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Abstract

Let d ≥ 2, A ⊂Z
d be finite and not contained in a translate of any hyperplane,

and q ∈Z such that |q| ≥ 2. We show

|A+ q ·A| ≥ (|q|+ d + 1)|A| −O(1).

Keywords: higher dimensional sumsets, dilations.
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1 Introduction

Let A and B be finite sets of real numbers. The sumset and the productset of A and
B are defined by

A+B = {a+ b
/
a ∈ A, b ∈ B},

A ·B = {ab
/
a ∈ A, b ∈ B}.

For a real number d , 0 the dilation of A by d is defined by

d ·A = {d} ·A = {da
/
a ∈ A},

while for any real number x, the translation of A by x is defined by

x+A = {x}+A = {x+ a
/
a ∈ A}.

The following (actually more) was shown in Balog and Shakan (n.d.[a]).

Theorem 1 (Balog and Shakan3) – Let q ∈Z. Then there is a constant Cq such that
every finite A ⊂Z satisfies

|A+ q ·A| ≥ (|q|+ 1)|A| −Cq. (1)

1Alfréd Rényi Institute of Mathematics, Budapest, P.O.Box 127, 1364–Hungary
2University of Wyoming Department of Mathematics, Laramie, Wyoming 82072, USA
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This was obtained after the works of Bukh; Cilleruelo, Hamidoune, and Serra; Du S.,
Cao H., and Sun Z.; Hamidoune and Rué; Ljujic4. The reader is invited to see the
introductions of Balog and Shakan (n.d.[a]) and Bukh (2008) for a more detailed
introduction to this problem.

For a finite A ⊂Z
d , we say the rank of A is the smallest dimension of an affine

space that contains A. When A is a set of high rank, one might expect to be able
to improve the lower bound in equation (1) on page 57, which is the goal of our
current note. Ruzsa proved the following in Ruzsa (1994).

Theorem 2 (Ruzsa5) – Let A,B ⊂Z
d be finite such that A+B has rank d and |A| ≥ |B|.

Then

|A+B| ≥ |A|+ d|B| − d(d + 1)
2

Let A ⊂ Z
d be finite of rank d and q be an integer. The main objective here is to

improve upon equation (1) on page 57 and theorem 2 in the case B = q ·A. In this
note O(1) will always depend on the relevant d and q. Our main theorem is the
following.

Theorem 3 – Let A ⊂Z
d of rank d ≥ 2 and |q| ≥ 2 be an integer. Then

|A+ q ·A| ≥ (|q|+ d + 1)|A| −O(1).

The authors would like to thank Imre Ruzsa for drawing our attention to the
problem considered here. We remark that we do not believe even the multiplicative
constant of (|q|+d+1) is the best possible, and we now present our best construction.
For 1 ≤ i ≤ d, let ei be the standard basis vectors of Zd . For N ∈Z, consider

AN = {e1, . . . , ed} ∪ {ne1
/

0 < n < N , n ∈Z}.

An easy induction on d reveals

|AN + q ·AN | ≤ (q+ 2d − 1)|AN | − (d − 1)(|q| − 2(d − 1) + 1) (2)

This shows that theorem 3 is the best possible up to the additive constant for d = 2.
We are also able to handle the case d = 3.

Theorem 4 – Let A ⊂Z
3 be finite of rank 3 and |q| ≥ 2. Then

|A+ q ·A| ≥ (|q|+ 5)|A| −O(1).

3Balog and Shakan, n.d.(a), On the sum of dilations of a set.
4Bukh, 2008, “Sums of Dilates”;

Cilleruelo, Hamidoune, and Serra, 2009, “On sums of dilates”;
Du S., Cao H., and Sun Z., 2015, “On a sumset problem for integers”;
Hamidoune and Rué, 2011, “A lower bound for the size of a Minkowski sum of dilates”;
Ljujic, 2013, “A lower bound for the size of a sum of dilates”.

5Ruzsa, 1994, “Sum of sets in several dimensions”.
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2. Proof of theorems 3 and 5

Furthermore, we can prove the following bound for all q, and this is best possible,
up to the additive constant, when |q| = 2. One can check the example for equation (2)
on page 58 to see that

|AN ± 2 ·AN | = (2d + 1)|AN | − d(d + 1).

