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Abstract

Given an unbalanced open quantum graph, we derive a formula relating
sums over its scattering resonances with integrals on horizontal lines in the
complex plane. We deduce lower bounds on the number of resonances (in
bounded regions of the complex plane) that are independent of the size of
the graph. We also deduce partial results indicating that Benjamini-Schramm
convergence of open quantum graphs should imply convergence of the empirical
spectral measures.
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1 Introduction

Quantum graphs are singular one-dimensional objects (i.e., graphs in which edges
are seen as intervals), on which waves can propagate, following some transmission
conditions at the vertices; from the physical point of view, the Kirchhoff conditions,
which we consider all along the paper, are the most natural ones.

The study of spectral properties of quantum graphs has had a growing popularity
in the last decades. The reason for this popularity is threefold: the spectrum of
quantum graphs is easy to study numerically (and, by certain aspects, theoretically),
due to the fact that the eigenfunctions of quantum graphs are complex exponentials
on each edge; yet, they can model a wide variety of situations of physical relevance;
finally, studying spectral properties in the simplified setting of quantum graphs can
give an insight on more complicated situations, for instance involving Schrodinger
operators in R?. This last point became particularly clear since the work of Kottos
and Smilansky Kottos and Smilansky 1997, 2003, where they show that quantum
graphs share spectral properties with quantum chaotic systems. We refer the reader
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to the monograph Berkolaiko and Kuchment 2013 for an overview of the recent
developments concerning quantum graphs and their applications.

In this paper, we will be interested in open quantum graphs, containing some
semi-infinite edges. In such open systems where waves can escape towards infinity,
the natural spectral objects to study are the scattering resonances. They are complex
numbers, associated with resonant states, which are “generalized eigenfunctions"
growing exponentially at infinity. When such idealized states are propagated by
the wave equation, the real part of the resonance dictates the speed of oscillation,
while the imaginary part gives the rate at which the wave escapes towards infinity.
The scattering resonances can be seen as the eigenvalues of a non-selfadjoint op-
erator, and are thus often more delicate to understand than the eigenfunctions of
genuine self-adjoint Schrodinger operators. We refer the reader to the book Dyatlov
and Zworski 2019 for an introduction to the theory of scattering resonances for
Schrodinger operators, and for an account of its recent developments.

Previous results on the resonance counting of a quantum graph

If Q is a quantum graph, we will denote by Ly its total length, and by Res(Q) the set
of its resonances, whose definition will be recalled in section 2.2. If (O c C, we denote
by NQ(Q) the number of resonances of Q inside (2, counted with multiplicities.

Weyl and non-Weyl graphs A graph is called unbalanced if, for any edge, the
number of finite and of infinite edges attached to this edge are different. It turns
out that this condition plays an essential role when studying the resonances of a
quantum graphs (with Kirchhoff boundary conditions), as was first shown in Davies
and Pushnitski 2012:

Theorem 1 (Davies-Pushnitski (2012)) — Let Q be a quantum graph. We have
2
NQ (D(O,R)) = %ﬁgRWQ + OR—>oo(1)

for some Wy € (0,1]. Furthermore, if the graph is unbalanced, we have Wg = 1.

When the graph is unbalanced, this result is similar to the classical Weyl’s
law for self-adjoint Schrodinger operators. Analogues of Weyl’s law are known
for resonances of one dimensional Schrodinger operators (see Zworski 1987 and
the references therein), but in higher dimensions, only upper bounds are known
(Zworski 1989).

When the graph is balanced, it has fewer resonances, and is hence called non-
Weyl. Other situations leading to non-Weyl asymptotics include the presence of
magnetic fields, or more general vertex coupling conditions. We refer the reader to
Lipovsky 2016 for an account these recent developments.
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1. Introduction

A convenient way of studying the resonances of a quantum graph is through the
secular equation, which was introduced by Kottos and Smilansky. Namely, there
exists a holomorphic family of matrices Ug(z) such that, for all z =0,

zis a resonance <= det(Id - Up(z)) =0, (1)

and the multiplicities coincide?. When z = 0, multiplicities need not coincide (see
Fulling, Kuchment, and Wilson 2007 for the case of closed quantum graphs), but
in the results below, the multiplicity of a resonance z; is to be understood as the
multiplicity of z — det(Id — Uy(z)), even when z = 0.

We refer the reader to section 2.2 for the definition of the matrix Uy. A key
ingredient in the proof of Theorem 1 is that the function det(Id — Uy(z)) is a linear
combination of complex exponentials. One can thus use the classical results given
in Langer 1931 about the zeroes of such functions, making Theorem 1 easier to
prove than its analogue for general Schrodinger operators.

Imaginary parts of resonances A consequence of equation (1) and of the results
of Langer 1931 is that the resonances do all lie in a horizontal strip R + i[-K, 0] for
some K > 0. This was stated in Davies and Pushnitski 2012, without any expression
for K. In Ingremeau 2022, an expression was given in the case of unbalanced
quantum graphs, involving the minimal length, and the maximal internal and
external degrees of the graph.

Namely, let us denote by Qp ,,, 1. 1, the set of open quantum graphs whose
finite edges have lengths between L,,;, and L,,,,, and such that every vertex has at
most D finite edges and n infinite edges attached to it. We denote by D’D,nO,L
the set of such quantum graphs that are unbalanced.

