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Abstract

In 2002, Alabau, Cannarsa, and Komornik investigated the extent of asymp-
totic stability of the null solution for weakly coupled partially damped equations
of the second order in time. The main point is that the damping operator acts
only on the first component and, whenever it is bounded, the coupling is not
strong enough to produce an exponential decay in the energy space associated
to the conservative part of the system. As a consequence, for initial data in
the energy space, the rate of decay is not exponential. Due to the nature of the
result it seems at first sight impossible to obtain the asymptotic stability result
by the classical Liapunov method. Surprisingly enough, this turns out to be
possible and we exhibit, under some compatibility conditions on the operators,
an explicit class of Liapunov functions which allows to do 3 different things:

1. When the problem is reduced to a stable finite dimensional space, we
recover the exponential decay by a single differential inequality and we
estimate the logarithmic decrement of the solutions with worst (slowest)
decay. The estimate is optimal at least for some values of the parameters.

2. We explain the form of the stability result obtained by the previous authors
when the coupling operator is a multiple of the identity, so that the decay
is not exponential.

3. We obtain new exponential decay results when the coupling operator is
strong enough (in particular unbounded). The estimate is again sharp for
some solutions.
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1 Introduction

In 2002, Alabau, Cannarsa, and Komornik published a paper3 in which they inves-
tigated the extent of asymptotic stability of the null solution for t > 0 for weakly
coupled partially damped equations of the type

u′′ +A1u +Bu′ +Cv = v′′ +A2v +Cu = 0

where A1, A2, B and C are positive self-adjoint operators satisfying additional condi-
tions. The main point is that the damping operator acts only on the first component
u and when A1, A2 are comparable coercive unbounded operators while B, C are
coercive and bounded, the coupling is not strong enough to produce an exponential
decay in the energy space associated to the conservative part of the system. As a
consequence, for initial data in the energy space, decay takes place in a weaker
function space and the rate of decay is not exponential. Moreover, due to the nature
of the result it seems impossible to obtain the asymptotic stability result by the
classical Liapunov method which we now recall in a few lines. Liapunov4 defined
and investigated the dynamical stability of equilibrium solutions to differential
systems of the form

U ′(t) = F(U (t))

where F ∈ C2(RN ). Given a ∈ F−1(0) he proved that a is asymptotically stable (in fact
exponentially stable) as soon as all the eigenvalues of the square matrix M = DF(a)
have negative real parts. This result is now classical and has been recalled in quite a
few books, with different sorts of proofs depending on the applications the authors
had in mind as well as their cultural background. The original proof of Liapunov
consisted in considering first the linearized equation

Y ′ =MY (t) (1)

for which 0 is an exponentially stable equilibrium. Under the hypothesis on the
eigenvalues, it is not difficult to see that all solutions of Equation (1) tend to 0 as t
tends to infinity. Then by considering a basis of RN , it follows easily that for some
T > 0 we have ‖exp(TM)‖ < 1. Then by a classical division argument we find

∀t ≥ 0, ‖exp(tM)‖ ≤ Ce−δt

for someC ≥ 1 and δ > 0, thereby proving exponential stability of 0 for the linearized
equation. Is seems that at the time of Liapunov (and even much later) it was not
natural to use the potential well argument for the nonlinear perturbation equation

3Alabau, Cannarsa, and Komornik, 2002, “Indirect internal stabilization of weakly coupled evolution
equations”.

4Liapunov, 1892, The General Problem of the Stability of Motion.
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1. Introduction

by using Duhamel’s variation of constants formula. Therefore Liapunov looked
for a renorming allowing to get the same estimate with C = 1, in which case a
direct potential well argument in differential form becomes possible. The following
quadratic function

Φ(z) =
∫ ∞

0
|exp(sM)z|2 ds

provides a solution of the problem. Indeed for any solution Y (t) = exp(tM)Y0 of
Equation (1) on the preceding page we have

d
dt

Φ(Y (t)) =
d
dt

∫ ∞
0
|exp(sM)exp(tM)Y0|2 ds

=
d
dt

∫ ∞
0
|exp(s+ t)M)Y0|2 ds

=
d
dt

∫ ∞
t
|exp(τ)M)Y0|2 dτ = −|Y (t)|2.

By the equivalence of norms on the finite dimensional space R
N we see immediately

that the new norm defined by ‖z‖ = Φ(z)1/2 is a solution. Therefore in finite dimen-
sions it is always possible to prove exponential stability by means of a renorming in
which the norm ‖Y (t)‖ satisfies a differential inequality of the form

d
dt
‖Y (t)‖2 ≤ −γ‖Y (t)‖2.

In particular this seems to be a practical way of estimating the logarithmic decre-
ment (or characteristic numbers by Liapunov’s terminology) of solutions. However
even the case of the simplest system

u′′ +λu + bu′ + cv = v′′ +λv + cu = 0

where λ > 0, b > 0 and c , 0 can have any sign shows the difficulty of the problem.
Standard manipulation gives the identity

d
dt

(λu2 +λv2 + 2cuv +u′2 + v′2) = −2bu′2 ≤ 0.

