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Abstract

We are interested here in a birth-and-growth process where germs are born
according to a Poisson point process with intensity measure invariant under
space translations. The germs can be born in free space and then start growing
until occupying the available space. In order to consider various ways of growing,
we describe the crystals at each time through their geometrical properties. In
this general framework, the crystallization process can be characterized by the
random field giving for a point in the state space the first time this point is
reached by a crystal. We prove under general conditions that this random field
is mixing in the sense of ergodic theory and obtain estimates for the coefficient
of absolute regularity.

Keywords: crystallization process, Poisson point process, ergodicity, alpha-mixing
coefficient, absolute regularity.
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1 Introduction

The crystallization process we consider here deals with germs g = (xg , tg ) that
appear at random times tg on random location xg . The birth processN is a Poisson
point process on R

d ×R+ with intensity measure denoted by Λ. Once a germ or
crystallization center is born, the crystal is allowed to grow if its location is not
yet occupied by another crystal and when two crystals meet the growth stops at
meeting points but the growth continues at other points of the crystal. There are
then many ways to describe crystal expansion. The first approach is to consider the
random set (called crystallization state) that corresponds to the fraction of space
occupied by crystals at a given time. In this case, crystallization is studied through
the theory of set-valued processes.

Another way to describe crystal growth is the following. One can consider
for a germ g ∈ Rd ×R+ and a point x ∈ Rd the time Ag (x) at which x is reached
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by the crystal associated to the germ g would it allowed to growth freely. The
crystallization process is then characterized by the random field ξ giving for a
location x ∈Rd its crystallization time :

ξ(x) = inf
g∈N

Ag (x). (1)

We adopt in this paper the last definition and study the crystallization process
through the random field ξ.

This model was introduced by Kolmogorov3 and independently by Johnson
and Mehl4, and intensively studied by many authors. We mention here only a few
papers which represent the main approaches and where one can find an exhaustive
list of references: Møller5 and also Micheletti and Capasso6. A very large part of
these investigations deals with the study of probability distributions of typical cells
of the mosaic once all the germs have finished their growth. Here, we are rather
interested in estimation problems (such as the estimation of the parameters of the
intensity measure Λ or other functionals like the number of crystals in the limit
mosaic) in the case when only one realization can be observed on a sufficiently
large domain compared to the mean size of crystals. Naturally, we suppose that the
crystallization process is space homogeneous. More precisely, we assume that the
intensity measure is defined as follows,

Λ = λd ×µ, (2)

where λd is the Lebesgue measure on R
d and µ is a measure on R

+ finite on bounded
Borel sets.

This article is mainly devoted to ergodic properties of the random field {ξ(x)x∈Rd }
defined by equation (1) which deliver a solid base for efficient estimation of pa-
rameters of the model and subsequent application to the study of its asymptotical
normality.

Under the above hypothesis and rather general conditions on growth speed and
geometrical shape of crystals, we demonstrate that the random field ξ is mixing in
the sens of the ergodic theory. Moreover, under some additional assumptions, we
obtain estimates of the absolute regularity coefficient.

Some application of theorem 1 on page 175 to the problem of parameter estima-
tion can be found in Davydov and Illig (2009).

3Kolmogorov, 1937, “Statistical theory of crystallization of metals”.
4Johnson and Mehl, 1939, “Reaction Kinetics in Processes of Nucleation and Growth”.
5Møller, 1986, “Random tessellations in R

d”;
Møller, 1989, “Random tessellations in R

d”;
Møller, 1992, “Random Johnson-Mehl tessellations”;
Møller, 1995, “Generation of Johnson-Mehl crystals and comparative analysis of models for random

nucleation”.
6Micheletti and Capasso, 1997, “The stochastic geometry of polymer crystallization processes”;

Capasso and Micheletti, 2003, “Stochastic geometry of spatially structured birth and growth
processes”.
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2 Assumptions on the birth and growth processes

2.1 The birth process

Germs are born according to a Poisson point process on E = R
d ×R+ denoted byN .

That is, germs are random points g = (xg , tg ) in E, where xg is the location in the
growth space R

d and tg is the time of birth on the time axis R+. We suppose that the
intensity measure Λ ofN is the product equation (2) on page 170 of the Lebesgue
measure λd on R

d and a measure µ on R
+ such that µ([0, a]) <∞ for all a > 0. The

most interesting cases to be considered7 are those with a discrete measure µ and
those with a density measure µ(dt) = αtβ−1λ(dt) where α, β > 0 are parameters.
Since the Lebesgue measure is translation-invariant, the Poisson point processN is
space homogeneous and it is sufficient to consider sets around the origin. Thus, for
any time t, we introduce the so-called causal cone:

Kt =
{
g ∈ E

/
Ag (0) ≤ t

}
which consists of all the possible germs that can capture the origin before the time
t.

