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Abstract

Given an unbalanced open quantum graph, we derive a formula relating
sums over its scattering resonances with integrals on horizontal lines in the
complex plane. We deduce lower bounds on the number of resonances (in
bounded regions of the complex plane) that are independent of the size of
the graph. We also deduce partial results indicating that Benjamini-Schramm
convergence of open quantum graphs should imply convergence of the empirical
spectral measures.
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1 Introduction

Quantum graphs are singular one-dimensional objects (i.e., graphs in which edges
are seen as intervals), on which waves can propagate, following some transmission
conditions at the vertices; from the physical point of view, the Kirchhoff conditions,
which we consider all along the paper, are the most natural ones.

The study of spectral properties of quantum graphs has had a growing popularity
in the last decades. The reason for this popularity is threefold: the spectrum of
quantum graphs is easy to study numerically (and, by certain aspects, theoretically),
due to the fact that the eigenfunctions of quantum graphs are complex exponentials
on each edge; yet, they can model a wide variety of situations of physical relevance;
finally, studying spectral properties in the simplified setting of quantum graphs can
give an insight on more complicated situations, for instance involving Schrödinger
operators in R

d . This last point became particularly clear since the work of Kottos
and Smilansky Kottos and Smilansky 1997, 2003, where they show that quantum
graphs share spectral properties with quantum chaotic systems. We refer the reader

1Université Côte d’Azur, Laboratoire J.A. Dieudonné
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to the monograph Berkolaiko and Kuchment 2013 for an overview of the recent
developments concerning quantum graphs and their applications.

In this paper, we will be interested in open quantum graphs, containing some
semi-infinite edges. In such open systems where waves can escape towards infinity,
the natural spectral objects to study are the scattering resonances. They are complex
numbers, associated with resonant states, which are “generalized eigenfunctions"
growing exponentially at infinity. When such idealized states are propagated by
the wave equation, the real part of the resonance dictates the speed of oscillation,
while the imaginary part gives the rate at which the wave escapes towards infinity.
The scattering resonances can be seen as the eigenvalues of a non-selfadjoint op-
erator, and are thus often more delicate to understand than the eigenfunctions of
genuine self-adjoint Schrödinger operators. We refer the reader to the book Dyatlov
and Zworski 2019 for an introduction to the theory of scattering resonances for
Schrödinger operators, and for an account of its recent developments.

Previous results on the resonance counting of a quantum graph

If Q is a quantum graph, we will denote by LQ its total length, and by Res(Q) the set
of its resonances, whose definition will be recalled in section 2.2. If Ω ⊂C, we denote
byNQ(Ω) the number of resonances of Q inside Ω, counted with multiplicities.

Weyl and non-Weyl graphs A graph is called unbalanced if, for any edge, the
number of finite and of infinite edges attached to this edge are different. It turns
out that this condition plays an essential role when studying the resonances of a
quantum graphs (with Kirchhoff boundary conditions), as was first shown in Davies
and Pushnitski 2012:

Theorem 1 (Davies-Pushnitski (2012)) – Let Q be a quantum graph. We have

NQ (D(0,R)) =
2
π
LQRWQ +OR→∞(1)

for some WQ ∈ (0,1]. Furthermore, if the graph is unbalanced, we have WQ = 1.

When the graph is unbalanced, this result is similar to the classical Weyl’s
law for self-adjoint Schrödinger operators. Analogues of Weyl’s law are known
for resonances of one dimensional Schrödinger operators (see Zworski 1987 and
the references therein), but in higher dimensions, only upper bounds are known
(Zworski 1989).

When the graph is balanced, it has fewer resonances, and is hence called non-
Weyl. Other situations leading to non-Weyl asymptotics include the presence of
magnetic fields, or more general vertex coupling conditions. We refer the reader to
Lipovský 2016 for an account these recent developments.
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1. Introduction

A convenient way of studying the resonances of a quantum graph is through the
secular equation, which was introduced by Kottos and Smilansky. Namely, there
exists a holomorphic family of matrices UQ(z) such that, for all z , 0,

z is a resonance ⇐⇒ det(Id−UQ(z)) = 0, (1)

and the multiplicities coincide2. When z = 0, multiplicities need not coincide (see
Fulling, Kuchment, and Wilson 2007 for the case of closed quantum graphs), but
in the results below, the multiplicity of a resonance z0 is to be understood as the
multiplicity of z 7→ det(Id−UQ(z)), even when z = 0.

We refer the reader to section 2.2 for the definition of the matrix UQ. A key
ingredient in the proof of Theorem 1 is that the function det(Id−UQ(z)) is a linear
combination of complex exponentials. One can thus use the classical results given
in Langer 1931 about the zeroes of such functions, making Theorem 1 easier to
prove than its analogue for general Schrödinger operators.

Imaginary parts of resonances A consequence of equation (1) and of the results
of Langer 1931 is that the resonances do all lie in a horizontal strip R+ i[−K,0] for
some K > 0. This was stated in Davies and Pushnitski 2012, without any expression
for K . In Ingremeau 2022, an expression was given in the case of unbalanced
quantum graphs, involving the minimal length, and the maximal internal and
external degrees of the graph.

Namely, let us denote by QD,n0,Lmin,Lmax
the set of open quantum graphs whose

finite edges have lengths between Lmin and Lmax, and such that every vertex has at
most D finite edges and n0 infinite edges attached to it. We denote by Q′D,n0,Lmin,Lmax
the set of such quantum graphs that are unbalanced.

If Q belongs to Q′D,n0,Lmin,Lmax
, then we have

Res(Q) ⊂R+ i [Y (D,n0,Lmin),0] , (2)

with

Y (D,n0,Lmin) := − ln(D +n0)
Lmin

. (3)

The proof of this result is elementary, and will be recalled in section 2.2.
As far as the author knows, no explicit bound for the imaginary part of the

resonances are known when the graph is not unbalanced.
Also, note that one cannot hope to show that resonances belong to a strip

R+ i[−K,−ε] for some ε > 0. Indeed, it was shown in Colin de Verdière and Truc
2018 that, for most quantum graphs, there exist resonances with arbitrarily small
imaginary parts and arbitrarily large real parts. We refer the reader to Ingremeau
2022 for references on the delicate issue of resonances on the real axis.