If Q belongs to Qp, , 1 , then we have

minLmax

mr'n:Lmux

Res(Q) c R+i[Y(D,ng,L,in), 0], (2)
with

In(D + ng)

Y(D,ng, Lypiy) :=— (3)

Linin

The proof of this result is elementary, and will be recalled in section 2.2.

As far as the author knows, no explicit bound for the imaginary part of the
resonances are known when the graph is not unbalanced.

Also, note that one cannot hope to show that resonances belong to a strip
R+ i[-K,—¢] for some ¢ > 0. Indeed, it was shown in Colin de Verdiere and Truc
2018 that, for most quantum graphs, there exist resonances with arbitrarily small
imaginary parts and arbitrarily large real parts. We refer the reader to Ingremeau
2022 for references on the delicate issue of resonances on the real axis.

2 Actually, though the proof of (1) has been given several times (see Exner and Lipovsky 2007;
Ingremeau 2022; Kottos and Smilansky 2003, as far as the author knows, Davies and Pushnitski 2012 is
the only place where the equivalence of multiplicities is proven.
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A new formula for resonance counting

The central result of this article is a formula relating the sum of the values of
holomorphic functions over the resonances of a quantum graph with a boundary
integral involving the matrix Uy.

If —00 <y <5 < +oo0, we write Q= {z € C;Imz € (y1,7,)}. We denote by

H(Qy, y,) the set of holomorphic functions on Q) ,,.

Theorem 2 — Let D,ng € N, let 0 < L,,;,, < Ly and let Q € QbrnOerianmux be a finite
open quantum graph. Let y; <Y (D, ng, Ly,,), let v, >0, and let € > 0.

Forany g € L'(Qy, _¢ 1) NH(Qy, _¢ 5, +¢), we have

2in Y gla)= (—1)]’/g(x+iyj)Tr[Ué(x+iy]-)(Id—UQ(x+iyj))’1]dx, (4)
z€Res(Q) j=12 R

with the sum in the left-hand side repeated with its multiplicity.

Remark 1 - The integral in the right-hand side of (4) is absolutely convergent, as
will be shown in (37) below.

Remark 2 — The set of functions Ll(le_g,y2+£) NH(Qy, —¢,p,+e) is non-empty: for

a(z—zg

instance the Gaussian functions g(z) = e~ > belong to it for any a > 0, zy € C.

Theorem 2, which is a consequence of the residue formula, can be used to give
an alternative proof of Theorem 1 for unbalanced graphs, which might be easier to
generalize than the original proof, as it does not use the fact that det(Id — Ug(z)) is a
linear combination of complex exponentials; this will be done in section 4.2. More
interestingly, it can be used to obtain lower bounds on the number of resonances in
some regions of the complex plane. The following proposition gives an example
of such a lower bound, which we don’t expect to be sharp, but which is completely
explicit.

Proposition 1 — Let D,ng € N, let 0 < L,,;,, < Lyax and let Q € Qb,nO’me’me be a
finite open quantum graph.
Set
B In2
= 5
(% - Y(DrnO’Lmin>)
Let xg € R, and let a > 0 be such that
5 _ 2a 1/2
1 16 1 1— Lmin TC
La 5 [Y_ If‘ ] — “1In|L,,;,In2 liln(DJrn ) 1l .
min min a 167{(2LWMXT”0 +06) a
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1. Introduction

Then we have

a a Lo [n
e C;xg— > —./—.
NQ ({Z *o Lmin Lmin }) 167 a

<Rez<xp+

Remark 3 - Theorem 3 in Langer 1931, along with the discussion in Davies and
Pushnitski 2012, §3 implies that, if x; < x; are such that Q has no resonance z such
that Rez = x; or x,, then we have

B+ 52k x1) < No (IRez€ (v, 2 <IBQ + 5206 —x1),  (6)

where |B(Q)| is the number of oriented edges of the quantum graph Q.

Equation (6) directly implies Theorem 1, and it is very relevant when the graph
Q is fixed, and x, —x; is taken large enough. However, when |B(Q)| is large, to obtain
a non trivial lower bound on the number of resonances using (6), one must take
x, —x1 large, and hence work in large boxes. By contrast, equation (5) implies a
condition on the size of the boxes under consideration which is hard to express, but
is independent of the size of the graph: it depends only on D, ng, L,,;,, and Ly,

Hence, Proposition 1 is a real improvement over (6) when working with large
graphs.

Numerical example Suppose wetakeny=1,D=4,L,,;,, =1, L, =2. We then
have Y = -In5,a~1.12x 1072, ﬁ\/g ~ 0.33, and a tedious computation implies
that (5) can be rephrased as

a

>27.7.

min
Therefore, every vertical strip of length at least 56 contains at least 0.33 x Lg
resonances.
On the other hand, we know that the number of resonances in —R < Rez < R is of
the order of RMTQ when R is large. Hence, a vertical strip of length 56 contains, on

average, @ ~ 18 x L resonances. We thus see that, though our result is far from

being sharp, it is only two orders of magnitude smaller than the average result.

Asymptotic distribution of resonances of large quantum graphs

As explained in the previous paragraph, Theorem 2 can be used to obtain estimates
on the number of resonances in an open set, even for large graphs. Actually, it
would be desirable to understand the asymptotic spectral properties of sequences
of quantum graphs.

