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Abstract

This subordination principle states roughly: if a property is true for Hardy
spaces in some kind of domains in C

n then it is also true for the Bergman spaces
of the same kind of domains in C

n−1.
We give applications of this principle to Bergman-Carleson measures, inter-

polating sequences for Bergman spaces, Ap-Corona theorem and characteriza-
tion of the zeros set of Bergman-Nevanlinna class.

These applications give precise results for bounded strictly-pseudo convex
domains and bounded convex domains of finite type in C

n.

Keywords: Hardy spaces, Bergman spaces, Carleson measures, Corona problem.

msc: 32A50, 42B30.

1 Introduction

Let us start with some definitions. In all the sequel, domain will mean bounded
connected open set in C

n with smooth C∞ boundary defined by a real valued
function r ∈ C∞(Cn), i.e. Ω = {z ∈ Cn / r(z) < 0}, ∀z ∈ ∂Ω, gradr(z) , 0, with the
defining function r such that ∀z ∈ Ω, −r(z) ' d(z,Ωc) uniformly on Ω̄. (See the
beginning of section 2 on page 5 for the existence of such a function).

Associate to it the “lifted” domain Ω̃ in (z,w) ∈ Cn+k with defining function
r̃(z,w) := r(z) + |w|2.

Usually our defining functions will be pluri-sub-harmonic (psh) or even strictly
pluri-sub-harmonic (spsh) in a neighborhood of Ω̄.

This operation keeps the nature of the domain:

• if Ω is pseudo-convex defined by a r psh, Ω̃ is still pseudo-convex defined by
r̃ psh;

• if Ω is strictly pseudo-convex defined by a r spsh, so is Ω̃;

• if Ω is convex defined by a function r convex , so is Ω̃;

1Université de Bordeaux, IMB, UMR 5251, F-33400 Talence, France
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• if Ω is convex of finite type m, defined by a function r convex, so is Ω̃.

Moreover we still have ∀(z,w) ∈ Ω̃, −(r(z) + |w|2) ' d((z,w),Ω̃c). Let dm(z) be the
Lebesgue measure in C

n and dσ (z) be the Lebesgue measure on ∂Ω. For z ∈Ω, let
δ(z) := d(z,Ωc) ' −r(z) be the distance from z to the boundary of Ω. For k ∈N, let
vk be the volume of the unit ball in C

k and set ∀z ∈Ω,dm0(z) := dm(z), ∀k ≥ 1,∀z ∈
Ω, dmk(z) := (k + 1)vk+1(−r(z))k dm(z) a weighted Lebesgue measure in Ω suitable
for our needs. Clearly we have that dmk(z) ' δ(z)k dm(z). Let U be a neighbourhood
of ∂Ω in Ω such that the normal projection π onto ∂Ω is a smooth well defined
application. Define the Bergman, Hardy and Nevanlinna spaces as usual:

Definition 1 – Let f be a holomorphic function in Ω.
We say that f ∈ Apk (Ω) if ‖f ‖pk,p :=

∫
Ω
|f (z)|p dmk(z) <∞.

We say that f ∈ Nk(Ω) if ‖f ‖Nk =
∫
Ω

ln+ |f (z)| dmk(z) <∞.

We say that f ∈Hp(Ω) if ‖f ‖pp := supε>0

∫
{r(z)=−ε} |f (π(z))|p dσ (z) <∞.

Finally we say that f ∈ N (Ω) if ‖f ‖N = supε>0

∫
{r(z)=−ε} ln

+ |f (π(z))| dσ (z) <∞.

This is meaningful because, for ε small enough, the set {r(z) = −ε} is a smooth
manifold in Ω contained in U . Now we can state our subordination lemma:

Theorem 1 – (Subordination lemma) Let Ω be a domain in C
n,Ω̃ its lift in C

n+k

and F(z,w) ∈ Hp(Ω̃), we have f (z) := F(z,0) ∈ Apk−1(Ω) and ‖f ‖Apk−1(Ω) . ‖F‖Hp(Ω̃);

if F(z,w) ∈ N (Ω̃), then f (z) := F(z,0) ∈ Nk−1(Ω) and ‖f ‖Nk−1(Ω) . ‖F‖N (Ω̃).

A function f , holomorphic in Ω, is in the Bergman space Apk−1(Ω) (resp. in the
Nevanlinna Bergman space Nk−1(Ω)) if and only if the function F(z,w) := f (z) is in
the Hardy space Hp(Ω̃) (resp. in the Nevanlinna class N (Ω̃)) and we have ‖f ‖Apk−1

'
‖F‖Hp(Ω̃) (resp. ‖f ‖Nk−1(Ω) ' ‖F‖N (Ω̃)).

In the section 2 on page 5 we prove the subordination lemma as a consequence
of a disintegration of Lebesgue measure. In the section 3 on page 11 we introduce
the notion of a “good” family of polydiscs P , directly inspired by the work of Catlin
(1984) and introduced in É. Amar (2009b) together with a homogeneous hypothesis,
(Hg). This notion allows us to define geometric Carleson measure, denoted as
Λ(Ω), for Hardy spaces and denoted as Λk(Ω), for Bergman spaces and to put it in
relation with the Carleson embedding theorem still for these two classes of spaces.
In subsection 3.1 on page 13 we apply the subordination lemma to get a Bergman-
Carleson embedding theorem from a Hardy-Carleson embedding one. The bounded
strictly pseudo-convex domains have Hardy-Carleson embedding property by a
result of Hormander2, hence they have the Bergman-Carleson embedding property
by this result. A direct application of it is the following:

2Hormander, 1967, “A Lp estimates for (pluri-)subharmonic functions”.
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Corollary 1 – A positive Borel measure µ in a strictly pseudo-convex domain Ω in C
n

verifies

∀p ≥ 1,∀f ∈ Apk−1(Ω),
∫
Ω

|f |p dµ . ‖f ‖Apk−1(Ω) ⇐⇒ ∀a ∈Ω,µ(Pa(2)) . δ(a)n+k ,

where Pa(2) is the polydisc of the good family P centered at a and of “radius” 2.

This characterization was already proved by Cima and Mercer3 even for the spaces
A
p
α(Ω) with α ≥ 0. So, in the case where α is an integer we recover their characteri-

zation. We have also a characterization for convex domains of finite type, as shown
in subsection 2 on page 5.

Theorem 2 – Let Ω be a convex domain of finite type in C
n; the measure µ verifies

∃p > 1,∃Cp > 0,∀f ∈ Apk−1(Ω),
∫
Ω

|f |p dµ ≤ Cpp‖f ‖
p

A
p
k−1(Ω)

(1)

iff:

∃C > 0 :: ∀a ∈Ω,µ(Ω∩ Pa(2)) ≤ Cmk−1(Ω∩ Pa(2)).

Hence if µ verifies (1) for a p > 1, it verifies (1) for all q > 1.

Now let Ω be a domain in C
n. We say that the Hp-Corona theorem is true for

Ω if we have: ∀g1, . . . , gm ∈ H∞(Ω) :: ∀z ∈ Ω,
∑m
j=1

∣∣∣gj (z)∣∣∣ ≥ δ > 0 then ∀f ∈ Hp(Ω),

∃(f1, . . . , fm) ∈ (Hp(Ω))m :: f =
∑m
j=1 fjgj . In the same vein, we say that the Apk−1(Ω)-

Corona theorem is true for Ω if we have:

∀g1, . . . , gm ∈H∞(Ω) :: ∀z ∈Ω,
m∑
j=1

∣∣∣gj (z)∣∣∣ ≥ δ > 0

then ∀f ∈ Apk−1(Ω),∃(f1, . . . , fm) ∈ (Apk−1(Ω))m :: f =
∑m
j=1 fjgj . In the subsection 5

on page 23, we apply again the subordination principle, because the Hp-Corona
theorem is true in these cases, to get:

Corollary 2 – We have the Apk (Ω)-Corona theorem in the following cases:

• with p = 2 if Ω is a bounded weakly pseudo-convex domain in C
n;

• with 1 < p <∞ if Ω is a bounded strictly pseudo-convex domain in C
n.

3Cima and Mercer, 1995, “Composition operators between bergman spaces on convex domains in
C
n”.
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In section 4 on page 17 we define and study the interpolating sequences in a
domain Ω. We also define the notion of dual bounded sequences in Hp(Ω) and in
A
p
k (Ω), and applying the subordination principle to the result we proved for Hp(Ω)

interpolating sequences4, we get the following theorem.

Theorem 3 – If Ω is a strictly pseudo-convex domain, or a convex domain of finite type
in C

n and if S ⊂Ω is a dual bounded sequence of points in Apk (Ω) then, for any q < p, S
is Apk (Ω) interpolating with the linear extension property, provided that p =∞ or p ≤ 2.

In the unit ball of Cn, we have a better result:

Theorem 4 – If B is the unit ball in C
n and if S ⊂ B is a dual bounded sequence of

points in Apk (B) then, for any q < p, S is Apk (Ω) interpolating with the linear extension
property.

Finally in the section 6 on page 24 we study zeros set for Nevanlinna Bergman
functions. Let Ω be a domain in C

n and u a holomorphic function in Ω. Set
X := {z ∈ Ω :: u(z) = 0} the zero set of u and ΘX := ∂∂̄ ln |u| its associated (1,1)
current of integration.

Definition 2 – A zero set X of a holomorphic function u in the domain Ω is in the
Blaschke class, X ∈ B(Ω), if there is a constant C > 0 such that

∀β ∈Λ∞n−1,n−1(Ω̄),
∣∣∣∣∣∫

Ω

(−r(z))ΘX ∧ β
∣∣∣∣∣ ≤ C ∥∥∥β∥∥∥∞ ,

where Λ∞n−1,n−1(Ω̄) is the space of (n−1,n−1) continuous form in Ω̄, equipped with
the sup norm of the coefficients.