Assuming c2 < λ2, the function

F(u,v,w,z) = λu2 +λv2 + 2cuv +w2 + z2

is a positive definite quadratic form. Since F(u,v,u′ ,v′) is non-increasing along
the trajectories, the 4 components (u,v,u′ ,v′) are bounded and we are in a good
position to apply the invariance principle5. Indeed let (u,v) be a solution for which

5Cf. e.g. Haraux, 1991, Systèmes dynamiques dissipatifs et applications;
Haraux and Jendoubi, 2015, The convergence problem for dissipative autonomous systems.
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F(u,v,u′ ,v′) is constant. Then 2bu′2 = 0 implies u′ = 0, hence u is constant and
u′′ = 0. Then by the first equation v = −λc u is also constant. Finally since by the
hypothesis c2 < λ2, the stationary system λu + cv = λv + cu = 0 has no non-trivial
solution, we conclude that u = v = 0 and therefore (0,0,0,0) is asymptotically stable,
implying exponential stability as recalled above. Now an interesting problem
occurs: the quadratic form Φ introduced by Liapunov cannot be computed since
we do not have access to an explicit formula for the semi-group (the characteristic
equation has degree 4!) We know, however, that the form can be computed on a
basis of 4×(4+1)

2 = 10 monomials in (u,v,w,z). The challenge is therefore to find one
of the strict Liapunov functions (they form a non-empty open set in the space of
coefficients) by a direct method, hoping that it will enlighten the nature of stability
also in the more complicated (for instance infinite dimensional) cases.

The object of the present paper is to carry out this specific program. More
precisely, in Section 2, we exhibit a class of strict Liapunov functions for the above
scalar ODE. In Sections 3 and 4 on p. 134 and on p. 136, we evaluate by two different
approaches the “worst” characteristic number of solutions. In Section 5 on p. 138,
we generalize the construction to a class of strongly coupled second order vector
equations in finite or infinite dimensions, with a linear damping acting on only
one of the two components, and Section 6 on p. 143 is devoted to examples in both
finite and infinite dimensional frameworks. Finally, in the last Section 7 on p. 146,
we recover one of the main results from Alabau, Cannarsa, and Komornik (2002)6

by using a weakened notion of strict Liapunov functions. This method seems to
be applicable to more general situations and the approach can be used to obtain
explicit estimates, at the expense of complicated but not impossible refinements of
our calculations.

2 A Liapunov function for the scalar case

In this section we consider the (real) scalar coupled systemu′′ +u′ +λu + cv = 0

v′′ +λv + cu = 0
(2)

where λ and c are such that 0 < ‖c‖ < λ. The damping coefficient is set to 1 for
simplicity but a time scale change reduces general damping terms bu′ to this case.
In order to shorten the formulas, let us introduce for each solution (u,v) of (2), its
total energy

E(u,u′ ,v,v′) =
1
2

[
u′2 + v′2 +λ(u2 + v2)

]
+ cuv.

6Alabau, Cannarsa, and Komornik, 2002, “Indirect internal stabilization of weakly coupled evolution
equations”.
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2. A Liapunov function for the scalar case

Then we have for all t ≥ 0

d
dt
E(u,u′ ,v,v′) = −u′2.

Our first main result is the following

Proposition 1 – For any p > 1 fixed and for all ε > 0 small enough the quadratic form

Hε = E − εvv′ + pεuu′ +
(p+ 1)λε

2c
(u′v −uv′)

is a strict Liapunov function for (2).

Proof. First of all we note that the derivative of the skew product involves −v2.
Indeed

d
dt

(u′v −uv′) = (u′′v −uv′′) = −v(u′ + cv +λu) +u(cu +λv)

= c(u2 − v2)−u′v.

Then we find easily

d
dt

[
−vv′ + puu′ +

(p+ 1)λ
2c

(u′v −uv′)
]

= pu′2 − v′2 + v(cu +λv)− pu(u′ + cv +λu) +
(p+ 1)λ

2
(u2 − v2)−

(p+ 1)λ
2c

u′v

= pu′2 − v′2 −u′
(
pu +

(p+ 1)λ
2c

v

)
−

(p − 1)
2

[λ(u2 + v2) + 2cuv].

The end of the proof is now nearly obvious. First we have

λ(u2 + v2) + 2cuv ≥ (λ− |c|)(u2 + v2).

Moreover we have for some constant K > 0∣∣∣∣∣∣u′
(
pu +

(p+ 1)λ
2c

v

)∣∣∣∣∣∣ ≤ (p − 1)
4

(λ− |c|)(u2 + v2) +Ku′2

so that

d
dt

[
−vv′ + puu′ +

(p+ 1)λ
2c

(u′v −uv′)
]

≤ (p+K)u′2 − v′2 −
(p − 1)

4
(λ− |c|)(u2 + v2).

The conclusion follows immediately. �
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Remark 1 – The only missing term in this quadratic form is u′v′. This was pre-
dictable since its derivative does not seem to contain any interesting term. Moreover
it is usual that the Liapunov function is a small perturbation of the energy. The
term in uu′ seems to be mandatory since it is what we need in the uncoupled case
to produce the emergence of a −u2 term. The term in −vv′ is added to produce a
−v′2 by differentiation. It is then remarkable that a multiple of the wronskian-like
skew product u′v −uv′ is sufficient to produce the emergence of a −v2 term and at
the same time compensates the contributions without specific sign coming from the
other differentiated terms.

3 On the logarithmic decrement as a function of the
coefficients

The Liapunov function constructed in the previous section provides a theoretical
tool to evaluate the logarithmic decrement of the semi-group generated by the scalar
system (2), which can be defined as the upper bound of the set of γ > 0 for which
exp(γt)‖T (t)‖ is bounded for t ≥ 0, or equivalently as the logarithmic decrement
(resp. characteristic number in the sense of Liapunov) of the most slowly decaying
solutions. However, due to the large number of inequalities which we need to
combine to exploit this Liapunov function, it seems difficult to get a sharp estimate
of the decrement in all cases.