Namely, given a sequence of (larger and larger) quantum graphs (Qy), can one
give an asymptotic formula for the number of resonances in some given region of
the complex plane (independent of N)? This kind of problematic was first raised
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in Ingremeau 2022 for open quantum graphs, but similar results existed for the
spectrum of closed quantum graphs (see Anantharaman et al. 2021a). There has
also been a large interest in the asymptotic properties of the eigenfunctions of large
quantum graphs: see Anantharaman et al. 2021b and the references therein.

When studying the spectral asymptotics of large quantum graphs, a natural
assumption is that of Benjamini-Schramm convergence, whose precise definition we
recall in appendix A, and which can be informally described as follows. Around a
vertex v( in a quantum graph, one can define several “local" quantities: for instance,
the number of neighbours of v, the average length of the edges attached to vy, the
number of cycles in a ball of radius 10 around v... One may then take vy uniformly
at random in the graph, so as to make statistics of these local quantities. We say that
a sequence of quantum graphs converges in the sense of Benjamini-Schramm if all
these statistics of local quantities converge. The Benjamini-Schramm limit is then a
probability measure on the set of rooted quantum graphs, which we denote by ROQ:
the limit is thus an element of P(ROQ) (see appendix A for precise definitions).

The appeal for Benjamini-Schramm convergence comes from its compactness
properties (see Lemma 2): given a sequence of quantum graphs with uniformly
bounded data, one can always extract a subsequence converging in the sense of
Benjamini-Schramm. Of course, Benjamini-Schramm convergence deals with local
quantities, and spectral quantities have no reason to be local, since eigenfunctions
can be delocalized all over the graph. Still, we make the following conjecture about
the convergence of the empirical spectral measures. These are locally finite Borel
measures on C, given by

1
Ho = 7+ Z 0z
Lo 2eRes(Q)

where 0, is the Dirac mass at z, and where the sum is repeated with the multiplicity
of the resonances.

Conjecture 1 — Let D,ny € N, and let 0 < L,;;;, < Lyjux. Let P € P(ROQ). Then there
exists a locally finite Borel measure yp on C, such that the following holds.

If (On) is a sequence of quantum graphs belonging to Qp 1. 1. which converges
in the sense of Benjamini-Schramm to P, then (ug, ) converges vaguely to up. In other
words, for x € C.(C), we have

) e [ )

zeRes(Qp)

This conjecture was proven in Ingremeau 2022 for unbalanced quantum graphs,
in the case where P is supported on the set of closed quantum graphs, i.e., of
quantum graphs containing no infinite edges (in the notations of Definition 1 below,
this corresponds to n = 0). Note that the end of the proof of Ingremeau 2022,
Theorem 2 can be considerably simplified using our Theorem 2. Previously, the
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analogue of the conjecture was proven in Anantharaman et al. 2021a for closed
quantum graph in a very general setting (including potentials on the edges, and
general coupling conditions).

Note that, thanks to Prokhorov’s theorem and to upper bounds on the number
of resonances in a bounded set (see (48) below, which is a consequence of Jensen’s
formula), up to extracting a subsequence, (g, ) converges vaguely; the statement of
the conjecture is thus that all the accumulation points for the vague topology are
the same, and that they only depend on IP. To prove this, it would be sufficient to
prove that, for any x € C°(C), we have

Y k2> (7)

z€Res(Qn)

and that the limit £, depends only on IP and .

We are going to show (7) for any limit IP (but still restricting ourselves to unbal-
anced graphs), but only for a special family of functions x, that are holomorphic in
a strip.

Theorem 3 — Let D,ny € IN, and let 0 < L;;,, < Lyjuc. Let (Qy) be a sequence of
quantum graphs belonging to Q;D,no,me,Lmax' Suppose that (Qy) converges in the sense
of Benjamini-Schram to some measure IP.

Then there exist functions Ap : Q_o, y U Qg 4o —> C such that the following holds:

* foranyy € (—oo, Y)U(0, +00), we have |Ap(x+iy)| < M(y) for some M(y) depending
ony and D, ngy, Lyiy, Lyax, but not on x.

o Ify; <Y(D,ng,Liyin, Linax), v2 > 0, and € > 0 and if g belongs to Ll(le,wzﬂ) N
H(Qy, ¢y, +¢), we have

(Hoy- &) N 421’2/1Rg(x +iy;)Ap(x +iy;)dx. (8)
Organization of the pa[])er In section 2, we will recall the definition of open
quantum graphs, of their resonances, and of the secular equation. Section 3 will be
devoted to the proof of Theorem 2. In section 4, we will use Theorem 2 to prove
Proposition 1. We will also give an alternative proof of Theorem 1 for unbalanced
graphs. Finally, in appendix A, we will recall the definition of Benjamini-Schramm
convergence for open quantum graphs, and we will prove Theorem 3.

2 Open quantum graphs and their resonances

2.1 Definition of open quantum graphs

An (open) quantum graph is given by a finite graph, where each edge is given a
length and where infinite edges (called leads) are attached to some of the vertices.
More precisely
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Definition 1 - A quantum graph Q = (V,E,L,n) is the data of
* A graph G = (V,E) with vertex set V and edge set E.
* Amap L: E — (0,0).
* Amapn:V —NU{0}.
The quantum graph will be called finite if G is a finite graph.