If u ∈ N (Ω) then it is well known5 that X is in the Blaschke class of Ω. We do
the analogue for the Bergman spaces:

Definition 3 – A zero set X of a holomorphic function u in the domain Ω is in the
Bergman-Blaschke class, X ∈ Bk(Ω), if there is a constant C > 0 such that

∀β ∈Λ∞n−1,n−1(Ω̄),
∣∣∣∣∣∫

Ω

(−r(z))k+1ΘX ∧ β
∣∣∣∣∣ ≤ C ∥∥∥β∥∥∥∞ ,

where Λ∞n−1,n−1(Ω̄) is the space of (n−1,n−1) continuous form in Ω̄, equipped with
the sup norm of the coefficients.

4É. Amar, 2009b, “A weak notion of strict pseudo-convexity. applications and examples”.
5Skoda, 1976, “Valeurs au bord pour les solutions de l’opérateur et caractérisation des zéros de la

classe de Nevanlinna”.
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If u ∈ Nk(Ω) then X is in the Bergman-Blaschke class of Ω as can be seen again
by use of the subordination lemma. Hence exactly as for the Corona theorem we
can set the definitions : we say that the Blaschke characterization is true for Ω if we
have: X ∈ B(Ω)⇒ ∃u ∈ N (Ω) such that X = {z ∈Ω :: u(z) = 0}. And the same for
the Bergman spaces: we say that the Bergman-Blaschke characterization is true for
Ω if we have: X ∈ Bk(Ω)⇒∃u ∈ Nk(Ω) such that X = {z ∈Ω :: u(z) = 0}. We get, by
use of the subordination lemma applied to the corresponding Nevanlinna Hardy
results,

Corollary 3 – The Bergman-Blaschke characterization is true in the following cases:

• if Ω is a strictly pseudo-convex domain in C
n ;

• if Ω is a convex domain of finite type in C
n.

We stated and proved the subordination lemma for the ball in C
n in 19786,

and, since then, we gave seminars and conferences about it in the general situation.
As we have seen, Cima and Mercer7 characterized the Carleson measures for the
Bergman spaces in strictly pseudo-convex domains, but the other applications of
the subordination principle are new; in particular all the applications to convex
domains of finite type. Our treatment has the advantage to be systematic: a result
for Hardy space gives automatically the analogous result for Bergman spaces.

2 The subordination lemma

Let Ω := {z ∈ C
n :: ρ(z) < 0}, ∂ρ(z) , 0 on ∂Ω with ρ ∈ C2(Ω̄). Let Ω̃ := {(z,w) ∈

C
n×C :: ρ(z) + |w|2 < 0} be the lift of Ω in C

n+1. We can always manage to have∣∣∣gradρ(z)
∣∣∣ = 1 for z ∈ ∂Ω by the well known following lemma.

Lemma 1 – Let Ω be a domain in R
n, we can always choose a defining function s for Ω

such that ∀z ∈ ∂Ω, |grads(z)| = 1.

Proof. Because gradr(z) , 0 on ∂Ω, we take any smooth strictly positive extension
h of 1

|gradr(z)| in Ω̄; then set s(z) = h(z)r(z). We have that grads(z) = hgradr(z) +
r(z)gradh(z) = hgradr on ∂Ω, hence |grads| = 1 on ∂Ω. Of course because h > 0, we
have that Ω = {z ∈Rn :: s < 0}. �

Lemma 2 – Let Ω be a domain in R
n, defined by a function r ∈ C∞, i.e.

Ω := {x ∈Rn :: r(z) < 0}, ∀x ∈ ∂Ω,gradr(x) = 1.

6É. Amar, 1978, “Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de
C
n”.

7Cima and Mercer, 1995, “Composition operators between bergman spaces on convex domains in
C
n”.
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Then the Lebesgue measure σ on ∂Ω is given by

∀g ∈ C(∂Ω),
∫
∂Ω
g dσ = lim

η→0

1
η

∫
{−η≤r(x)<0}

g̃(x) dm(x),

where g̃(x) is any continuous extension of g near ∂Ω.

Proof. Because ∂Ω is a codimension one manifold, ∀x ∈ ∂Ω, gradr(x) = 1 then
{x ∈ Rn :: −η ≤ r(x) < 0} is “half” a tube of thickness η around ∂Ω, hence we can
apply corollary 6.9.12 in Berger and Gostiaux (1988) or the original work by Weyl
(1939). �

Lemma 3 – Let Ω be a domain in C
n. There is a defining function ρ for Ω and δ > 0

such that
∣∣∣gradρ(z)

∣∣∣2 − 4ρ(z) ≥min(4δ,1/4).

Proof. Take a defining function ρ such that
∣∣∣gradρ

∣∣∣ = 1 on ∂Ω. Then the set K := {z ∈
Ω ::

∣∣∣gradρ(z)
∣∣∣ ≤ 1/2} is compact in Ω because

∣∣∣gradρ(z)
∣∣∣ is continuous. On this set

K we have −ρ(z) ≥ δ > 0 because ρ(z) < 0 in Ω by definition of Ω, hence ρ(z) attains

its maximum −δ < 0 on the compact K . Then we have ∀z ∈ Ω̄,
∣∣∣gradρ(z)

∣∣∣2 − 4ρ(z) ≥
min(4δ,1/4), because

• in K,−ρ(z) ≥ δ⇒−4ρ(z) +
∣∣∣gradρ(z)

∣∣∣2 ≥ −4ρ(z) ≥ 4δ;

• outside K,
∣∣∣gradρ(z)

∣∣∣ > 1/2⇒
∣∣∣gradρ(z)

∣∣∣2 > 1/4⇒
∣∣∣gradρ(z)

∣∣∣2 − 4ρ(z) ≥ 1/4.

Which completes the proof. �

Now back to the lifted domain Ω̃. The boundary of Ω̃ is defined by ρ(z)+ |w|2 = 0,
hence on ∂Ω̃ we have |w|2 = −ρ(z).

Lemma 4 – Let Ω be a domain in C
n. There is a defining function ρ for Ω and δ > 0

such that
∣∣∣grad(ρ(z) + |w|2)

∣∣∣ ≥min(2δ,1/2).

Proof. Let us compute grad
(
ρ(z) + |w|2

)
=

(
∂ρ
∂x1
, ∂ρ∂y1

, . . . , ∂ρ∂xn
, ∂ρ∂yn

,2u,2v
)
;

where zj = xj + iyj and w = u + iv. Hence
∣∣∣grad(ρ(z) + |w|2)

∣∣∣2 =
∣∣∣gradρ(z)

∣∣∣2 + 4 |w|2. By

lemma 3 we get on ∂Ω̃, replacing δ by δ2,
∣∣∣grad(ρ(z) + |w|2)

∣∣∣2 =
∣∣∣gradρ(z)

∣∣∣2 − 4ρ(z) ≥
min(4δ2,1/4). Taking square root we get the lemma. �

Then we have the main lemma of this section on the disintegration of the
Lebesgue measure dσ̃ on ∂Ω̃:
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2. The subordination lemma

Lemma 5 – (Main lemma) For any continuous function g on Ω̃:

∫
∂Ω̃
g(z,w)dσ̃ (z,w) =

∫
Ω

√
−ρ(z) +

∣∣∣gradρ(z)
∣∣∣2

4

∫
|w|2=−ρ(z)

g(z,w)d |w|dm(z),

where d |w| is the normalized Lebesgue measure on the circle |w|2 = −ρ(z) and dm(z) is
the Lebesgue measure on C

n.

Proof. we want a defining function whose gradient has norm 1 on the boundary,
hence we set ∀(z,w) ∈ ∂Ω̃, h(z,w) := 1∣∣∣grad(ρ(z)+|w|2)

∣∣∣ , because we have by lemma 4

on page 6 that
∣∣∣grad(ρ(z) + |w|2)

∣∣∣ ≥ min(2δ,1/2) on ∂Ω̃; by continuity we have∣∣∣grad(ρ(z) + |w|2)
∣∣∣ ≥ 1

2 min(2δ,1/2) in a neighborhood V of ∂Ω̃; as in lemma 1 on

page 5 we set ρ̃(z,w) := ρ(z)+|w|2∣∣∣grad(ρ(z)+|w|2)
∣∣∣ , for (z,w) ∈ V and we extend it to Ω̃. Then∣∣∣grad ρ̃(z,w)

∣∣∣ = 1 on ∂Ω̃.
Fix η > 0 and set Ω̃η := {(z,w) ∈Cn×C :: ρ̃(z,w) < −η} ⊂ Ω̃; let η be small enough

such that Ω̃ \ Ω̃η ⊂ V . the Lebesgue measure on the manifold ∂Ω̃ can be defined by
lemma 2 on page 5 this way: I :=

∫
∂Ω̃
g(z,w)dσ (z,w) = limη→0

1
η

∫
Ω̃\Ω̃η

g(z,w)dm(z,w).

Hence, by Fubini,
∫
Ω̃\Ω̃η

g(z,w)dm(z,w) =
∫
Ω
{
∫
−η≤ρ̃(z,w)<0 g(z,w)dm(w)}dm(z).

Fix z ∈Ω and let us study

−η ≤
ρ(z) + |w|2∣∣∣∣grad
(
ρ(z) + |w|2

)∣∣∣∣ < 0⇒ ρ(z) + |w|2 < 0⇒ |w|2 < −ρ(z).

Recall that∣∣∣grad(ρ(z) + |w|2)
∣∣∣2 =

∣∣∣gradρ(z)
∣∣∣2+4 |w|2⇒

∣∣∣grad(ρ(z) + |w|2)
∣∣∣ =

√∣∣∣gradρ(z)
∣∣∣2 + 4 |w|2.

