

Extensions of Lipschitz functions and Grothendieck's bounded approximation property

Gilles Godefroy¹

Received: January 29, 2015/Accepted: March 6, 2015/Online: April 2, 2015

Abstract

A metric compact space *M* is seen as the closure of the union of a sequence (M_n) of finite ϵ_n -dense subsets. Extending to *M* (up to a vanishing uniform distance) Banach-space valued Lipschitz functions defined on *Mn*, or defining linear continuous near-extension operators for real-valued Lipschitz functions on *Mn*, uniformly on *n* is shown to be equivalent to the bounded approximation property for the Lipschitz-free space $\mathcal{F}(M)$ over M. Several consequences are spelled out.

Keywords: extension of Lipschitz functions, free space over a metric space, bounded approximation property.

msc: 46B20, 46B28.

1 Introduction

Let *A* be a metric space, and *B* be a non-empty subset of *A*. It is well-known that real-valued Lipschitz functions on *B* can be extended to Lipschitz functions on *A* with the same Lipschitz constant with an inf-convolution formula. Namely, if $f : B \to \mathbb{R}$ is *L*-Lipschitz, then the formula

$$
\overline{f}(a) = \inf\{f(b) + Ld(a, b) / b \in B\}
$$

which goes back to McShane² defines a *L*-Lipschitz function \overline{f} on *A* which extends *f* . This formula relies of course on the order structure of the real line. Therefore it cannot be used for extending Banach-space valued Lipschitz functions - except in some specific cases. Another drawback of this formula is that it is not linear in *f* ,

¹ Institut de Mathématiques de Jussieu, case 247, 4 place Jussieu, 75005 Paris, France

²McShane, [1934, "Extension of range of functions".](#page-7-0)

that is, the map $f \rightarrow \overline{f}$ that it defines is not a linear one. It is known that Banachspace valued Lipschitz functions do not generally admit Lipschitz extensions 3 , and that generally no continuous linear extension operator exists for Lipschitz real-valued functions⁴. Canonical examples will be shown below (see remarks [1](#page-4-0) and [2\)](#page-5-0).

The purpose of this note is to relate these two conditions (extending Banachspace valued functions, finding linear extension operators for real-valued Lipschitz functions) and a combination of both with the validity of Grothendieck's bounded approximation property for Banach spaces which naturally show up in this context, namely the Lipschitz-free spaces. We will be dealing with finite subsets of a compact metric space *M* which approximate this space *M*, and these extension properties are easy for any given finite subset, but what matters is to find a uniform bound on the norm of the extension operators for this approximating sequence. Also, it turns out that the extension condition should be relaxed: what matters in this case is not an exact extension of a function *f* defined on a subset *S* of *M*, but a function on *M* whose restriction to *S* is uniformly close to *f* . Our proofs are simple, and rely on canonical constructions.

2 Results

We recall that a separable Banach space *X* has the bounded approximation property (BAP) if there exists a sequence of finite rank operators T_n such that $\lim ||T_n(x) - x|| = 0$ for every $x \in X$. It follows then from the uniform boundedness principle that $\sup ||T_n|| = \lambda < \infty$ and then we say that *X* has the *λ*-BAP. The BAP and the existence of Schauder bases for Lipschitz-free spaces has already been investigated in a number of articles⁵. It is shown in Godefroy and Ozawa [\(2014\)](#page-7-1) that there exist compact metric spaces *K* such that $\mathcal{F}(K)$ fails the approximation property (AP): actually, if *X*

Cúth and Doucha, [2015, "Lipschitz-free spaces over ultrametric spaces";](#page-7-3)

Kalton, [2004, "Spaces of Lipschitz and Hölder functions and their applications";](#page-7-8)

³Lindenstrauss, [1964, "On nonlinear projections in Banach spaces.";](#page-7-2) See corollary 1.29 in Benyamini and Lindenstrauss, [2000,](#page-6-0) *[Geometric Nonlinear Functional Analysis](#page-6-0)*.