In order to have a more precise idea of the dependance of γ on the coefficients c,λ
it is useful to look for qualitative information based on the characteristic polynomial,
even though the roots are in general impossible to compute. The characteristic
polynomial P associated to (2) is easily computed:

P (ζ) = (ζ2 +λ)(ζ2 + ζ +λ)− c2

Several remarks are in order

Remark 2 – The logarithmic decrement never exceeds 1
4 . Indeed us denote by ζj

the 4 characteristic numbers (eventually counted with their multiplicity) of (2) and
let us set ρj := −Re(ζj ). Since

∑4
j=1ρj = 1 we have infj ρj ≤ 1

4 .

Remark 3 – For |c| close enough to λ, the characteristic equation has some real
roots. Indeed the function

G(θ) =
√

(λ+θ2)(λ−θ +θ2)

is continuous decreasing for small positive values of θ, and for any c close enough
to λ, the number ζ = −G−1(c) is a real (negative) eigenvalue of the generator. Here
we recover the fact that as |c| approaches λ, the stabilization effect disappears and
the logarithmic decrement tends to 0.

134



3. On the logarithmic decrement as a function of the coefficients

Remark 4 – A number ζ = s+ ia with s < 0, a ∈R is a solution of the characteristic
equation of and only if it satisfies the two equations

a[4s3 + 4(λ− a2)s+ 3s2 +λ− a2] = 0 (3)

and

s4 − 4a2s2 + 2(λ− a2)s2 + (λ− a2)2 + s(s2 + (λ− a2)− 2a2s = c2. (4)

If a , 0, the equation (3) reduces to

a2 = λ+
4s3 + 3s2

1 + 4s
. (5)

The next proposition completes Remark 3 on the preceding page.

Proposition 2 – The logarithmic decrement is always strictly less than 1
4 . On the other

hand for any ε > 0 small enough, there exists λ > 0 and c ∈ (0,λ) such that the logarithmic
decrement is equal to 1

4 − ε.

Proof. For the proof of the first assertion we reason by contradiction. Assuming that
the decrement is equal to 1

4 means that infj ρj = 1
4 . In particular ρj ≥ 1

4 for all and
since

∑4
j=1ρj = 1 this yields

∀j ∈ (1,2,3,4), ρj =
1
4
.

Hence all roots are of the form ζj = −1
4 + iaj However if ζ = −1

4 + ia is a root of P , we
must have a = 0. Indeed if a , 0, (3) implies 4s3 + (λ− a2)(4s + 1) + 3s2 = 0 and since
4s+ 1 = 0 we deduce 4s3 + 3s2 = 0, contradicting s = −1

4 . This means that ζj = −1
4 for

all j ∈ (1,2,3,4), hence P (ζ) = (ζ2 +λ)(ζ2 + ζ +λ)− c2 = (ζ + 1
4 )4. Identification of the

coefficients provides an immediate contradiction, thereby proving the claim.
For the proof of the second assertion a more technical argument is needed. First

we look for λ and c ∈ (0,λ) such that the equation P (ζ) = 0 has a solution of the form

−1
4

+ ε+ ia, a ∈R, a , 0.

In this case the conjugate number −1
4 + ε − ia is also a root, and the sum of the two

remaining roots equals −1
2 −2ε, their product is also known. If these roots appear to

be not real, their common real part will equal −1
4 − ε and 1

4 − ε will be exactly equal
to the logarithmic decrement. We conclude the proof in two steps.

Step 1. We look for λ and c ∈ (0,λ). Since we want a , 0, we have the formula (5)
and by substituting the value of a2 in (4) we obtain the remaining necessary
and sufficient condition on c in the form

c2 = s4 −
(
4λ+ 6

4s3 + 3s2

1 + 4s

)
s2 +

(
4s3 + 3s2

1 + 4s

)2

− 2s3

1 + 4s
− 2

(
λ+

4s3 + 3s2

1 + 4s

)
s
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with s = −1
4 + ε. A precise inspection of the terms shows that for ε small,

c2 =
( 1

32ε

)2
+
λ
2

+O
(1
ε

)
.

Now we can make (for instance) the choice λ = 1
16ε , so that asymptotically,

c ∼ λ
2 . The only thing remaining to prove is that the remaining roots are not

real.

Step 2. The remaining roots are not real for ε small. Indeed, these roots are the
solutions of the equation

X2 − SX + P = 0

with

S = −1
2
− 2ε, P =

λ2 − c2

( 1
4 − ε)2 + a2

.

We claim that for ε small enough the discriminant S2 −4P is negative. Since
S is bounded, it is sufficient to prove that P tends to +∞. Now we have
λ2 − c2 ∼ 3

4λ
2 ∼ 3

1024ε2 and ( 1
4 − ε)

2 + a2 = λ +O( 1
ε ) = O( 1

ε ). The conclusion
follows immediately. �

4 Optimality in some range of parameters

It is interesting (and perhaps a bit surprising ) to note that the method of proof
of Proposition 1 on p. 133 gives a result very close to optimality in some range of
parameters, specifically when the largest possible logarithmic decrement is almost
achieved. More precisely we have, assuming for definiteness c > 0

Proposition 3 – As c
λ tends to 0 and c

λ1/2 tend to infinity, the logarithmic decrement (as
evaluated by the method of proof of Proposition 1 on p. 133) tends to the highest possible
value 1

4 .

Proof. We introduce

F := F(u,u′ ,v,v′) =
1
2

[
u′2 + v′2 +λ(u2 + v2)

]
.