Theorem 5 – Let A ⊂Z
d be finite of rank d and |q| > 1. Then

|A+ q ·A| ≥ (2d + 1)|A| − d(d + 1)2/2.

Our basic intuition is that to minimize |A+ q ·A| one should choose A to be as close
to a one dimensional set as possible. One should proceed with caution with this
intuition because when q = −1, a clever construction in Stanchescu (2001) shows
that this is not the best strategy. Nevertheless, given the evidence of theorem 4 on
page 58 and theorem 5 we present the following conjecture.

Conjecture 1 – Suppose A ⊂ Zd is finite of rank d and q is an integer with |q| ≥ 2. Then

|A+ q ·A| ≥ (|q|+ 2d − 1)|A| −O(1).

We remark that the cases A + A and A − A have different behavior. Theorem 2
on page 58, which in the case B = A was proved by Freiman6, says that |A+A| ≥
(d + 1)|A| −d(d + 1)/2. This is the best possible due to equation (2) on page 58, which
shows theorem 3 on page 58 is false with q = 1. The reason that one can improve
when q , 1 is simply that in A+A, the roles of the summands are interchangeable,
while in the case A+ q ·A, the roles of A and q ·A are not interchangeable. We have
already mentioned that there is a tricky construction in Stanchescu (2001), which
shows |A−A| can be as small as (2d − 2 + 1

d−1 )|A| − (2d2 − 4d + 3). In the same paper,
the author conjectures that this is the best possible. It is curious that best known
lower bound is |A−A| ≥ (d + 1)|A| −d(d + 1)/2. The case q = −1 is also different in the
sense that it is important that when |q| > 1, we can split A into cosets modulo q ·Zd .
This will be seen in our argument below.

Let L : Zd → Z
d be a linear transformation. In this note we are primarily

concerned with |A+ LA| where L is a scalar multiple of the identity. The study of
other choices of L would be natural, but we do not do it here.

2 Proof of theorems 3 and 5

Fix A ⊂ Z
d of rank d ≥ 2 and an integer q with |q| ≥ 2 Since the rank of A is d, we

must have that A contains at least (d + 1) elements. We first partition A into its
intersections with cosets of the lattice q ·Zd . Note there are |q|d such cosets. Let

A =
r⋃

i=1

Ai , Ai = ai + q ·A′i , ai ∈ {0, . . . , |q| − 1}d , A′i , ∅,

6Freiman, 1973, Foundations of structural theory of set addition.
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where the unions are disjoint. We obtain the preliminary estimate

Lemma 1 – Let A ⊂Z
d and q ∈Z such that |q| ≥ 2. Suppose that A intersects r cosets

of the lattice q ·Zd . Then

|A+ q ·A| ≥ (d + r)|A| − rd(d + 1)/2.

Proof. Using theorem 2 on page 58, we obtain

|A+ q ·A| =
r∑

i=1

|Ai + q ·A|

≥
r∑

i=1

(
d|Ai |+ |A| −

d(d + 1)
2

)
= (d + r)|A| − rd(d + 1)/2. �

We say that A is fully distributed (fd) modulo q ·Zd if A intersects every coset of
q ·Zd . Note that for a fd modulo q ·Zd set, theorem 3 on page 58 and conjecture 1
on page 59 are far from optimal.

We now describe the process of reducing A. Applying an invertible linear
transformation to A does not change |A+q ·A|. Suppose there is some a ∈ A such that
the lattice 〈A− a〉

Z
= Γ is a non-trivial sublattice of Zd . Let L : Zd →Z

d be a linear
transformation that maps the standard basis vectors to the basis vectors of Γ , that is
Γ = LZd . Since A has rank d, L is invertible. Then we may replace A with L−1(A− a).
Note that L−1(A− a) ⊂ Z

d since A ⊂ a+ LZd . Since 1 < det(L) ∈ Z, each reduction
reduces the volume of the convex hull of A by at least 1

2 . The volume of the convex
hull of A is always bounded from below by the volume of the d-dimensional simplex
so eventually this process must stop. Thus we may assume 〈A − a〉

Z
= Z

d for all
a ∈ A. Then it follows that we have for all 1 ≤ i ≤ r,

Z
d = 〈A− a〉

Z
⊂ 〈a1 − ai , . . . , ar − ai ,qe1, . . . , qed〉Z ⊂Z

d . (3)

Here we used that if x ∈ A − a and a ∈ Ai , then for some 1 ≤ j ≤ r we have x ∈
aj − a+ q ·A′j ⊂ 〈aj − ai ,qe1, . . . , qed〉Z. We say A is reduced if equation (3) holds.

