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Abstract

A metric compact space M is seen as the closure of the union of a sequence
(Mn) of finite εn-dense subsets. Extending to M (up to a vanishing uniform
distance) Banach-space valued Lipschitz functions defined on Mn, or defining
linear continuous near-extension operators for real-valued Lipschitz functions
on Mn, uniformly on n is shown to be equivalent to the bounded approximation
property for the Lipschitz-free space F (M) over M. Several consequences are
spelled out.
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1 Introduction

Let A be a metric space, and B be a non-empty subset of A. It is well-known that
real-valued Lipschitz functions on B can be extended to Lipschitz functions on
A with the same Lipschitz constant with an inf-convolution formula. Namely, if
f : B→R is L-Lipschitz, then the formula

f (a) = inf{f (b) +Ld(a,b)
/
b ∈ B}

which goes back to McShane2 defines a L-Lipschitz function f on A which extends
f . This formula relies of course on the order structure of the real line. Therefore it
cannot be used for extending Banach-space valued Lipschitz functions - except in
some specific cases. Another drawback of this formula is that it is not linear in f ,

1Institut de Mathématiques de Jussieu, case 247, 4 place Jussieu, 75005 Paris, France
2McShane, 1934, “Extension of range of functions”.
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that is, the map f → f that it defines is not a linear one. It is known that Banach-
space valued Lipschitz functions do not generally admit Lipschitz extensions3,
and that generally no continuous linear extension operator exists for Lipschitz
real-valued functions4. Canonical examples will be shown below (see remarks 1
and 2).

The purpose of this note is to relate these two conditions (extending Banach-
space valued functions, finding linear extension operators for real-valued Lipschitz
functions) and a combination of both with the validity of Grothendieck’s bounded
approximation property for Banach spaces which naturally show up in this context,
namely the Lipschitz-free spaces. We will be dealing with finite subsets of a compact
metric space M which approximate this space M, and these extension properties
are easy for any given finite subset, but what matters is to find a uniform bound on
the norm of the extension operators for this approximating sequence. Also, it turns
out that the extension condition should be relaxed: what matters in this case is not
an exact extension of a function f defined on a subset S of M, but a function on M
whose restriction to S is uniformly close to f . Our proofs are simple, and rely on
canonical constructions.

2 Results

We recall that a separable Banach space X has the bounded approximation property
(bap) if there exists a sequence of finite rank operators Tn such that lim‖Tn(x)− x‖ = 0
for every x ∈ X. It follows then from the uniform boundedness principle that
sup‖Tn‖ = λ <∞ and then we say that X has the λ-bap. The bap and the existence of
Schauder bases for Lipschitz-free spaces has already been investigated in a number
of articles5. It is shown in Godefroy and Ozawa (2014) that there exist compact
metric spaces K such that F (K) fails the approximation property (ap): actually, if X

3Lindenstrauss, 1964, “On nonlinear projections in Banach spaces.”; See corollary 1.29 in Benyamini
and Lindenstrauss, 2000, Geometric Nonlinear Functional Analysis.

4Theorem 2.16 in A. Brudnyi and Y. Brudnyi, 2007, “Metric spaces with linear extensions preserving
Lipschitz condition”.

5Borel-Mathurin, 2012, “Approximation properties and nonlinear geometry of Banach spaces”;
Cúth and Doucha, 2015, “Lipschitz-free spaces over ultrametric spaces”;
Dalet, 2015, “Free spaces over countable compact metric spaces”;
Dalet, 2014, “Free spaces over some proper metric spaces”;
Godefroy and Kalton, 2003, “Lipschitz-free Banach spaces”;
Hájek and Pernecká, 2014, “On Schauder bases in Lipschitz-free spaces”;
Kalton, 2004, “Spaces of Lipschitz and Hölder functions and their applications”;
Kalton, 2012, “The uniform structure of Banach spaces”;
Kaufmann, 2014, “Products of Lipschitz-free spaces and applications”;
Lancien and Pernecká, 2013, “Approximation properties and Schauder decompositions in Lipschitz-

free spaces”;
Pernecká and Smith, 2015, “The metric approximation property and Lipschitz-free spaces over

subsets of Rn”.
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is a separable Banach space failing the ap and C is a compact convex set containing
0 which spans a dense linear subspace of X, then F (C) fails the ap.