The measure Λ(Kt) of the causal cone Kt is denoted by F(t). These set and
function play important roles in the sequel.

2.2 Expansion of crystals

We say that a crystal is a free crystal if it originates from a germ born in a location
not yet occupied by other crystals at the time of its birth. We associate with each
germ g in E a function Ag :

Ag : Rd → R
+

x 7→ Ag (x)

where Ag (x) is the time when x is reached by the crystal related to germ g and
assumed to be free. As a consequence, a free crystal at time t is defined by the set

Cg (t) =
{
x
/
Ag (x) ≤ t

}
.

In the following we make several assumptions on the free crystals family {Cg /
g ∈ N } and the functions family {Ag / g ∈ N }. We also specify, when necessary, the
link between assumptions and crystal growth.

We suppose that for any germ g = (xg , tg ) the associated free crystal at time t ≥ tg
equals to:

Cg (t) = xg ⊕
[
V (t)−V (tg )

]
K, (3)

7See Møller, 1986, “Random tessellations in R
d”.
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where K is a compact convex body containing 0 in its interior, V (t) is an absolutely
continuous function of t whose value is the distance achieved with function speed
v(t), and ⊕ represents the Minkowski summation of two sets A and B:

A⊕B = {x+ y
/
x ∈ A, y ∈ B}.

It is supposed (except for theorem 1 on page 175) that v is bounded and separated
from zero:

0 < l ≤ v(s) ≤ L <∞ (4)

almost everywhere.
In this case∫ ∞

0
v(s)ds =∞

and it guarantees that each bounded volume will be completely crystallized within
a finite time.

We denote by px,K the unique positive number such that x
px,K
∈ ∂K . Then, a point

x is reached at time t by the free crystal born in xg at time tg if(
V (t)−V (tg )

)
px−xg ,K =

∣∣∣x − xg ∣∣∣.
As V (t) is invertible,

t = Ag (x) = V −1


∣∣∣x − xg ∣∣∣
px−xg ,K

+V (tg )

.
Let us mention several useful properties of the families {Cg } and {Ag }.

1. For each t ≥ tg and h ≤ 0

Cg (t + h) = Cg (t)⊕ [V (t + h)−V (t)]K.

2. If K = B(0,1) and v(s) = c > 0, we get the classical model of linear and isotropic
expansion of crystals.

3. Crystal growth is space homogeneous: for all germ g = (xg , tg ),

Cg (t) = C(0,tg )(t) + xg , ∀ t ∈R+.

4. The functions x 7→ Ag (x) are continuous and for t ≥ tg

∂Cg (t) =
{
x
/
Ag (x) = t

}
.
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5. Let m = inf{‖x‖ / x ∈ ∂K}, M = sup{‖x‖ / x ∈ ∂K}. Then ∀x ∈Rd

tg +
1
ML
|x| ≤ A(0,tg )(x) ≤ tg +

1
ml
|x|. (5)

6. It is easy to see that under our hypothesis the causal cone Kt has the following
structure: its horizontal section Kt(s) at the level s, 0 ≤ s ≤ t, is the set −Cg
symmetric to the set Cg with g = (0, t − s). Hence

F(t) = Λ(Kt) = λd(K)
∫ t

0
[V (t − s)]dm(ds).

2.3 Crystallization process

As it was already said, the main object of our studying is the process

ξ(x) = inf
g∈N

Ag (x)

It contains in itself all information on development of crystallization and many
important characteristics can be expressed directly in terms of ξ. So, for example,
the crystallized part of a window W ⊂ R

d by the time t is ZW = {x ∈W / ξ(x) ≤ t},
and its volume is equal to

∫
W

1[0,t](ξ(x))λd(dx).
It is easy to understand that transition to a time scale s = V (t) turns our process

ξ into a process ζ with linear growth associated with K . Indeed, under such a
transformation the germ g = (xg , tg ) pass to g ′ = (xg ,V −1sg ) and the crystal Cg (t) will
be transformed to

C′g ′ (s) = xg ⊕
[
V (t)−V (tg )

]
K = xg ⊕ (s − sg )K.

In some cases it is convenient to use this circumstance. For example, as the
set {x / ξ(x) ≤ t} representing crystallized part of space at the time t by process ξ
coincides with a set {x / ζ(x) ≤ s}, final mosaics (Jonson-Mehl tessellations) for ξ and
ζ coincide. However, for our purposes it is more preferable to work directly with
process ξ.