⁴Theorem 2.16 in A. Brudnyi and Y. Brudnyi, [2007, "Metric spaces with linear extensions preserving](#page-6-1) [Lipschitz condition".](#page-6-1)

⁵Borel-Mathurin, [2012, "Approximation properties and nonlinear geometry of Banach spaces";](#page-6-2)

Dalet, [2015, "Free spaces over countable compact metric spaces";](#page-7-4)

Dalet, [2014, "Free spaces over some proper metric spaces";](#page-7-5)

Godefroy and Kalton, [2003, "Lipschitz-free Banach spaces";](#page-7-6)

Hájek and Pernecká, [2014, "On Schauder bases in Lipschitz-free spaces";](#page-7-7)

Kalton, [2012, "The uniform structure of Banach spaces";](#page-7-9)

Kaufmann, [2014, "Products of Lipschitz-free spaces and applications";](#page-7-10)

Lancien and Pernecká, [2013, "Approximation properties and Schauder decompositions in Lipschitz](#page-7-11)[free spaces";](#page-7-11)

Pernecká and Smith, [2015, "The metric approximation property and Lipschitz-free spaces over](#page-7-12) [subsets of](#page-7-12) \mathbb{R}^{n} ".

is a separable Banach space failing the AP and C is a compact convex set containing 0 which spans a dense linear subspace of *X*, then $\mathcal{F}(C)$ fails the AP.

Let *M* be a metric space equipped with a distinguished point 0_M . The space $\mathrm{Lip}_0(M)$ of real-valued $\mathrm{Lipschitz}$ functions which vanish at 0_M is a Banach space for the Lipschitz norm, and its natural predual, i.e. the closed linear span of the Dirac measures, is denoted by $\mathcal{F}(M)$ and is called the Lipschitz-free space over M. The Dirac map $\delta : M \to \mathcal{F}(M)$ is an isometry. The distinguished point 0_M is a matter of convenience and changing it does not alter the isometric structure of the spaces we consider. Hence we will omit it and use the notation $Lip(M)$ (resp. $Lip(M,X)$) for real-valued (resp. *X*-valued with *X* a Banach space) Lipschitz functions on *M*, always assuming that these functions vanish at 0*M*. The free spaces provide a canonical linearization procedure for Lipschitz maps between metric spaces⁶ which will be used in this note.

If *K* is a compact metric space and $T: Lip(K) \to Lip(K)$ is a continuous linear operator, we denote by $||T||_L$ its operator norm when $Lip(K)$ is equipped with the Lipschitz norm, and by $||T||_{L,\infty}$ its norm when the domain space is equipped with the Lipschitz norm and the range space with the uniform norm - alternatively, $||T||_{L,\infty}$ is the norm of *T* from $Lip(K)$ to $C(K)$ when these spaces are equipped with their canonical norms. We use the same notation for *X*-valued Lipschitz functions. It should be noted that if *M* is a metric compact space, then the uniform norm induces on the unit ball of $Lip(M)$ the weak^{*} topology associated with the free space $\mathcal{F}(M)$.

Our main result states in particular that the uniform existence of near-extensions of Banach space valued Lipschitz maps from nearly dense subsets of a metric compact space *M* to the whole space *M* is equivalent to the existence of uniformly bounded linear near-extension operators for real-valued Lipschitz maps, to the bounded approximation property for the Lipschitz-free space over *M*, and to a combination of these two conditions, namely linear near-extension operators for Banach space valued functions. The terms "near-extension" means that in the notation used below, functions such as $E_n(F)$ or $G_n(F)$ will not necessarily be exact extensions of *F*, but their restriction to M_n will be uniformly close to *F*, with a uniform distance which decreases to 0 when *n* increases to infinity.

A subset *S* of a metric space *M* is said to be ϵ -dense if for all $m \in M$, one has $\inf\{d(m, s)/s \in S\} \leq \epsilon$. We denote by $\delta_n : M_n \to \mathcal{F}(M_n)$ the Dirac map relative to M_n . With this notation, the following holds.

