϕ in the half space Cθ :

ϕ(s) =
+∞∑
n=1

an
ns

(s ∈Cθ)

For every s ∈Cθ :

α−ϕ = e−ϕ ln(α) = exp

− ln(α)
+∞∑
n=1

ann
−s


=

+∞∑
k=0

(− ln(α))k

k !

+∞∑
n=1

an
ns

k

There exists σ > θ such that λ :=
+∞∑
n=1

|an|
nσ

< +∞ hence:

+∞∑
k=1

| ln(α)|k

k !

+∞∑
n=1

|an|
nσ

k = e| ln(α)|λ < +∞

It is then possible to apply Fubini’s theorem in Cσ . If we denote by
∑
n⩾1

an,k
ns

the

Dirichlet series

+∞∑
n=1

an
ns

k then:

α−ϕ =
+∞∑
n=1

+∞∑
k=0

(− ln(α))k

k !
an,k

n−s
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which means that α−ϕ belongs to D. Moreover if ϕ(C+) ⊂C+ then, for every s ∈C+,
we have |α−ϕ(s)| = α−Re(ϕ(s)) ⩽ 1. It follows that α−ϕ is bounded on C+ and that
∥α−ϕ∥∞ ⩽ 1. According to Bohr’s lemma we can conclude that α−ϕ belongs to H∞.□

We are now able to prove Theorem 1.

Proof (of Theorem 1). Let us first consider a Dirichlet polynomial f (s) =
N∑
n=1

ann
−s

where N is a positive integer and s,a1, . . . , aN ∈C. Since CΦf is a bounded Dirichlet
series in C+, it belongs to H2. Furthermore, for every integer n ⩾ 2, we have:

ann
−Φ(s) =

an
nc0s

n−ϕ(s)

and according to Lemma 1, we know that n−ϕ ∈ D. Since c0 ⩾ 1, it is clear from the
above identity that the constant coefficient of CΦf is a1. Hence:

∥CΦf ∥22 =

∥∥∥∥∥∥∥
N∑
n=1

ann
−Φ(s)

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥a1 +
N∑
n=2

ann
−Φ(s)

∥∥∥∥∥∥∥
2

2

= |a1|2 +

∥∥∥∥∥∥∥
N∑
n=2

ann
−Φ(s)

∥∥∥∥∥∥∥
2

2

The following identity allows us to get the |a2|2 term:

N∑
n=2

ann
−Φ(s) = 2−ϕ(s)

(
a22−c0s + a33−c0s

(3
2

)−ϕ(s)
+ · · ·+ aNN−c0s

(N
2

)−ϕ(s))
We know from Lemma 1 that 2−ϕ ∈ H∞ and that ∥2−ϕ∥∞ ⩽ 1 (since ϕ(C+) ⊂ C+).
Theorem 2 implies that:∥∥∥∥∥∥∥

N∑
n=2

ann
−Φ(s)

∥∥∥∥∥∥∥
2

2

⩽
∥∥∥2−ϕ

∥∥∥2
∞

∥∥∥∥∥∥a22−c0s + a33−c0s
(3

2

)−ϕ(s)
+ · · ·+ aNN−c0s

(N
2

)−ϕ(s)
∥∥∥∥∥∥

2

2

⩽

∥∥∥∥∥∥a22−c0s + a33−c0s
(3

2

)−ϕ(s)
+ · · ·+ aNN−c0s

(N
2

)−ϕ(s)
∥∥∥∥∥∥

2

2

For any integer k ∈ {3, . . . ,N }, k−c0s
(
k
2

)−ϕ(s)

is a Dirichlet series of the form
+∞∑
j=1

bj (k
c0j)−s.

In particular, we see that 2c0 can not be express of the form kc0j for some positive
integer j (recall that c0 is a positive integer). By orthogonality, it follows that:

∥CΦf ∥22 ⩽ |a1|2 + |a2|2 +

∥∥∥∥∥∥a33−c0s
(3

2

)−ϕ(s)
+ · · ·+ aNN−c0s

(N
2

)−ϕ(s)
∥∥∥∥∥∥

2

2
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Factorizing by
(3

2

)−ϕ(s)
which is a Dirichlet series whose infinite norm is less than 1

(according to Lemma 1 and using Theorem 2) we get the |a3|2 term:

∥CΦf ∥22 ⩽ |a1|2 + |a2|2 + |a3|2 +

∥∥∥∥∥∥a44−c0s
(4

3

)−ϕ(s)
+ · · ·+ aNN−c0s

(N
3

)−ϕ(s)
∥∥∥∥∥∥

2

2

An obvious induction gives us:

∥CΦf ∥2 ⩽
N∑
n=1

|an|2

This proves that ∥CΦf ∥2 ⩽ ∥f ∥2 when f belongs to the space P of Dirichlet poly-
nomials. We conclude the proof with a classical density argument which relies on
the continuity of the point evaluation map. Indeed, since P is dense in H2, the
operator CΦ : P −→ H2 extends uniquely to an operator T ∈ B(H2). Let f ∈ H2,
(fn)n⩾0 a sequence of elements of P which converges to f in H2 and s ∈C1/2. Since
the evaluation map:

δs :
{
H2 −→ C

g 7−→ g(s)

is bounded and Φ(s) ∈C1/2, we get:

T f (s) = lim
n→+∞

T fn(s) = lim
n→+∞

fn(Φ(s)) = lim
n→+∞

δΦ(s)(fn)

= δΦ(s)(f )

= f (Φ(s))

= CΦ (s)

Then CΦ = T is bounded on the spaceH2 and ∥CΦ∥ ⩽ 1. Since CΦ fixes the constants,
we eventually have ∥CΦ∥ = 1. □
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