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Abstract

The invariant Θ is the simplest 3-manifold invariant defined by counting
graph configurations. It is actually an invariant of rational homology 3-spheres
M equipped with a combing X over the complement of a point, where a combing
is a homotopy class of nowhere vanishing vector fields. The invariant Θ(M,X) is
the sum of 6λ(M) and p1(X)/4, where λ denotes the Casson-Walker invariant,
and p1 is an invariant of combings, which is an extension of a first relative
Pontrjagin class, and which is simply related to a Gompf invariant θG. In Lescop
(2015a), we proved a combinatorial formula for the Θ-invariant in terms of
decorated Heegaard diagrams. In this article, we study the variations of the
invariants p1 or θG when the decorations of the Heegaard diagrams that define
the combings change, independently. Then we prove that the formula of Lescop
(2015a) defines an invariant of combed once punctured rational homology 3-
spheres without referring to configuration spaces. Finally, we prove that this
invariant is the sum of 6λ(M) and p1(X)/4 for integer homology 3-spheres, by
proving surgery formulae both for the combinatorial invariant and for p1.

Keywords: Θ-invariant, Heegaard splittings, Heegaard diagrams, combings, Gompf
invariant, Casson-Walker invariant, finite type invariants of 3-manifolds, homology
spheres, configuration space integrals, perturbative expansion of Chern-Simons
theory.

msc: 57M27, 57N10, 57M25, 55R80.

1 Introduction

In this article, a Q-sphere or rational homology 3-sphere (resp. a Z-sphere or integer
homology 3-sphere) is a smooth closed oriented 3-manifold that has the same rational
(resp. integral) homology as S3.

1Institut Fourier, Université Grenoble Alpes, CNRS
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1.1 General introduction

The work of Witten2 pioneered the introduction of many Q-sphere invariants,
among which the Le-Murakami-Ohtsuki universal finite type invariant3 and the
Kontsevich configuration space invariant4, which was proved to be equivalent to
the LMO invariant for integer homology 3-spheres by Kuperberg and Thurston5.
The construction of the Kontsevich configuration space invariant for a Q-sphere M
involves a point∞ in M, an identification of a neighborhood of∞ with a neighbor-
hood S3 \B(1) of∞ in S3 = R

3 ∪ {∞}, and a parallelization τ of (M̌ =M \ {∞}) that
coincides with the standard parallelization of R3 on R

3 \B(1), where B(r) denotes
the ball centered at 0 with radius r in R

3. The Kontsevich configuration space
invariant is in fact an invariant of (M,τ). Its degree one part Θ(M,τ) is the sum of
6λ(M) and p1(τ)/4, where λ is the Casson-Walker invariant and p1 is a Pontrjagin
number associated with τ , according to a theorem of Kuperberg and Thurston6 gen-
eralized to rational homology 3-spheres in Lescop (2004b). Here, the Casson-Walker
invariant λ is normalized like in Akbulut and McCarthy (1990), Guillou and Marin
(1992), and Marin (1988) for integer homology 3-spheres, and like 1

2λW for rational
homology 3-spheres where λW is the Walker normalisation in Walker (1992).

Let BM denote the complement in M of the neighborhood of∞ identified with
S3 \B(1), BM is a rational homology ball. An∞-combing of such a rational homology
3-sphere M is a section of the unit tangent bundle UM̌ of M̌ that is constant on
M̌ \ BM (via the identifications above with R

3 \ B(1) near ∞), up to homotopies
through this kind of sections. As it is shown in Lescop (2015a), Θ(M,.) is actually
an invariant of rational homology 3-spheres equipped with such∞-combings.