Theorem 1 – Let M be a compact metric space. Let $(M_n)_n$ be a sequence of finite ϵ_n *dense subsets of M, with* $\lim(\epsilon_n) = 0$ *. We denote by* $R_n(f)$ *the restriction to* M_n *of a function f defined on M. Let* $\lambda \geq 1$ *. The following assertions are equivalent:*

 (A_1) *The free space* $\mathcal{F}(M)$ *over M has the* λ -*BAP.*

⁶See Weaver, [1999,](#page-7-13) *[Lipschitz Algebras](#page-7-13)*;

Godefroy and Kalton, [2003, "Lipschitz-free Banach spaces".](#page-7-6)

(A2) *There exist αⁿ* ≥ 0 *with* lim*αⁿ* = 0 *such that for every Banach space X, there exist linear operators* E_n : $Lip(M_n, X) \to Lip(M, X)$ *with* $||E_n||_L \leq \lambda$ *and*

 $\|R_n E_n - I\|_{L,\infty} \leq \alpha_n$.

 (A_3) *There exist linear operators* G_n : $Lip(M_n) \rightarrow Lip(M)$ *with* $||G_n||_L \leq \lambda$ *and*

 $\lim_{n \to \infty}$ $R_n G_n - I \parallel_{L,\infty} = 0.$

(A4) *For every Banach space X, there exist βⁿ* ≥ 0 *with* lim*βⁿ* = 0 *such that for every* 1*-Lipschitz function* $F : M_n \to X$ *, there exists a* λ *-Lipschitz function* $H : M \to X$ *such that* $||R_n(H) - F||_{L_1(M_1, X)} ≤ β_n$.

Proof.

• ([A](#page-3-0)₁) \Rightarrow (A₂): Let $Z = c((\mathcal{F}(M_n))$ be the Banach space of sequences (μ_n) with $\mu_n \in \mathcal{F}(M_n)$ for all *n*, such that (μ_n) is norm-converent in the Banach space $\mathcal{F}(M)$. We equip *Z* with the supremum norm, and we denote $Q: Z \to \mathcal{F}(M)$ the canonical quotient operator wich maps every sequence in *Z* to its limit.

The kernel $Z_0 = c_0((\mathcal{F}(M_n))$ of Q is an *M*-ideal in *Z*, and the quotient space Z/Z_0 is isometric to $\mathcal{F}(M)$. It follows from (A_1) (A_1) (A_1) and the Ando-Choi-Effros theorem⁷ that there exists a linear map $L : \mathcal{F}(M) \to Z$ such that $QL = \mathrm{Id}_{\mathcal{F}(M)}$ and $\|L\| \leq \lambda$.

We let π_n be the canonical projection from *Z* onto $\mathcal{F}(M_n)$, and we define

 $g_n = \pi_n L \delta : M \to \mathcal{F}(M_n)$.

The maps g_n are λ -Lipschitz, and for every $m \in M$, we have

 $\lim_{m \to \infty} |g_n(m) - \delta(m)||_{\mathcal{F}(M)} = 0.$

Since *M* is compact, this implies by an equicontinuity argument that if we let

$$
\alpha_n = \sup_{m \in M} ||g_n(m) - \delta(m)||_{\mathcal{F}(M)}
$$

then $\lim \alpha_n = 0$. Let now *X* be a Banach space, and $F : M_n \to X$ be a Lipschitz map. There exists a unique continuous linear map $F : \mathcal{F}(M_n) \to X$ such that *F* \circ δ _n = *F*, and its norm is equal to the Lipschitz constant of *F*. In the notation of Godefroy and Kalton [\(2003\)](#page-7-6), one has $\overline{F} = \beta_X \circ \hat{F}$ and in particular \overline{F} depends linearly upon *F*. We let now

$$
E_n(F) = \overline{F} \circ g_n
$$

and it is easy to check that the sequence (E_n) satisfies the requirements of (A_2) (A_2) (A_2) .