Following the notation of Section 1 on p. 130, it is easy to check, assuming p ≥ 1,
that [

λ− c
2λ
− ε

(
p

2λ1/2
+

(p+ 1)λ1/2

4c

)]
F ≤H ≤

[
λ+ c
2λ

+ ε
(

p

2λ1/2
+

(p+ 1)λ1/2

4c

)]
F.
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4. Optimality in some range of parameters

On the other hand, starting from the formula

H ′ε = −u′2 + ε
d
dt

[
−vv′ + puu′ +

(p+ 1)λ
2c

(u′v −uv′)
]
,

we find

H ′ε = −(1− pε)u′2 − εv′2 − εu′
(
pu +

(p+ 1)λ
2c

v

)
− ε

(p − 1)
2

[λ(u2 + v2) + 2cuv],

hence

H ′ε ≤ −(1− pε)u′2 − εv′2 − εu′
(
pu +

(p+ 1)λ
2c

v

)
− ε

(p − 1)
2

[(λ− c)(u2 + v2)].

In order to appraise the third term of the RHS, we introduce a constant γ ∈ (0,1)
which will be later taken arbitrarily small and we write∣∣∣∣∣∣u′

(
pu +

(p+ 1)λ
2c

v

)∣∣∣∣∣∣ ≤ γ(p − 1)
2

(λ− c)u2 +
p2

2γ(p − 1)(λ− c)
u′2

+
γ(p − 1)

2
(λ− c)v2 +

( (p+1)λ
2c )2

2γ(p − 1)(λ− c)
u′2

≤
γ(p − 1)

2
(λ− c)(u2 + v2) +

4p2c2 + (p+ 1)2λ2

8γ(p − 1)(λ− c)c2 u
′2,

so that we find

H ′ε ≤ −
[
1− ε

(
p+

4p2c2 + (p+ 1)2λ2

8γ(p − 1)(λ− c)c2

)]
u′2 − εv′2 − (1−γ)ε

(p − 1)
2

[
(λ− c)(u2 + v2)

]
.

In order to make the extreme right term equal to −ελ(u2 + v2) we determine p by
the equation

(1−γ)(p − 1)(λ− c) = 2λ,

hence

p = 1 +
2

(1−γ)(1−θ)
; θ :=

c
λ
.

We observe that as γ and θ tend to 0, p will tend to 3. Our first goal being to achieve
the inequality H ′ε ≤ −εF, we now require

1− ε
(
p+

4p2c2 + (p+ 1)2λ2

8γ(p − 1)(λ− c)c2

)
= ε,
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hence

ε =
1

1 + p+ 4p2c2+(p+1)2λ2

8γ(p−1)(λ−c)c2

=
1

1 + p+ 1−γ
16γλ

[
4p2 + (p+1)2

θ2

] .
We observe that under the choice γ := λ1/2

c which tends to 0 by hypothesis, p

stabilizes to 3 and γλ becomes infinite. Moreover γλθ2 = γ c
2

λ = c
λ1/2 also tends to

infinity. Therefore the limiting value of

ε =
1

1 + p+ 1−γ
16γλ

[
4p2 + (p+1)2

θ2

]
is 1

1+3 = 1
4 . Moreover from the inequality H ′ε ≤ −εF, it follows that H ′ε ≤ −δHε with

δ =
ε

λ+c
2λ + ε

(
p

2λ1/2 + (p+1)λ1/2

4c

) ,
which reduces asymptotically to

δ ∼ 2ε,

so that the limiting value of δ is 1
2 . It is not difficult to see that, in the range that we

considered, F is bounded by a constant times H . Thus

F(t) ≤ C1Hε(t) ≤ C2e
−δt ,

since F(t) measures the square of the norm of the solution, the limiting value of the
logarithmic decrement of solutions is 1

4 as claimed. �

5 The strongly coupled case

In this section we generalize the scalar system in a framework which concerns finite
dimensional and infinite dimensional systems as well. Let A be a closed, self-adjoint,
positive coercive operator on a separable Hilbert space H . with domain D(A). We
denote by (u,v) the inner product of two vectors u,v in H and by ‖u‖ the H norm of
u. Let V =D(A

1
2 ) endowed with the norm given by

∀u ∈ V , ‖u‖ = ‖A
1
2u‖.

The topological dual of H is identified with H , therefore

V ⊂H =H ′ ⊂ V ′
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5. The strongly coupled case

with continuous and dense imbeddings. Let C ∈ L(V ,V ′) satisfy the following
conditions

‖C‖L(V ,V ′) < 1.

We consider the second order evolution systemu′′ +u′ +Au +Cv = 0

v′′ +Av +C∗u = 0
(6)

which can be rewritten as the first order system
u′ −w = 0
v′ − z = 0
w′ +Au +w+Cv = 0
z′ +Av +C∗u = 0.

(7)

We introduce U := (u,v,w,z) ∈ V ×V ×H ×H =:H and the spaceH is endowed with
the inner product 〈·, ·〉H defined by

〈(u,v,w,z), (û, v̂, ŵ, ẑ)〉H = 〈Au, û〉+ 〈Av, v̂〉+ 〈w,ŵ〉+ 〈z, ẑ〉+ 〈Cu, û〉+ 〈Cv̂,u〉.

We define an unbounded operator A on H by the formulas

D(A) = {(u,v,w,z) ∈ V 4, Au +Cv ∈H, Av +C∗u ∈H}

and

A(u,v,w,z) = (−w,−z,Au +Cv +w,Av +C∗u), ∀(u,v,w,z) ∈D(A),

so that (7) is formally equivalent to

U ′ +AU (t) = 0.

One has

〈AU,U〉H = −〈Aw,u〉 − 〈Az,v〉+ 〈Au +w+Cv,w〉
+ 〈Av +C∗u,z〉 − 〈Cz,u〉 − 〈Cv,w〉

= ‖w‖2.