The graph (V,E) should be thought of as the compact part of our graph, the
map L gives the length of the edges in the compact part, while the map n gives the
number of infinite edges attached to each vertex. If v € V, we denote by d(v) the
(internal) degree of v, i.e., the number of e € E to which v belongs. We define the
total length of the (internal part of the) graph by

Lo:=) L(e) (9)

ecE

We let B = B(Q) be the set of oriented internal edges (or bonds) associated to E.
If b € B, we shall denote by b the reverse bond. We write o, for the origin of b and t,
for the terminus of b. We will also write L, for the length of the edge to which b is
associated.

We define the external bonds by B, := | |,y |_|;:(:v1) {(v,k)}. We write o, = v if
b = (v,k) € B,y, and set B=BUB,,;.

In the sequel, we will always consider graphs with bounded data, as in the
following definition:

Definition 2 — Let D,n € IN, and let 0 < L,;;;, < L,5x. We denote by Qp ;1
the set of open quantum graphs such that we have

mianmax

YveV,d(v) <D and n(v) <nyg
VYe€E,L,in <L(e) <L,

We will denote by D,D’HOJLmin:Lmax the set of quantum graphs in Qp 1, 1,...
such that
YveV,n(v)=d(v). (10)

2.2 Scattering resonances of open quantum graphs

A C? function on the graph will be a collection of maps f = (f,),cp With f, €
C?([0,Ly)) if b€ B, f, € C?([0,00)) if b € B,yy, and such that

VbeB, fy(-) = fi(Ly =) (11)

We will write C?(Q) for the set of such functions. We may now define the boundary
conditions we put at the vertices.
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2. Open quantum graphs and their resonances

Definition 3 — We say that f € C%(Q) satisfies Kirchhoff boundary conditions if it
satisfies

+ Continuity: For all b,b" € B, we have £,(0) = f;,(0) =: f(v) if 05 = 0 = v.

¢ Current conservation: Forallve V,
) fo)=o0.
beB:op=v
Let us now move to the definition of scattering resonances of quantum graphs.

Definition 4 — Let Q be a finite quantum graph. A number z € C is called a scatter-
ing resonance of Q if there exists f € CZ(Q) such that

1. f satisfies the Kirchhoff boundary conditions.

2. For all b € B, we have —f = 22 f,.

3. For all b € B,,;, we have f,,(x) = f,(0)e’?*.
We will write
Res(Q) := {Resonances of Q} c C.

Note that, if we did not impose the last condition (and if n is not identically
zero), then any number z € C would be a scattering resonance. On the other hand
condition 3. imposes that scattering resonances must have non-positive imaginary
part. Otherwise, the function f would be an eigenfunction of a selfadjoint operator,
associated to a non-real eigenvalue.

The secular equation for scattering resonances

If b, b’ € B(Q), we define the quantity

n(V)id(v) ifo,=0p =vand b’ 2b
Op,by = m—l if b’ =bwitho,=v
0 if 0p # 0.

We then define the matrices Ly, Dg(z), Sg and Ug(z) whose lines and columns
are indexed by the elements of B(Q) by

(Lo)v,p’ = Li,by Op,1y
Dg(2)p,p = Sp e (12)
(So)bp =03,

Uo(z) = SoDol(2).
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As explained in the introduction, these matrices give a characterization of
scattering resonances:

¥zeC\{0}, zisaresonance < det(Id - Uy(z))=0.

We refer the reader to Ingremeau 2022, §3.2 for a proof of the previous equation.

The multiplicity of a resonance z; will be defined the order of the zero z; of the
holomorphic function z — det(Id — Ug(z)). We refer to Davies and Pushnitski 2012
for a proof of the fact that this definition of multiplicity coincides with the other
natural definitions when z # 0. Note that, when z = 0, the various definitions of
multiplicity need not coincide.

Proof of (2)

If Qe 10, Login Lna” WE 5€€ that the matrices o(*) are all invertible, and we have
’ rEming

max

(™) = <n(v)+d(v)<ny+D.

If ] is the B x B matrix such that J; ;y = 0y j,» then the matrix SoJ is a block matrix

with blocks 0¥, 50 it can be inverted block by block. We deduce that ||Sé1 || <ng+D.
In particular, we see that Ug(z) is invertible, and that for any z € C~, we have

1Uo(2) ™M1l < (129 + D)el™=min, (13)
Recalling that det(Id — Uy(z)) = 0 if and only if det(Id - Uél (z)) =0, we deduce

(2).

3 Proof of Theorem 2

In all the proof, we shall write f(z) := det(Id — Ug(z)), which is a holomorphic
function on C. If Q c C, we will denote by Resy(Q2) := Res(Q) N (), i.e., the set of
resonances of Q in Q.
3.1 Preliminaries
Of determinants and traces
First of all, writing, for any z € C where f does not vanish,

det(Id - Ug(z +2')) = det(I1d - Ug(2) - 2’ U} (2) + o(2))

= det (Id - Ug(z))det (Id - 2/(Id - Ug(2)) ™' U} (2) + o(2))
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3. Proof of Theorem 2

= f(2)(1 - 2'Tr[ U (2)(1d - Ug(2)) '] + 0(2)),

we obtain that

f'(2) _
o) ~Tr[U4(2)(1d - Ug(2)) ] (14)
Using the definition of U(z) and the circularity of the trace, this can be rewritten
as
f'(2)
=-Tr|U,(z)(1d - U
f(z) [ Q Q( )) ]

= ~Tr[SoDg(2)iLo(Id - Ug(2)) ] (15)
= —Tr[(Id ~ Uo(2)) ! Ug(z zLQ]
=iLo - Tr[(Id - Ug(2)iLg),

since Tr(Lg) = 2Lo.