Proof (of theorem 5 on page 59). By the discussion above, we may assume A is re-
duced. We first aim to show that a reduced set must intersect at least d + 1 cosets of
q ·Zd , and then we will appeal to the argument of lemma 1.

Observe that the linear combinations of a1 − a1, . . . , ar − a1 can only take at most
|q|r−1 different vectors mod q ·Zd . Since A is reduced, by equation (3), these vectors
must intersect every coset modulo q ·Zd . Thus we have that |q|r−1 ≥ |q|d , and so
r − 1 ≥ d.
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2. Proof of theorems 3 and 5

Then by theorem 2 on page 58, we find

|A+ q ·A| ≥

 d∑
i=1

|Ai + q ·A|

+

∣∣∣∣∣∣∣A \
 d⋃
i=1

Ai

+ q ·A

∣∣∣∣∣∣∣
≥

 d∑
i=1

(d|Ai |+ |A| − d(d + 1)/2)

+ d

∣∣∣∣∣∣∣A \
 d⋃
i=1

Ai


∣∣∣∣∣∣∣+ |A| − d(d + 1)/2

= (2d + 1)|A| − d(d + 1)2/2. �

We now focus our attention to the proof of theorem 3 on page 58. We start with a
special case. Recall that we assume d ≥ 2.

Lemma 2 – Suppose A is contained in d parallel lines. Then |A + q ·A| ≥ (|q| + 2d −
1)|A| −O(1).

Proof. Suppose A is contained in x1 + `, . . . ,xd + ` for some 1 dimensional subspace
`. After a translation of A by −a for an element a ∈ A we can suppose x1 = 0 and
without loss of generality, we may suppose x2, . . . ,xd are elements of `⊥ � R

d−1.
Moreover, we have that x2, . . . ,xd are linearly independent over R since A has rank d.
This implies that for all 1 ≤ i, j ≤ d, the lines (xi + `) + q · (xj + `) are pairwise disjoint.
For 1 ≤ i ≤ d, let Bi := A∩ (xi + `). It follows, using equation (1) on page 57 that

|A+ q ·A| =
d∑
i=1

d∑
j=1

|Bi + q ·Bj |

=
d∑
i=1

|Bi + q ·Bi |+
∑
j,i

|Bi + q ·Bj |


≥

d∑
i=1

((|q|+ 1)|Bi | −O(1)
)

+
∑
j,i

(|Bi |+ |Bj | − 1)


= (|q|+ 2d − 1)|A| −O(1). �

We remark that the lack of a satisfactory higher dimensional analog of lemma 2
is essentially what blocks us from improving the multiplicative constant in m
theorem 3 on page 58.

We prove theorem 3 on page 58 by induction on d starting from d = 2 (the
statement is not true for d = 1). Note that the proof of the next lemma does not use
the induction hypothesis for d = 2 but only for d ≥ 3.

Lemma 3 – Let B ⊂ A and suppose that the rank of B is 1 ≤ f < d. Then

|B+ q ·A| ≥ (|q|+ d + 1)|B| −O(1),

or A is contained in d parallel lines.
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Proof. Note that the rank of B+q ·B is also f . Since B+q ·A is of rank d, we may find
an x ∈ A such that B+qx is not in the affine span of B+q ·B. Thus B+q ·B and B+qx
are disjoint. The rank of B∪ {x}+ q · (B∪ {x}) is f + 1. We may repeat this process
with B∪ {x}+ q · (B∪ {x}) in the place of B+ q ·B, and so on, a total of (d − f ) times.
Thus we find x1, . . . ,x(d−f ) ∈ A such that B+ q ·B,B+ qx1, . . . ,B+ qx(d−f ) are pairwise
disjoint. When f ≥ 2 (so d ≥ 3) we use the induction hypothesis, that is theorem 3
on page 58 for the sum B+ q ·B where B is of rank 2 ≤ f < d to get

|B+ q ·A| ≥ |B+ q ·B|+
d−f∑
j=1

|B+ qxj | ≥ (|q|+ d + 1)|B| −O(1).