The other side of the inequality gives −η
√∣∣∣gradρ(z)

∣∣∣2 + 4 |w|2 ≤ ρ(z) + |w|2 < 0, hence

raising to the square (ρ(z) + |w|2)2 ≤ η2(
∣∣∣gradρ(z)

∣∣∣2 + 4 |w|2). Set a := −ρ(z) ≥ 0,

b :=
∣∣∣gradρ(z)

∣∣∣2 > 0, X := |w|2 ≥ 0, then this inequality becomes

(X − a)2 ≤ η2(b+ 4X)⇒ X2 − 2(a+ 2η2)X + a2 − η2b ≤ 0.

This implies that X must be between the 2 roots:
∆2 := (a+ 2η2)2 − (a2 − η2b) = η2(4a+ b+ 4η2); hence the roots are

X ′ := (a+ 2η2)− η
√

4a+ b+ 4η2 ; X ′′ := (a+ 2η2) + η
√

4a+ b+ 4η2.

7
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We already have that |w|2 = X < a = −ρ(z), hence, setting c(η) := (a + 2η2) −
η
√

4a+ b+ 4η2. −η ≤ ρ̃(z,w) < 0 ⇐⇒ c(η) ≤ |w|2 < a. Now, g being continuous on

Ω̃, we get, with w = reiθ in polar coordinates, g(z, reiθ) = g(z,
√
−ρ(z)eiθ) + o(η), the

o(η) being uniform with respect to z,w in V . So let J := 1
η

∫
−η≤ρ̃(z,w)<0 g(z,w)dm(w)

we have J = 1
η

∫
c(η)≤|w|2<a g(z,w)dm(w); computing with polar coordinates,

J =
1
η

∫ √a
√
c(η)

∫ 2π

0
(g(z,

√
−ρ(z)eiθ) + o(η))

dθ
2π
rdr,

hence

J =
∫ 2π

0
(g(z,

√
−ρ(z)eiθ) + o(η))

dθ
2π
×1
η

∫ √a
√
c(η)

rdr,

but

1
η

∫ √a
√
c(η)

rdr =
1

2η
(a−c(η)) =

1
2η

(a−((a+2η2)−η
√

4a+ b+ 4η2)) =

√
a+

b
4

+ η2−η,

so we get

J = (

√
a+

b
4

+ η2 − η)
∫ 2π

0
(g(z,

√
−ρ(z)eiθ) + o(η))

dθ
2π
.

Hence, letting η→ 0, we get J→
√
a+ b

4

∫ 2π
0 g(z,

√
−ρ(z)eiθ) dθ

2π . Putting it in I

I =
∫
Ω

√
a+

b
4

{∫ 2π

0
g(z,

√
−ρ(z)eiθ)

dθ
2π

}
dm(z),

i.e.

I =
∫
Ω

√
−ρ(z) +

∣∣∣gradρ(z)
∣∣∣2

4

∫
|w|2=−ρ(z)

g(z,w)d |w|dm(z),

with d |w| the normalized Lebesgue measure on the circle {|w|2 = −ρ(z)}. �

Corollary 4 – Setting h(z) :=

√
−ρ(z) + |gradρ(z)|2

4 , we have that ∃α > 0,β > 0 such that

• ∀z ∈ Ω̄,α ≤ h(z) ≤ β;

• ∀g ∈ C(∂Ω̃),
∫
∂Ω̃
g(z,w)dσ (z,w) =

∫
Ω
h(z)

∫
|w|2=−ρ(z) g(z,w)d |w|dm(z).

8



2. The subordination lemma

• ∀f ∈ C(∂Ω̃),
∫
∂Ω̃
f (z,w) 1

h(z) dσ (z,w) =
∫
Ω

∫
|w|2=−ρ(z) f (z,w)d |w|dm(z).

Proof. We have α = min(δ,1/16) by lemma 3 on page 6 and β = ‖h‖∞ <∞ because h
is continuous on Ω̄ and Ω̄ is compact. The second point is the main lemma. So it
remains to prove the last assertion and for it we set g(z,w) := f (z,w)

h(z) ∈ C(∂Ω̃) and we
apply the main lemma. �

Remark 1 – In the case of the unit ball B in C
n we get, with ρ(z) = |z|2−1 as defining

function, that −ρ(z) + |gradρ(z)|2
4 = 1, hence we have a disintegration of the Lebesgue

measure on ∂B̃ without weight.

Now we can prove our subordination theorem 1 on page 2 stated in the intro-
duction. We copy from É. Amar8, and adapt from the ball to this general case. We
shall prove it with several steps.

Proposition 1 – Let Ω be a domain in C
n and Ω̃ its lift in C

n+1. There are constants
α > 0,β > 0 depending only on Ω such that if F ∈ Hp(Ω̃) then F(z,0) ∈ Ap(Ω) and
‖F(·,0)‖Ap(Ω) ≤

1
α ‖F‖Hp(Ω̃). Conversely if f ∈ Ap(Ω), for (z,w) ∈ Ω̃ set F(z,w) := f (z),

then we have ‖F‖Hp(Ω̃) ≤ β‖f ‖Ap(Ω).

Proof. If F(z,w) ∈ Hp(Ω̃) we have ‖F‖pp := supε>0

∫
{r̃(z,w)=−ε} |F(z,w)|p dσ̃ (z,w) < ∞.

Fix ε > 0 and set Ω̃ = Ω̃ε := {(z,w) ∈ Cn+1 :: r̃(z,w) < ε} to apply what precedes. By
corollary 4 on page 8 the Lebesgue measure on ∂Ω̃ is

∀g ∈ C(Ω̃),
∫
∂Ω̃
g(z,w)dσ̃ (z,w) =

∫
Ω

h(z)
∫
|w|2=−ρ(z)

g(z,w)d |w|dm(z),

with ∀z ∈ Ω̄,0 < α ≤ h(z) ≤ β <∞. So∫
Ω

h(z)
{∫
|w|2=−ρ(z)

|F(z,w)|pd |w|
}

dm(z) =: ‖F‖pp <∞.

But F(z,w) is holomorphic in w for z fixed, hence |F(z,w)|p is sub harmonic in w
which implies

∫
|w|2=−ρ(z) |F(z,w)|pd |w| ≥ |F(z,0)|p.

Hence
∫
Ω
h(z) |F(z,0)p |dm(z) ≤ ‖F‖pp <∞, which implies, because h(z) is bounded

below and above in Ω̄, that
∫
Ω
|F(z,0)|pdm(z) ≤ 1

α ‖F‖
p
p <∞.

Now apply this for Ω̃ε instead of Ω̃; we have that F(z,w) is continuous up
to ∂Ω̃ε because ε > 0. So

∫
∂Ω̃ε
|F(z,w)|pdσ̃ (z,w) ≥ α

∫
Ωε
|F(z,0)|pdm(z). Hence by

8É. Amar, 1978, “Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de
C
n”.
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Fatou’s lemma with ε→ 0, α‖F(·,0)‖Ap(Ω) ≤ ‖F‖
p

Hp(Ω̃)
. So we have the first part of

the lemma.
Conversely if f ∈ Ap(Ω), setting F(z,w) := f (z) and reversing the previous com-

putations, using equalities this time,∫
∂Ω̃
|F|pdσ̃ =

∫
Ω

h(z)
∫
|w|2=−ρ(z)

|F(z,w)|pd |w|dm(z) =
∫
Ω

h(z) |f (z)|pdm(z),

because
∫
|w|2=−ρ(z) d |w| = 1. Hence

∫
∂Ω̃
|F|pdσ̃ ≤ β

∫
Ω
|f (z)|pdm(z) = β‖f ‖pAp(Ω). �

The only thing we used was that |F(z,w)|p is sub harmonic in w for z fixed. This
being also true for F(z,w) ∈ N (Ω̃), the very same proof gives:

Proposition 2 – Let Ω be a domain in C
n and Ω̃ its lift in C

n+1. There are constants
α > 0,β > 0 depending only on Ω such that if F ∈ N (Ω̃), then F(z,0) ∈ N0(Ω) and
‖F(·,0)‖N0(Ω) ≤

1
α ‖F‖N (Ω̃). Conversely if f ∈ N0(Ω), for (z,w) ∈ Ω̃ set F(z,w) := f (z),

then we have ‖F‖N (Ω̃) ≤ β‖f ‖N0(Ω).

Now if we start with a function F(z,w) ∈ Ap(Ω̃) what happens? We have:

Proposition 3 – Let Ω be a domain in C
n and Ω̃ its lift in C

n+1. If F ∈ Ap(Ω̃), then
F(z,0) ∈ Ap1(Ω) and ‖F(·,0)‖Ap1(Ω) ≤

1
π ‖F‖Ap(Ω̃). Conversely if f ∈ Ap1(Ω), for (z,w) ∈ Ω̃

set F(z,w) := f (z), then we have ‖F‖Ap(Ω̃) ≤ π‖f ‖Ap1(Ω).

Proof. By Fubini we have
∫
Ω̃
|F(z,w)|pdm(z,w) =

∫
Ω

∫
|w|2<−r(z) |F(z,w)|pdm(w)dm(z).

But again |F(z,w)|p is sub harmonic in w for z fixed hence

|F(z,0)|p ≤
1

π(−r(z))

∫
|w|2<−r(z)

|F(z,w)|pdm(w),

because the area of the disc {|w|2 < −r(z)} is π(−r(z)). So

π

∫
Ω

|F(z,0)|p (−r(z))dm(z) ≤
∫
Ω̃

|F(z,w)|pdm(z,w)

hence ‖F(·,0)‖Ap1(Ω) ≤
1
π ‖F‖Ap(Ω̃).