It should be noted also an interesting relation with the Boolean model. Let B
be the epigraph of the function A(0,0)(x), B = {(x, t) ⊂R

d ×R+ / A(0,0)(x) ≤ t}. We will
suppose that the growth rate of crystals is constant, for simplicity we take v(s) = 1.
Then the set B is the cone {cK / c ≥ 0}. The corresponding Boolean model is defined
by the random set

Ψ = ∪x∈N (B⊕ x),

and it is clear that the boundary of Ψ is exactly the graph of ξ:

ξ(x) = inf {t
/

(x, t) ∈ Ψ }.
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We would like to stress that noted compliance will take place only in a case
when growth rate doesn’t depend on locations of a crystal. Figure 1 below illustrates
distinction which arises in opposite case: part a) represents the boundary of the
union Ψ of two zones crystallized by the crystals growing with different speeds
from the germs g and h; part b) shows the crystallization process corresponding to
the same two crystals.

g

a) b)

h

g

h

Figure 1: d = 1, dynamic of two crystals with different rate of growth
a) Boolean model: union of 2 crystals
b) Crystallization process

3 Results

We assume, without loss of generality, that the random field ξ = (ξ(x))x∈Rd defined
by equation (1) on page 170 is a canonical random field on (Ω,F ,P). Namely, we
suppose that Ω = R

T with T = R
d , F is the σ -algebra generated by the cylinders

and P is the distribution of ξ so that for all ω ∈ Ω, ξ(x,ω) = ω(x). As Lebesgue
measure λd on R

d is translation-invariant, we deduce that ξ is homogeneous. This
means that P is invariant under the translations

Sh(ω)(x) = ω(x − h), h ∈Rd .

3.1 Mixing

We precise here what we call a mixing random field.
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3. Results

Definition 1 – A random field ξ = (ξ(x))x∈Rd is mixing if for all A, B ∈ F ,

P

(
A∩ S−1

h (B)
)
−−−−−→
|h|→∞

P(A)P(B).

Remark 1 – Note that every mixing random field in the sense of definition 1 is
ergodic.

Theorem 1 – Under the only assumption equation (3) the random field ξ = (ξ(x))x∈Rd
defined by equation (1) on page 170 is mixing.

Proof. Let us consider the dynamical system {K,K,Q, (Th)}, where

• K is the family of locally finite configurations of Rd ×R+;

• K is the σ -algebra generated by the applications πK : K→R+,

• πK (κ) = card(κ∪K), K being a compact subset of Rd ×R+;

• Q is the law of p.p.p. N ;

• (Th)h∈Rd is the group of translations, Th(κ) = κ− h.

Let ϕ : K→Ω be the application defined by

ϕ(κ)(x) = inf
g∈κ

Ag (x).

It is easy to see that for all κ and all h

Sh(ϕ(κ)) = ϕ(Th(κ)),

where Sh : Ω→Ω, Sh(f )(x) = f (x − h).
It means the system {Ω,F ,P, (Sh)} is a factor-system with respect to {K,K,Q, (Th)}.

As the last one is evidently mixing, by well known fact from the ergodic theory8 the
system {Ω,F ,P, (Sh)} is also mixing. �

3.2 Absolute regularity

For a subset T of Rd , we denote by FT the σ -field generated by the random variables
ξ(x) for all x in T . For two disjoint sets T1 and T2 in R

d and the two σ -fields FT1
and

FT2
, the absolute regularity coefficient is

β(T1,T2) =
∥∥∥PT1∪T2

−PT1
×PT2

∥∥∥
var
,

8See e.g. theorem 3 from chapter 10, §1, of Kornfeld, Fomin, and Sinai, 1982, Ergodic Theory.
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where ‖ν‖var is the total variation norm of a signed measure ν and PT is the distribu-
tion of the restriction ξ|T in the set C(T ) of continuous real-valued functions defined
on T. Note that C(T1 ∪ T2) is canonically identified to C(T1)×C(T2) when T1 ∩ T2 = ∅.
The strong mixing coefficient is defined as follows,

α(T1,T2) = sup
A∈FT1
B∈FT2

|P(A∩B)−P(A)P(B)|.

The process ξ is said to be absolutely regular (respectively α-mixing) if the absolute
regularity coefficient (respectively strong mixing coefficient) converges to zero when
the distance between T1 and T2 tends to infinity with T1 and T2 belonging to a
certain class of sets.

Remark 2 – It is well known that

α(T1,T2) ≤ 1
2
β(T1,T2)

so that absolute regularity of the process ξ implies α-mixing.

Keeping in mind that in our context the process ξ is (strictly) stationary, when
d = 1, one usually chooses T1 = (−∞,0] and T2 = [r,+∞) with r > 0 whereas in the
case d ≥ 2, there are several sorts of sets to be considered. The results we obtain in
this paper when d ≥ 2 deal with quadrant domains as represented on figure 2 on
the facing page and enclosed cube domains as represented on figure 3 on page 179.

3.3 Dimension d = 1

In this case T1 = (−∞,0] and T2 = [r,+∞). We denote by β(r) the coefficient β(T1,T2).

Theorem 2 – Suppose that the dimension d is equal to 1. If equations (3) and (4) on
page 171 and on page 172 are satisfied, the process ξ has the absolute regularity property
and for all r > 0,

β(r) ≤ 8e−F(C1r).