Reminder on the trace norm

To estimate f, we will often use several norms on the set M;(C) of d x d matrices
with complex coefficients, whose definition we now recall.
If A e M,(C), we shall denote by ||Al| its operator norm, i.e.

[1Ax]]

JAI|:=
e W

Its trace norm is defined by

N
Al =) aj(4)
j=1

where the o]-(A) are the singular values of A, i.e., the eigenvalues of A*A.
The following properties of the trace norm, which are standard (see Dyatlov and
Zworski 2019, Appendix B), will be useful in the proof:

Al < dllAll, (16)

ldet(Id + A)| < ellAll, (17)

ITr[A]l < [|A]l;- (18)
If A,Be M;(C), we have

AB|l; < 1AIIBIl;,

lABIl; < [|AllIBIIy 19)

IBAlly < lIAIlllBII; -
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Preliminary estimates on f

Upper bounds on f Recall that we write f(z) := det(Id — Ug(z)). First of all, let us
note that

—ImzL

oL oL e min when Imz >0
1Ua ()l < lISallle*te] <[le’*-2]| < {eumzu

(20)
max when Imz < 0

Therefore, thanks to (16) and (17), we have
If ()] < V2Bl < exp [IBQ)IIUg (2] < exp [|B(Q)lelP@Nhmaxmax(O-ma)] (27

In particular, this quantity is independent of Rez. Hence, for any y; € IR, there exists
C(y1,9Q) such that

If(2) < C(p1,Q) V2€Qy, soo- (22)

The function f being holomorphic, the Cauchy formula implies that there exists
also a constant C’(y;,Q) such that

If'(2)<C'(y1,Q) Y2€Qy oo (23)
Lower bounds on f(z) when Iinz>0 Equation (20) implies that if Imz > 0, then
[[Ug(2)ll <1, so that (Id — Ug(z)) can be inverted by a Neumann series as

(Id - Ug(2) _Id+Z Uo(z))f =1d + R, (24)

with

IUo(2)ll e~ ImzLnin

R|l < < .
” “ 1- ||UQ(Z)” 1- e_ImZLmin

In particular, we have, when Imz > 0

= et (14 - Upta ™

=det(Id + R)
< elBQIIRI,

which is independent of Rez.
Therefore, we see that, for any y; > 0, there exists Cy(y;,Q) such that

7@ <Co(¥1,Q) YVz2€Qy 1w (27)
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3. Proof of Theorem 2

Lower bounds on f(z) when Imz<Y Recalling (13), we see that if yy <Y, there
exists ¢y < 1 such that

lUg(z) M| < ¢q for all ze C with Imz < yj.

Hence, when Imz <y,

+00
(1d = Ug(2)) ™" = ~Ug(2) " (1d = Ug(2) ") ! == ) (Ug(2))™, (28)
k=1
so that there exists ¢; > 0 such that
|(1d - Ug(2)) || <c; forallzeQ gy, (29)

In particular, equations (24), (25) and (29) along with (14) imply that, if yg <Y
and p; > 0, there exists ¢; = ¢1(yg,v1,Q) > 0 such that

f(2)
f(2)

3.2 Complex analysis

< Vz2€Q oy UQy oo (30)

If g is a holomorphic function, and if Q) is a subset of C such that f does not vanish
on JQ), then

@, ..
/80 g(2) 5 dz=2in Z g(2), (31)

z€Resg(Q2)

where the integral in the left-hand side is performed clockwise, while the sum in
the right-hand side is over the zeroes of f, repeated with multiplicity.

This is simply an application of the residue formula, noting that if f has a zero
of order m at some point z, then g(z)% can be written as m‘i—?{} plus a function
which is holomorphic in a neighbourhood of z.

We apply equation (31) with Q = Q- v+, o, = [x7, x| +i[y;, 5], for some y; <Y
and p, > 0. We take x~ < 0 < x* so that f does not vanish on the horizontal sides of
Q-+ y1,9,-

Since f has isolated zeroes, for almost every x~,x*, f does not vanish on x* +
i[y1,2]. Therefore, we have

2im Z g(z) = Z(—l)j /f g(x+iyj)Tr[Ué(x+iyj)(Id— UQ(x+iyj))_1]dx

zeReSQ(QX—’ﬁ,yl,yz) j=12

7Y [ st g i) (1= ot i) o

(32)
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3.3 Lower bounds in strips

We would like to take the limit x* — +co in (32), and to show that the lateral terms
(corresponding to the last two integrals in the right-hand side) tend to zero. To this
end, we will need some more precise lower bounds on f on x* +i[y;,y,]. This will
be given by the following Lemma, proven in Ingremeau 2022, Lemma 5.