In this article, a genus g handlebody is the 3-manifold bounded by the genus g
surface embedded in a standard way in R

3 as in Figure 1 on the next page. Every
closed oriented 3-manifold M can be written as the union of two handlebodies HA
and HB glued along their common boundary, which is a genus g surface, as

M =HA ∪∂HA HB

where ∂HA = −∂HB . Such a decomposition is called a Heegaard decomposition of M.
A system of meridians for HA is a system of g disjoint curves αi of ∂HA that bound
disjoint disks D(αi) properly embedded in HA such that the union of the αi does
not separate ∂HA. For a positive integer g, we will denote the set {1,2, . . . , g} by
g. Let (αi)i∈g be a system of meridians for HA and let (βj )j∈g be such a system for
HB . Then the surface equipped with the collections of the curves αi and the curves

2Witten, 1989, “Quantum field theory and the Jones polynomial”.
3Le, Murakami, and Ohtsuki, 1998, “On a universal perturbative invariant of 3-manifolds”.
4Kontsevich, 1994, “Feynman diagrams and low-dimensional topology”.
5Kuperberg and Thurston, 1999, “Perturbative 3-manifold invariants by cut-and-paste topology”.
6Ibid.

18



1. Introduction

α1 α2 αg

Figure 1 – A genus g handlebody equipped with a system {αi}i∈g of meridians

βj = ∂D(βj ) determines M. When the collections (αi)i∈g and (βj )j∈g are transverse,
the data D = (∂HA, (αi)i∈g , (βj )j∈g ) is called a Heegaard diagram.

Such a Heegaard diagram may be obtained from a Morse function fM of M that
has one minimum mapped to (−3), one maximum mapped to 9, g index one points
ai and g index 2 points bj , such that fM maps index 1 points to 1 and index 2 points
to 5, and fM satisfies generic Morse-Smale conditions ensuring transversality of
descending and ascending manifolds of critical points, with respect to a Euclidean
metric g of M. Thus the surface ∂HA is f −1

M (3), the ascending manifolds of the ai
intersect HA as disks D(αi) bounded by the αi and the descending manifolds of
the bj intersect HB as disks D(βj ) bounded by the βj , and the flow line closures
from ai to bj are in natural one-to-one correspondence with the crossings of αi ∩ βj .
Conversely, for any Heegaard diagram, there exists a Morse function fM with the
properties above.

A matching in a genus g Heegaard diagram

D = (∂HA, {αi}i=1,...,g , {βj }j=1,...,g )

is a set m of g crossings such that every curve of the diagram contains one crossing
of m. An exterior point in such a diagram D is a point of ∂HA \

(∐g
i=1αi ∪

∐g
j=1βj

)
.

The choice of a matching m and of an exterior point w in a diagram D of M equips
M with the following∞-combing X(w,m) = X(D,w,m).

Remove an open ball around the flow line from the minimum to the maximum
that goes through w, so that we are left with a rational homology ball

BM (2) = BM ∪∂B(1)=∂BM B(2) \ B̊(1)

where the gradient field of fM is vertical near the boundary. Reversing the gradient
field along the flow lines γ(c) through the crossings c of m as in Section 3.1 on p. 31
produces the∞-combing X(w,m) of M.

Let θG denote the invariant of combings of rational homology 3-spheres intro-
duced by Gompf in Gompf (1998, Section 4). A choice of a standard modifica-
tion described in Section 4.2 on p. 37 of X(w,m) in the fixed neighborhood of ∞
identified with S3 \ B(2) transforms X(w,m) into a combing X(M,w,m) such that
p1(X(w,m))−θG(X(M,w,m)) is independent of (M,w,m).

In Lescop (2015a, Theorem 1.5), we express Θ(M,X(w,m)) as a combination

Θ̃(D,w,m) = `2(D) + s`(D,m)− e(D,w,m)
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of invariants of Heegaard diagrams D equipped with a matching m and an exterior
point w. First combinatorial expressions of the ingredients `2(D), s`(D,m), and
e(D,w,m) are given in the end of this introduction section whereas Section 2 on
p. 24 provides alternative expressions and properties of these quantities.

In this article, we give several expressions of the variations of p1(X(w,m)), or,
equivalently of θG(X(M,w,m)), when w and m vary, for a fixed Heegaard diagram.
Expressions in terms of linking numbers are given in Section 3.2 on p. 33 and
derived combinatorial expressions can be found in Section 4 on p. 36.