2. Results

- $(A_2) \Rightarrow (A_3)$ $(A_2) \Rightarrow (A_3)$ $(A_2) \Rightarrow (A_3)$: it suffices to take $X = \mathbb{R}$ in (A_2) .
- ([A](#page-3-2)₂) \Rightarrow (A₄): it suffices to take $H = E_n(F)$ and (A₄) follows with $\beta_n = \alpha_n$ (independent of *X*).
- ([A](#page-2-0)₃) \Rightarrow (A₁): We let $\|R_nG_n I\|_{L_1, \infty} = \gamma_n$, with $\lim \gamma_n = 0$. If $H \in Lip(M)$, then

$$
||R_n G_n R_n(H) - R_n(H)||_{l_{\infty}(M_n)} \leq \gamma_n ||H||_L.
$$

In other words,

$$
||R_n[G_nR_n(H) - H]||_{l_{\infty}(M_n)} \leq \gamma_n ||H||_L.
$$

If we let now $T_n = G_n R_n$: Lip(*M*) \rightarrow Lip(*M*), we have $||T_n||_L \leq \lambda$ and since M_n is ϵ_n -dense in *M* with $\lim \epsilon_n = 0$, it follows from the above that for every $H \in Lip(M)$, one has

 $\lim_{M \to \infty} |T_n(H) - H||_{L^2(M)} = 0.$

The operator R_n is a finite rank operator which is weak-star to norm-continuous, and so is T_n since $T_n = G_n R_n$. In particular, there exists $A_n : \mathcal{F}(M) \to \mathcal{F}(M)$ such that $A_n^* = T_n$. It is clear that $||A_n||_{\mathcal{F}(M)} \leq \lambda$ and that the sequence (A_n) converges to the identity for the weak operator topology, and this shows (A_1) (A_1) (A_1) .

• $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$: It will be sufficient to apply condition (A_4) to a very natural sequence of 1-Lipschitz maps. We let $X = l_{\infty}(\mathcal{F}(M_n))$, and $j_n \circ \delta_n = \tilde{\delta_n} : M_n \to X$, where $j_n = \mathcal{F}(M_n) \rightarrow X$ is the obvious injection, such that $(j_n(\mu))_k = 0$ if $k \neq n$ and $(j_n(\mu))_n = \mu$. The map $\tilde{\delta_n}$ is an isometric injection from M_n into *X*.

By ([A](#page-3-2)₄), there exist *λ*-Lipschitz maps H_n : *M* → *X* such that

$$
\left\| R_n(H_n) - \tilde{\delta_n} \right\|_{l_{\infty}(M_n, X)} \leq \beta_n.
$$

We let $V_n = P_n H_n$, where $P_n : X \to \mathcal{F}(M_n)$ is the canonical projection. The maps V_n are *λ*-Lipschitz, and for every $m \in M_n$, one has since $P_n \tilde{\delta}_n = \delta_n$ that

$$
||V_n(m) - \delta_n(m)||_{\mathcal{F}(M_n)} \leq \beta_n.
$$

The Lipschitz map $V_n : M \to \mathcal{F}(M_n)$ extends to a linear map $\overline{V_n} : \mathcal{F}(M) \to$ $\mathcal{F}(M_n)$ with $\|\overline{V_n}\| \leq \lambda$. By the above, the sequence $C_n = J_n \overline{V_n}$, where J_n : $\mathcal{F}(M_n) \to \mathcal{F}(M)$ is the canonical injection, converges to the identity of $\mathcal{F}(M)$ in the strong operator topology. This concludes the proof. \Box

In what follows, we will restrict our attention to actual extension operators, in other words to the case $\alpha_n = \beta_n = \gamma_n = 0$.