2Actually, though the proof of (1) has been given several times (see Exner and Lipovský 2007;
Ingremeau 2022; Kottos and Smilansky 2003, as far as the author knows, Davies and Pushnitski 2012 is
the only place where the equivalence of multiplicities is proven.
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A new formula for resonance counting

The central result of this article is a formula relating the sum of the values of
holomorphic functions over the resonances of a quantum graph with a boundary
integral involving the matrix UQ.

If −∞ ≤ y1 < y2 ≤ +∞, we write Ωy1,y2
:= {z ∈ C;ℑz ∈ (y1, y2)}. We denote by

H(Ωy1,y2
) the set of holomorphic functions on Ωy1,y2

.

Theorem 2 – Let D,n0 ∈N, let 0 < Lmin ≤ Lmax and let Q ∈Q′D,n0,Lmin,Lmax
be a finite

open quantum graph. Let y1 ≤ Y (D,n0,Lmin), let y2 ≥ 0, and let ε > 0.
For any g ∈ L1(Ωy1−ε,y2+ε)∩H(Ωy1−ε,y2+ε), we have

2iπ
∑

z∈Res(Q)

g(z) =
∑
j=1,2

(−1)j
ˆ
R

g(x+iyj )Tr
[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]
dx, (4)

with the sum in the left-hand side repeated with its multiplicity.

Remark 1 – The integral in the right-hand side of (4) is absolutely convergent, as
will be shown in (37) below.

Remark 2 – The set of functions L1(Ωy1−ε,y2+ε)∩H(Ωy1−ε,y2+ε) is non-empty: for

instance the Gaussian functions g(z) = e−a(z−z0)2
belong to it for any a > 0, z0 ∈C.

Theorem 2, which is a consequence of the residue formula, can be used to give
an alternative proof of Theorem 1 for unbalanced graphs, which might be easier to
generalize than the original proof, as it does not use the fact that det(Id−UQ(z)) is a
linear combination of complex exponentials; this will be done in section 4.2. More
interestingly, it can be used to obtain lower bounds on the number of resonances in
some regions of the complex plane. The following proposition gives an example
of such a lower bound, which we don’t expect to be sharp, but which is completely
explicit.

Proposition 1 – Let D,n0 ∈ N, let 0 < Lmin ≤ Lmax and let Q ∈ Q′D,n0,Lmin,Lmax
be a

finite open quantum graph.
Set

a =
ln2(

ln32+ln16
Lmin

−Y (D,n0,Lmin)
)2 .

Let x0 ∈R, and let α > 0 be such that

α
Lmin

≥


[
Y − ln16

Lmin

]2

− 1
a

ln

Lmin ln2
1− e

− a
L2
min

16π
(
2Lmax

1+ln(D+n0)
Lmin

+ 0.6
)√π

a




1/2

. (5)
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Then we have

NQ
({

z ∈C;x0 −
α

Lmin
<ℜz < x0 +

α
Lmin

})
≥
LQ
16π

√
π
a
.

Remark 3 – Theorem 3 in Langer 1931, along with the discussion in Davies and
Pushnitski 2012, §3 implies that, if x1 < x2 are such that Q has no resonance z such
thatℜz = x1 or x2, then we have

−|B(Q)|+
LQ
2π

(x2 − x1) ≤NQ ({ℜz ∈ (x1,x2)}) ≤ |B(Q)|+
LQ
2π

(x2 − x1), (6)

where |B(Q)| is the number of oriented edges of the quantum graph Q.
Equation (6) directly implies Theorem 1, and it is very relevant when the graph

Q is fixed, and x2−x1 is taken large enough. However, when |B(Q)| is large, to obtain
a non trivial lower bound on the number of resonances using (6), one must take
x2 − x1 large, and hence work in large boxes. By contrast, equation (5) implies a
condition on the size of the boxes under consideration which is hard to express, but
is independent of the size of the graph: it depends only on D,n0,Lmin and Lmax.

Hence, Proposition 1 is a real improvement over (6) when working with large
graphs.

Numerical example Suppose we take n0 = 1, D = 4, Lmin = 1, Lmax = 2. We then
have Y = − ln5, a ≈ 1.12× 10−2, 1

16π

√
π
a ≈ 0.33, and a tedious computation implies

that (5) can be rephrased as

α
Lmin

≥ 27.7.

Therefore, every vertical strip of length at least 56 contains at least 0.33×LQ
resonances.

On the other hand, we know that the number of resonances in −R ≤ℜz ≤ R is of
the order of R2LQ

π when R is large. Hence, a vertical strip of length 56 contains, on

average, 56LQ
π ≈ 18×LQ resonances. We thus see that, though our result is far from

being sharp, it is only two orders of magnitude smaller than the average result.

Asymptotic distribution of resonances of large quantum graphs

As explained in the previous paragraph, Theorem 2 can be used to obtain estimates
on the number of resonances in an open set, even for large graphs. Actually, it
would be desirable to understand the asymptotic spectral properties of sequences
of quantum graphs.

Namely, given a sequence of (larger and larger) quantum graphs (QN ), can one
give an asymptotic formula for the number of resonances in some given region of
the complex plane (independent of N )? This kind of problematic was first raised
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in Ingremeau 2022 for open quantum graphs, but similar results existed for the
spectrum of closed quantum graphs (see Anantharaman et al. 2021a). There has
also been a large interest in the asymptotic properties of the eigenfunctions of large
quantum graphs: see Anantharaman et al. 2021b and the references therein.

When studying the spectral asymptotics of large quantum graphs, a natural
assumption is that of Benjamini-Schramm convergence, whose precise definition we
recall in appendix A, and which can be informally described as follows. Around a
vertex v0 in a quantum graph, one can define several “local" quantities: for instance,
the number of neighbours of v0, the average length of the edges attached to v0, the
number of cycles in a ball of radius 10 around v0... One may then take v0 uniformly
at random in the graph, so as to make statistics of these local quantities. We say that
a sequence of quantum graphs converges in the sense of Benjamini-Schramm if all
these statistics of local quantities converge. The Benjamini-Schramm limit is then a
probability measure on the set of rooted quantum graphs, which we denote by ROQ:
the limit is thus an element of P (ROQ) (see appendix A for precise definitions).