The latter ones allow us to give combinatorial proofs that(
4Θ̃(D,w,m)− p1(X(w,m))

)
is independent of (w,m) in Section 5 on p. 47. We prove that

λ̃(D) =
1

24

(
4Θ̃(D,w,m)− p1(X(w,m))

)
only depends on the presented rational homology 3-sphere M, combinatorially, in
Section 6 on p. 52. We set λ̃(M) = λ̃(D) so that λ̃ is a topological invariant of rational
homology 3-spheres.

Then we give a direct combinatorial proof that λ̃ satisfies the Casson surgery
formula for 1

n -Dehn surgeries along null-homologous knots in Section 7 on p. 68.
This implies that λ̃ coincides with the Casson invariant for integer homology 3-
spheres. Our proof also yields a surgery formula for p1, which is stated in Theorem 6
on p. 70.

Thus this article contains an independent construction of the Casson invariant,
which includes a direct proof of the Casson surgery formula, and an independent
combinatorial proof of the formula of Lescop (2015a, Theorem 3.8) for the Θ-
invariant in terms of Heegaard diagrams in the case of Z-spheres. It also describes
the behaviour of the four quantities `2(D), s`(D,m), e(D,w,m) and p1(X(D,w,m)) (or
equivalently θG(X(M,w,m))) associated with Heegaard diagrams D decorated with
(w,m) under standard modifications of Heegaard diagrams, and Dehn surgeries.
These quantities might show up in combinatorial definitions of other invariants
from Heegaard diagrams, as θG, which Gripp and Huang use to define the Heegaard
Floer homology ĤF grading in Ramos and Huang (2017).

The definitions introduced in Lescop (2015a) are recalled here for the reader’s
convenience.

I thank Jean-Mathieu Magot for useful conversations.

1.2 Conventions and notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented
by the outward normal first convention. Products are oriented by the order of the
factors. More generally, unless otherwise mentioned, the order of appearance of
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coordinates or parameters orients chains or manifolds. For a manifold M, (−M)
denotes the manifold obtained from M by reversing its orientation. The normal
bundle V(A) of an oriented submanifold A is oriented so that the normal bundle
followed by the tangent bundle of the submanifold induce the orientation of the
ambient manifold, fiberwise. The transverse intersection of two submanifolds A
and B of a manifold C is oriented so that the normal bundle Vx(A∩B) of A∩B at
x is oriented as (Vx(A)⊕Vx(B)). When the dimensions of two such submanifolds
add up to the dimension of C, each intersection point is equipped with a sign ±1,
which is 1 if and only if (Vx(A)⊕Vx(B)) (or equivalently (Tx(A)⊕Tx(B))) induces the
orientation of C. When A is compact, the sum of the signs of the intersection points
is the algebraic intersection number 〈A,B〉C . The linking number lk(L1,L2) = lkC(L1,L2)
of two disjoint null-homologous cycles L1 and L2 of respective dimensions d1 and
d2 in an oriented (d1 + d2 + 1)-manifold C is the algebraic intersection 〈L1,W2〉C
of L1 with a chain W2 bounded by L2 in C. This definition extends to rationally
null-homologous cycles by bilinearity.

1.3 Introduction to the combinatorial definition of Θ̃

In the end of this section, we give explicit formulas for the ingredients `2(D), s`(D,m)
and e(D,w,m) in the formula

Θ̃(D,w,m) = `2(D) + s`(D,m)− e(D,w,m)

for a Heegaard diagram D equipped with a matching m and an exterior point w.
These ingredients will be studied in more details in Section 2 on p. 24.

Let D = (∂HA, (αi)i∈g , (βj )j∈g ) be a Heegaard diagram of a rational homology
3-sphere. A crossing c of D is an intersection point of a curve αi(c) = α(c) and a curve
βj(c) = β(c). Its sign σ (c) is 1 if ∂HA is oriented by the oriented tangent vector of α(c)
followed by the oriented tangent vector of β(c) at c as above. It is (−1) otherwise.
The set of crossings of D is denoted by C.