Here F(t) = Λ(Kt), C1 = 1
2ML with L, M the constants from equations (4) and (5) on

page 172 and on page 173.

3.4 Dimension d ≥ 2

We obtain first an upper bound for the absolute regularity coefficient when the two
quadrants T1 and T2 are separated by a 2r-width band. As the random field ξ is
homogeneous, we can choose T1 =

∏d
i=1(−∞,0] and T2 =

∏d
i=1[ai ,+∞). We denote by

L1, (respectively L2) the hyper-plane orthogonal to e = 1√
d

(1, . . . ,1) and containing
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1

T

0

2r

(a  ,a  )

L L L
E

ET

2

1

1 2

2

1 0 2

Figure 2: Quadrant domains for d = 2

the point (0, . . . ,0) (respectively (a1, . . . , ad)) as represented on figure 1 on page 174
when d = 2. The distance between the hyper-planes L1 and L2 equals 2r =< e,a >.
Since < e,a > is positive, we can introduce the hyper-plane L0 situated at equal
distance between L1 and L2. Finally, we denote by E1 (respectively E2) the open
half-space delimited by L0 and containing L1 (respectively L2).

Theorem 3 – Suppose that d ≥ 2. If equations (3) and (4) on page 171 and on page 172
are satisfied and T1 and T2 are the quadrant domains previously described, then

β(T1,T2) ≤ 8
∞∑
k=1

kd−1 exp
{
−F

( 2r
dH2 k

)}
, (6)

where F(t) is the measure of Kt and H =ML(1+ 1
ml )+1 with M, m and L, l the constants

from equations (4) and (5) on page 172 and on page 173.

Before proving the theorem, we give an estimate of the majorant series in equa-
tion (6) for two typical cases.

Example 1 – Suppose that

F(t) ≥ (d + δ) ln t − lnγ

for some δ, γ > 0.
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This inequality is fulfilled in particular if we take K = B(0,1), v(t) = 1, t ≥ 0, and
for t > 0

µ([0, t]) ≥ d + δ
2dcd

t−d ln t,

where cd = λd(B(0,1)). Then e−F(t) ≤ γ t−(d+δ) and we obtain a polynomial estimation
of the sum:

∞∑
k=1

kd−1e−F(Ck) ≤ γ ′C−(d+δ)

with

γ ′ = γ
∞∑
k=1

k−(1+δ).

Example 2 – If we rather suppose that F(t) ≥ γ tδ − c with δ, γ , c > 0, then e−F(t) ≤
C1 e−γ t

δ
with C1 = ec. It is true if as before K = B(0,1), v(t) = 1, t ≥ 0, and if for t > 0

µ([0, t]) ≥ γc−1
d t

δ−d .

In this case we get a super-exponential estimation of the sum:
∞∑
k=1

kd−1e−F(Ck) ≤ C2e
−γ Cδ ,

with

C2 = C1

∞∑
k=1

kd−1e−γ C
δ (kδ−1).

Evidently, C2 still bounded when C→ +∞.

We give now an upper bound for the absolute regularity coefficient β(T1,T2) in
the case of enclosed cube domains separated by a 2r-width polygonal band. As the
random field ξ is homogeneous, we consider centered domains T1 = [−a,a]d and
T2 = ([−b,b]d)c as represented on figure 3 on the facing page for d = 2.

Theorem 4 – Suppose that d ≥ 2. If equations (3) and (4) on page 171 and on page 172
are satisfied and T1, T2 are the enclosed domains previously described with b ≥ 2(2H−1)a,
then

β(T1,T2) ≤ 4(1 + d 2d)
∞∑
k=1

kd−1 exp
{
−F

( 2r
dH2 k

)}
,

where F and H are the same as in theorem 3 on page 177.
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2

2r

0 a b

T

T
1

Figure 3: Sketch for d = 2

3.5 Lower bounds

As a conclusion, we give a lower bound for the β-coefficient in the context of
examples 1 and 2 on page 177 and on page 178. These lower bounds are similar to
the upper bounds in theorems 2 to 4 on pages 176–178. Thus, the upper bounds
obtained in this article appear to be sufficiently precise.

For simplicity we will consider only a one-dimensional case. Fix positive num-
bers r, ρ and set a = r

ρ , A = {ξ(0) > a} and B = {ξ(x) > a} with |x| = r. It is clear that

β(r) ≥ 2|P(A∩B)−P(A)P(B)|.

Since ξ is space homogeneous, we obtain that

P(A) = P(B) = P{N ∩Ka = ∅} = e−F(a).