⁷See Harmand, D. Werner, and W. Werner, [1993,](#page-7-14) *M[-ideals in Banach spaces and Banach algebras](#page-7-14)*, theorem II.2.1.

Remark 1 – Let *M* be a compact metric space with distinguished point 0_M , such that $\mathcal{F}(M)$ fails the BAP (such an *M* exists by Godefroy and Ozawa [\(2014\)](#page-7-1)). We denote by *M*[∞] the Cartesian product of countably many copies of *M* equipped with $d^{\infty}(x_n, y_n) = \sup d(x_n, y_n)$, and by $P_n : M^{\infty} \to M$ the corresponding sequence of projections. We use the notation of the proof of $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$, and in particular we let $X = l_{\infty}(\mathcal{F}(M_n))$. We define a map Δ from the subset $L = \prod_{n>1} M_n$ of M^{∞} to X by the formula

$$
\Delta((m_n))=(\tilde{\delta_n}(m_n))_n.
$$

The map \triangle is 1-Lipschitz. We denote by $i_n : M \to M^\infty$ the natural injection defined by (*in*(*m*)*^k* = *m* if *k* = *n* and 0*^M* otherwise. Assume that ∆ admits a *λ*-Lipschitz extension $H : M^{\infty} \to X$. Then for every *n*, the map $H_n = P_n H_i$ is a λ -Lipschitz extension of $\tilde{\delta_n}$. But then, the proof of $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$ $(A_4) \Rightarrow (A_1)$ shows that $\mathcal{F}(M)$ has the λ -bap, contrarily to our assumption. Hence Δ cannot be extended to a Lipschitz map from M^{∞} to *X*.

Remark 2 – In the notation of remark [1,](#page-4-0) assume that there exists a linear extension operator $E: Lip(L) \to Lip(M^{\infty})$ with $||E||_L = \lambda < \infty$. If π_n denotes the canonical projection from *L* onto $i_n(M_n)$, then π_n is 1-Lipschitz and thus the map E_n : Lip($i_n(M_n)$) \rightarrow Lip(M^{∞}) defined by $E_n(F) = E(F \circ \pi_n)$ satisfies $||E_n||_L \leq \lambda$. Composing E_n with the restriction to $i_n(M)$ shows the existence of a linear extension operator from $Lip(M_n)$ to $Lip(M)$ with norm at most λ for all *n*, and by $(A_3) \Rightarrow (A_1)$ $(A_3) \Rightarrow (A_1)$ $(A_3) \Rightarrow (A_1)$ this cannot be if $\mathcal{F}(M)$ fails BAP.

Remark 3 – The existence of linear extension operators for Lipschitz functions has already been investigated⁸. We recall the notation of A. Brudnyi and Y. Brudnyi [\(2007\)](#page-6-1): if *M* is a metric space, then

$$
\lambda(M) = \sup_{S \subset M} \inf \{ ||E||_L / E : \text{Lip}(S) \to \text{Lip}(M) \}
$$

where *E* is assumed to be an extension operator. It is clear that if *M* is a compact metric space such that $\lambda(M) < \infty$, then $\mathcal{F}(M)$ has the λ -bap with $\lambda \leq \lambda(M)$. It seems to be a natural question to decide whether a converse implication is valid. The article A. Brudnyi and Y. Brudnyi [\(2007\)](#page-6-1) provides a wealth of metric spaces *M* such that $\lambda(M) < \infty$.

⁸For instance in A. Brudnyi and Y. Brudnyi, [2007, "Metric spaces with linear extensions preserving](#page-6-1) [Lipschitz condition";](#page-6-1)

A. Brudnyi and Y. Brudnyi, [2008, "Linear and nonlinear extensions of Lipschitz functions from](#page-6-3) [subsets of metric spaces";](#page-6-3)

Y. Brudnyi and Shvartsman, [2002, "Stability of the Lipschitz extension property under metric](#page-6-4) [transforms";](#page-6-4)

Y. Brudnyi and Shvartsman, [1997, "The Whitney problem of existence of a linear extension opera](#page-6-5)[tor",](#page-6-5) and more articles of the same authors.