Now we handle the case f = 1 (this is the only possibility when d = 2), in this case
we do not use the induction hypothesis. B is contained in a line. We may suppose
A is not contained in d parallel lines. We proceed as above to find x1, . . . ,xd−1 such
that B+ q ·B,B+ qx1, . . . ,B+ qx(d−1) are pairwise disjoint. Since A is not contained
in d parallel lines, we may find an xd ∈ A such that B + qxd is disjoint from all
B+ q ·B,B+ qx1, . . . ,B+ qx(d−1). It follows from theorem 1 on page 57 applied to the
sum B+ q ·B that

|B+ q ·A| ≥ |B+ q ·B|+
d∑

j=1

|B+ qxj | ≥ (|q|+ d + 1)|B| −O(1). �

The next lemma is a higher dimensional analog of Lemma 3.1 in Balog and Shakan
(n.d.[a]).

Lemma 4 – Let 1 ≤ i ≤ r. Then either A′i is fd modulo q ·Zd or

|Ai + q ·A| ≥ |Ai + q ·Ai |+ min
1≤w≤r

|Aw |.

Proof. Suppose

|Ai + q ·A| < |Ai + q ·Ai |+ min
1≤w≤r

|Aw |.

Fix 1 ≤ w ≤ r. Since Aw ⊂ A, we find that

|(Ai + q ·Aw) \ (Ai + q ·Ai)| < |Aw |.

Translation by −ai and dilation by 1
q reveals that

|(aw − ai +A′i + q ·A′w) \ (A′i + q ·A′i)| < |A
′
w |.

Thus for any x ∈ A′i there is a y ∈ A′w such that aw − ai + x + qy ∈ A′i + q ·A′i . It follows
that there is a x′ ∈ A′i such that aw − ai + x ≡ x′ mod q ·Zd . We may repeat this
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2. Proof of theorems 3 and 5

argument with x′ in the place of x, and so on, and for each 1 ≤ w ≤ r to obtain that
for any u1, . . . ,ur ∈Z there is a x′′ ∈ A′i such that

u1(a1 − ai) + · · ·+ur (ar − ai) + x ≡ x′′ mod q ·Zd .

Since A is reduced, this describes all of the cosets modulo q ·Zd and it follows that
A′i is fd mod q ·Zd . �

We are now ready to prove theorem 3 on page 58. We start with |A+ q ·A| ≥ |A| and
improve upon the multiplicative constant iteratively.

Proposition 1 – Suppose A ⊂ Z
d such that A has rank d. Let q ∈ Z such that |q| ≥ 2.

Then for every |q|+ d + 1 ≤m ≤ (|q|+ d + 1)2, one has

A+ q ·A| ≥ m
|q|+ d + 1

|A| −O(1),

where O(1) also depends on m.

Proof. Observe that m = (|q|+ d + 1)2 is precisely theorem 3 on page 58. For conve-
nience, set S = |q|+d + 1. We prove by induction on m, where |A+q ·A| ≥ |A| trivially
starts the induction. Suppose now that proposition 1 is true for a fixed S ≤m < S2,
and we prove it for m+ 1.

If A is contained in d parallel lines, then lemma 2 on page 61 immediately
implies theorem 3 on page 58, and so proposition 1 is especially true for m+ 1 as
well. Thus we may assume A is not contained in d parallel lines.