Conversely if F(z,w) = f (z) ∈ Ap1(Ω),∫
Ω̃

|F(z,w)|pdm(z,w) =
∫
Ω

|f (z)|p
∫
|w|2<−r(z)

dm(w)dm(z)

=
∫
Ω

|f (z)|pπ(−r(z))dm(z)

hence ‖F‖Ap(Ω̃) ≤ π‖f ‖Ap1(Ω). �
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3. Geometric Carleson measures and p-Carleson measures

We have the same results with the same proofs replacing Bergman classes by
Nevanlinna ones.

Proposition 4 – Let Ω be a domain in C
n and Ω̃ its lift in C

n+1. If F ∈ N0(Ω̃), then
F(z,0) ∈ N1(Ω) and ‖F(·,0)‖N1(Ω) ≤

1
π ‖F‖N0(Ω̃). Conversely if f ∈ N1(Ω), for (z,w) ∈ Ω̃

set F(z,w) := f (z), then we have ‖F‖N0(Ω̃) ≤ π‖f ‖N1(Ω).

Proof (of the subordination lemma). We prove the subordination lemma for a one
level lift. To get it for k levels lift, we just proceed by induction remarking that�(Ω̃k−1) = Ω̃k . Let Ω be a domain in C

n and set Ω̃k its k steps lift. Let F(z,w1, . . . ,wk) ∈
Hp(Ω̃k) then by the one level lift, proposition 1 on page 9 we have

F(z,w1, . . . ,wk−1,0) ∈ Ap(Ω̃k−1),‖F(·,0)‖Ap(Ω̃k−1) ≤
1
α
‖F‖Hp(Ω̃k ).

Now set F1(z,w1, . . . ,wk−1) := F(z,w1, . . . ,wk−1,0) ∈ Ap(Ω̃k−1) and apply proposition 3
on page 10, we get

F1(z,w1, . . . ,wk−2,0) ∈ Ap1(Ω̃k−2),‖F1(·,0)‖Ap1(Ω̃k−2) ≤
1
π
‖F1‖Ap(Ω̃k−1) ≤

1
απ
‖F‖Hp(Ω̃k ).

And so on. The converse is done the same way as for the Nevanlinna classes. �

Exactly the same induction gives the easy corollary:

Corollary 5 – Let Ω be a domain in C
n,Ω̃ its lift in C

n+k and F(z,w) ∈ Apl (Ω̃), we
have f (z) := F(z,0) ∈ Apk+l(Ω) and ‖f ‖Apk+l (Ω) . ‖F‖Apl (Ω̃); if F(z,w) ∈ Nl(Ω̃), then
f (z) := F(z,0) ∈ Nk+l(Ω) and ‖f ‖Nk+l (Ω) . ‖F‖Nl (Ω̃).

A function f , holomorphic in Ω, is in the Bergman space Apk+l(Ω) (resp. in the
Nevanlinna Bergman spaceNk+l(Ω)) if and only if the function F(z,w) := f (z) is in the
Bergman space Apl (Ω̃) (resp. in the Nevanlinna class Nl(Ω̃)) and we have ‖f ‖Apk+l

'
‖F‖Apl (Ω̃) (resp. ‖f ‖Nk+l (Ω) ' ‖F‖Nl (Ω̃)).

3 Geometric Carleson measures and p-Carleson mea-
sures

In order to define precisely the geometric Carleson measures, we need the notion
of a “good” family of polydiscs, directly inspired by the work of Catlin (1984) and
introduced in É. Amar (2009b).

Let U be a neighbourhood of ∂Ω in Ω such that the normal projection π onto
∂Ω is a smooth well defined application. Let α ∈ ∂Ω and let b(α) = (L1, L2, . . . ,Ln)
be an orthonormal basis of Cn such that (L2, . . . ,Ln) is a basis of the tangent complex

11
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space T C

α of ∂Ω at α; hence L1 is the complex normal at α to ∂Ω. Let m(α) =
(m1,m2, . . . ,mn) ∈Nn be a multi-index at α withm1 = 1,∀j ≥ 2,mj ≥ 2. For a ∈ U and
t > 0 set α = π(a) and Pa(t) :=

∏n
j=1 tDj , the polydisc such that tDj is the disc centered

at a, parallel to Lj ∈ b(α), with radius t |r(a)|1/mj (recall that we have |r(a)| ' δ(a) ).
Set b(a) := b(π(a)),m(a) :=m(π(a)), for a ∈ U . This way we have a family of polydiscs
P := {Pa(t)}a∈U defined by the family of basis {b(a)}a∈U , the family of multi-indices
{m(a)}a∈U and the number t. Notice that the polydisc Pa(2) always overflows the
domain Ω. It will be useful to extend this family to the whole of Ω. In order to
do so let (z1, . . . , zn) be the canonical coordinates system in C

n and for a ∈ Ω \ U ,
let Pa(t) be the polydisc of center a, of sides parallel to the axis and radius tδ(a) in
the z1 direction and tδ(a)1/2 in the other directions. So the points a ∈Ω \ U have
automatically a “minimal” multi-index m(a) = (1,2, . . . ,2). Now we can set:

Definition 4 – We say that P is a “good family” of polydiscs for Ω if the mj (a) are
uniformly bounded on Ω and if it exists δ0 > 0 such that all the polydiscs Pa(δ0) of
P are contained in Ω. In this case we call m(a) the multi-type at a of the family P .

We notice that, for a good family P , by definition the multi-type is always finite.
Moreover there is no regularity assumptions on the way that the basis b(a) varies
with respect to a ∈ Ω. We can see easily that there are always good families of
polydiscs in a domain Ω in C

n: for a point a ∈ Ω, take any orthonormal basis
b(a) = (L1, L2, . . . ,Ln), with L1 the complex normal direction, and the “minimal”
multitype m(a) = (1,2, . . . ,2). Then, because the level sets ∂Ωa are uniformly of class
C2 and compact, we have the existence of a uniform δ0 > 0 such that the family P
is a good one. As seen in É. Amar (2009b), in the strictly pseudo-convex domains,
this family with “minimal” multi-type is the right one. We can give the definitions
relative to Carleson measures.

Definition 5 – A positive borelian measure µ on Ω is a geometric Carleson measure,
µ ∈Λ(Ω), if

∃C = Cµ > 0 :: ∀a ∈Ω, µ(Ω∩ Pa(2)) ≤ Cσ (∂Ω∩ Pa(2)).

Definition 6 – A positive borelian measure µ on Ω is a p-Carleson measure in Ω if

∃C > 0 :: ∀f ∈Hp(Ω),
∫
Ω

|f (z)|p dµ(z) ≤ Cp‖f ‖pHp(Ω).

And analogously for the Bergman spaces:

Definition 7 – A positive borelian measure µ on Ω is a k-geometric Bergman-
Carleson measure, µ ∈Λk(Ω), if

∃C = Cµ > 0 :: ∀a ∈Ω, µ(Ω∩ Pa(2)) ≤ Cmk−1(Ω∩ Pa(2)).

12
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Notice the gap k→ k − 1.

Definition 8 – A positive borelian measure µ is (p,k)-Bergman-Carleson measure
in Ω if

∃C > 0 :: ∀f ∈ Apk−1(Ω),
∫
Ω

|f (z)|p dµ(z) ≤ Cp‖f ‖p
A
p
k−1(Ω)

.

Definition 9 – We shall say that the domain Ω has the p-Carleson embedding
property, p-CEP, if

∀µ ∈Λ(Ω), ∃C = Cµ > 0 :: ∀f ∈Hp(Ω),
∫
Ω

|f |p dµ ≤ C‖f ‖pHp(Ω).

And the same for the Bergman spaces:

Definition 10 – We shall say that the domain Ω has the (p,k)-Bergman-Carleson
embedding property, (p,k)-BCEP, if

∀µ ∈Λk(Ω), ∃C = Cµ,p > 0 :: ∀f ∈ Apk−1(Ω),
∫
Ω

|f |p dµ ≤ C‖f ‖p
A
p
k−1(Ω)

.

3.1 The subordination lemma applied to Carleson measures

We shall fix k ∈N and lift the measure on the domain Ω̃ := {r̃(z,w) := r(z) + |w|2 < 0},
with w = (w1, . . . ,wk) ∈ C

k . We already know how to lift a function, the lifted
measure µ̃ of a measure µ is just µ̃ := µ ⊗ δ, with δ the delta Dirac measure of
the origin in C

k . We shall need a lemma linking Bergman and Hardy geometric
Carleson measures. Let Ω be a domain in C

n, Ω̃ be its lift in C
n+k , and suppose that

Ω̃ is equipped with a good family of polydiscs P̃ , we have the definition:

Definition 11 – We shall say that the good family of polydiscs P̃ on the domain Ω̃

is “homogeneous” if

∃t > 0,∃C > 0 :: ∀a ∈ Ω̃,Ω∩ P̃a(2) , ∅, (Hg)

∀b ∈Ω∩ P̃a(2), P̃b(t) ⊃ P̃a(2) and σ̃ (∂Ω̃∩ P̃b(t)) ≤ Cσ̃ (∂Ω̃∩ P̃a(2)),

where Ω = Ω̃∩ {w = 0} ⊂ Ω̃.

Naturally the domain Ω is equipped with the family P induced by P̃ the following
way ∀a ∈Ω, Pa(u) := P̃(a,0)(u)∩{w = 0}, which is easily seen to be a good family for Ω.
As examples we have the strictly pseudo-convex domains and the convex domains of
finite type, because both are domains of homogeneous type in the sense of Coifman
and Weiss9.