Let M be a metric space equipped with a distinguished point 0M . The space
Lip0(M) of real-valued Lipschitz functions which vanish at 0M is a Banach space for
the Lipschitz norm, and its natural predual, i.e. the closed linear span of the Dirac
measures, is denoted by F (M) and is called the Lipschitz-free space over M. The
Dirac map δ : M → F (M) is an isometry. The distinguished point 0M is a matter
of convenience and changing it does not alter the isometric structure of the spaces
we consider. Hence we will omit it and use the notation Lip(M) (resp. Lip(M,X))
for real-valued (resp. X-valued with X a Banach space) Lipschitz functions on
M, always assuming that these functions vanish at 0M . The free spaces provide a
canonical linearization procedure for Lipschitz maps between metric spaces6 which
will be used in this note.

If K is a compact metric space and T : Lip(K)→ Lip(K) is a continuous linear
operator, we denote by ‖T ‖L its operator norm when Lip(K) is equipped with the
Lipschitz norm, and by ‖T ‖L,∞ its norm when the domain space is equipped with the
Lipschitz norm and the range space with the uniform norm - alternatively, ‖T ‖L,∞
is the norm of T from Lip(K) to C(K) when these spaces are equipped with their
canonical norms. We use the same notation for X-valued Lipschitz functions. It
should be noted that ifM is a metric compact space, then the uniform norm induces
on the unit ball of Lip(M) the weak* topology associated with the free space F (M).

Our main result states in particular that the uniform existence of near-extensions
of Banach space valued Lipschitz maps from nearly dense subsets of a metric
compact space M to the whole space M is equivalent to the existence of uniformly
bounded linear near-extension operators for real-valued Lipschitz maps, to the
bounded approximation property for the Lipschitz-free space over M, and to a
combination of these two conditions, namely linear near-extension operators for
Banach space valued functions. The terms “near-extension” means that in the
notation used below, functions such as En(F) or Gn(F) will not necessarily be exact
extensions of F, but their restriction to Mn will be uniformly close to F, with a
uniform distance which decreases to 0 when n increases to infinity.

A subset S of a metric space M is said to be ε-dense if for all m ∈M, one has
inf{d(m,s) / s ∈ S} ≤ ε. We denote by δn :Mn→F (Mn) the Dirac map relative to Mn.
With this notation, the following holds.

Theorem 1 – Let M be a compact metric space. Let (Mn)n be a sequence of finite εn-
dense subsets of M, with lim(εn) = 0. We denote by Rn(f ) the restriction to Mn of a
function f defined on M. Let λ ≥ 1. The following assertions are equivalent:

(A1) The free space F (M) over M has the λ-bap.

6See Weaver, 1999, Lipschitz Algebras;
Godefroy and Kalton, 2003, “Lipschitz-free Banach spaces”.
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(A2) There exist αn ≥ 0 with limαn = 0 such that for every Banach space X, there exist
linear operators En : Lip(Mn,X)→ Lip(M,X) with ‖En‖L ≤ λ and

‖RnEn − I‖L,∞ ≤ αn.

(A3) There exist linear operators Gn : Lip(Mn)→ Lip(M) with ‖Gn‖L ≤ λ and

lim‖RnGn − I‖L,∞ = 0.

(A4) For every Banach space X, there exist βn ≥ 0 with limβn = 0 such that for every
1-Lipschitz function F :Mn→ X, there exists a λ-Lipschitz function H :M→ X
such that ‖Rn(H)−F‖l∞(Mn,X) ≤ βn.

Proof.

• (A1)⇒ (A2): Let Z = c((F (Mn)) be the Banach space of sequences (µn) with
µn ∈ F (Mn) for all n, such that (µn) is norm-converent in the Banach space
F (M). We equip Z with the supremum norm, and we denote Q : Z→F (M)
the canonical quotient operator wich maps every sequence in Z to its limit.