Let

[Jji](j,i)∈g2 = [〈αi ,βj〉∂HA ]−1

denote the inverse matrix of the intersection matrix.
g∑
i=1

Jji〈αi ,βk〉∂HA = δjk =

1 if j = k
0 otherwise.

When d and e are two crossings of αi , [d,e]αi = [d,e]α denotes the set of crossings
from d to e (including them) along αi , or the closed arc from d to e in αi depending
on the context. Then [d,e[α= [d,e]α \ {e}, ]d,e]α = [d,e]α \ {d} and ]d,e[α= [d,e[α\{d}.

Now, for such a part I of αi ,

〈I,βj〉 = 〈I,βj〉∂HA =
∑
c∈I∩βj

σ (c).
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α1
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Figure 2 – Two Heegaard diagrams of RP
3

We use the notation | for ends of arcs to say that an end is half-contained in an
arc, and that it must be counted with coefficient 1/2. (“[d,e|α = [d,e]α \ {e}/2”). We
agree that |d,d|α = ∅.

We use the same notation for arcs [d,e|βj = [d,e|β of βj . For example, if d is a
crossing of αi ∩ βj , then

〈[d,d|α ,βj〉 =
σ (d)

2
and

〈[c,d|α , [e,d|β〉 =
σ (d)

4
+

∑
c∈[c,d[α∩[e,d[β

σ (c).

Example 1 – In the Heegaard diagrams of RP
3 in Figure 2, 〈[c,c|α , [c,c|β〉 = 1

4 ,
〈[c,c|α , [c,d|β〉 = 〈[c,d|α , [c,c|β〉 = 1

2 , 〈[c,d|α , [c,d|β〉 = 5
4 , 〈[c,c|α ,β1〉 = 1

2 , 〈[c,d|α ,β1〉 =
3
2 .

1.4 First combinatorial definitions of `2 and s`(D,m)

Choose a matching m = {mi ; i ∈ g} where mi ∈ αρ−1(i) ∩ βi , for a permutation ρ of g.
For two crossings c and d of C, set

˜̀
m(c,d) = 〈|mρ(i(c)), c|α , |mj(d),d|β〉 −

∑
(i,j)∈g2

Jji〈|mρ(i(c)), c|α ,βj〉〈αi , |mj(d),d|β〉.

Then

`2(D) =
∑

(c,d)∈C2

Jj(c)i(d)Jj(d)i(c)σ (c)σ (d) ˜̀
m(c,d)−

∑
c∈C
Jj(c)i(c)σ (c) ˜̀

m(c,c)

and

s`(D,m) =
∑

(c,d)∈C2

Jj(c)i(c)Jj(d)i(d)σ (c)σ (d) ˜̀
m(c,d).
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Example 2 – For the genus one Heegaard diagram D1 of Figure 2 on the preceding
page, we have σ (c) = 1, 〈α1,β1〉∂HA = 2, J11 = 1

2 , choose {c} as a matching, ˜̀{c}(c,c) =
˜̀{c}(c,d) = ˜̀{c}(d,c) = 0, ˜̀{c}(d,d) = 1

2 −J11 = 0 so that `2(D1) = s`(D1, {c}) = 0.
For the genus two Heegaard diagram D2 of Figure 2 on the preceding page,

J11 = 1
2 = −J21, J22 = 1 and J12 = 0. Choose {c,e} as a matching. For any crossing x

of D2,

0 = ˜̀{c,e}(c,x) = ˜̀{c,e}(x,c) = ˜̀{c,e}(e,x) = ˜̀{c,e}(x,e) = ˜̀{c,e}(d,d),

and

˜̀{c,e}(f , f ) =
1
4
− 3

4
J11 −

1
4
J12 −

3
4
J21 −

1
4
J22 = 0

˜̀{c,e}(d,f ) =
3
4
− 3

2
J11 −

1
2
J12 = 0

˜̀{c,e}(f ,d) = −1
2
J11 −

1
2
J21 = 0

so that `2(D2) = s`(D2, {c,e}) = 0.