The appeal for Benjamini-Schramm convergence comes from its compactness
properties (see Lemma 2): given a sequence of quantum graphs with uniformly
bounded data, one can always extract a subsequence converging in the sense of
Benjamini-Schramm. Of course, Benjamini-Schramm convergence deals with local
quantities, and spectral quantities have no reason to be local, since eigenfunctions
can be delocalized all over the graph. Still, we make the following conjecture about
the convergence of the empirical spectral measures. These are locally finite Borel
measures on C, given by

µQ :=
1
LQ

∑
z∈Res(Q)

δz,

where δz is the Dirac mass at z, and where the sum is repeated with the multiplicity
of the resonances.

Conjecture 1 – Let D,n0 ∈N, and let 0 < Lmin ≤ Lmax. Let P ∈ P (ROQ). Then there
exists a locally finite Borel measure µ

P
on C, such that the following holds.

If (QN ) is a sequence of quantum graphs belonging to QD,n0,Lmin,Lmax
which converges

in the sense of Benjamini-Schramm to P, then (µQN
) converges vaguely to µ

P
. In other

words, for χ ∈ Cc(C), we have∑
z∈Res(QN )

χ(z) −→
ˆ
C

χ(z)dµ
P

(z).

This conjecture was proven in Ingremeau 2022 for unbalanced quantum graphs,
in the case where P is supported on the set of closed quantum graphs, i.e., of
quantum graphs containing no infinite edges (in the notations of Definition 1 below,
this corresponds to n ≡ 0). Note that the end of the proof of Ingremeau 2022,
Theorem 2 can be considerably simplified using our Theorem 2. Previously, the
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analogue of the conjecture was proven in Anantharaman et al. 2021a for closed
quantum graph in a very general setting (including potentials on the edges, and
general coupling conditions).

Note that, thanks to Prokhorov’s theorem and to upper bounds on the number
of resonances in a bounded set (see (48) below, which is a consequence of Jensen’s
formula), up to extracting a subsequence, (µQN

) converges vaguely; the statement of
the conjecture is thus that all the accumulation points for the vague topology are
the same, and that they only depend on P. To prove this, it would be sufficient to
prove that, for any χ ∈ C∞c (C), we have∑

z∈Res(QN )

χ(z) −→ ℓχ, (7)

and that the limit ℓχ depends only on P and χ.
We are going to show (7) for any limit P (but still restricting ourselves to unbal-

anced graphs), but only for a special family of functions χ, that are holomorphic in
a strip.

Theorem 3 – Let D,n0 ∈ N, and let 0 < Lmin ≤ Lmax. Let (QN ) be a sequence of
quantum graphs belonging to Q′D,n0,Lmin,Lmax

. Suppose that (QN ) converges in the sense
of Benjamini-Schram to some measure P.

Then there exist functions Λ
P

: Ω−∞,Y ∪Ω0,+∞ −→ C such that the following holds:

• for any y ∈ (−∞,Y )∪(0,+∞), we have |Λ
P

(x+iy)| ≤M(y) for some M(y) depending
on y and D,n0,Lmin,Lmax, but not on x.

• If y1 < Y (D,n0,Lmin,Lmax), y2 > 0, and ε > 0 and if g belongs to L1(Ωy1−ε,y2+ε)∩
H(Ωy1−ε,y2+ε), we have

⟨µQN
, g⟩ −→

N→∞

∑
j=1,2

ˆ
R

g(x+ iyj )ΛP
(x+ iyj )dx. (8)

Organization of the paper In section 2, we will recall the definition of open
quantum graphs, of their resonances, and of the secular equation. Section 3 will be
devoted to the proof of Theorem 2. In section 4, we will use Theorem 2 to prove
Proposition 1. We will also give an alternative proof of Theorem 1 for unbalanced
graphs. Finally, in appendix A, we will recall the definition of Benjamini-Schramm
convergence for open quantum graphs, and we will prove Theorem 3.

2 Open quantum graphs and their resonances

2.1 Definition of open quantum graphs

An (open) quantum graph is given by a finite graph, where each edge is given a
length and where infinite edges (called leads) are attached to some of the vertices.
More precisely
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Definition 1 – A quantum graph Q = (V ,E,L,n) is the data of

• A graph G = (V ,E) with vertex set V and edge set E.

• A map L : E→ (0,∞).

• A map n : V −→N∪ {0}.

The quantum graph will be called finite if G is a finite graph.

The graph (V ,E) should be thought of as the compact part of our graph, the
map L gives the length of the edges in the compact part, while the map n gives the
number of infinite edges attached to each vertex. If v ∈ V , we denote by d(v) the
(internal) degree of v, i.e., the number of e ∈ E to which v belongs. We define the
total length of the (internal part of the) graph by

LQ :=
∑
e∈E

L(e). (9)

We let B = B(Q) be the set of oriented internal edges (or bonds) associated to E.
If b ∈ B, we shall denote by b̂ the reverse bond. We write ob for the origin of b and tb
for the terminus of b. We will also write Lb for the length of the edge to which b is
associated.

We define the external bonds by Bext :=
⊔

v∈V
⊔n(v)

k=1 {(v,k)}. We write ob = v if
b = (v,k) ∈ Bext , and set B̂ = B∪Bext .

In the sequel, we will always consider graphs with bounded data, as in the
following definition:

Definition 2 – Let D,n0 ∈N, and let 0 < Lmin ≤ Lmax. We denote by QD,n0,Lmin,Lmax

the set of open quantum graphs such that we have

∀v ∈ V ,d(v) ≤D and n(v) ≤ n0

∀e ∈ E,Lmin ≤ L(e) ≤ Lmax.