To compute P(A∩ B), we remark that by definition Kt ⊂ Ks if t ≤ s. Then for all
h ∈Rd , |h| ≤ ρt, we have

P(A∩B) = P{N ∩Ka = ∅, N ∩ (Ka + x) = ∅}

≥ P

{
N ∩K(1+ρ)a = ∅

}
= e−F((1+ρ)a).
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As r = ρa,

β(r) ≥
∣∣∣∣∣∣e−2F

(
r
ρ

)
− e
−F

(
(1+ρ)
ρ r

)∣∣∣∣∣∣. (7)

We compute the minoration term in inequality equation (7) for examples 1 and 2 on
page 177 and on page 178. In the case of example 1, where F(t) = (d +δ) ln(t)− ln(γ)
with δ, γ > 0, we obtain that

e−2F
(
r
ρ

)
= γ2ρ2(d+δ)r−2(d+δ)

and

e
−F

(
(1+ρ)
ρ r

)
= γ

(
ρ

ρ+ 1

)d+δ

r−(d+δ).

Thus, for r sufficiently large,

β(r) ≥ κ1r
−(d+δ)

with κ1 > 0.
For example 2 where F(t) = γ tδ − c with γ , δ,, c > 0, we find that

e−2F
(
r
ρ

)
= e2ce

− 2γ
ρδ
rδ

and

e
−F

(
(1+ρ)
ρ r

)
= ece

− γ (1+ρ)δ

ρδ
rδ
.

Finally, if ρ < 2
1
δ − 1, then for r sufficiently large,

β(r) ≥ κ2e
−γ

( 1+ρ
ρ

)δ
rδ

with κ2 > 0.

4 Proofs

4.1 Approach

In order to obtain upper bounds for the absolute regularity coefficient β(T1,T2), we
approximate the restrictions of ξ on T1 and T2 by two independent random fields
and apply the following lemma.
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Lemma 1 – Let us consider a random field (ξ(x))x∈Rd and two disjoint subsets T1 and
T2 of Rd . If there exists two random fields (η1(x))x∈Rd and (η2(x))x∈Rd and two positive
constants δ1 and δ2 such that:

1. η1 and η2 are independent;

2. P{ξ(x) = ηi(x), ∀x ∈ Ti} ≥ 1− δi for i = 1,2,

then

β(T1,T2) ≤ 4(δ1 + δ2).

Proof. Let us denote by P1 the distribution of the restriction ξ|T1
of ξ to T1, by P2 the

distribution of the restriction ξ|T2
of ξ to T2, by Q1 the distribution the restriction

η1 |T1
of η1 to T1, and by Q2 the distribution of the restriction η2 |T2

of η2 to T2. From
item 2 we have for i = 1,2, that

‖Pi −Qi‖var ≤ 2δi .

Now, we denote by P the distribution of ξ on T1∪T2 and Q the distribution of η
on T1 ∪ T2 with η defined as follows:

η(x) =

η1(x) x ∈ T1,

η2(x) x ∈ T2.

We have

P

{
ξ(x) = η(x), ∀x ∈ T1 ∪ T2

}
= P(D1 ∩D2),

where Di = {ξ(x) = ηi(x), ∀x ∈ Ti}, i = 1,2.
But,

P(D1 ∩D2) = 1−P (Dc1 ∪D
c
2) ≥ 1−P(Dc1)−P(Dc2)

and since P(Di) ≥ 1− δi for i = 1,2,

P

{
ξ(x) = η(x), ∀x ∈ T1 ∪ T2

}
≥ 1− (δ1 + δ2).

By previous arguments

‖P −Q‖var ≤ 2(δ1 + δ2).

Finally, we have that

‖P −P1 ×P2‖var ≤ ‖P −Q‖var + ‖Q−Q1 ×Q2‖var + ‖Q1 ×Q2 −P1 ×P2‖var.
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As η1 and η2 are independent,

‖Q−Q1 ×Q2‖var = 0.

Moreover,

‖P1 ×P2 −Q1 ×Q2‖var ≤ ‖P1 −Q1‖var + ‖P2 −Q2‖var ≤ 2(δ1 + δ2)

and

‖P −Q‖var ≤ 2(δ1 + δ2).

Thus, we derive that

‖P −P1 ×P2‖var ≤ 4(δ1 + δ2). �

4.2 Proof of theorem 2

We introduce for any subset T of R, the process ξT defined as follows

ξT (x) = inf
g∈N
xg∈T

Ag (x), x ∈Rd . (8)

The proof of theorem 2 on page 176 is based on the two lemmas.

Lemma 2 – Under the assumptions of theorem 2 on page 176, for all r > 0, we have that

P

{
ξ(x) = ξ(−∞,MLr](x), ∀x ≤ 0

}
≥ 1− e−F(r)

with ξ(−∞,MLr] defined by relation equation (8) with T = (−∞,MLr].