1.5 Combinatorial definition of e(D,w,m)

Let w be an exterior point of D. The choice of m being fixed, represent the Heegaard
diagrams in a plane by removing from ∂HA a disk around w that does not intersect
the diagram curves, and by cutting the surface ∂HA along the αi . Each αi gives
rise to two copies α′i and α′′i of αi , which are represented as the boundaries of two
disjoint disks with opposite orientations in the plane. Locate the crossing mi at the
points with upward tangent vectors of α′i and α′′i , and locate the other crossings
near the points with downward tangent vectors as in Figure 3. Draw the arcs of the
curves βj so that they have horizontal tangent vectors near the crossings.

α′1 α′′1

. . .

α′g α′′g

m1 m1 mg mg

RD

Figure 3 – The Heegaard surface cut along the αi and deprived of a neighborhood
of w

The rectangle has the standard parallelization of the plane. Then there is a map
“unit tangent vector” from each partial projection of a beta curve βj in the plane to
S1. The total degree of this map for the curve βj is denoted by de(βj ). For a crossing
c ∈ βj , de(|mj , c|β) ∈ 1

2Z denotes the degree of the restriction of this map to the arc
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|mj , c|β . This degree is the average of the degrees of this map at the upward vertical
vector and at the downward one. For any c ∈ C, define

de(c) = de(|mj(c), c|β)−
∑

(r,s)∈g2

Jsr〈αr , |mj(c), c|β〉de(βs).

Set

e(D,w,m) =
∑
c∈C
Jj(c)i(c)σ (c)de(c)

so that the combinatorial expression

Θ̃(D,w,m) = `2(D) + s`(D,m)− e(D,w,m),

which is studied in this article, is completely defined.

Example 3 – For the rectangular diagram of (D1, {c},w1) of Figure 4, de(|c,c|β) = 0
and de(c) = 0, de(|c,d|β) = 1

2 , de(β1) = 2 so that de(d) = −1
2 , e(D1,w1, {c}) = −1

4 and
Θ̃(D1,w1, {c}) = 1

4 .

(D1 , {c},w1)

α′1
d c dc

β1

α′′1
d c dc

β1

α′1 α′′1

β1

β1

f e fe
β2

α′2 α′′2

Figure 4 – Rectangular diagrams of (D1, {c},w1) and (D2, {c,e},w2)

For the rectangular diagram of (D2, {c,e},w2) of Figure 4, de(c) = de(e) = de(β1) =
de(β2) = 0, de(d) = de(f ) = 1

2 , e(D2,w2, {c,e}) = 1
4 and Θ̃(D2,w2, {c,e}) = −1

4 .

2 More on the combinatorial definition of Θ̃

In this section, we show that the quantities `2(D), s`(D,m) and e(D,w,m) defined in
the previous section for a Heegaard diagram D equipped with a matching m and an
exterior point w only depend on their arguments (e.g. on D, for `2(D) . . . ) and not
on extra data used to define them like numberings or orientations of the diagram
curves. We also give alternative definitions of `2(D) and s`(D,m).
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2. More on the combinatorial definition of Θ̃

2.1 More on e(D,w,m)

Recall the notation and definitions of Section 1.5 on p. 23 with respect to a fixed
matching m = {mi ; i ∈ g} where mi ∈ αρ−1(i) ∩ βi , for a permutation ρ of g.

Lemma 1 – The number

e(D,w,m) =
∑
c∈C
Jj(c)i(c)σ (c)de(c)

depends neither on our specific way of drawing the diagram with our conventions, nor on
the orientations of the diagram’s curves. It only depends on D, w and m.

The topological interpretation of e(D,w,m) as an Euler class given in Corollary 2
on p. 37 yields a conceptual proof of this lemma. We nevertheless give a purely
combinatorial proof below.

We use the Kronecker symbol δcd , which is 1 if c = d and 0 otherwise. We first
prove the following lemma.