Consider a set B ⊂ A. If it is 1 ≤ f < d dimensional, then lemma 3 on page 61
shows that |B + q ·A| ≥ S |B| −O(1). If B is d dimensional, then by the induction
hypothesis on m, we have
|B+ q ·A| ≥ |B+ q ·B| ≥ m

S |B| −O(1). In either case, using that m < S2, we have

|B+ q ·A| ≥ m
S
|B| −O(1). (4)

First, assume there is an 1 ≤ i ≤ r such that |Ai | ≤ 1
S |A|. We have by equation (4) and

theorem 2 on page 58, that

|A+ q ·A| ≥ |Ai + q ·A|+ |(A \Ai) + q ·A| ≥

≥ |Ai |+ |A| − 1 +
m
S

(|A| − |Ai |)−O(1) ≥ m+ 1
S
|A| −O(1).

Thus we may assume that every Ai has more than 1
S |A| elements.

Suppose now that every Ai is strictly less than d dimensional. Then lemma 3 on
page 61 shows that

|A+ q ·A| =
r∑

i=1

|Ai + q ·A| ≥
r∑

i=1

((|q|+ d + 1)|Ai | −O(1))

= (|q|+ d + 1)|A| −O(1) ≥ m+ 1
S
|A| −O(1).
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Thus we may assume that there is an Ai that is d dimensional.
If the corresponding A′i is not fd modulo q ·Zd , then by lemma 4 on page 62,

equation (4) on page 63, and by the induction hypothesis for Ai we have

|A+ q ·A| ≥ |Ai + q ·A|+ |(A \Ai) + q ·A|

≥ |Ai + q ·Ai |+ min
1≤w≤r

|Aw |+
m
S

(|A| − |Ai |)−O(1)

≥ m
S
|Ai | −O(1) +

1
S
|A|+ m

S
(|A| − |Ai |)−O(1) =

m+ 1
S
|A| −O(1).

Similarly if A′i is fd mod q ·Zd (and Ai is d dimensional) then by lemma 1 on page 60
and equation (4) on page 63 we have

|A+ q ·A| = |Ai + q ·A|+ |A \Ai + q ·A| ≥ |A′i + q ·A′i |+ |A \Ai + q ·A|

≥ (|q|d + d)|A′i | −O(1) +
m
S

(|A| − |Ai |)−O(1) ≥ m+ 1
S
|A| −O(1).

Note that the only place where we have used the hypothesis of the induction on d is
the f ≥ 2 case of the proof of lemma 3 on page 61, what we do not use when d = 2
thus this argument also proves theorem 3 on page 58 in that case. �

3 Proof of theorem 4

Let A ⊂Z
3 of rank 3 and q be a positive integer such that |q| ≥ 2.

The proof of theorem 4 on page 58 is almost identical to that of theorem 3 on
page 58. The only difference is that we have to strengthen lemma 2 on page 61.
The reader is invited to check that it is enough to prove lemma 2 on page 61 in
the case where d = 3 and A is contained in two parallel planes or 4 parallel lines
and then the proof of theorem 3 on page 58 goes through in an identical manner.
Indeed, if one was able to prove conjecture 1 on page 59 in the special cases for each
1 ≤ f ≤ d − 1, and A is contained in 2(d − f ) translates of a f -dimensional subspace,
then this along with the proof of theorem 3 on page 58 would imply conjecture 1 on
page 59 in general.

Lemma 5 – Suppose A is contained in two parallel hyperplanes. Then

|A+ q ·A| ≥ (|q|+ 5)|A| −O(1).

Proof. Suppose A ⊂ H ∪ (H + x) for some hyperplane H and some x ∈ Z3. Since
|q| > 1, we have that

(H + q ·H), (H + x+ q ·H), (H + q · (H + x)), ((H + x) + q · (H + x)),
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3. Proof of theorem 4

are disjoint Let B1 = H ∩A and B2 = (H + x)∩A. Then we have that

|A+ q ·A| ≥ |B1 + q ·B1|+ |B1 + q ·B2|+ |B2 + q ·B1|+ |B2 + q ·B2|. (5)

Suppose, without loss of generality, that |B1| ≥ |B2|. We separately consider several
cases.

1. Suppose B1 has rank 2. Then by theorem 3 on page 58, we have |B1 + q ·
B1| ≥ (|q| + 3)|B1| −O(1). Furthermore by theorem 2 on page 58, we have
|B1 + q ·B2|+ |B2 + q ·B1| ≥ 2(|B1|+ 2|B2| − 3). Lastly, by equation (1) on page 57,
we have |B2 +q ·B2| ≥ (|q|+1)|B2|−O(1). Combining this three inequalities with
equation (5) yields |A+ q ·A| ≥ (|q|+ 5)|A| −O(1). Note that this case applies
when B2 consists of a single point.