Proof. Let us show first that

{ξ(0) ≤ r} ⊂
{
ξ(x) = ξ(−∞,MLr](x), ∀x ≤ 0

}
. (9)

Suppose that ξ(0) ≤ r and prove that for all x ≤ 0

inf
g∈N

xg≤MLr

Ag (x) ≤ inf
g∈N

xg>MLr

Ag (x). (10)

For all g = (xg , tg ) ∈ E such that xg >MLr we have due to equation (5) on page 173

Ag (0) ≥ tg +

∣∣∣xg ∣∣∣
ML

> r.
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Since ξ(0) ≤ r, we then deduce that

ξ(0) = inf
g∈N

xg≤MLr

Ag (0).

Therefore, there exists g0 ∈ N such that xg0
≤MLr and Ag0

(0) = ξ(0). But then for
all g = (xg , tg ) ∈ E such that xg >MLr we have Ag (0) ≥ Ag0

(0) which gives

Ag (x) ≥ Ag0
(x), ∀x ≤ 0,

and equation (10) on page 182 follows. It means that for all x ≤ 0

ξ(x) = ξ(−∞,MLr](x)

and equation (9) on page 182 is then proved. Finally,

P

{
ξ(x) = ξ(−∞,MLr](x), ∀x ≤ 0

}
≥ P{ξ(0) ≤ r}

and

P{ξ(0) ≤ r} ≥ 1− e−Λ(K0,r ). �

Thanks to symmetry arguments, we have also the following lemma.

Lemma 3 – Under the same assumptions as in theorem 2 on page 176, for all r > 0, we
have that

P

{
ξ(x) = ξ[MLr,+∞)(x), ∀x ≥ 2MLr

}
≥ 1− e−F(r)

where ξ[MLr,+∞) is defined by relation equation (8) with T = [MLr,+∞).

We turn back to the demonstration of theorem 2 on page 176.

Proof (of theorem 2 on page 176). Let t > 0 and consider r such that 2MLr = t. Lem-
mas 2 and 3 on page 182 and on this page allow us to apply lemma 1 on page 181
with η1 = ξ(−∞,MLr], η2 = ξ[MLr,+∞), T1 = (−∞,0], T2 = [2MLr,+∞) and δ1 = δ2 =
e−F(r). We obtain then that

β(t) ≤ 4(δ1 + δ2) = 8e−F( t
2ML ). �

4.3 Proof of theorem 3

To prove theorem 3 on page 177, we approximate the process ξ on the sets T1 and
T2. Thus, we introduce for all r > 0 the following random fields:

η1
r (x) = inf

g∈N
xg∈E1

Ag (x), x ∈Rd , (11)
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η2
r (x) = inf

g∈N
xg∈E2

Ag (x), x ∈Rd . (12)

For r > 0 we denote by ξr the random field defined as follows:

ξr (x) = inf
g∈N
|xg |≤r

Ag (x), x ∈Rd , (13)

and we set ξyr (x) = ξr (x − y).
The proof of theorem 3 on page 177 is then based on three lemmas. The following

lemma is in some sense an analogue of lemma 2 on page 182.

Lemma 4 – Let H =ML(1 + 1
ml ) + 1. Under the assumptions of theorem 3 on page 177,

for all r > 0,

P{ξ(x) = ξHr (x)
/
|x| ≤ r} ≥ 1− e−F(r)

with ξHr defined by equation equation (13).

Proof. It is sufficient to show that

{ξ(0) ≤ r} ⊂ {ξ(x) = ξHr (x)
/
|x| ≤ r}.

If ξ(0) ≤ r, then there exists g0 such that ξ(0) = Ag0
(0). Hence by equation (5) on

page 173 for all x

ξ(x) ≤ Ag0
(x) ≤ A(0,r)(x) ≤ r + ‖x‖

1
ml
.

Therefore

max
‖x‖≤r

ξ(x) ≤ r(1 +
1
ml

).

Now if germ g is such that
∥∥∥xg∥∥∥ > Hr, then, again by equation (5) on page 173,

Ag (x) ≥ A(xg ,0)(x) ≥
∥∥∥xg − x∥∥∥ 1

RL
.

For ‖x‖ ≤ r the last inequality gives

Ag (x) > (H − 1)
r
RL

= r + ‖x‖
1
ml
.

It means that ξ(x) = ξHr (x) for all x,‖x‖ ≤ r. �

184



4. Proofs

Lemma 5 – Under the assumptions of theorem 3 on page 177, for all r > 0,

P

{
ξ(x) = η1

r (x)
/
x ∈ T1

}
≥ 1−

∞∑
k=1

kd−1e−F(Ck)

with η1
r defined by equation (11) on page 183, C = 2r

dH2 , H =ML(1 + 1
ml ) + 1.

Proof. We use notation B(x,r) for closed ball with center x and radius r. Let G = r
H .

We split the set T1 into d-dimensional cubes denoted by Ak , where for all k =
(k1, . . . , kd) ∈ (−N)d ,

Ak =
d∏
i=1

[
2G
√
d

(ki − 1),
2G
√
d

(ki)
]
.