Lemma 1 - Let zy € C, let s,t > 0, and let I} C [Rezg —s, Rezg + s| be an interval. There
exists a constant C = C(s, t) such that the following holds.

For any f holomorphic function on C, we may find x € I, such that, for all y’€[Imzy—
t,Imzy + t], we have

[Inlf(x+iy)l[<C’|In  sup  |f(2)|+In|f(zo)ll+[In|L]||- (33)

zeD(zp,3 max(s,t))
Let n € IN. We may apply Lemma 1 with zg =+n+i,t=1+7p,+|y;/, s =1 and
I) =[n,n+1] or [-n—1,—-n]. Estimating the right-hand side of (33) using equations

(22) and (27), we obtain that there exists x;} € [n,n+ 1] and x, € [-n—1,-n] such
that, for all v € [y1,v,], we have

If (x3; + i9)| 2 c2(2,91,92) Yy € [v1,92]) (34)

Note in particular that ¢,(Q,v;,7,) does not depend on #.

3.4 End of the proof

Applying (32) with x* = x3;, we will obtain (4) if we can show the following three
points:

2o g +iy)
(x5 +iy) ———5—dy — 0, ”
/yl St ) iy ¥ e |
Y s .
2€Reso(C\Q - 1t 1))

and

/IR’g(x +iy,)Tr [Ué(x+ iy;)(1d - Ug(x + iyj))_l] dx < +oo, (37)

Equation (37) implies that the right-hand term in (4) is well-defined, and that
the first term in the right-hand side of (32) converges to it.
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Proof of (35) Thanks to (34) and (23), to obtain (35), it is sufficient to show that

n—oo

2
/ lg(x;; +iy)ldy — 0.
V1

Let 0 < e < % be such that Y —y; > ¢ and y, > e. Thanks to the mean-value
property, if B(x3;, €) denotes the disk of center x% and of radius ¢, and if Vol(B(x3, ¢))
denotes its area, we have

£ 1
805+ 19) = Yo /Zun~)g(z)dz’

so that
Y2
Z/y o+ i) /y Vol (B(x%, ¢)) /B< oSS / o, ., S
Since this integral is convergent, the series in the right-hand term converges,

and we deduce (35).

Proof of (36) First of all, we claim that for any r > 0, there exists C(r) > 0 such
that

VzeQy, 4, No(B(z 1)) < C(r). (38)

Indeed, any ball B(z,r) with z € le,yz’ may be included in a ball B(z’,r’) with
Imz’ =1and r" <r+|Y|+1; it is thus sufficient to bound Ng(B(z’,7’)). This can be
done using Jensen’s formula. Recall that if n(t) denotes the number of zeroes f(z)
such that |z - 2’| < t, Jensen’s formula tells us that

r 27
/O @dtﬂnv(z'n:%/o In|f (2’ +€'%7)d6,

so that

(39)

1 )
<z (I max e i),

and the right-hand side can be bounded using (34) and (23). Equation (38) follows.
Thanks to the mean value property, we have

]' 4 /
) lslls IS el LIt

zeResQ(C\Q zeResQ(C\Q

XX 9192 ) XX Y192 )
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Now, all the disks D(z,¢) in the previous expression are included in {z’ €
Qy, y,5|Rez’| > n— ¢}, and thanks to (38), each z’ belongs to at most C(e) such
disks. Therefore, we have

C(e ’ ’
O = g(2)lde’
TET J{z’€Q)y, p,ilRez'[>n—e}

ZGRESQ(C\Q

XX05.9192 )

and this quantity goes to zero as n — oo, since g € L!.
Proof of (37) Thanks to (30), we see that there exists C > 0 such that

/R’g(x+iyj)Tr[Ué(x+iy]-)(Id—UQ(x+iyj))1] deC/]R|g(x+iyj)|dx.

Now, using the mean value property, we have

1
X+i dx</—/ dde<_/ )z
/‘g })]| Vol(B(x +iyj, €)) B(x+iyj e | =) y1-eyp+e .
(40)

and the result follows.

4 Consequences of Theorem 2

In this section, we will use Theorem 2 and its proof to give an alternative proof of
Theorem 1 in the case of unbalanced graphs, and we will prove Proposition 1. To

this end, we must first obtain asymptotics for j%, with f(z) := det(Id — Ug(z)) as in
the previous section.

4.1 Asymptotics for fT/

When Iz > 0, we may use the third equality in (15) along with (25) to obtain

f'@) Ay (i
L8~ e[ 10 Ut Uit
<|lLglly Z”UQ(Z)k
(41)
ot
R VA
e —ImzL,,iy,

S 2£Q 1 —_ e_ImZLmin ’
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On the other hand, when Imz < Y, we have ||Ug(z)"!|| < 1, so that

f'(2) 4 ,
=-Tr|(Id - Up(z))"" Ug(z)iL
f(Z) [ Q( ) Q( Q]
=Tr[(Id - Ug(2))™ (Id - Ug(2) - 1d)iLg]
=Tr[iLg + Ug' (2)(1d - Ug' (2)) iLg] (42)
+0o0
=2iLg+i ) Tr[Ugk(z)Le]
k=1
Thanks to (13), the sum in the last equality has its modulus bounded by
+00 - ;
] 1Uo(z) elIme= Y L
2L U, We=2£0—22 L _<o2fg— .
Q Z” o(2) [ Ql _ ”UQ(Z)_ln = 4~Q 1 — e(Imz=Y)L;, (43)

4.2 An alternative proof of Weyl’s law for unbalanced graphs

We apply equation (32) with x™ = x;,, x* = x}}, y; = —/n, v, = /n and g the function
constant equal to one. Hence, the left-hand side is exactly

2intNg ({Rez € [x]), x1 1)),

and thanks to (38), this is 2itNg(D(0,1)) + O(1).