The kernel Z0 = c0((F (Mn)) of Q is an M-ideal in Z, and the quotient space
Z/Z0 is isometric to F (M). It follows from (A1) and the Ando-Choi-Effros
theorem7 that there exists a linear map L : F (M)→ Z such that QL = IdF (M)
and ‖L‖ ≤ λ.

We let πn be the canonical projection from Z onto F (Mn), and we define

gn = πnLδ :M→F (Mn).

The maps gn are λ-Lipschitz, and for every m ∈M, we have

lim‖gn(m)− δ(m)‖F (M) = 0.

Since M is compact, this implies by an equicontinuity argument that if we let

αn = sup
m∈M
‖gn(m)− δ(m)‖F (M)

then limαn = 0. Let now X be a Banach space, and F :Mn→ X be a Lipschitz
map. There exists a unique continuous linear map F : F (Mn)→ X such that
F ◦δn = F, and its norm is equal to the Lipschitz constant of F. In the notation
of Godefroy and Kalton (2003), one has F = βX ◦ F̂ and in particular F depends
linearly upon F. We let now

En(F) = F ◦ gn

and it is easy to check that the sequence (En) satisfies the requirements of (A2).
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• (A2)⇒ (A3): it suffices to take X = R in (A2).

• (A2) ⇒ (A4): it suffices to take H = En(F) and (A4) follows with βn = αn
(independent of X).

• (A3)⇒ (A1): We let ‖RnGn − I‖L, ∞ = γn, with limγn = 0. If H ∈ Lip(M), then

‖RnGnRn(H)−Rn(H)‖l∞(Mn) ≤ γn‖H‖L.

In other words,

‖Rn[GnRn(H)−H]‖l∞(Mn) ≤ γn‖H‖L.

If we let now Tn = GnRn : Lip(M) → Lip(M), we have ‖Tn‖L ≤ λ and since
Mn is εn-dense in M with limεn = 0, it follows from the above that for every
H ∈ Lip(M), one has

lim‖Tn(H)−H‖l∞(M) = 0.

The operatorRn is a finite rank operator which is weak-star to norm-continuous,
and so is Tn since Tn = GnRn. In particular, there exists An : F (M)→ F (M)
such that A∗n = Tn. It is clear that ‖An‖F (M) ≤ λ and that the sequence (An)
converges to the identity for the weak operator topology, and this shows (A1).

• (A4) ⇒ (A1): It will be sufficient to apply condition (A4) to a very natural
sequence of 1-Lipschitz maps. We letX = l∞(F (Mn)), and jn◦δn = δ̃n :Mn→ X,
where jn = F (Mn)→ X is the obvious injection, such that (jn(µ))k = 0 if k , n
and (jn(µ))n = µ. The map δ̃n is an isometric injection from Mn into X.

By (A4), there exist λ-Lipschitz maps Hn :M→ X such that∥∥∥Rn(Hn)− δ̃n
∥∥∥
l∞(Mn,X)

≤ βn.

We let Vn = PnHn, where Pn : X → F (Mn) is the canonical projection. The
maps Vn are λ-Lipschitz, and for every m ∈Mn, one has since Pnδ̃n = δn that

‖Vn(m)− δn(m)‖F (Mn) ≤ βn.

The Lipschitz map Vn : M → F (Mn) extends to a linear map Vn : F (M)→
F (Mn) with

∥∥∥Vn∥∥∥ ≤ λ. By the above, the sequence Cn = JnVn, where Jn :
F (Mn)→F (M) is the canonical injection, converges to the identity of F (M)
in the strong operator topology. This concludes the proof. �

In what follows, we will restrict our attention to actual extension operators, in
other words to the case αn = βn = γn = 0.

7See Harmand, D. Werner, and W. Werner, 1993, M-ideals in Banach spaces and Banach algebras,
theorem II.2.1.
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Remark 1 – Let M be a compact metric space with distinguished point 0M , such
that F (M) fails the bap (such an M exists by Godefroy and Ozawa (2014)). We
denote by M∞ the Cartesian product of countably many copies of M equipped
with d∞(xn, yn) = supd(xn, yn), and by Pn :M∞→M the corresponding sequence of
projections. We use the notation of the proof of (A4)⇒ (A1), and in particular we
let X = l∞(F (Mn)). We define a map ∆ from the subset L = Πn≥1Mn of M∞ to X by
the formula

∆((mn)) = (δ̃n(mn))n.