Hence A ≥ 0 on D(A). Actually A is maximal monotone. Indeed, to prove this,
according to the general theory7 and the references therein, it suffices to prove that
A+ I is onto. The system

AU +U = F = (f ,g,ϕ,ψ) ∈ H,

7Lumer and Phillips, 1961, “Dissipative operators in a Banach space”;
Minty, 1962, “Monotone (nonlinear) operators in Hilbert space”;
Brezis, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de

Hilbert;
Haraux, 1981, Nonlinear evolution equations–global behavior of solutions, Cf. e.g.
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reduces to
w = u − f
z = v − g
Au +Cv + 2u = ϕ + 2f (∈H)
Av +C∗u + v = ψ + g.

(8)

We introduce the form

Φ(u,v) =
1
2

(‖A
1
2u‖2 + ‖A

1
2 v‖2) + 〈Cu,v〉.

The two last equations of (8) reduce to

DΦ(u,v) + (2u,v) = (ϕ + 2f ,ψ + g)

=DΦ1(u,v),

where Φ1(u,v) = Φ(u,v) + ‖u‖2 + 1
2‖v‖

2, DΦ denotes the derivative of Φ , DΦ ∈
L(V ,V ′).

DΦ is a symmetric operator as well as DΦ1, since DΦ is coercive, so is DΦ1. By
the Lax-Milgram theorem

DΦ1(V ) = V ′ ,

in particular H ⊂DΦ1(V ) and this solves (8). Moreover, since ϕ + 2f and ψ + g ∈H ,
we find Au +Cv ∈H,Av +C∗u ∈H , so that U = (u,v,w,z) ∈D(A). In particular, as a
consequence of the general theory of semi-groups we find:

Proposition 4 – For any U0 = (u0,v0,w0, z0) ∈ H there exists a unique solution U ∈
C(R+,H)∩C1(R+,H ×H ×V ′ ×V ′) of with U (0) =U0. Moreover, introducing

H0(u,v, ,w,z) =
1
2

(‖u‖2 + ‖v‖2 + ‖w‖2 + ‖z‖2) + 〈Cv,u〉.

Then all solutions of the system (6) are bounded and we have

H0(u(t),v(t),w(t), z(t)) =H0(u(t),v(t),u′(t),v′(t)) ∈ C1(R+)

with

d
dt
H0(u(t),v(t),u′(t),w′(t)) = −‖u′‖2.

Moreover if U0 = (u0,v0,w0, z0) ∈ D(A), then U ∈ C1(R+,H), in particular u,v are in
C1(R+,V )∩C2(R+,H).

The main result of this section is the following
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Theorem 1 – Assume that C satisfies the following additional conditions:

kerC = 0, H ⊂ C(V ) and C−1 ∈ L(H,V ), (9)

V ′ ⊂ C(H) and C−1 ∈ L(V ′ ,H), (10)

AC−1 −C−1A ∈ L(H,H). (11)

meaning that the operator D = AC−1 −C−1A ∈ L(V ,V ′) is in fact bounded for the H-
norm with values in H and can therefore be extended on the whole of H as a bounded
operator. Then for any p > 1 fixed and for all ε > 0 small enough the quadratic form
Hε =Hε(u,v,w,z) defined by

Hε =H0 − ε(v,z) + pε(u,w) +
(p+ 1)ε

2
[〈AC−1w,v〉 − 〈C−1Au,z〉] (12)

is a strict Liapunov functional. In particular the semi-group generated by (6) is exponen-
tially damped in V ×V ×H ×H .

Proof. We start with the case of strong solutions with U0 = (u0,v0,w0, z0) ∈D(A). In
this case we have

d
dt

[−(v,v′) + p(u,u′)] = p|u′ |2 − |v|′2 + (v,Av +C∗u)− p(u,u′ +Au +Cv)

= p|u′ |2 − |v|′2 − p(u,u′) + ‖v‖2 − p‖u‖2 − (p − 1)(Cv,u).

On the other hand for strong solutions, 〈AC−1u′(t),v(t)〉 and 〈C−1Au,v′(t)〉 belong
to C1(R+) with

d
dt

[〈AC−1u′ ,v〉 − 〈C−1Au,v′〉]

= 〈(AC−1 −C−1A)u′ ,v′〉+ 〈AC−1u′′ ,v〉 − 〈C−1Au,v′′〉
= 〈Du′ ,v′〉+ 〈−AC−1u′ −AC−1Au −Av,v〉+ 〈C−1Au,Av +C∗u〉
= 〈Du′ ,v′〉 − 〈−AC−1u′ ,v〉 − ‖v2‖+ ‖u‖2.

Then we find easily

d
dt

{
−(v,v′) + p(u,u′) +

(p+ 1)
2

[〈AC−1u′ ,v〉 − 〈C−1Au,v′〉]
}

= p|u′ |2 − |v|′2 − p(u,u′) +
(p+ 1)

2
(〈Du′ ,v′〉 − 〈−AC−1u′ ,v〉)

−
(p − 1)

2
[‖u‖2 + ‖v2‖+ (Cv,u)].
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The end of the proof is now rather staightforward. Since D ∈ L(H) and AC−1 ∈
L(H,V ′) by using the Cauchy-Schwarz inequality in all terms involving u′ we can
achieve, as in the ODE case, a choice of ε independent of the initial data so that

d
dt
Hε ≤ −

ε
2

(|u′ |2 + |v|′2)−
(p − 1)

4
ε(1− ‖C‖V ,V ′ )(‖u‖2 + ‖v‖2).