9Coifman and Weiss, 1971, Analyse harmonique non commutative sur certains espaces homogènes.
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Lemma 6 – Let (Ω,Ω̃) be as above and suppose that Ω̃ is equipped with a good family of
polydiscs P̃ which verifies the hypothesis (Hg). The measure µ is a k-geometric Bergman-
Carleson measure in Ω iff the measure µ̃ is a geometric Carleson measure in Ω̃.

Proof. Suppose that µ is a k-geometric Bergman-Carleson measure in Ω, we want to
show: ∃C > 0 :: ∀(a,b) ∈ Ω̃, µ̃(Ω̃∩ P̃(a,b)(2)) ≤ Cσ̃ (∂Ω̃∩ P̃(a,b)(2)), with P̃c the polydisc
of center c = (a,b) ∈ Ω̃ of the family P̃ . Let us see first the case where b = 0, i.e.
(a,b) = (a,0) ∈Ω ⊂ Ω̃. Then, by definition of µ̃, we have µ̃(Ω̃∩ P̃(a,0)(2)) = µ(Ω∩Pa(2)).
On the other hand, we have, exactly as in the proof of the subordination lemma,
σ̃ (∂Ω̃ ∩ P̃(a,0)(2)) '

∫
Ω∩Pa(2) kvk(−r(z))

k−1 dm(z) = mk−1(Ω ∩ Pa(2)). But if µ is a k-

geometric Bergman-Carleson measure in Ω, we have ∃C > 0 :: ∀a ∈Ω,µ(Ω∩Pa(2)) ≤
Cmk−1(Ω∩ Pa(2)), so µ̃(Ω̃∩ P̃(a,0)(2)) = µ(Ω∩ Pa(2)) ≤ Cmk−1(Ω∩ Pa(2)) ' Cσ̃ (∂Ω̃∩
P̃(a,0)(2)). Now take a general P̃(a,b)(2). In order for µ̃(Ω̃∩ P̃(a,b)(2)) to be non zero,
we must have P̃(a,b)(2) ∩ {w = 0} , ∅ ⇒ ∃(c,0) ∈ P̃(a,b)(2) ∩ {w = 0}. By the (Hg)
hypothesis, this means that we have P̃(c,0)(t) ⊃ P̃(a,b)(2) with the uniform control
σ̃ (∂Ω̃∩ P̃(c,0)(t)) . σ̃ (∂Ω̃∩ P̃(a,b)(2)). We apply the above inequality µ̃(Ω̃∩ P̃(a,b)(2)) ≤
µ̃(Ω̃∩ P̃(c,0)(t)) ≤ Cmk(Ω∩ Pc(t)) = Cσ̃ (∂Ω̃∩ P̃(c,0)(t)) . σ̃ (∂Ω̃∩ P̃(a,b)(2)), hence µ̃ is a
geometric Carleson measure on Ω̃.

Conversely suppose that µ̃ is a geometric Carleson measure on Ω̃, this means
∀(a,b) ∈ Ω̃, µ̃(Ω̃∩ P̃(a,b)(2)) ≤ Cσ̃ (∂Ω̃∩ P̃(a,b)(2)), hence, in particular for b = 0, ∀a ∈Ω,
µ̃(Ω̃∩P(a,0)(2)) ≤ Cσ̃ (Ω̃∩P(a,0)(2)), but then, by definition of µ̃ and with the previous
computation of σ̃ (Ω̃∩P(a,0)(2)), we get ∀a ∈Ω,µ(Ω∩Pa(2)) ≤ Cmk−1(Ω∩Pa(2)), hence
the measure µ is a k-geometric Bergman-Carleson measure in Ω. �

Now we shall use the subordination lemma to get a Bergman-Carleson embed-
ding theorem from a Hardy-Carleson embedding one.

Theorem 5 – Let (Ω,Ω̃) be as usual and suppose that Ω̃ is equipped with a good family
of polydiscs P̃ which verifies the hypothesis (Hg). If the lifted domain Ω̃ has the p-CEP
then Ω has the (p,k)-BCEP.

Proof. Suppose the positive measure µ is a k-geometric Bergman-Carleson measure;
by the previous lemma, we have that the lifted measure µ̃ is a geometric Carleson
measure in Ω̃. By the p-CEP we have ∀F ∈Hp(Ω̃),

∫
Ω̃
|F|p dµ̃ ≤ Cpµ‖F‖

p

Hp(Ω̃)
. Choose

f (z) ∈ Apk−1(Ω) and set ∀(z,w) ∈ Ω̃,F(z,w) = f (z). By the subordination lemma we
have ‖f ‖Apk−1(Ω) ' ‖F‖Hp(Ω̃), and by definition of µ̃, we have∫

Ω

|f |p dµ =
∫
Ω̃

|F|p dµ̃ ≤ Cpµ‖F‖
p

Hp(Ω̃)
. ‖f ‖Apk−1(Ω),

hence µ is a (k,p)-Bergman-Carleson measure in Ω. �
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3. Geometric Carleson measures and p-Carleson measures

Theorem 6 – Let (Ω,Ω̃) be as usual and suppose that Ω̃ is equipped with a good family
of polydiscs P̃ which verifies the hypothesis (Hg). If p-Carleson implies geometric Carleson
in Ω̃, then (p,k)-Bergman-Carleson implies geometric k-Bergman-Carleson in Ω.

Proof. If the positive measure µ is (p,k)-Bergman-Carleson in Ω then µ̃ is a p-
Carleson measure in Ω̃ by lemma 6 on page 14 hence a geometric Carleson measure
in Ω̃ by the assumption of the theorem. Then applying lemma 6 on page 14 we get
that µ is a k-geometric Carleson measure in Ω hence the theorem. �

Remark 2 – The definition of geometric Carleson measures depends on the chosen
good family of polydiscs on the domain; the theorem asserts the equivalence of
properties between a domain Ω and its lift Ω̃. The fact that a lifted domain Ω̃

equipped with a good family of polydiscs P̃ has the Carleson embedding property
has to be proved directly but if it has the p-CEP then Ω equipped with the induced
family P has the (p,k)-BCEP without any further proof.

3.2 Application to strictly pseudo-convex domains.

Corollary 6 – Let Ω be a strictly pseudo-convex domain equipped with its minimal good
family of polydiscs, then Ω has the (p,k) Bergman Carleson embedding property.

Proof. The domain Ω equipped with its minimal good family has the p-CEP by
Hormander10, hence we can apply theorem 6. �

This corollary gives a characterization of the (p,k)-Bergman-Carleson measures of
the strictly pseudo-convex domains. Let Ω be a strictly pseudo-convex domain and
Ω̃ its lift in C

n+k . Let P̃ be its minimal good family of polydiscs in Ω̃; one can see
easily that the induced family of polydiscs P on Ω is again the minimal good family
of polydiscs. Recall that ∀a ∈Ω,δ(a) = d(a,∂Ω); we have this characterization:

Corollary 7 – A positive Borel measure µ in a strictly pseudo-convex domain in C
n is a

(p,k)-Bergman-Carleson measure iff:

∀a ∈Ω, µ(Pa(2)) . δ(a)n+k .

This means that it is a characterization of the measures such that

∀p ≥ 1, ∀f ∈ Apk−1(Ω),
∫
Ω

|f |p dµ . ‖f ‖Apk−1(Ω) .

In particular this characterization is independent of p ≥ 1.

10Hormander, 1967, “A Lp estimates for (pluri-)subharmonic functions”.

15



A subordination principle. Applications É. Amar

Proof. Let Ω̃ be the lift of Ω in C
n+k and µ̃ be the lift of µ on Ω̃. Suppose that µ is

a (p,k)-Bergman Carleson measure in Ω, then µ̃ is a p-Carleson measure in Ω̃ by
lemma 6 on page 14 then by a theorem of Hormander11 the p-Carleson measures are
precisely the geometric ones in Ω̃, hence we have ∀ã ∈ Ω̃, µ̃(Ω̃∩P̃ã(2)) . σ̃ (∂Ω̃∩P̃ã(2)).

Now let a ∈Ω, ã := (a,0) ∈ Ω̃ then a classical computation gives σ̃ (∂Ω̃∩ P̃ã(2)) .
δ̃(ã)n+k = δ(a)n+k . By the definition of µ̃ we have δ(a)n+k & µ̃(Ω̃∩ P̃ã(2)) = µ(P̃ã(2)∩
Ω) = µ(Pa(2)∩Ω), so ∀a ∈Ω,µ(Pa(2)∩Ω) . δ(a)n+k .

Now suppose that ∀a ∈Ω,µ(Pa(2)∩Ω) . δ(a)n+k then we have, by the definition
of µ̃, with ã := (a,0) ∈ Ω̃, µ̃(Ω̃∩ P̃ã(2)) ≤ δ̃(a)n+k ' σ̃ (∂Ω̃∩ P̃ã(2)). Doing exactly as in
the proof of lemma 6 on page 14 we have the same inequality with a bigger constant
for all ã ∈ Ω̃, hence µ̃ is a geometric Carleson measure in Ω̃. So by Hormander12, µ̃
is a p-Carleson measure in Ω̃ hence we have the embedding ∀F ∈Hp(Ω̃),

∫
Ω̃
|F|pdµ̃ .

‖F‖Hp(Ω̃).

Now we take f ∈ Apk−1(Ω) and we set ∀(z,w) ∈ Ω̃,F(z,w) := f (z) by the sub-
ordination lemma we have ‖F‖Hp(Ω̃) ' ‖f ‖Apk−1(Ω) and

∫
Ω̃
|F|pdµ̃ =

∫
Ω
|f |pdmk−1 .