Lemma 2 – A full positive twist of a curve α′i or a curve α′′i in Figure 3 on p. 23 changes
de(c) to de(c) + 1

2δi(c)i −
1
2δρ(i)j(c).

Proof. When a crossing is moved counterclockwise along a curve α, (like along α′′i
in Figure 15 on p. 50) the degree increases (by 1 for a full loop) when the crossing
enters (the disk bounded by) α in Figure 3 on p. 23 and decreases when the crossing
goes out. Furthermore the positive crossings enter α′i and the negative ones enter
α′′i . Then letting all the crossings make a full positive loop around α′′i (resp. around
α′i ) changes de(βs) to de(βs)−〈αi ,βs〉 (resp. to de(βs)+〈αi ,βs〉). Now, for a full positive
loop around α′′i , de(|mj(c), c|β) is changed to

de(|mj(c), c|β)− 〈αi , ]mj(c), c[β〉 − δi(c)iδ(−1)σ (c)σ (c)− δρ(i)j(c)δ1σ (mj(c))σ (mj(c)).

Indeed, right before c, βj(c) hits α′′i if and only if σ (c) = −1 and i(c) = i. Similarly,
after mj(c), βj(c) exits α′′i if and only if σ (mj(c)) = 1 and ρ−1(j(c)) = i. This expression
can be rewritten as

de(|mj(c), c|β)− 〈αi , |mj(c), c|β〉+
1
2
δi(c)i −

1
2
δρ(i)j(c).

Similarly, for a full positive loop around α′i , de(|mj(c), c|β) is changed to

de(|mj(c), c|β) + 〈αi , |mj(c), c|β〉+
1
2
δi(c)i −

1
2
δρ(i)j(c).

Now, since∑
(r,s)∈g2

Jsr〈αr , |mj(c), c|β〉〈αi ,βs〉 = 〈αi , |mj(c), c|β〉,

de(c) is changed to de(c) + 1
2δi(c)i −

1
2δρ(i)j(c) in both cases. �
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Proof (of Lemma 1 on the previous page). Note that e(D,w,m) does not depend on the
numberings of the diagram curves. We prove that e(D,w,m) does not depend on our
specific way of drawing the diagram with our conventions when the orientations of
the diagram curves are fixed. When the curves α′i and α′′i move in the plane without
being twisted, the de(c) stay in 1

2Z and are therefore invariant. Therefore it suffices
to prove that e(D,w,m) is invariant under a full twist of a curve α′i or a curve α′′i .
Since∑

c∈C
Jj(c)i(c)σ (c)(δi(c)i − δρ(i)j(c)) =

∑
c∈αi

Jj(c)iσ (c)−
∑
c∈βρ(i)

Jρ(i)i(c)σ (c) = 1− 1 = 0,

e(D,w,m) does not vary under these moves, thanks to Lemma 2 on the previous
page. It is not hard to prove that e(D,w,m) does not depend on the orientations of
the curves β. Changing the orientation of a curve α permutes α′i and α′′i and does
not modify e(D,w,m) either so that the lemma is proved. �

We will see that e(D,w,m) is also unchanged when the roles of the curves α and
the curves β are permuted, in Corollary 3 on p. 37.

2.2 More on s`(D,m)

Fix a point ai inside each disk D(αi) and a point bj inside each disk D(βj ). Then
join ai to each crossing c of αi by a segment [ai , c]D(αi ) oriented from ai to c in
D(αi), so that these segments only meet at ai for different c. Similarly define
segments [c,bj(c)]D(βj(c)) from c to bj(c) in D(βj(c)). Then for each c, define the flow line
γ(c) = [ai(c), c]D(αi(c)) ∪ [c,bj(c)]D(βj(c)). When γ(c) is smooth, γ(c) is a flow line closure
of a Morse function fM giving birth to D discussed in the introduction.