We will denote by Q′D,n0,Lmin,Lmax
the set of quantum graphs in QD,n0,Lmin,Lmax

such that

∀v ∈ V ,n(v) , d(v). (10)

2.2 Scattering resonances of open quantum graphs

A C2 function on the graph will be a collection of maps f = (fb)b∈B̂, with fb ∈
C2([0,Lb]) if b ∈ B, fb ∈ C2([0,∞)) if b ∈ Bext , and such that

∀b ∈ B,fb(·) = fb̂(Lb − ·). (11)

We will write C2(Q) for the set of such functions. We may now define the boundary
conditions we put at the vertices.
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2. Open quantum graphs and their resonances

Definition 3 – We say that f ∈ C2(Q) satisfies Kirchhoff boundary conditions if it
satisfies

• Continuity: For all b,b′ ∈ B̂, we have fb(0) = fb′ (0) =: f (v) if ob = ob′ = v.

• Current conservation: For all v ∈ V ,∑
b∈B̂:ob=v

f ′b (0) = 0 .

Let us now move to the definition of scattering resonances of quantum graphs.

Definition 4 – Let Q be a finite quantum graph. A number z ∈ C is called a scatter-
ing resonance of Q if there exists f ∈ C2(Q) such that

1. f satisfies the Kirchhoff boundary conditions.

2. For all b ∈ B̂, we have −f ′′b = z2fb.

3. For all b ∈ Bext , we have fb(x) = fb(0)eizx.

We will write

Res(Q) := {Resonances of Q} ⊂ C.

Note that, if we did not impose the last condition (and if n is not identically
zero), then any number z ∈C would be a scattering resonance. On the other hand
condition 3. imposes that scattering resonances must have non-positive imaginary
part. Otherwise, the function f would be an eigenfunction of a selfadjoint operator,
associated to a non-real eigenvalue.

The secular equation for scattering resonances

If b,b′ ∈ B(Q), we define the quantity

σb,b′ =


2

n(v)+d(v) if ob = ob′ = v and b′ , b
2

n(v)+d(v) − 1 if b′ = b with ob = v

0 if ob , ob′ .

We then define the matrices LQ, DQ(z), SQ and UQ(z) whose lines and columns
are indexed by the elements of B(Q) by

(LQ)b,b′ = Lb,b′δb,b′

DQ(z)b,b′ = δb,b′e
izLb

(SQ)b,b′ = σb,b̂′

UQ(z) = SQDQ(z).

(12)
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As explained in the introduction, these matrices give a characterization of
scattering resonances:

∀z ∈C \ {0}, z is a resonance ⇐⇒ det(Id−UQ(z)) = 0.

We refer the reader to Ingremeau 2022, §3.2 for a proof of the previous equation.
The multiplicity of a resonance z0 will be defined the order of the zero z0 of the

holomorphic function z 7→ det(Id−UQ(z)). We refer to Davies and Pushnitski 2012
for a proof of the fact that this definition of multiplicity coincides with the other
natural definitions when z , 0. Note that, when z = 0, the various definitions of
multiplicity need not coincide.

Proof of (2)

If Q ∈Q′D,n0,Lmin,Lmax
, we see that the matrices σ (v) are all invertible, and we have

∥(σ (v))−1∥ =
n(v) + d(v)
|d(v)−n(v)|

≤ n(v) + d(v) ≤ n0 +D.

If J is the B×B matrix such that Jb,b′ = δb′ ,b̂, then the matrix SQJ is a block matrix
with blocks σ (v), so it can be inverted block by block. We deduce that ∥S−1

Q ∥ ≤ n0 +D.
In particular, we see that UQ(z) is invertible, and that for any z ∈C−, we have

∥UQ(z)−1∥ ≤ (n0 +D)eℑzLmin . (13)

Recalling that det(Id−UQ(z)) = 0 if and only if det(Id−U−1
Q (z)) = 0, we deduce

(2).

3 Proof of Theorem 2

In all the proof, we shall write f (z) := det(Id − UQ(z)), which is a holomorphic
function on C. If Ω ⊂ C, we will denote by ResQ(Ω) := Res(Q)∩Ω, i.e., the set of
resonances of Q in Ω.

3.1 Preliminaries

Of determinants and traces

First of all, writing, for any z ∈C where f does not vanish,

det(Id−UQ(z+ z′)) = det
(
Id−UQ(z)− z′U ′Q(z) + o(z′)

)
= det(Id−UQ(z))det

(
Id− z′(Id−UQ(z))−1U ′Q(z) + o(z′)

)
(Cont. next page)
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3. Proof of Theorem 2

= f (z)
(
1− z′Tr

[
U ′Q(z)(Id−UQ(z))−1

]
+ o(z)

)
,

we obtain that
f ′(z)
f (z)

= −Tr
[
U ′Q(z)(Id−UQ(z))−1

]
. (14)

Using the definition of U (z) and the circularity of the trace, this can be rewritten
as

f ′(z)
f (z)

= −Tr
[
U ′Q(z)(Id−UQ(z))−1

]
= −Tr

[
SQDQ(z)iLQ(Id−UQ(z))−1

]
= −Tr

[
(Id−UQ(z))−1UQ(z)iLQ

]
= iLQ −Tr

[
(Id−UQ(z))−1iLQ

]
,

(15)

since Tr(LQ) = 2LQ.

Reminder on the trace norm

To estimate f , we will often use several norms on the setMd(C) of d × d matrices
with complex coefficients, whose definition we now recall.

If A ∈Md(C), we shall denote by ∥A∥ its operator norm, i.e.

∥A∥ := sup
x∈Cd\{0}

∥Ax∥
∥x∥

.

Its trace norm is defined by

∥A∥1 :=
N∑
j=1

σj (A),

where the σj (A) are the singular values of A, i.e., the eigenvalues of A∗A.
The following properties of the trace norm, which are standard (see Dyatlov and

Zworski 2019, Appendix B), will be useful in the proof:

∥A∥1 ≤ d∥A∥, (16)

|det(Id +A)| ≤ e∥A∥1 , (17)

|Tr[A]| ≤ ∥A∥1. (18)

If A,B ∈Md(C), we have

∥AB∥1 ≤ ∥A∥∥B∥1,
∥BA∥1 ≤ ∥A∥∥B∥1.