‖F‖p
Hp(Ω̃)

' ‖f ‖p
A
p
k−1(Ω)

. �

Cima and Mercer13 characterized the Carleson measures for the spaces Apα(Ω)
for Ω strictly pseudo-convex, and with α ≥ 0. In the case where α is an integer we
recover their characterization, because one has easily, when Ω is a strictly pseudo-
convex domain, that Pa(2)∩Ω 'W (π(a),δ(a)) whereW (ζ,h) is the classical Carleson
window in Ω.

Remark 3 – In the case of the unit ball Ω of Cn, Ω̃ ⊂C
n+1 N. Varopoulos indicated

me an alternative proof for the fact that F(z,w) ∈ Hp(Ω̃) ⇒ F(z,0) ∈ Ap(Ω): the
Lebesgue measure on {w = 0} ∩ Ω̃ is easily seen to be a geometric Carleson measure
in Ω̃, hence by the Carleson-Hörmander embedding theorem14 we have∫

Ω

|F(z,0)|p dm(z) ≤ C ‖F‖Hp(Ω̃) ,

and the assertion. Of course this is still valid in codimension k ≥ 1, with the
weighted Lebesgue measure on Ω, and for strictly pseudo-convex domains because
the Carleson-Hörmander embedding theorem is still valid there. But this is just
one direction of the lemma, it works only if there is a Carleson embedding theorem
and this proof is much less elementary than the previous one. In fact we can
reverse things and say that one part of the subordination lemma asserts that the
weighted Lebesgue measure on Ω is always a Carleson measure in Ω̃, Ω strictly
pseudo-convex or not.

11Hormander, 1967, “A Lp estimates for (pluri-)subharmonic functions”.
12Ibid.
13Cima and Mercer, 1995, “Composition operators between bergman spaces on convex domains in

C
n”.
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4. Interpolating sequences for Bergman spaces

3.3 Application to convex domains of finite type in C
n

In É. Amar (2009b) we prove a Carleson embedding theorem for the convex domains
of finite type in C

n.

Theorem 7 – Let Ω be a convex domain of finite type in C
n; if the measure µ is a

geometric Carleson measure we have

∀p > 1, ∃Cp > 0, ∀f ∈Hp(Ω),
∫
Ω

|f |p dµ ≤ Cpp‖f ‖
p
Hp .

Conversely if the positive measure µ is p-Carleson for a p ∈ [1,∞[, then it is a
geometric Carleson measure, hence it is q-Carleson for any q ∈]1,∞[.

We already know that if Ω is a convex domain of finite type, so is Ω̃ with the
same type. Moreover the hypothesis (Hg) is true for these domains equipped with
a (slightly modified) McNeal family of polydiscs, so we can apply what precedes
in this case to get from the Carleson embedding theorem the Bergman-Carleson
embedding one.

Theorem 8 – Let Ω be a convex domain of finite type in C
n; if the measure µ is a

k-geometric Bergman-Carleson measure, i.e.

∃C > 0 :: ∀a ∈Ω,µ(Ω∩ Pa(2)) ≤ Cmk−1(Ω∩ Pa(2)),

we have

∀p > 1,∃Cp > 0,∀f ∈ Apk−1(Ω),
∫
Ω

|f |p dµ ≤ Cpp‖f ‖
p

A
p
k−1(Ω)

.

Conversely if the positive measure µ is (p,k)-Bergman-Carleson for a p ∈ [1,∞[, then it
is a k-geometric Bergman-Carleson measure, hence it is (q,k)-Bergman-Carleson for any
q ∈]1,∞[.

4 Interpolating sequences for Bergman spaces

4.1 On Bergman and Szegö projections

Let Ω be a domain in C
n, recall the definition of its Szegö projection: this is the

orthogonal projection P from L2(∂Ω) onto H2(Ω); we shall note its kernel by S(z,ζ),
i.e. ∀f ∈ L2(∂Ω), P f (z) =

∫
∂Ω
S(z,ζ)f (ζ)dσ (ζ). The same way, recall the definition

of the Bergman projection : this is the orthogonal projection Pk from L2(Ω,dmk)

14Hormander, 1967, “A Lp estimates for (pluri-)subharmonic functions”.
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onto A2
k(Ω), the holomorphic functions on Ω still in L2(Ω,dmk). We shall note its

kernel by Bk(z,ζ) i.e. ∀f ∈ L2(Ω,dmk), Pkf (z) =
∫
Ω
Bk(z,ζ)f (ζ)dmk(ζ). Let Ω̃ be the

lifted domain of Ω in C
n+k ; we shall use the notation ∀z ∈Ω, z̃ := (z,0) ∈ Ω̃.

Corollary 8 – For any a ∈ Ω, the Bergman kernel Bk−1(z,a) and the Szegö kernel
S̃((z,w), ã) for the lifted domain Ω̃, verify,

∀a ∈Ω,∀z ∈Ω,Bk−1(z,a) = S̃(z̃, ã).

Moreover we have

∀a ∈Ω,‖Bk−1(·, a)‖Apk−1(Ω) '
∥∥∥S̃(·, ã)

∥∥∥
Hp(Ω̃)

.

Proof. Let f ∈ A(Ω) be a holomorphic function in Ω, continuous up to ∂Ω. Let
∀(z,w) ∈ Ω̃,F(z,w) := f (z). We have

∫
Ω
f (z)B̄k−1(z,a) dmk−1(z) = f (a) = F(a,0) =∫

∂Ω̃
F(z,w)S̃((z,w), ã) dσ (z,w), by the reproducing property of these kernels. But F

does not depend on w and S̃((z,w), ã) is anti-holomorphic in w for z fixed in Ω, so

1
η

∫
{w∈Ck ::−η−r(z)≤|w|2<−r(z)}

S̃((z,w), ã) dm(w)→ S̃((z,0), ã)vkk(−r(z))k−1,

by the proof of the subordination lemma, hence∫
Ω

f (z)B̄k−1(z,a) dmk−1(z) =
∫
Ω

f (z)S̃((z,0), ã)vkk(−r(z))k−1 dm(z)

=
∫
Ω

f (z)S̃((z,0), ã) dmk−1(z).

So we have

∀f ∈ A(Ω),
∫
Ω

f (z)(S̃((z,0), ã)− B̄k−1(z,a)) dmk−1(z) = 0,

hence S̃((z,0), ã)−Bk−1(z,a)⊥ A(Ω) in A2
k−1(Ω). But S̃((z,0), ã)−Bk(z,a) is holomor-

phic in z, hence ∀z ∈Ω, S̃((z,0), ã) = Bk−1(z,a). The second part is a direct application
of the first part in the subordination theorem 1 on page 2. �

4.2 Interpolating sequences

For a ∈Ω, let ka(z) := S(z,a) denotes the Szegö kernel of Ω at the point a. It is also the
reproducing kernel for H2(Ω), i.e. ∀a ∈Ω,∀f ∈H2(Ω), f (a) =

∫
∂Ω
f (z)k̄a(z) dσ (z) =〈

f ,ka
〉
. Set ‖ka‖p := ‖ka‖H2(Ω) and:
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4. Interpolating sequences for Bergman spaces

Definition 12 – We say that the sequence Λ of points in Ω is Hp(Ω) interpolating
if

∀λ ∈ `p(Λ),∃f ∈Hp(Ω) :: ∀a ∈Λ, f (a) = λa‖ka‖p′ ,

with p′ the conjugate exponent for p, 1
p + 1

p′ = 1.

We say that Λ has the linear extension property if Λ is Hp(Ω) interpolating
and if moreover there is a bounded linear operator E `p(Λ)→Hp(Ω) making the
interpolation, i.e. ∀λ ∈ `p(Λ),E(λ) ∈Hp(Ω),∀a ∈Λ,E(λ)(a) = λa‖ka‖p′ .

A weaker notion is the dual boundedness:

Definition 13 – We shall say that the sequence Λ of points in Ω is dual bounded in
Hp(Ω) if there is a bounded sequence of elements in Hp(Ω), {ρa}a∈Λ ⊂Hp(Ω) which
dualizes the associated sequence of reproducing kernels, i.e.

∃C > 0 :: ∀a ∈Λ,
∥∥∥ρa∥∥∥p ≤ C,∀a,c ∈Λ,〈ρa, kc〉 = δa,c‖kc‖p′ .

If Λ is Hp(Ω) interpolating then it is dual bounded in Hp(Ω): just interpo-
late the elements of the basic sequence in `p(Λ). The converse is the crux of the
characterization by Carleson15 of H∞(D) interpolating sequences and the same
by Shapiro and Shields16 for Hp(D) interpolating sequences in D. We do the
same for the Bergman spaces. For k ∈N and a ∈ Ω, let bk,a(z) := Bk(z,a) denotes
the Bergman kernel of Ω at the point a. It is also the reproducing kernel for
A2
k(Ω), i.e. ∀a ∈Ω,∀f ∈ A2

k(Ω), f (a) =
∫
Ω
f (z)b̄k,a(z) dmk(z) =

〈
f , bk,a

〉
. Now we set∥∥∥bk,a∥∥∥p :=

∥∥∥bk, a∥∥∥Apk (Ω)
and:

Definition 14 – We say that the sequence Λ of points in Ω is Apk (Ω) interpolating
if

∀λ ∈ `p(Λ),∃f ∈ Apk (Ω) :: ∀a ∈Λ, f (a) = λa
∥∥∥bk,a∥∥∥p′ ,

with p′ the conjugate exponent for p, 1
p + 1

p′ = 1.

We say that Λ has the linear extension property if Λ is Apk (Ω) interpolating
and if moreover there is a bounded linear operator E `p(Λ)→ A

p
k (Ω) making the

interpolation.