References

Remark 4 – For some compact metric spaces *M*, the free space $\mathcal{F}(M)$ is isometric to the dual space of the little Lipschitz space lip(*M*) consisting of all Lipschitz functions *f* such that for any $\epsilon > 0$, there exists $\delta > 0$ such that if $d(x, y) < \delta$, then |*f* (*x*) − *f* (*y*)| ≤ *d*(*x,y*). This happens when lip(*M*) strongly separates *M*⁹ . When it is so, $\mathcal{F}(M)$ is a separable dual space and it follows from a theorem of Grothendieck¹⁰ that if $\mathcal{F}(M)$ satisfies the conditions of theorem [1](#page-2-1) on page [31](#page-2-1) for some $\lambda \in \mathbb{R}$, then in fact it satisfies them with $\lambda = 1$. Moreover, it follows easily from the local reflexivity principle that in this case, we may replace condition assertion (A_3) (A_3) (A_3) by the stronger •
requirement (A^{*}₃ $\binom{4}{3}$ that the operators (G_n) satisfy $||G_n||_L \leq 1$, $\lim ||R_n G_n - I||_{L,\infty} = 0$ and $G_n(\text{Lip}(M_n)) \subset \text{lip}(M)$ for every *n*. This condition (A_3^n) $_3^*$) is a linear version of Weaver's extension lemma¹¹.

Remark 5 – Let us observe that condition (A_1) (A_1) (A_1) is obviously independent of the particular approximating sequence (M_n) that we picked, therefore conditions (A_2) (A_2) (A_2) , (A_3) (A_3) (A_3) and (A_4) are independent as well. Hence theorem [1](#page-2-1) on page [31](#page-2-1) is an invitation to consider geometrical conditions on a net *N* in *M* which would provide controlable extensions to *M* of Lipschitz functions defined on *N*, and to try to find *N* which such good properties. As an example of such a desirable behaviour, we mention the interpolation formula used in Hájek and Pernecká [\(2014\)](#page-7-7), Lancien and Pernecká [\(2013\)](#page-7-11), and Pernecká and Smith [\(2015\)](#page-7-12) which allows to extend a function defined on the vertices of a cube without changing the Lipschitz constant relatively to the l_1 -norm subordinated to the edges.

References

- Benyamini, Y. and J. Lindenstrauss (2000). *Geometric Nonlinear Functional Analysis*. 48. Colloquium Publications. American Mathematical Soc. 488 pp. (cit. on p. [30\)](#page-0-0).
- Borel-Mathurin, L. (2012). "Approximation properties and nonlinear geometry of Banach spaces". *Houst. J. Math.* 38 (4), pp. 1135–1148 (cit. on p. [30\)](#page-0-0).
- Brudnyi, A. and Y. Brudnyi (2007). "Metric spaces with linear extensions preserving Lipschitz condition". *Amer. J. Math.* 129 (1), pp. 217–314 (cit. on pp. [30, 34\)](#page-0-0).
- Brudnyi, A. and Y. Brudnyi (2008). "Linear and nonlinear extensions of Lipschitz functions from subsets of metric spaces". *St Petersburg Math. J.* 19 (3), pp. 397– 407. ISSN: 1061-0022. DOI: [10.1090/S1061-0022-08-01003-0](http://dx.doi.org/10.1090/S1061-0022-08-01003-0) (cit. on p. [34\)](#page-0-0).
- Brudnyi, Y. and P. Shvartsman (1997). "The Whitney problem of existence of a linear extension operator". *J. Geom. Anal.* 7 (4), pp. 515–574 (cit. on p. [34\)](#page-0-0).
- Brudnyi, Y. and P. Shvartsman (2002). "Stability of the Lipschitz extension property under metric transforms". *Geom. Funct. Anal.* 12 (1), pp. 73–79 (cit. on p. [34\)](#page-0-0).