To bound the lateral integrals, we use (34) and (23) when Imz e [Y —1,1], while
when Imz € [-y/n, Y —1]U[1,+/n], we use (41) and (43). We deduce that the lateral
integrals are O(1).

Therefore, we have

1 1 5 f(x + i) 1
—No(D(0,1)) = =5 ;/X TERe dx+O(E). (44)

Now, using (41), we obtain that

/ i (x+ z\/_ O( 1 )
2inm x+1\/_ nl)
while thanks to (42) and (43), we get

1[5 f(x— % 1
- f l\/_ Q+O(—).
2inm Jy- —1\/_ T n

We thus recover the result of Theorem 1 for unbalanced graphs.
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4.3 Proof of Proposition 1

Let xy € R. We take y; <Y, y, >0, and let a> 0.
We shall apply (4) with

g(z) = e7a(zx0mi1)? = gralz—xo)*+aly—y1)*~2ialx—x0)y-31),

where z = x +iy.
First of all, thanks to (42) and (43), we have

(yl_Y)Lmin
‘/g x+zy1 ;;}1))dx 21£Q,[ <2£Q%/e_“(x_x°)2dx
R

2[: e(Vl _Y)Lmin T
T e L \ a

In particular, this quantity is smaller than %\/? when we take

Inl6
n=Y- (45)
Liin
Next, thanks to (41), we have
;{) ) e ~V2Limin a(yy— )2 T
< EE—C A iy
‘/ g(x+ zyz ) ————dx ZLQ =Ty - e p,
In particular, the quantity above is smaller than %ﬁ when we take
. In32
2 =
Linin
B In2 (46)
(lszinte Y)Z'

Therefore, if we take y;,7, and a as in (45) and (46), we have

L
Z/ g(x+iy; Tr[UQ x+zy])(1d UQ(x+1y] ]dx > Q,/z. (47)
j=1,2 a
Thanks to Theorem 2, this implies that

1 [:Q T
Y a)> 2 x

z€Res(Q)
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Upper bounds on resonances in vertical strips Now, we turn to the left-hand side
of (4). If x; <x; € R, let us denote by Sy, ., the strip {z € C;x; < Rez < x,}.
Let us denote by Ny a number such that

The number Ny can be estimated using (39). Indeed, the resonances in S+
min

do all belong to D(x; + L |Y|+ ) We have ylnf xl + L )’ > |B(Q )|i;1_1 thanks

1+In(D
f(2) |<2M|B< Q)IL oy

min

to (26) and (25), while we have lnmax
| ,l 2(|Y|+ mzn)
thanks to (21). Therefore, (39) implies that we can take

B 1+In(D+n el
Ny < BOI (5 1D my)
l 2 Lmin 1- 671 (48)
L 1+In(D+n
<=9 maxM +0.6).
Lmin x1n2 Lmin
End of the proof Now, we estimate, for any a > 0
‘ 2 g(z)| < e¥i ) ¢alRez—xol?
zeResQ({IRcz—xolz L:;,” }) ZEReSQ({|R?2—xo|Z L”‘:in })
2 2
< i Z Z efaIRcz—xol
nelN n+l+a n+a
zeResQ({WHRcz—xOIZ Lonin })
——2(a+n)?
< 2]\]06‘1:‘)12 Ze L%nill
nelN
__a .2 _gn
< 2Noeayl2€ L%zina Ze aLanin
nelN
~a(£--3?)
< ZNO—ﬂ
1-e %
2
-a(-5—-37)
2Lg 1+1n(D + ng) e lwin
< 2L,0x +0.6 —,
Lyyin x In2 Loin 1— 67 Lfm’n

thanks to (48).
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In particular, this quantity is smaller than % %\/g provided that

a

__a 2 Lz.
2. a —a 2 1—e “min T
e “min < Lmin In2e 4 _’
1677 (2L gy 2041 1+ 0,6) V @
or, in other words,
_ 1/2
o 2 1 1 —e “min TC
>|y; ——In|L,;,In2 — . (49)

Linin a 1670 (2L yax -0 1 0,6) V @

Therefore, using (47), we see that whenever (49) is satisfied, we have

[:Q TC
Z g(z)| > g\/;

zeReSQ({I‘Rzz—xOIS L’:m })

. . 2
Since each term in the sum has a modulus smaller than ¢?¥27%1)° < 2, we deduce
. . L
that the number of resonances in {mzz —xp| < LL} is at least %w/%, as announced.
min

A Benjamini-Schramm convergence for open quantum
graphs

A.1 Definition of the Benjamini-Schramm convergence

We now recall the definition of Benjamini-Schramm convergence of open quantum
graphs, following closely Ingremeau 2022, §3.3.1.