Moreover since the RHS of the last equality is continuous for the topology of H,
by interating on a small time interval and passing to the limit by density, it is easy
to see that the modified energy Hε is in fact in C1(R+) even in the case of weak
solutions, so that our final inequality is valid in general. The conclusion follows
immediately. �

Remark 5 – Let us comment briefly about the meaning of the conditions (9), (10)
and (11). The two first conditions express the fact that not only C is regular, but
its inverse C−1 has a smoothing effet at least equal to the smoothing effect of A−1/2.
The third condition is an extra boundedness condition on the commutator of A and
C and is automatically satisfied in the two following cases:

1. C−1 ∈ L(H,D(A))∩L(D(A)′ ,H),

2. A and C commute with each other.

In particular in finite dimensions there is no other condition than invertibility of
C, and if A,C are two elliptic operators of the same order with the same boundary
conditions on a bounded domain, no commutation condition will be required.
Finally it may be useful to observe that if C = cAα with α ≥ 0, the hypotheses will
be satisfied if and only if c , 0 and α ≥ 1

2 .

Remark 6 – For any vector field F = (f ,g) ∈ C1(V ×V , H ×H) we may consider the
second order semilinear evolution system{

u′′ +u′ +Au +Cv + f (u,v) = 0
v′′ +Av +C∗u + g(u,v) = 0.

If ‖F(U )‖H×H = o(‖U‖V×V ), it is not difficult to see8, that for each initial state
U0 = (u0,v0,w0, z0) ∈ H with sufficiently small norm in H, this semilinear system
has a unique global solution in the relevant regularity class which tends to 0
exponentially in the energy space with the same logarithmic decrement as the linear
system. This can be viewed as a form of structural stability of the result. Indeed the
tangency condition of F to 0 at 0 can be replaced by a smallness condition of the
Lipschitz constant of F near the origin. In practice the smallness conditions are out
of reach, except if we can trace back the explicit decay estimate for the linear part, a
task that our present method now makes possible. We skip the details.

8Using for instance Haraux, 1991, Systèmes dynamiques dissipatifs et applications, Theorem 3.1.3 p. 34.
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6 Some examples of strongly coupled systems

This section is devoted to a short list of examples in which Theorem 1 on p. 141 gives
exponential decay together with a method to evaluate the logarithmic decrement of
the slowest decaying solutions by means of an explicit Liapunov function.

6.1 Finite dimensional examples

In finite dimensions, there is no condition to add relying the operators A and C. A
special case is the complex scalar exampleu′′ +u′ +λu + icv = 0

v′′ +λv − icu = 0

which can also be written in real form

u′′1 +u′1 +λu1 − cv2 = 0

u′′2 +u′2 +λu2 + cv1 = 0

v′′1 +λv1 + cu2 = 0

v′′2 +λv2 − cu1 = 0

and could therefore be treated as the combination of the two real systemsu′′1 +u′1 +λu1 − cv2 = 0

v′′2 +λv2 − cu1 = 0

and u′′2 +u′2 +λu2 + cv1 = 0

v′′1 +λv1 + cu2 = 0.

For the more general systemu′′ +u′ +λu + (c+ id)v = 0

v′′ +λv + (c − id)u = 0

the Liapunov functions cannot be found so easily by the combination of two scalar
systems and the general formula (12) becomes useful. We find

Hε =
1
2

[
u′2 + v′2 +λ(u2 + v2)

]
+Re{ζuv +ε[−vv′ +puu′ +

(p+ 1)λ
2ζ

(u′v −uv′)]}.

The choice p = 3 leads to the slightly simpler formula

Hε =
1
2

[
u′2 + v′2 +λ(u2 + v2)

]
+Re{ζuv + ε[−vv′ + 3uu′ +

2λ
ζ

(u′v −uv′)]}.
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6.2 The wave equation with strong (maximal) coupling

Let Ω be a bounded open domain of RN . Then for any γ ∈ (0,1), the system∂2
t u −∆u +∂tu −γ∆v = 0

∂2
t v −∆v −γ∆u = 0

with homogeneous Dirichlet boundary conditions, generates an exponentially
damped linear semi-group in V × V ×H ×H with H = L2(Ω) and V = H1

0 (Ω). A
Liapunov functional is given for ε small enough by

Hε =
1
2

∫
Ω

[
|∂tu|2 + |∂tv|2 + |∇u|2 + |∇v|2

]
dx+γ

∫
Ω

∇u.∇vdx

+ ε
∫
Ω

(3u∂tu − v∂tv)dx+
2ε
γ

∫
Ω

(v∂tu −u∂tv)dx.

6.3 The plate equation with structural (minimal) coupling

Let Ω be a bounded open domain of R
N with C2 boundary. Then for any γ ∈

(0,λ1(Ω)), the system∂2
t u +∆2u +∂tu −γ∆v = 0

∂2
t v +∆2v −γ∆u = 0

with the boundary conditions u = v = ∆u = ∆v = 0, generates an exponentially
damped linear semi-group in W ×W ×H ×H with H = L2(Ω) and W =H2 ∩H1

0 (Ω).
A Liapunov functional is given for ε small enough by

Hε =
1
2

∫
Ω

[
|∂tu|2 + |∂tv|2 + |∆u|2 + |∆v|2

]
dx+γ

∫
Ω

∇u.∇vdx

+ ε
∫
Ω

(3u∂tu − v∂tv)dx+
2ε
γ

∫
Ω

(∆u∂tv −∆v∂tu)dx.

6.4 A string equation with structural (minimal) coupling

The system∂2
t u −∂2

xu +∂tu +γ∂xv = 0

∂2
t v −∂2

xv −γ∂xu = 0

on a interval (0, l) generates an exponentially damped linear semi-group in V ×V ×
H ×H where H is the space of L2 functions in (0, l) with mean-value 0 and V is
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the space of H1, l-periodic functions with mean-value 0, whenever γ , 0 with |γ |
sufficiently small. A Liapunov functional is given for ε small enough by

Hε =
1
2

∫
Ω

[
|∂tu|2 + |∂tv|2 + |u|2 + |v|2 + |∂xu|2 + |∂xv|2

]
dx+γ

∫
Ω

u.∂xvdx

+ ε
∫
Ω

(3u∂tu − v∂tv)dx+
2ε
γ

∫
Ω

(∂xu.∂tv −∂xv.∂tu)dx.