Each cube Ak is centered in xk = ( G√
d

(2ki − 1))i=1,...,d and has diameter equal to 2G.
Remark also that the distance between xk and L1 equals sk with

sk = G+

∣∣∣∣∣∣
〈

2G
√
d
k,e

〉∣∣∣∣∣∣ = G

1 +
2
d

∣∣∣∣∣∣∣
d∑
i=1

ki

∣∣∣∣∣∣∣
.

Denote by p the probability P{ξ(x) = η1
r (x) / x ∈ T1} and note that

p = P


⋂

k∈(−N)d

Bk

, (14)

with

Bk =
{
ξ(x) = η1

r (x)
/
x ∈ Ak

}
.

From lemma 4 on page 184, we obtain for all r > 0 that

P

{
ξ(x) = ξ

xk
Hr (x)

/ ∥∥∥x − xk∥∥∥ ≤ r} ≥ 1− e−F(r),

with ξ
xk
Hr defined by relation equation (13). Take r = G +

sk
H . Then, Ak ⊂ B(xk , r) and{

ξ(x) = ξ
xk
Hr = (x)

/ ∥∥∥x − xk∥∥∥ ≤ r} ⊂ {
ξ(x) = ξ

xk
Hr (x)

/
x ∈ Ak

}
.

Moreover B(xk ,Hr) is included in the half-space E1. Consequently,{
ξ(x) = ξ

xk
Hr (x)

/
x ∈ Ak

}
⊂

{
ξ(x) = η1

r (x)
/
x ∈ Ak

}
.
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Denoting by pk the probability P(Bk), we finally obtain that

pk ≥ 1− e
−F

(
G+

s
k
H

)
. (15)

On the other hand, equation (14) on page 185 implies that

p = 1−P(
⋃

k∈(−N)d

Bc
k
).

From equation (15), we deduce that

p ≥ 1−
∑

k∈(−N)d

e
−F

(
G+

s
k
H

)
. (16)

Now, we obtain an upper bound for the sum in equation (16) as follows:

∑
k∈(−N)d

e
−F

(
G+

l
k
H

)
=
∞∑
n=0

#

k
/ ∣∣∣∣∣∣∣

d∑
i=1

ki

∣∣∣∣∣∣∣ = n

e−F(G+ G
H (1+ 2

d n))

≤
∞∑
n=0

(n+ 1)d−1e−F(G(1+ 1
H (1+ 2

d n))).

Since G
(
1 + 1

H (1 + 2
dn)

)
≥ C(m+ 1) with C = 2G

dH when d ≥ 2, we finally derive that

p ≥ 1−
∞∑
n=1

nd−1e−F(Cn). �

Symmetry arguments lead to the following lemma.

Lemma 6 – Under the assumptions of theorem 3 on page 177, for all a > 0,

P(ξ(x) = η2
r (x), x ∈ T2) ≥ 1−

∞∑
m=1

md−1e−F(Cm)

with η2
r defined by equation (12) on page 184, C = 2G

dH , G = r
H , H =ML(1 + 1

ml ) + 1.

Proof (of theorem 3 on page 177). Lemmas 5 and 6 on page 185 and on the current
page enable us to make use of lemma 1 on page 181 with η1 = ηr1, η2 = ηr2, δ1 = δ2 =∑∞
k=1 k

d−1e−F(Ck) and T1, T2 the quadrant domains. We then have that

β(T1,T2) ≤ 4(δ1 + δ2) = 8
∞∑
k=1

kd−1e−F(Ck). �
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4.4 Proof of theorem 4

The proof of theorem 4 on page 178 make use of the same kind of arguments as
in the proof of theorem 3 on page 177. Therefore, we introduce some notations
in order to define the random fields ηr1 and ηr2 approximating ξ respectively on T1

and T2. Thus, we denote by e1, . . . , ed the d vectors of the canonical base in R
d and

consider the set A = {α / (α1, . . . ,αd), αi = ±1} which cardinal equals #A = 2d . For all
i, the hyper-plane e⊥i separates the set Rd into two open half-space Eεi with ε = ±1
and εei contained in Eεi . For all α ∈ A, we introduce the quadrant:

Zα =
d⋂
i=1

Eαii

and for all i = 1, . . . ,d the translated quadrant:

Zα,i = Zα ⊕αi bei . (17)

Observe that

T2 =
⋃
α∈A

d⋃
i=1

Zα,i .

On the other hand, let us define for all α ∈ A, the normed vector of Zα :

dα =
1
√
d

d∑
i=1

αi ei .