(19)
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Preliminary estimates on f

Upper bounds on f Recall that we write f (z) := det(Id−UQ(z)). First of all, let us
note that

∥UQ(z)∥ ≤ ∥SQ∥∥eizLQ∥ ≤ ∥eizLQ∥ ≤

e−ℑzLmin whenℑz > 0
e|ℑz|Lmax whenℑz ≤ 0

(20)

Therefore, thanks to (16) and (17), we have

|f (z)| ≤ e∥UQ(z)∥1 ≤ exp
[
|B(Q)|∥UQ(z)∥

]
≤ exp

[
|B(Q)|e|B(Q)|Lmax max(0,−ℑz)

]
. (21)

In particular, this quantity is independent ofℜz. Hence, for any y1 ∈R, there exists
C(y1,Q) such that

|f (z)| ≤ C(y1,Q) ∀z ∈Ωy1,+∞. (22)

The function f being holomorphic, the Cauchy formula implies that there exists
also a constant C′(y1,Q) such that

|f ′(z)| ≤ C′(y1,Q) ∀z ∈Ωy1,+∞. (23)

Lower bounds on f (z) whenℑz > 0 Equation (20) implies that ifℑz > 0, then
∥UQ(z)∥ < 1, so that (Id−UQ(z)) can be inverted by a Neumann series as

(Id−UQ(z))−1 = Id +
+∞∑
k=1

(UQ(z))k = Id +R, (24)

with

∥R∥ ≤
∥UQ(z)∥

1− ∥UQ(z)∥
≤ e−ℑzLmin

1− e−ℑzLmin
. (25)

In particular, we have, whenℑz > 0

1
|f (z)|

=
∣∣∣∣det

(
(Id−UQ(z))−1

)∣∣∣∣
= det(Id +R)

≤ e|B(Q)|∥R∥,

(26)

which is independent ofℜz.
Therefore, we see that, for any y1 > 0, there exists C0(y1,Q) such that

1
|f (z)|

≤ C0(y1,Q) ∀z ∈Ωy1,+∞. (27)
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Lower bounds on f (z) whenℑz < Y Recalling (13), we see that if y0 < Y , there
exists c0 < 1 such that

∥UQ(z)−1∥ ≤ c0 for all z ∈C withℑz < y0.

Hence, whenℑz < y0,

(Id−UQ(z))−1 = −UQ(z)−1(Id−UQ(z)−1)−1 = −
+∞∑
k=1

(UQ(z))−k , (28)

so that there exists c1 > 0 such that∥∥∥(Id−UQ(z))−1
∥∥∥ ≤ c1 for all z ∈Ω−∞,y0

. (29)

In particular, equations (24), (25) and (29) along with (14) imply that, if y0 < Y
and y1 > 0, there exists c1 = c1(y0, y1,Q) > 0 such that∣∣∣∣∣ f ′(z)

f (z)

∣∣∣∣∣ ≤ c1 ∀z ∈Ω−∞,y0
∪Ωy1,+∞. (30)

3.2 Complex analysis

If g is a holomorphic function, and if Ω is a subset of C such that f does not vanish
on ∂Ω, thenˆ

∂Ω
g(z)

f ′(z)
f (z)

dz = 2iπ
∑

z∈ResQ(Ω)

g(z), (31)

where the integral in the left-hand side is performed clockwise, while the sum in
the right-hand side is over the zeroes of f , repeated with multiplicity.

This is simply an application of the residue formula, noting that if f has a zero
of order m at some point z0, then g(z) f

′(z)
f (z) can be written as m g(z0)

z−z0
plus a function

which is holomorphic in a neighbourhood of z0.
We apply equation (31) with Ω = Ωx−,x+,y1,y2

= [x−,x+] + i[y1, y2], for some y1 < Y
and y2 > 0. We take x− < 0 < x+ so that f does not vanish on the horizontal sides of
∂Ωx−,x+,y1,y2

.
Since f has isolated zeroes, for almost every x−,x+, f does not vanish on x± +

i[y1, y2]. Therefore, we have

2iπ
∑

z∈ResQ(Ωx− ,x+ ,y1 ,y2 )

g(z) =
∑
j=1,2

(−1)j
ˆ x+

x−
g(x+ iyj )Tr

[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]
dx

∓ i
∑
±

ˆ y2

y1

g(x± + iy)Tr
[
U ′Q(x± + iy)

(
Id−UQ(x± + iy)

)−1
]
dy.

(32)
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3.3 Lower bounds in strips

We would like to take the limit x±→±∞ in (32), and to show that the lateral terms
(corresponding to the last two integrals in the right-hand side) tend to zero. To this
end, we will need some more precise lower bounds on f on x± + i[y1, y2]. This will
be given by the following Lemma, proven in Ingremeau 2022, Lemma 5.

Lemma 1 – Let z0 ∈C, let s, t > 0, and let I1 ⊂ [ℜz0 − s,ℜz0 + s] be an interval. There
exists a constant C = C(s, t) such that the following holds.

For any f holomorphic function on C, we may find x ∈ I1, such that, for all y′∈[ℑz0−
t,ℑz0 + t], we have

∣∣∣ln |f (x+ iy′)|
∣∣∣ ≤ C′

ln sup
z∈D(z0,3max(s,t))

|f (z)|+ |ln |f (z0)||+ |ln |I1||
 . (33)

Let n ∈N. We may apply Lemma 1 with z0 = ±n+ i, t = 1 + y2 + |y1|, s = 1 and
I1 = [n,n+ 1] or [−n− 1,−n]. Estimating the right-hand side of (33) using equations
(22) and (27), we obtain that there exists x+

n ∈ [n,n+ 1] and x−n ∈ [−n − 1,−n] such
that, for all y ∈ [y1, y2], we have

|f (x±n + iy)| ≥ c2(Q, y1, y2) ∀y ∈ [y1, y2]. (34)

Note in particular that c2(Q, y1, y2) does not depend on n.

3.4 End of the proof

Applying (32) with x± = x±n , we will obtain (4) if we can show the following three
points:

ˆ y2

y1

g(x±n + iy)
f ′(x±n + iy)
f (x±n + iy)

dy −→
n→∞

0, (35)

∑
z∈ResQ(C\Ωx−n ,x+

n ,y1 ,y2
)

g(z) −→
n→∞

0, (36)

and
ˆ
R

∣∣∣∣∣g(x+ iyj )Tr
[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]∣∣∣∣∣dx < +∞. (37)

Equation (37) implies that the right-hand term in (4) is well-defined, and that
the first term in the right-hand side of (32) converges to it.
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Proof of (35) Thanks to (34) and (23), to obtain (35), it is sufficient to show that
ˆ y2

y1

|g(x±n + iy)|dy −→
n→∞

0.