Definition 15 – We shall say that the sequence Λ of points in Ω is dual bounded in
A
p
k (Ω) if there is a bounded sequence of elements in Apk (Ω), {ρa}a∈Λ ⊂ A

p
k (Ω) which

dualizes the associated sequence of reproducing kernels, i.e.

∃C > 0 :: ∀a ∈Λ,
∥∥∥ρa∥∥∥p ≤ C,∀a,c ∈Λ,〈ρa,bk,c〉 = δa,c

∥∥∥bk,a∥∥∥p′ .
15Carleson, 1958, An interpolation problem for bounded analytic functions.
16Shapiro and Shields, 1961, “On some interpolation problems for analytic functions”.
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Again if Λ is Apk (Ω) interpolating then it is dual bounded in Apk (Ω): just interpolate
the elements of the basic sequence in `p(Λ).

4.3 Case of the unit disc D in C

In that case the interpolating sequences for H∞(D) where characterized by Car-
leson17 and for Hp(D) by Shapiro and Shields18. The interpolating sequences for
the Bergman spaces Apk (D) were characterized by Seip19.

In these cases it appears that dual boundedness implies interpolation. For Hardy
spaces dual boundedness is easily seen to be equivalent to the Carleson condition
and for Bergman spaces, it is proved by Schuster and Seip20.

4.4 General case

We shall apply the subordination lemma to interpolating sequences in general
domains Ω. Let Ω̃ be the lifted domain in C

n+k associated to Ω. Let Λ̃ be the
sequence Λ viewed in Ω̃, Λ̃ := Λ ⊂Ω ⊂ Ω̃. Let us denote by kã(z,w) := S((z,w), ã)
the Szegö kernel of Ω̃, for ã = (a,0).

Theorem 9 – Let Ω be a domain in C
n and Ω̃ its lift to C

n+k . If Λ ⊂Ω is a sequence of
points in Ω, let Λ̃ be the sequence Λ viewed in Ω̃,Λ̃ := Λ ⊂Ω ⊂ Ω̃. We have:

1. Λ is dual bounded in Apk−1(Ω) iff Λ̃ is dual bounded in Hp(Ω̃).

2. Λ is Apk−1(Ω) interpolating iff Λ̃ is Hp(Ω̃) interpolating.

3. Λ has the linear extension property in A
p
k−1(Ω) iff Λ̃ has the linear extension

property in Hp(Ω̃).

Proof.

1. Suppose that Λ is dual bounded Apk−1(Ω) and let {ρa}a∈Λ ⊂ A
p
k−1(Ω) be the dual

sequence to the sequence {bk−1,a}a∈Λ; extend it to Ω̃: ∀a ∈Λ, Γa(z,w) := ρa(z),
then the subordination lemma gives us that ‖Γa‖Hp(Ω̃) '

∥∥∥ρa∥∥∥Apk−1(Ω)
and we

have, using corollary 8 on page 18,

∀a,c ∈Λ, 〈Γa, kc̃〉 = 〈Γa,S((·,0), c̃)〉 =
〈
ρa,B(·, c)

〉
=

〈
ρa,bk−1,c

〉
= δab

∥∥∥bk−1,c

∥∥∥
p′

17Carleson, 1958, An interpolation problem for bounded analytic functions.
18Shapiro and Shields, 1961, “On some interpolation problems for analytic functions”.
19Seip, 1993, “Beurling type density theorems in the unit disk”.
20Schuster and Seip, 1998, “A Carleson type condition for interpolation in Bergman spaces”.
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4. Interpolating sequences for Bergman spaces

because Λ is dual bounded in A
p
k−1(Ω). Then we have, by corollary 8 on

page 18,

∀c̃ = (c,0), c ∈Ω,
∥∥∥bk−1,c

∥∥∥
A
p
k−1(Ω)

' ‖kc̃‖Hp(Ω), (2)

hence ∀a,c ∈ Λ,〈Γa, kc̃〉 = δac
∥∥∥bk−1,c

∥∥∥
p′
' δac‖kc̃‖p′ hence Λ̃ is dual bounded in

Hp(Ω̃). Because we used only equivalences in this proof, it works also for the
converse, hence if Λ̃ is dual bounded in Hp(Ω̃) then Λ is dual bounded in
A
p
k−1(Ω).

2. Suppose that Λ̃ is interpolating in Hp(Ω̃). We want to show that Λ is Apk−1(Ω)
interpolating, so let µ = {µa}a∈Λ ∈ `p(Λ) the sequence to be interpolated. Set

λ = {λã}a∈Λ with ∀ã ∈ Λ̃,λã := µa×
‖bk−1, a‖

A
p′
k−1(Ω)

‖kã‖Hp′ (Ω̃)
; then λ ∈ `p(Λ̃),‖λ‖p '

∥∥∥µ∥∥∥
p

by equation (2). Let F ∈ Hp(Ω̃) be the function making the interpolation
of the sequence λ, which exists because Λ̃ is Hp(Ω̃) interpolating. It means
that F(ã) = λa‖kã‖Hp′ (Ω̃) = µa

∥∥∥bk−1,a

∥∥∥
A
p′
k−1(Ω)

. Set ∀z ∈ Ω, f (z) := F(z,0) then

we have ∀a ∈ Λ, f (a) = F(a,0) = F(ã) = µa
∥∥∥bk−1,a

∥∥∥
A
p′
k−1(Ω)

. Hence Λ is Apk−1(Ω)

interpolating. Again the converse is straightforward because we use only
equivalences.

3. Suppose that Λ̃ has the bounded extension linear property, i.e. there is a
linear operator Ẽ: `p(Λ̃)→ Hp(Ω̃) such that F(z,w) := Ẽ(λ)(z,w), F ∈ Hp(Ω̃),
∀a ∈Λ, F(ã) = µa‖kã‖Hp′ (Ω̃), ‖F‖Hp(Ω̃) .

∥∥∥µ∥∥∥
p
. With the same notations λ and µ

as above, set f (z) := F(z,0) = Ẽ(µ)(z,0) =: E(λ)(z), then clearly E is linear in λ
and then still using the subordination lemma we have ‖f ‖Apk−1(Ω) . ‖F‖Hp(Ω̃)

.
∥∥∥µ∥∥∥

p
' ‖λ‖p and ∀a ∈ Λ, f (a) = µã‖kã‖Hp′ (Ω̃) = λa

∥∥∥bk−1, a

∥∥∥
A
p′
k−1(Ω)

. Hence

λ→ E(λ) is bounded from `p(Λ) in Apk−1(Ω) and Λ is Apk−1(Ω) interpolating
with the linear extension. Again the converse is straightforward. �

4.5 Application to strictly pseudo-convex domains

In É. Amar (2008) we proved a general theorem on interpolating sequences in the
spectrum of a uniform algebra. In the case of strictly pseudo-convex domains, it
says that:

Theorem 10 – If Ω is a strictly pseudo-convex domain in C
n and if Λ ⊂ Ω is a dual

bounded sequence of points in Hp(Ω), then, for any q < p,Λ is Hq(Ω) interpolating with
the linear extension property, provided that p =∞ or p ≤ 2.
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We have, as a consequence of the subordination lemma the following theorem:

Theorem 11 – Let Ω be a strictly pseudo-convex domain in C
n and Λ ⊂Ω be a dual

bounded sequence of points in Apk (Ω), then, for any q < p,Λ is Apk (Ω) interpolating with
the linear extension property, provided that p =∞ or p ≤ 2.

Proof. Let Ω̃ be the lift of Ω in C
n+k+1 and Λ̃ ⊂ Ω̃ the sequence Λ viewed in Ω̃. We

apply theorem 9 on page 20 (i) to have that Λ̃ is dual bounded in Hp(Ω̃) because
Λ is dual bounded in Apk (Ω). Now we apply theorem 10 on page 21 to get that Λ̃
is Hq(Ω̃) interpolating with q < p, and has the bounded linear extension property,
provided that p =∞ or p ≤ 2. Then again theorem 9 on page 20 (iii) to get the same
for Λ in Apk (Ω). �

We have a better result for the unit ball in C
n. In É. Amar (2009a) we proved:

Theorem 12 – If Λ is a dual bounded sequence in the unit ball B of Cn for the Hardy
space Hp(B), then for any q < p, Λ is Hq(B) interpolating with the bounded linear
extension property.

So copying the proof of theorem 11, just replacing theorem 10 on page 21 by
theorem 12 we get:

Theorem 13 – Let Λ be a dual bounded sequence in the unit ball B of C
n for the

Bergman space Apk (B), then for any q < p, S is Aqk(B) interpolating with the bounded
linear extension property.

Remark 4 – If we apply this theorem in the unit disc D of C we get that if Λ is a
dual bounded sequence in Apk (D) then it is interpolating in Aqk(D) for any q < p. In
this particular case, one variable, the Schuster-Seip theorem21 says that we have the
interpolation up to q = p.

4.6 Application to convex domains of finite type

To apply the general theorem on interpolating sequences in the spectrum of a
uniform algebra to the case of convex domains of finite type in C

n, we need to have
a precise knowledge of the good family of polydiscs associated to the domain and
in É. Amar (2009b), we proved:

Theorem 14 – If Ω is a convex domain of finite type in C
n and if Λ ⊂ Ω is a dual

bounded sequence of points in Hp(Ω), then, for any q < p, Λ is Hq(Ω) interpolating with
the linear extension property, provided that p =∞ or p ≤ 2.

Then, again, copying the proof of theorem 11, just replacing theorem 10 on page 21
by theorem 14 we get:

21Schuster and Seip, 1998, “A Carleson type condition for interpolation in Bergman spaces”.
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Theorem 15 – If Ω is a convex domain of finite type in C
n and if Λ ⊂ Ω is a dual

bounded sequence of points in Apk−1(Ω) then, for any q < p, Λ is Apk−1(Ω) interpolating
with the linear extension property, provided that p =∞ or p ≤ 2.