A rooted open quantum graph (Q,by) = (V,E, L,n, by) will be the data of a quan-
tum graph @ = (V,E, L,n), and of a bond b, € B(Q).

Definition 5 — We say that two rooted quantum graphs (Qy, bg) = (Vy, Eg, Lo, ng, bg)
and (Q1,b1) = (V1,E1,Ly,ny,by) are equivalent, which we denote by (Qg,by) ~
(Q1,by), if there exists a graph isomorphism ¢ : (Vy,Ey) — (V3,E;) such that
P(oby) = 0p,, P(t,) = ty,, L1 o p = Lo, and ny o ¢ =n,.

The set of rooted quantum graphs, quotiented by ~, will be denoted by ROQ. If
(Q,bg) is a rooted quantum graph, we will denote by [Q, by] its equivalence class.

If v € Gis a vertex in a graph and r € IN, we write Bg(v, r) for the set of vertices
which are at a (combinatorial) distance at most r from v. We write E(Bg(v,r)) for
the set of edges in E connecting two vertices of Bg(v,r).
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We introduce a distance between rooted quantum graphs as follows
d([Q1,01][Q2 b2]) = inf{e >0|3¢: Bg, (0p,,L™"]) > Bo, (op,, L™ ) a graph

isomorphism such that n, o ¢ =n; and sup ILo(p(b))—Ly(b)] < s}.
e€E(Bg, (0py e 1)

Note that this definition is independent of the representatives we chose in the
equivalence classes [Q1,b1],[Q7,b,], so it is well-defined on ROQ. Furthermore, one
can show that (ROQ, d) is a Polish space, i.e., a separable complete metric space.

Let P(ROQ) be the set of Borel probability measures on ROQ.

Definition 6 — Any finite quantum graph Q = (V, E, L,n) defines a probability mea-
sure vg € P(ROQ) obtained by choosing a root uniformly at random:

1
voi= s ) (o)
If (Qp) is a sequence of quantum graphs, we say that IP € P(ROQ) is the local
weak limit of (Qy), or that (Q)) converges in the sense of Benjamini-Schramm to P, if
(vo, ) converges weakly to IP.

This notion of convergence can be explained as follows. Let xy be a bounded
function on the set of rooted quantum graphs, continuous for the distance d intro-
duced in the previous paragraph. Then the average value of x ((Qn,bg)) when by is
chosen uniformly at random converges to the expectation Ep[x].

Let D,ng € N, 0 < m < M. We define ROQP "0-Lmiwlmax and ROQ'P"0-LminLmax
as the subsets of ROQ of equivalence classes [Q,by] = [(V,E,L,n,by)] such that
Q € Qp g LyinLna, (rESPECtively Q € Qb,no,me,me)‘ The following Lemma can be
proven exactly as Anantharaman et al. 2021a, Lemma 3.6.

Lemma 2 — The subset ROQP "0Lminbmax js compact.

In particular, using Prokhorov’s theorem, we see that if (Qy) is a sequence of finite
open quantun graphs in .E)D’,?O,.me,me, thETl there is a .subsequence (Qn, ) which con-
verges in the sense of Benjamini-Schramm (i.e. there exists IP € P(ROQ) supported on

D, erianmax v
ROQ™""0 such that Voy, — P).
A.2 Proof of Theorem 3

Lemma 3 - Let D,ny €N, let 0 < L,,;;, < Lyyax, and let y; < Y(D,ng,Lyyi,), v2 > 0.
For every x € R, j = 1,2, the maps

’
— C
QD/”Oerianmax

Fx iv: . ) . . -1
+iy; (9, by] +—><eb0,UQ(x+1y]~)(Id—UQ(x+zy]-)) eb0>

are continuous and bounded independently of x.
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Proof. The result follows from the expressions

+00

U (x +ipy)(Id - Ug(x + ipy) 7! = ZUé(x+ iv,)(Ug(x + i)k
k=0

+00

Up(x+iy1)(1d = Ug(x+iyn)) ™" = ) Up(x+iy)(Ug(x+iy:) ™,
k=1

from the fact that each Ué( WUo(z ))*¥ is continuous (since it depends only on a
neighbourhood of size k of by), and from the exponential decay of the sum. O

Proof (Proof of Theorem 3). Let y; < Y(D,ng, Lyins Liax), v2 = 0, € >0, and let g €
LY(Qy, ¢ yy+e) N H(Qy, ¢ y,+¢)- Thanks to Theorem 2, we have

(iyr8) = 217111: ;(—1)ng(x+iyj)Tr[Ué(x+iy]-)(ld—UQ(x+z‘yj))’1]dx

KQ 217‘( _1 /gx+1y] Fx+iyj([QN:b0])
boeB(Qy)

_IB(Qn)I 1 ' ]
= Kﬂj;z(—l)] /]Rg(“ D)) Eyg [Fsiy, ]

Now, using the dominated convergence theorem, the bound given in Lemma 3 and
the definition of the Benjamini-Schramm convergence, we see that the integrals
above converge to

/IRg(x"'iyj)IElP [Fx+iyj]'

As to the prefactor, we have

-1
BQy) [ 1
Loy ‘[lB(QNM ) )L"()] ’

boEB(QN

which converges thanks to the definition of Benjamini-Schramm convergence. The
result follows. m|
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