Let 0 < ε < 1
2 be such that Y − y1 > ε and y2 > ε. Thanks to the mean-value

property, if B(x±n , ε) denotes the disk of center x±n and of radius ε, and if Vol(B(x±n , ε))
denotes its area, we have

g(x±n + iy) =
1

Vol(B(x±n , ε))

ˆ
B(x±n ,ε)

g(z)dz,

so that∑
n

ˆ y2

y1

|g(x±n + iy)| ≤
ˆ y2

y1

∑
n

1
Vol(B(x±n , ε))

ˆ
B(x±n ,ε)

|g(z)|dz ≤ 1
πε2

ˆ
Ωy1−ε,y2+ε

|g(z)|dz.

Since this integral is convergent, the series in the right-hand term converges,
and we deduce (35).

Proof of (36) First of all, we claim that for any r > 0, there exists C(r) > 0 such
that

∀z ∈Ωy1,y2
, NQ(B(z, r)) ≤ C(r). (38)

Indeed, any ball B(z, r) with z ∈Ωy1,y2
, may be included in a ball B(z′ , r ′) with

ℑz′ = 1 and r ′ ≤ r + |Y |+ 1; it is thus sufficient to boundNQ(B(z′ , r ′)). This can be
done using Jensen’s formula. Recall that if n(t) denotes the number of zeroes f (z)
such that |z − z′ | < t, Jensen’s formula tells us that

ˆ r ′

0

n(t)
t

dt + ln |f (z′)| = 1
2π

ˆ 2π

0
ln |f (z′ + eiθr ′)|dθ,

so that

n(r ′) ≤ 1
ln2

ˆ 2r ′

r ′

n(t)
t

dt

≤ 1
ln2

(
ln max
|z−z′ |=2r ′

|f (z)| − ln |f (z′)|
)
,

(39)

and the right-hand side can be bounded using (34) and (23). Equation (38) follows.
Thanks to the mean value property, we have∑

z∈ResQ
(
C\Ωx−n ,x+

n ,y1 ,y2

) |g(z)| ≤
∑

z∈ResQ
(
C\Ωx−n ,x+

n ,y1 ,y2

) 1
πε2

ˆ
D(z,ε)

|g(z′)|dz′ .
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Now, all the disks D(z,ε) in the previous expression are included in {z′ ∈
Ωy1,y2

; |ℜz′ | > n − ε}, and thanks to (38), each z′ belongs to at most C(ε) such
disks. Therefore, we have∑

z∈ResQ
(
C\Ωx−n ,x+

n ,y1 ,y2

) |g(z)| ≤ C(ε)
πε2

ˆ
{z′∈Ωy1 ,y2 ;|ℜz′ |>n−ε}

|g ′(z)|dz′ ,

and this quantity goes to zero as n→∞, since g ∈ L1.

Proof of (37) Thanks to (30), we see that there exists C > 0 such thatˆ
R

∣∣∣∣∣g(x+ iyj )Tr
[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]∣∣∣∣∣dx ≤ C

ˆ
R

∣∣∣g(x+ iyj )
∣∣∣dx.

Now, using the mean value property, we have
ˆ
R

∣∣∣g(x+ iyj )
∣∣∣dx ≤ ˆ

R

1
Vol(B(x+ iyj , ε))

ˆ
B(x+iyj ,ε)

|g(z)|dzdx ≤ 1
πε2

ˆ
Ωy1−ε,y2+ε

|g(z)|dz,

(40)

and the result follows.

4 Consequences of Theorem 2

In this section, we will use Theorem 2 and its proof to give an alternative proof of
Theorem 1 in the case of unbalanced graphs, and we will prove Proposition 1. To
this end, we must first obtain asymptotics for f ′

f , with f (z) := det(Id−UQ(z)) as in
the previous section.

4.1 Asymptotics for f ′

f

Whenℑz > 0, we may use the third equality in (15) along with (25) to obtain

∣∣∣∣∣ f ′(z)
f (z)

∣∣∣∣∣ =
∣∣∣∣Tr

[
(Id−UQ(z))−1UQ(z)iLQ

]∣∣∣∣
≤ ∥LQ∥1

+∞∑
k=1

∥UQ(z)k∥

≤ 2LQ
∥UQ(z)∥

1− ∥UQ(z)∥

≤ 2LQ
e−ℑzLmin

1− e−ℑzLmin
.

(41)
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On the other hand, whenℑz < Y , we have ∥UQ(z)−1∥ < 1, so that

f ′(z)
f (z)

= −Tr
[
(Id−UQ(z))−1UQ(z)iLQ

]
= Tr

[
(Id−UQ(z))−1(Id−UQ(z)− Id)iLQ

]
= Tr

[
iLQ +U−1

Q (z)(Id−U−1
Q (z))−1iLQ

]
= 2iLQ + i

+∞∑
k=1

Tr
[
U−kQ (z)LQ

]
.

(42)

Thanks to (13), the sum in the last equality has its modulus bounded by

2LQ
+∞∑
k=1

∥UQ(z)−1∥k = 2LQ
∥UQ(z)−1∥

1− ∥UQ(z)−1∥
≤ 2LQ

e(ℑz−Y )Lmin

1− e(ℑz−Y )Lmin
. (43)

4.2 An alternative proof of Weyl’s law for unbalanced graphs

We apply equation (32) with x− = x−n , x+ = x+
n , y1 = −

√
n, y2 =

√
n and g the function

constant equal to one. Hence, the left-hand side is exactly

2iπNQ (
{
ℜz ∈ [xnn,x

+
n ]

}
) ,

and thanks to (38), this is 2iπNQ(D(0,n)) +O(1).
To bound the lateral integrals, we use (34) and (23) whenℑz ∈ [Y − 1,1], while

whenℑz ∈ [−
√
n,Y − 1]∪ [1,

√
n], we use (41) and (43). We deduce that the lateral

integrals are O(1).
Therefore, we have

1
n
NQ(D(0,n)) = − 1

2inπ

∑
±

ˆ x+
n

x−n

f ′(x ± i
√
n)

f (x ± i
√
n)

dx+O
(1
n

)
. (44)

Now, using (41), we obtain that

1
2inπ

ˆ x+
n

x−n

f ′(x+ i
√
n)

f (x+ i
√
n)

dx = O
(1
n

)
,

while thanks to (42) and (43), we get

1
2inπ

ˆ x+
n

x−n

f ′(x − i
√
n)

f (x − i
√
n)

dx =
2LQ
π

+O
(1
n

)
.