Remark 5 – We applied the subordination principle since 197822 essentially in this
case. For instance in D. Amar and É. Amar (1978) we used it to show that the
interpolating sequences for Hp(B), with B the unit ball in C

n, n ≥ 2, are different
for different values of p, opposite to the one variable case of Hp(D).

5 The Hp-Corona theorem for Bergman spaces

Let Ω be a domain in C
n. We say that the Hp-Corona theorem is true for Ω

if we have: ∀g1, . . . , gk ∈ H∞(Ω) :: ∀z ∈ Ω,
∑m
j=1

∣∣∣gj (z)∣∣∣ ≥ δ > 0 then ∀f ∈ Hp(Ω),

∃(f1, . . . , fm) ∈ (Hp(Ω))m :: f =
∑m
j=1 fjgj . In the same vein, we say that the Apk−1(Ω)-

Corona theorem is true for Ω if we have:

∀g1, . . . , gm ∈H∞(Ω) :: ∀z ∈Ω,
m∑
j=1

∣∣∣gj (z)∣∣∣ ≥ δ > 0 (3)

then ∀f ∈ Apk−1(Ω), ∃(f1, . . . , fm) ∈ (Apk−1(Ω))m :: f =
∑m
j=1 fjgj . Then we have:

Theorem 16 – Suppose that the Hp-Corona is true for the domain Ω̃, then the Apk−1(Ω)-
Corona theorem is also true for Ω.

Proof. Let Ω̃ be the lifted domain; then set ∀j = 1, . . . ,m, gj ∈ H∞(Ω), f ∈ Hp(Ω),
Gj(z,w) := gj(z), F(z,w) := f (z). Clearly the Gj are in H∞(Ω̃) and by the subordina-
tion lemma, F ∈Hp(Ω̃). Moreover, if the condition of equation (3) is true, we have
∀(z,w) ∈ Ω̃,

∑m
j=1

∣∣∣Gj (z,w)
∣∣∣ ≥ δ with the same δ. So we can apply the hypothesis:

∃(F1, . . . ,Fm) ∈ (Hp(Ω̃))m :: F =
∑m
j=1FjGj .

Now set fj (z) = Fj (z,0) then applying again the subordination lemma, we have

f (z) = F(z,0) =
m∑
j=1

Fj (z,0)Gj (z,0) =
m∑
j=1

fj (z)gj (z). �

22D. Amar and É. Amar, 1978, “Sur les suites d’interpolation en plusieurs variables”;
É. Amar, 1978, “Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de

C
n”.
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5.1 Application to pseudo-convex domains

Corollary 9 – We have the Apk−1(Ω)-Corona theorem in the following cases:

• with p = 2 if Ω is a bounded weakly pseudo-convex domain in C
n;

• with 1 < p <∞ if Ω is a bounded strictly pseudo-convex domain in C
n.

The first case because Andersson23 (with a preprint in 1990) proved the H2-
Corona theorem for Ω bounded weakly pseudo-convex domain in C

n; the last one
for two generators because we proved24 the Hp-Corona theorem for two generators
in the ball; for any number of generators because Andersson and Carlsson25 proved
the Hp-Corona theorem in this case.

6 Zeros set of the Nevanlinna-Bergman class

Let Ω be a domain in C
n, u a holomorphic function in Ω. Set X := {z ∈Ω :: u(z) = 0}

the zero set of u and ΘX := ∂∂̄ ln |u| its associated (1,1) current of integration.

Definition 16 – An analytic set X := u−1(0),u ∈ H(Ω), in the domain Ω is in the
Blaschke class, X ∈ B(Ω), if there is a constant C > 0 such that

∀β ∈Λ∞n−1,n−1(Ω̄),
∣∣∣∣∣∫

Ω

(−r(z))ΘX ∧ β
∣∣∣∣∣ ≤ C ∥∥∥β∥∥∥∞

where Λ∞n−1,n−1(Ω̄) is the space of (n−1,n−1) continuous form in Ω̄, equipped with
the sup norm of the coefficients.

If u ∈ N (Ω) then it is well known26 that X is in the Blaschke class of Ω. We do
the analogue for the Bergman spaces:

Definition 17 – An analytic set X := u−1(0),u ∈ H(Ω), in the domain Ω is in the
Bergman-Blaschke class, X ∈ Bk−1(Ω), if there is a constant C > 0 such that

∀β ∈Λ∞n−1,n−1(Ω̄),
∣∣∣∣∣∫

Ω

(−r(z))k+1ΘX ∧ β
∣∣∣∣∣ ≤ C∥∥∥β∥∥∥∞,

where Λ∞n−1,n−1(Ω̄) is the space of (n−1,n−1) continuous form in Ω̄, equipped with
the sup norm of the coefficients.

23Andersson, 1994, “The H2 corona problem and ∂̄b in weakly pseudoconvex domains.”
24É. Amar, 1991, “On the corona problem”; with É. Amar, 1980, Généralisation d’un théorème de Wolff

à la boule de Cn, already in 1980.
25Andersson and Carlsson, 1994, “Wolff-type estimates for ∂̄b and the Hp-corona problem in strictly

pseudo-convex domains”; see also É. Amar and Menini, 2000, “Universal divisors in Hardy spaces”.
26Skoda, 1976, “Valeurs au bord pour les solutions de l’opérateur et caractérisation des zéros de la

classe de Nevanlinna”.
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If u ∈ Nk−1(Ω) then X is in the Bergman-Blaschke class of Ω, for instance again
by use the subordination lemma from the case N (Ω̃). Hence exactly as for the
Corona theorem we can set the definitions: we say that the Blaschke characterization
is true for Ω if we have: X ∈ B(Ω)⇒∃u ∈ N (Ω) such thatX = {z ∈Ω :: u(z) = 0}. And
the same for the Bergman spaces: we say that the Bergman-Blaschke characterization
is true for Ω if we have: X ∈ Bk(Ω)⇒∃u ∈ Nk(Ω) such that X = {z ∈Ω :: u(z) = 0}.

Theorem 17 – Suppose that the Blaschke characterization is true for the lifted domain
Ω̃, then the Bergman-Blaschke characterization is also true for Ω.

Proof. Let Ω̃ be the lifted domain in C
n+k of Ω; then setX = u−1(0), ΘX its associated

current and suppose that X ∈ Bk(Ω). This means that

∀β ∈Λ∞n−1,n−1(Ω̄),
∣∣∣∣∣∫

Ω

(−r(z))k+1ΘX ∧ β
∣∣∣∣∣ ≤ C∥∥∥β∥∥∥∞.

Let ∀w ∈Ck ,U (z,w) := u(z), X̃ :=U−1(0)∩ Ω̃ ⊂ Ω̃,Θ̃X̃ = ∂∂̄ ln |U |; we shall show that

X̃ ∈ B(Ω̃). We have that Θ̃X̃ does not depend on w, hence, ∀β̃ ∈Λ∞n+k−1,n+k−1(Ω̃),

A :=
∫
Ω̃

(−r̃(z,w))Θ̃X̃ ∧ β̃ =
∫
Ω

ΘX(z)∧
∫
|w|2<−r(z)

−(r(z) + |w|2)β̃(z,w).

Because ΘX is a (1,1) current depending only on z, this means that in the
integral in w we have only the terms containing dw1 ∧dw̄1 ∧ · · · ∧ dwk ∧dw̄k , the
other terms being 0 against ΘX . So this integral in w gives a (n− 1,n− 1) form in z.

Now set β1(z) :=
∫
|w|2<−r(z) (1 + |w|2

−r(z) )β̃(z,w), we have A =
∫
Ω
ΘX(z)∧ (−r(z))β1(z) and,

because 1 + |w|2
−r(z) < 2 in {|w|2 < −r(z)}, we have

∣∣∣β1(z)
∣∣∣ ≤ 2

∥∥∥β̃∥∥∥∞ ∫
|w|2<−r(z) dmk(w) ≤

2vk
∥∥∥β̃∥∥∥∞(−r(z))k , because we get the volume in C

k of the ball centered in 0 and

of radius
√
−r(z). Set β2(z) := (−r(z))−kβ1(z), we have

∥∥∥β2

∥∥∥∞ ≤ 2vk
∥∥∥β̃∥∥∥∞ and A =∫

Ω
ΘX(z)∧ (−r(z))β1(z) =

∫
Ω
ΘX(z)∧ (−r(z))k+1β2(z). We can apply the hypothesis

X ∈ Bk−1(Ω) to the integral A: |A| ≤
∥∥∥β2

∥∥∥∞ . 2
∥∥∥β̃∥∥∥∞, hence X̃ ∈ B(Ω̃). Now we

apply the hypothesis of the theorem, ∃V ∈ N (Ω̃) :: X̃ = V −1(0), and clearly X =
V −1(0)∩ {w = 0}, because if z ∈ X then ∀w :: |w|2 < −r(z), (z,w) ∈ X̃. Hence we set
v(z) := V (z,0) ∈ Nk−1(Ω), by the subordination lemma, and we are done. �

6.1 Application to pseudo-convex domains

Corollary 10 – The Bergman-Blaschke characterization is true in the following cases:

• if Ω is a strictly pseudo-convex domain in C
n;

• if Ω is a convex domain of finite type in C
n.
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Proof. The first case is true by the famous theorem proved by Henkin27 and Skoda28

which says that the Blaschke characterization is true for strictly bounded pseudo-
convex domain in C

n.
The second one because the Blaschke characterization is true for convex domain

of finite strict type by a theorem of Bruna, Charpentier, and Dupain29 generalized
to all convex domains of finite type by Cumenge30 and Diederich and Mazzilli31.�
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