6.5 The wave equation with strong non-commuting coupling

We give here an example illustrating Remark 5 on p. 142. Let Ω be a bounded open
domain of RN and let (a,b) be two real-valued, measurable, essentially bounded
potentials on Ω with min{minx∈Ω a(x),minx∈Ω b(x)}+λ1(Ω) > 0. Then for any γ > 0
small enough, the system ∂2

t u −∆u + a(x)u +∂tu +γ(−∆v + b(x)v) = 0

∂2
t v −∆v + a(x)v +γ(−∆u + b(x))u = 0

with homogeneous Dirichlet boundary conditions, generates an exponentially
damped linear semi-group in V ×V ×H ×H with H = L2(Ω) and V =H1

0 (Ω).

Remark 7 – In this theorem, the Laplacian may be replaced by any strongly elliptic
self-adjoint operator of order two with smooth coefficients. Here we do not give the
formula for the Liapunov functionals since they are a bit more complicated than in
the previous examples, but of course the reader can write them easily by applying
the general formula (12) with A = −∆+ a(x)I and C = γ(−∆+ b(x)I). The smallness
condition on γ will depend on a,b. We leave the details to the potentially interested
reader.

6.6 A plate equation with structural non-commuting coupling

We conclude this section by a slightly more delicate example. Let Ω be a bounded
open domain of RN with C2 boundary and letm ∈ L∞(Ω) be a non-negative function.
Then for any γ ∈ (0,λ1(Ω)), the system∂2

t u +∆2u +m(x)u +∂tu −γ∆v = 0

∂2
t v +∆2v +m(x)v −γ∆u = 0

with the boundary conditions u = v = ∆u = ∆v = 0 generates an exponentially
damped linear semi-group in W ×W ×H ×H with H = L2(Ω) and W =H2 ∩H1

0 (Ω).
Indeed, assuming that W is endowed with the norm given by the formula

‖u‖2W =
∫
Ω

(|∆u|2 +m(x)u2)dx,
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it is easy to check that

‖∆u‖W ′ ≤
1

λ1(Ω)
‖∆u‖H ≤

1
λ1(Ω)

‖u‖W .

Moreover, here C−1 = (−γ∆)−1 and A = ∆2 +m(x)I do not commute, but

C−1A−AC−1 = C−1M−MC−1,

whereM denotes the operator of multiplication by m(x) is not only bounded, but
even compact as an operator from H to itself.

Remark 8 – It is even possible to consider the case C = γ(−∆+b(x)I) with b ∈ C1(Ω)
and b ≥ c > −λ1(Ω), but the calculations are more difficult and are left as an exercise.

7 The infinite dimensional weakly coupled case

In this section we keep the notation of Section 5 on p. 138, and we introduce the
following additional notation: the inner product of two vectors (y,z) in the space V ′

is denoted as

(y,z)∗ := (A−1y,z) = (y,A−1z)

and the norm of y in V ′ is

‖y‖∗ := (y,y)1/2
∗

We now consider the systemu′′ +u′ +Au + cv = 0

v′′ +Av + cu = 0
(13)

and we introduce

E(u,v, ,w,z) =
1
2

(‖u‖2 + ‖v‖2 + ‖w‖2 + ‖z‖2) + c(u,v).

Then all (weak) solutions of the system (13) are bounded with

d
dt
E(u,v,u′ ,v′) = −‖u′‖2,

and we have
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Theorem 2 – Assume c , 0 and ‖c‖ < λ1(A). Then for any p > 1 fixed such that

p+ 1
p − 1

<
λ1

‖c‖
(14)

and all ε > 0 small enough the quadratic form Hε defined by

Hε(u,v,w,z) = E − ελ1(v,z)∗ + pε(u,w) + ρε[(w,v)− (u,z)],

with ρ = (p+1)λ1
2c satisfies for some constant γ = γ(p,ε) > 0 the inequality

d
dt
Hε(u,v,u

′ ,v′) ≤ −γ(p,ε)
1
2

(‖u‖2 + ‖v‖2 + ‖u′‖2∗ + ‖v′‖2∗ ),

valid for any weak solution of (13).

Corollary 1 – For any solution (u,v) of (13) we have for some constant C > 0

∀t > 0, ‖u(t)‖2 + ‖v(t)‖2 + ‖u′(t)‖2∗ + ‖v′(t)‖2∗ ≤ C
E0

t

with

E0 = ‖u(0)‖2 + ‖v(0)‖2 + ‖u′(0)‖2 + ‖v′(0)‖2.

Proof. We prove the theorem and its corollary together. The quadratic form

E−1(u,v, ,w,z) =
1
2

(‖u‖2 + ‖v‖2 + ‖w‖2∗ + ‖z‖2∗ ) + c〈u,v〉∗

is equivalent to

K(u,v, ,w,z) = ‖u‖2 + ‖v‖2 + ‖w‖2∗ + ‖z‖2∗
and non-increasing along trajectories. In fact we have

λ1 − c
2λ1

K(u,v, ,w,z) ≤ E−1(u,v, ,w,z) ≤ λ1 + c
2λ1

K(u,v, ,w,z), (15)

and

d
dt
E−1(u,v,u′ ,v′) = −‖u′‖2∗ .