We thus recover the result of Theorem 1 for unbalanced graphs.
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4.3 Proof of Proposition 1

Let x0 ∈R. We take y1 < Y , y2 > 0, and let a > 0.
We shall apply (4) with

g(z) = e−a(z−x0−iy1)2
= e−a(x−x0)2+a(y−y1)2−2ia(x−x0)(y−y1),

where z = x+ iy.
First of all, thanks to (42) and (43), we have∣∣∣∣∣∣
ˆ
R

g(x+ iy1)
f ′(x+ iy1)
f (x+ iy1)

dx − 2iLQ

√
π
a

∣∣∣∣∣∣ ≤ 2LQ
e(y1−Y )Lmin

1− e(y1−Y )Lmin

ˆ
R

e−a(x−x0)2
dx

= 2LQ
e(y1−Y )Lmin

1− e(y1−Y )Lmin

√
π
a

In particular, this quantity is smaller than LQ4
√

π
a when we take

y1 = Y − ln16
Lmin

. (45)

Next, thanks to (41), we have∣∣∣∣∣ˆ
R

g(x+ iy2)
f ′(x+ iy2)
f (x+ iy2)

dx
∣∣∣∣∣ ≤ 2LQ

e−y2Lmin

1− e−y2Lmin
ea(y2−y1)2

√
π
a
.

In particular, the quantity above is smaller than LQ4
√

π
a when we take

y2 =
ln32
Lmin

a =
ln2(

ln32+ln16
Lmin

−Y
)2 .

(46)

Therefore, if we take y1, y2 and a as in (45) and (46), we have∣∣∣∣∣∣∣∣
∑
j=1,2

ˆ
R

g(x+ iyj )Tr
[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]
dx

∣∣∣∣∣∣∣∣ > LQ2
√

π
a
. (47)

Thanks to Theorem 2, this implies that∣∣∣∣∣∣∣∣
∑

z∈Res(Q)

g(z)

∣∣∣∣∣∣∣∣ ≥ 1
2π
LQ
2

√
π
a
.
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Upper bounds on resonances in vertical strips Now, we turn to the left-hand side
of (4). If x1 < x2 ∈R, let us denote by Sx1,x2

the strip {z ∈C;x1 ≤ℜz ≤ x2}.
Let us denote by N0 a number such that

∀x1 ∈R, NQ
(
Sx1,x1+ 1

Lmin

)
≤N0.

The number N0 can be estimated using (39). Indeed, the resonances in Sx1,x1+ 1
Lmin

do all belong to D(x1 + i
Lmin

, |Y |+ 1
Lmin

). We have
∣∣∣∣lnf

(
x1 + i

Lmin

)∣∣∣∣ ≥ |B(Q)| e−1

1−e−1 thanks

to (26) and (25), while we have lnmax
|z−z′ |=2

(
|Y |+ 1

Lmin

) |f (z)| ≤ 2 1+ln(D+n0)
Lmin

|B(Q)|Lmax

thanks to (21). Therefore, (39) implies that we can take

N0 ≤
|B(Q)|
ln2

(
2Lmax

1 + ln(D +n0)
Lmin

+
e−1

1− e−1

)
≤

LQ
Lmin × ln2

(
2Lmax

1 + ln(D +n0)
Lmin

+ 0.6
)
.

(48)

End of the proof Now, we estimate, for any α > 0∣∣∣∣∣ ∑
z∈ResQ

({
|ℜz−x0 |≥ α

Lmin

})g(z)
∣∣∣∣∣ ≤ eay

2
1

∑
z∈ResQ

({
|ℜz−x0 |≥ α

Lmin

})e−a|ℜz−x0 |2

≤ eay
2
1

∑
n∈N

∑
z∈ResQ

({
n+1+α
Lmin

>|ℜz−x0 |≥ n+α
Lmin

})e−a|ℜz−x0 |2

≤ 2N0e
ay2

1

∑
n∈N

e
− a
L2
min

(α+n)2

≤ 2N0e
ay2

1 e
− a
L2
min

α2 ∑
n∈N

e
−a n

L2
min

≤ 2N0
e
−a( α2

L2
min
−y2

1 )

1− e
− a
L2
min

≤
2LQ

Lmin × ln2

(
2Lmax

1 + ln(D +n0)
Lmin

+ 0.6
)
e
−a( α2

L2
min
−y2

1 )

1− e
− a
L2
min

,

thanks to (48).
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In particular, this quantity is smaller than 1
2π
LQ
4

√
π
a provided that

e
− a
L2
min

α2

≤ Lmin ln2e−ay
2
1

1− e
− a
L2
min

16π
(
2Lmax

1+ln(D+n0)
Lmin

+ 0.6
)√π

a
,

or, in other words,

α
Lmin

≥

y2
1 −

1
a

ln

Lmin ln2
1− e

− a
L2
min

16π
(
2Lmax

1+ln(D+n0)
Lmin

+ 0.6
)√π

a




1/2

. (49)

Therefore, using (47), we see that whenever (49) is satisfied, we have∣∣∣∣∣∣∣∣∣∣∣
∑

z∈ResQ
({
|ℜz−x0 |≤ α

Lmin

})g(z)

∣∣∣∣∣∣∣∣∣∣∣ ≥
LQ
8π

√
π
a
.

Since each term in the sum has a modulus smaller than ea(y2−y1)2 ≤ 2, we deduce
that the number of resonances in

{
|ℜz − x0| ≤ α

Lmin

}
is at least LQ16π

√
π
a , as announced.

A Benjamini-Schramm convergence for open quantum
graphs

A.1 Definition of the Benjamini-Schramm convergence

We now recall the definition of Benjamini-Schramm convergence of open quantum
graphs, following closely Ingremeau 2022, §3.3.1.