To separate the sets T1 and T2 by a 2r-width polygonal band, the quantity r = (b−2a)
√
d

4
must be positive. Thus, we assume that b > 2a. In this case, we consider the hyper-
planes

L0
α = d⊥α +

(b+ 2a)
√
d

4
dα

L2
α = L0

α + r dα = d⊥α +
b
2

√
d dα

L1
α = L0

α − r dα = d⊥α + a
√
d dα

as represented on figure 4 on the next page for d = 2 and α = (1,1).
We introduce now, for all α in A, the open half-space S2

α delimited by the hyper-
plane L0

α and containing the quadrants Zα,i for i = 1, . . . ,d. At last, we consider the
set S2 containing T2:

S2 =
⋃
α∈A

S2
α .
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α

a b

2r

T

T

L

L

L

1

2
0

α

2

α

1

Figure 4: Sketch for d = 2

Then, we introduce for all α ∈ A, the random field:

ηα(x) = inf
g∈S2

α

Ag (x), x ∈Rd

and approximate ξ on T2 by the following random field:

ηr2(x) = inf
g∈S2

Ag (x), x ∈Rd . (18)

Lemma 7 – Under assumptions of theorem 4 on page 178

P

{
ξ(x) = ηr2(x), x ∈ T2

}
≥ 1− d 2d

∞∑
k=1

kd−1e−F(Ck)

where C is the constant of theorem 4 on page 178 and ηr2 is defined by equation (18).

Proof. As for all α ∈ A and all i = 1, . . . ,d the sets Zα,i defined by equation (17) on
page 187 are quadrants included in S2

α , ξ can be approximate by ηα on each Zα,i by
lemma 5 on page 185 so that:

P

{
ξ(x) = ηα(x), ∀x ∈ Zα,i

}
≥ 1−

∞∑
k=1

kd−1e−F(Ck).

Since for all x ∈Rd

ξ(x) ≤ ηr2(x) ≤ ηα(x),

we deduce for all α ∈ A and all i = 1, . . . ,d that

P

{
ξ(x) = ηr2(x), ∀x ∈ Zα,i

}
≥ 1−

∞∑
k=1

kd−1e−F(Ck).
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Finally, we get

P

{
ξ(x) = ηr2(x), x ∈ T2

}
≥ 1− d 2d

∞∑
k=1

kd−1e−F(Ck). �

Consider now for all α in A the open half-space S1
α = (S2

α)c\L0
α . We also introduce

the intersection

S1 =
⋂
α∈A

S1
α

on which ξ can be approximated by the following random field:

ηr1(x) = inf
g∈S1

Ag (x), x ∈Rd . (19)

Lemma 8 – Under assumptions of theorem 4 on page 178 and if b ≥ 2(2H − 1)a, then

P

{
ξ(x) = ηr1(x), x ∈ T1

}
≥ 1−

∞∑
k=1

kd−1e−F(Ck),

where C is the constant of theorem 4 on page 178 and ηr1 is defined by equation (19).

Proof. We consider the centered open ball B1 = B(0, a
√
d) included in T1 and the

ball B2 = B(0, a
√
d + r ′) with r ′ ≤ r so that B2 is contained in S1. If we denote by R

the radius of B1 and assume that RH = a
√
d + r ′ with H the constant of theorem 4

on page 178, we find that

r ′ = (H − 1)a
√
d ≤ r =

(b − 2a)
√
d

4

and finally that b must be such that b ≥ 2(2H − 1)a. Since H ≥ 1, it follows that
b > 2a. We introduce the random fields ηB2

:

ηB2
(x) = inf

g∈B2
Ag (x), x ∈Rd ,

and remark that for all x ∈Rd

ξ(x) ≤ ηr1(x) ≤ ηB2
(x). (20)

As by lemma 4 on page 184,

P

{
ξ(x) = ηB2

(x), ∀x ∈ B1

}
≥ 1− e−F(R),
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it follows from equation (20) on page 189 that

P

{
ξ(x) = ηr1(x), ∀x ∈ B1

}
≥ 1− e−F(R).

As B1 ⊂ T1, we also have that{
ξ(x) = ηr1(x), x ∈ B1

}
⊂

{
ξ(x) = ηr1(x), x ∈ T1

}
.

Therefore

P

{
ξ(x) = ηr1(x), ∀x ∈ T1

}
≥ 1− e−F(R).

Finally, as H ≥ 1, we have that R ≥ C with C = 2R
dH and e−F(R) ≤ e−F(C). Since

e−F(C) ≤
∑∞
k=1 k

d−1e−F(Ck), we get

P

{
ξ(x) = ηr1(x), ∀x ∈ T1

}
≥ 1−

∞∑
k=1

kd−1e−F(Ck). �

Proof (of theorem 4 on page 178). We apply again lemmas 1, 7 and 8 on page 181, on
page 188 and on page 189 with η1 = ηr1, η2 = ηr2, δ1 =

∑∞
k=1 k

d−1e−F(Ck), δ2 = d 2d δ1
and T1, T2 the enclosed domains. We then have that

β(T1,T2) ≤ 4(δ1 + δ2) = 4(1 + d 2d)
∞∑
k=1

kd−1e−F(Ck). �
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