On the other hand, we have, introducing H(t) :=Hε(u(t),v(t),u′(t),v′(t))

H′(t) :=
d
dt
Hε(u,v,u

′ ,v′)

= −(1− pε)‖u′‖2 − ελ1‖v′‖2∗ − ε
p − 1

2
‖u‖2 − ε

p − 1
2

λ1‖v‖2

+ pεc〈u,v〉 −
(p+ 1)λ1ε

2c
〈u′ ,v〉 − ελ1c〈v,u〉∗

(Cont. next page)
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≤ −(1− pε)‖u′‖2 − ελ1‖v′‖2∗ − ε
p − 1

2
‖u‖2 − ε

p − 1
2

λ1‖v‖2 + pε‖c‖‖u‖‖v‖

+
(p+ 1)λ1ε

2c
‖u′‖‖v‖+ ελ1‖c‖‖v‖∗‖u‖∗

≤ −(1− pε)‖u′‖2 − ελ1‖v′‖2∗ − ε
p − 1

2
‖u‖2 − ε

p − 1
2

λ1‖v‖2

+
(p+ 1)‖c‖
√
λ1

ε‖u‖‖v‖+
(p+ 1)λ1

2‖c‖
ε‖u′‖‖v‖

By Young’s inequality, with α > 0 to be choosen later we deduce:

H′(t) ≤ −(1− pε)‖u′‖2 − ελ1‖v′‖2∗ − ε
p − 1

2
‖u‖2 − ε

p − 1
2

λ1‖v‖2

+
(p+ 1)‖c‖

2
√
λ1

ε
( 1
α
‖u‖2 +α‖v‖2

)
+

(p+ 1)λ1

2‖c‖
ε‖u′‖‖v‖,

which can be rewritten, by a suitable re-ordering of the terms, as

H′(t) ≤ −(1− pε)‖u′‖2 − ελ1‖v′‖2∗ +
(p+ 1)λ1

2‖c‖
ε‖u′‖‖v‖

−ε
(
p − 1

2
−

(p+ 1)‖c‖
2α
√
λ1

)
︸                   ︷︷                   ︸

δ=

‖u‖2 − ε
(
p − 1

2
λ1 −

(p+ 1)‖c‖α
2
√
λ1

)
︸                        ︷︷                        ︸

ζ=

‖v‖2.

We choose α in order for δ and ζ to be positive, which is equivalent to

α ∈

p+ 1
p − 1

‖c‖

λ
1
2
1

,
p − 1
p+ 1

λ
3
2
1
‖c‖

 ,
a condition which is made possible by hypothesis (14). By Young’s inequality, we
have

(p+ 1)λ1

2‖c‖
ε‖u′‖‖v‖ ≤

(p+ 1)λ1

4‖c‖
ε

(
‖u′‖2

η
+ η‖v‖2

)
, ∀η > 0.

We choose η such that (p+1)λ1η
4‖c‖ = ζ

2 . Therefore

H′(t) ≤ −
(
1− ε

[
p+

(p+ 1)λ1

4η‖c‖

])
‖u′‖2 − ελ1‖v′‖2∗ − εδ‖u‖2 − ε

ζ
2
‖v‖2.

Now we choose ε small enough such that 1− ε
[
p+ (p+1)λ1

4η‖c‖

]
> 0, and finally we find a

constant γ = γ(p,ε) > 0 such that for all t ≥ 0

d
dt
Hε(u,v,u

′ ,v′) =H′(t) ≤ −γK(u,v,u′ ,v′). (16)

148



7. The infinite dimensional weakly coupled case

At this stage the theorem is proved. We now deduce the corollary. From (16),
assuming ε possibly smaller in order to achieve positivity of the quadratic form H ,
we get∫ t

0
K(u(s),v(s),u′(s),v′(s))ds ≤ 1

γ
Hε(u(0),v(0),u′(0),v′(0)).

Using inequality (15), we obtain

2λ1

λ1 + c

∫ t

0
E−1(u(s),v(s),u′(s),v′(s))ds ≤ 1

γ
Hε(u(0),v(0),u′(0),v′(0)).

Now since E−1 is nonincreasing, it follows

E−1(u(t),v(t),u′(t),v′(t)) ≤ λ1 + c
2λ1γ

1
t
Hε(u(0),v(0),u′(0),v′(0)).

Using once again inequality (15) we get

K(u(t),v(t),u′(t),v′(t)) ≤ λ1 + c
(λ1 − c)γ

1
t
Hε(u(0),v(0),u′(0),v′(0)) ≤ CE0

t
.

�

Remark 9 – We recover here one of the main results of Alabau, Cannarsa, and
Komornik (2002)9 by a Liapunov function approach. It seems that many indirect
stabilization results can be proved by the same method. All the results involving
different usual norms on both sides of the inequality can be deduced from the
corollary by using A−invariance, induction or interpolation. The theory will be
complete as soon as optimality of the negative power of t is established, and the
comparison with similar simpler problems makes it look reasonable.

Remark 10 – In contrast with the strongly coupled case (cf. Remark 6 on p. 142),
here it is not clear whether the decay property and even global existence for small
data is still true for small nonlinear perturbations of the system of the formu′′ +u′ +Au + cv + f (u,v) = 0

v′′ +Av + cu + g(u,v) = 0.

There is a possibility that such a result would be available for semilinear perturba-
tions satisfying much stronger conditions than in the strongly coupled case (most
probably a strong form of compactness is needed), but the study of such kind of
weakened structural stability would only make sense if some motivation from a real
physics model is the starting point.

9Alabau, Cannarsa, and Komornik, 2002, “Indirect internal stabilization of weakly coupled evolution
equations”.
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