A rooted open quantum graph (Q,b0) = (V ,E,L,n,b0) will be the data of a quan-
tum graph Q = (V ,E,L,n), and of a bond b0 ∈ B(Q).

Definition 5 – We say that two rooted quantum graphs (Q0,b0) = (V0,E0,L0,n0,b0)
and (Q1,b1) = (V1,E1,L1,n1,b1) are equivalent, which we denote by (Q0,b0) ∼
(Q1,b1), if there exists a graph isomorphism φ : (V0,E0) −→ (V1,E1) such that
φ(ob0

) = ob1
, φ(tb0

) = tb1
, L1 ◦φ = L0, and n1 ◦φ = n0.

The set of rooted quantum graphs, quotiented by ∼, will be denoted by ROQ. If
(Q,b0) is a rooted quantum graph, we will denote by [Q,b0] its equivalence class.

If v ∈ G is a vertex in a graph and r ∈N, we write BG(v,r) for the set of vertices
which are at a (combinatorial) distance at most r from v. We write E(BG(v,r)) for
the set of edges in E connecting two vertices of BG(v,r).
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We introduce a distance between rooted quantum graphs as follows

d([Q1,b1], [Q2,b2]) := inf
{
ε > 0

∣∣∣ ∃φ : BG1
(ob1

,⌊ε−1⌋)→ BG2
(ob2

,⌊ε−1⌋) a graph

isomorphism such that n2 ◦φ = n1 and sup
e∈E(BG1 (ob1 ,⌊ε

−1⌋))
|L2(φ(b))−L1(b)| < ε

}
.

Note that this definition is independent of the representatives we chose in the
equivalence classes [Q1,b1], [Q2,b2], so it is well-defined on ROQ. Furthermore, one
can show that (ROQ,d) is a Polish space, i.e., a separable complete metric space.

Let P (ROQ) be the set of Borel probability measures on ROQ.

Definition 6 – Any finite quantum graph Q = (V ,E,L,n) defines a probability mea-
sure νQ ∈ P (ROQ) obtained by choosing a root uniformly at random:

νQ :=
1
|B(Q)|

∑
b0∈B(Q)

δ[(Q,b0)].

If (QN ) is a sequence of quantum graphs, we say that P ∈ P (ROQ) is the local
weak limit of (QN ), or that (QN ) converges in the sense of Benjamini-Schramm to P, if
(νQN

) converges weakly to P.

This notion of convergence can be explained as follows. Let χ be a bounded
function on the set of rooted quantum graphs, continuous for the distance d intro-
duced in the previous paragraph. Then the average value of χ ((QN ,b0)) when b0 is
chosen uniformly at random converges to the expectation E

P
[χ].

Let D,n0 ∈ N, 0 < m ≤ M. We define ROQD,n0,Lmin,Lmax and ROQ′D,n0,Lmin,Lmax

as the subsets of ROQ of equivalence classes [Q,b0] = [(V ,E,L,n,b0)] such that
Q ∈ QD,n0,Lmin,Lmax

(respectively Q ∈ Q′D,n0,Lmin,Lmax
). The following Lemma can be

proven exactly as Anantharaman et al. 2021a, Lemma 3.6.

Lemma 2 – The subset ROQD,n0,Lmin,Lmax is compact.
In particular, using Prokhorov’s theorem, we see that if (QN ) is a sequence of finite

open quantum graphs in QD,n0,Lmin,Lmax
, then there is a subsequence (QNk

) which con-
verges in the sense of Benjamini-Schramm (i.e. there exists P ∈ P (ROQ) supported on

ROQD,n0,Lmin,Lmax such that νQNk

w∗−−→ P).

A.2 Proof of Theorem 3

Lemma 3 – Let D,n0 ∈N, let 0 < Lmin ≤ Lmax, and let y1 < Y (D,n0,Lmin), y2 > 0.
For every x ∈R, j = 1,2, the maps

Fx+iyj :

Q
′
D,n0,Lmin,Lmax

−→ C

[Q,b0] 7→
〈
eb0

,U ′Q(x+ iyj )
(
Id−UQ(x+ iyj )

)−1
eb0

〉
are continuous and bounded independently of x.
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Proof. The result follows from the expressions

U ′Q(x+ iy2)(Id−UQ(x+ iy2))−1 =
+∞∑
k=0

U ′Q(x+ iy2)(UQ(x+ iy2))k

U ′Q(x+ iy1)(Id−UQ(x+ iy1))−1 =
+∞∑
k=1

U ′Q(x+ iy1)(UQ(x+ iy1))−k ,

from the fact that each U ′Q(z)(UQ(z))±k is continuous (since it depends only on a
neighbourhood of size k of b0), and from the exponential decay of the sum. □

Proof (Proof of Theorem 3). Let y1 ≤ Y (D,n0,Lmin,Lmax), y2 ≥ 0, ε > 0, and let g ∈
L1(Ωy1−ε,y2+ε)∩H(Ωy1−ε,y2+ε). Thanks to Theorem 2, we have

⟨µQN
, g⟩ =

1
2iπLQN

∑
j=1,2

(−1)j
ˆ
R

g(x+ iyj )Tr
[
U ′Q(x+ iyj )

(
Id−UQ(x+ iyj )

)−1
]
dx

=
1
LQN

1
2iπ

∑
j=1,2

(−1)j
ˆ
R

g(x+ iyj )
∑

b0∈B(QN )

Fx+iyj ([QN ,b0])

=
|B(QN )|
LQN

1
2iπ

∑
j=1,2

(−1)j
ˆ
R

g(x+ iyj )EνQN

[
Fx+iyj

]
.

Now, using the dominated convergence theorem, the bound given in Lemma 3 and
the definition of the Benjamini-Schramm convergence, we see that the integrals
above converge toˆ

R

g(x+ iyj )EP

[
Fx+iyj

]
.

As to the prefactor, we have

|B(QN )|
LQN

=

 1
|B(QN )|

∑
b0∈B(QN )

Lb0


−1

,

which converges thanks to the definition of Benjamini-Schramm convergence. The
result follows. □
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