2. Suppose B1 has rank 1 and B2 has rank 2. By equation (1) on page 57, |B1 + q ·
B1| ≥ (|q|+1)|B1|−O(1) and by theorem 3 on page 58, |B2 +q ·B2| ≥ (|q|+3)|B2|−
O(1). We have that B1 lies in a translate of some line, say `. Suppose B2 lies
in some distinct lines x1 + `, . . . ,xm + ` such that each xj + ` intersects B2 in at
least one point. Note that m ≥ 2 since A has rank 3. For each 1 ≤ j ≤ m, let
B
j
2 = B2∩ (xj + `). Then by the one dimensional theorem 2 on page 58, we have

|B1 + q ·B2| ≥
m∑
j=1

|B1 + q ·Bj
2| ≥m|B1|+

m∑
j=1

(|Bj
2| − 1) ≥ 2|B1|+ |B2| − 2.

Similarly, |B2 + q ·B1| ≥ 2|B1|+ |B2| − 2. Combining these four inequalities with
equation (5), we obtain |A+ q ·A| ≥ (|q|+ 5)|A| −O(1).

3. Suppose B1 and B2 are both rank 1. Then the sets x+q ·B1 and B1 +q ·x where
x ∈ B2 are all disjoint. Using equation (1) on page 57, we obtain (the extremal
case being |B2| = 2)

|A+ q ·A| ≥ (|q|+ 1)|A| −O(1) + 2|B1||B2| ≥ (|q|+ 5)|A| −O(1). �

We now have to consider the case where A is contained in four parallel lines.

Lemma 6 – Suppose A is contained in four parallel lines. Then

|A+ q ·A| ≥ (|q|+ 5)|A| −O(1).

Proof. Suppose A is contained in four parallel lines, all parallel to some line through
the origin `. Then Z

3/` �Z
2 and say A′ = {x1,x2,x3,x4} ⊂Z

3/` are the 4 cosets that
intersect A. Note that A′ must be a 2 dimensional set since A is 3 dimensional.
We want to show |A′ + q ·A′ | ≥ 14. By the argument of lemma 1 on page 60, we
may assume that A′ intersects at least 3 residue classes modulo q · (Z3/`). If A′
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intersects four residue classes, then |A′ + q · A′ | = 16. Otherwise let A′1 be the
intersection of A′ with the residue class that contains 2 elements of A′ . Since A′ is 2
dimensional, it is not an arithmetic progression, so |A′1 + q ·A′ | ≥ |A′1|+ |A′ | = 6. Then
|A′ + q ·A′ | = 8 + |A′1 + q ·A′ | ≥ 14.

Let A = B1 ∪ · · · ∪B4 where Bi = (` + xi)∩A. Then Bi + q ·Bj are all disjoint, if we
drop at most two pairs {i, j}. We do not need to drop a pair in the form {i, i} because
an equation in the form xi + qxi = xj + qxj is not possible in A′ . That means, any set
Bi can appear in a dropped pair at most twice. Then

|A+ q ·A| ≥
4∑

i=1

|Bi + q ·Bi |+
∑
i,j

not dropped

|Bi + q ·Bj |

≥
4∑

i=1

((|q|+ 1)|Bi | −O(1))

+
∑
i,j

(|Bi |+ |Bj | − 1)− 2|A| = (|q|+ 5)|A| −O(1). �

Finally we can express the analog of lemma 3 on page 61. Note that the proof
uses theorem 3 on page 58 and theorem 1 on page 57 rather than any induction,
otherwise identical to the proof of lemma 3 on page 61.

Lemma 7 – Let A ⊂ Z
3 of rank 3, B ⊂ A and suppose that the rank of B is 1 ≤ f < 3.

Then

|B+ q ·A| ≥ (|q|+ 5)|B| −O(1),

or A is contained in two parallel hyperplanes or in four parallel lines.
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