The map ∆ is 1-Lipschitz. We denote by in :M→M∞ the natural injection defined
by (in(m)k = m if k = n and 0M otherwise. Assume that ∆ admits a λ-Lipschitz
extension H : M∞ → X. Then for every n, the map Hn = PnHin is a λ-Lipschitz
extension of δ̃n. But then, the proof of (A4)⇒ (A1) shows that F (M) has the λ-bap,
contrarily to our assumption. Hence ∆ cannot be extended to a Lipschitz map from
M∞ to X.

Remark 2 – In the notation of remark 1, assume that there exists a linear ex-
tension operator E : Lip(L) → Lip(M∞) with ‖E‖L = λ < ∞. If πn denotes the
canonical projection from L onto in(Mn), then πn is 1-Lipschitz and thus the map
En : Lip(in(Mn))→ Lip(M∞) defined by En(F) = E(F ◦πn) satisfies ‖En‖L ≤ λ. Com-
posing En with the restriction to in(M) shows the existence of a linear extension
operator from Lip(Mn) to Lip(M) with norm at most λ for all n, and by (A3)⇒ (A1)
this cannot be if F (M) fails bap.

Remark 3 – The existence of linear extension operators for Lipschitz functions has
already been investigated8. We recall the notation of A. Brudnyi and Y. Brudnyi
(2007): if M is a metric space, then

λ(M) = sup
S⊂M

inf{‖E‖L
/
E : Lip(S)→ Lip(M)}

where E is assumed to be an extension operator. It is clear that if M is a compact
metric space such that λ(M) <∞, then F (M) has the λ-bap with λ ≤ λ(M). It seems
to be a natural question to decide whether a converse implication is valid. The
article A. Brudnyi and Y. Brudnyi (2007) provides a wealth of metric spaces M such
that λ(M) <∞.

8For instance in A. Brudnyi and Y. Brudnyi, 2007, “Metric spaces with linear extensions preserving
Lipschitz condition”;

A. Brudnyi and Y. Brudnyi, 2008, “Linear and nonlinear extensions of Lipschitz functions from
subsets of metric spaces”;

Y. Brudnyi and Shvartsman, 2002, “Stability of the Lipschitz extension property under metric
transforms”;

Y. Brudnyi and Shvartsman, 1997, “The Whitney problem of existence of a linear extension opera-
tor”, and more articles of the same authors.
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Remark 4 – For some compact metric spaces M, the free space F (M) is isometric
to the dual space of the little Lipschitz space lip(M) consisting of all Lipschitz
functions f such that for any ε > 0, there exists δ > 0 such that if d(x,y) < δ, then
|f (x)− f (y)| ≤ εd(x,y). This happens when lip(M) strongly separates M9. When it is
so, F (M) is a separable dual space and it follows from a theorem of Grothendieck10

that if F (M) satisfies the conditions of theorem 1 on page 31 for some λ ∈R, then in
fact it satisfies them with λ = 1. Moreover, it follows easily from the local reflexivity
principle that in this case, we may replace condition assertion (A3) by the stronger
requirement (A∗3) that the operators (Gn) satisfy ‖Gn‖L ≤ 1, lim‖RnGn − I‖L,∞ = 0 and
Gn(Lip(Mn)) ⊂ lip(M) for every n. This condition (A∗3) is a linear version of Weaver’s
extension lemma11.

Remark 5 – Let us observe that condition (A1) is obviously independent of the
particular approximating sequence (Mn) that we picked, therefore conditions (A2),
(A3) and (A4) are independent as well. Hence theorem 1 on page 31 is an invitation
to consider geometrical conditions on a netN inM which would provide controlable
extensions to M of Lipschitz functions defined on N , and to try to find N which
such good properties. As an example of such a desirable behaviour, we mention the
interpolation formula used in Hájek and Pernecká (2014), Lancien and Pernecká
(2013), and Pernecká and Smith (2015) which allows to extend a function defined
on the vertices of a cube without changing the Lipschitz constant relatively to the
l1-norm subordinated to the edges.
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