⁹See chapter 3 in Weaver, [1999,](#page-7-13) *[Lipschitz Algebras](#page-7-13)*.

¹⁰Grothendieck, [1955, "Produits tensoriels topologiques et espaces nucléaires".](#page-7-15)

¹¹Lemma 3.2.3 in Weaver, [1999,](#page-7-13) *[Lipschitz Algebras](#page-7-13)*.

- Cúth, M. and M. Doucha (2015). "Lipschitz-free spaces over ultrametric spaces". *Mediterr. J. Math. Pp. 1-14. poi: [10.1007/s00009-015-0566-7](http://dx.doi.org/10.1007/s00009-015-0566-7) (cit. on p. [30\)](#page-0-0).*
- Dalet, A. (2014). "Free spaces over some proper metric spaces". *Mediterr. J. Math.* 12 (3), pp. 973–986 (cit. on p. [30\)](#page-0-0).
- Dalet, A. (2015). "Free spaces over countable compact metric spaces". *Proc. Amer. Math. Soc.* 143 (8), pp. 3537–3546 (cit. on p. [30\)](#page-0-0).
- Godefroy, G. and N. J. Kalton (2003). "Lipschitz-free Banach spaces". *Stud. Math.* 159 (1), pp. 121–141 (cit. on pp. [30–32\)](#page-0-0).
- Godefroy, G. and N. Ozawa (2014). "Free Banach spaces and the approximation properties". *Proc. Am. Math. Soc.* 142 (5), pp. 1681–1687 (cit. on pp. [30, 34\)](#page-0-0).
- Grothendieck, A. (1955). "Produits tensoriels topologiques et espaces nucléaires". French. *Mem. Amer. Math. Soc.* 16 (cit. on p. [35\)](#page-0-0).
- Hájek, P. and E. Pernecká (2014). "On Schauder bases in Lipschitz-free spaces". *J. Math. Anal. Appl.* 416 (2), pp. 629–646 (cit. on pp. [30, 35\)](#page-0-0).
- Harmand, P., D. Werner, and W. Werner (1993). *M-ideals in Banach spaces and Banach algebras*. 1547. Lecture Notes in Maths. Springer-Verlag (cit. on p. [33\)](#page-0-0).
- Kalton, N. J. (2004). "Spaces of Lipschitz and Hölder functions and their applications". *Collect. Math.* 55 (2), pp. 171–217 (cit. on p. [30\)](#page-0-0).
- Kalton, N. J. (2012). "The uniform structure of Banach spaces". *Math. Ann.* 354 (4), pp. 1247–1288 (cit. on p. [30\)](#page-0-0).
- Kaufmann, P. L. (2014). "Products of Lipschitz-free spaces and applications". *Stud. Math.* 226 (3), pp. 213–227 (cit. on p. [30\)](#page-0-0).
- Lancien, G. and E. Pernecká (2013). "Approximation properties and Schauder decompositions in Lipschitz-free spaces". *J. of Funct. Anal.* 264 (10), pp. 2323– 2334 (cit. on pp. [30, 35\)](#page-0-0).
- Lindenstrauss, J. (1964). "On nonlinear projections in Banach spaces." *Michigan Math. J.* 11 (3), pp. 263–287 (cit. on p. [30\)](#page-0-0).
- McShane, E. J. (1934). "Extension of range of functions". *Bull. Amer. Math. Soc.* 40 (12), pp. 837–842 (cit. on p. [29\)](#page-0-0).
- Pernecká, E. and R. J. Smith (2015). "The metric approximation property and Lipschitz-free spaces over subsets of R*ⁿ* ". *J. of Appr. Theory* 199, pp. 29–44 (cit. on pp. [30, 35\)](#page-0-0).

Weaver, N. (1999). *Lipschitz Algebras*. World Scientific. 240 pp. (cit. on pp. [31, 35\)](#page-0-0).

Contents

Contents