For each point ai in the disk D(αi) as in Section 1.1 on p. 18, choose a point a+
i

and a point a−i close to ai outside D(αi) so that a+
i is on the positive side of D(αi)

(the side of the positive normal) and a−i is on the negative side of D(αi). Similarly
fix points b+

j and b−j close to the bj and outside the D(βj ).
Then for a crossing c ∈ αi(c)∩βj(c), γ(c)‖ will denote the following chain. Consider

a small meridian curve m(c) of γ(c) on ∂HA, it intersects βj(c) at two points: c+
A on

the positive side of D(αi(c)) and c−A on the negative side of D(αi(c)). The meridian
m(c) also intersects αi(c) at c+

B on the positive side of D(βj(c)) and c−B on the negative
side of D(βj(c)). Let [c+

A, c
+
B], [c+

A, c
−
B], [c−A, c

+
B] and [c−A, c

−
B] denote the four quarters

of m(c) with the natural ends and orientations associated with the notation, as in
Figure 5 on the next page.

Let γ+
A(c) (resp. γ−A(c)) be an arc parallel to [ai(c), c]D(αi(c)) from a+

i(c) to c+
A (resp.

from a−i(c) to c−A) that does not meet D(αi(c)). Let γ+
B (c) (resp. γ−B(c)) be an arc parallel

to [c,bj(c)]D(βj(c)) from c+
B to b+

j(c) (resp. from c−B to b−j(c)) that does not meet D(βj(c)).

γ(c)‖ =
1
2

(γ+
A(c) +γ−A(c)) +

1
4

([c+
A, c

+
B] + [c+

A, c
−
B] + [c−A, c

+
B] + [c−A, c

−
B]) +

1
2

(γ+
B (c) +γ−B(c)).
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βj

αic

σ (c) = 1

c−B c+B

c−A
[c−A , c

−
B ]

[c+A , c
−
B ]

[c−A , c
+
B ]

[c+A , c
+
B ]

c+A

βj

αic

σ (c) = −1

c+B c−B

c−A
[c−A , c

+
B ]

[c+A , c
+
B ]

[c−A , c
−
B ]

[c+A , c
−
B ]

c+A

Figure 5 – m(c), c+
A, c−A, c+

B and c−B

Set ai‖ = 1
2 (a+

i + a−i ) and bj‖ = 1
2 (b+

j + b−j ). Then ∂γ(c)‖ = bj(c)‖ − ai(c)‖.
Recall our matching m = {mi ; i ∈ g} where mi ∈ αρ−1(i) ∩ βi , for a permutation ρ

of g, so that γi = γ(mi) goes from aρ−1(i) to bi .
Set

L(D,m) =
g∑
i=1

γi −
∑
c∈C
Jj(c)i(c)σ (c)γ(c).

Note that L(D,m) is a cycle since

∂L(D,m) =
g∑
i=1

(bi − ai)−
∑

(i,j)∈g2

Jji〈αi ,βj〉∂HA(bj − ai) = 0.

Set L(D,m)‖ =
∑g
i=1γi −

∑
c∈CJj(c)i(c)σ (c)γ(c)‖.

In this subsection, we prove the following proposition.

Proposition 1 – For any Heegaard diagram D equipped with a matching m,

s`(D,m) = lk(L(D,m),L(D,m)‖).

This proposition has the following easy corollary.

Corollary 1 – The real number s`(D,m) is an invariant of the Heegaard diagram D
equipped with m, which does not depend on the orientations and numberings of the
curves αi and βj , and which does not change when the roles of the α-curves or the
β-curves are permuted.

We first prove the following lemma, which will be useful later, too.

Lemma 3 – For any curve αi (resp. βj), choose a basepoint p(αi) (resp. p(βj )). These
choices being made, for any crossing c of C, define the triangle Tβ(c) in the disk D(βj(c))
such that

∂Tβ(c) = [p(β(c)), c]β + (γ(c)∩HB)− (γ(p(β(c)))∩HB).
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Similarly, define the triangle Tα(c) in the disk D(αi(c)) such that

∂Tα(c) = −[p(α(c)), c]α + (γ(c)∩HA)− (γ(p(α(c)))∩HA).

Let K =
∑
c∈C kcγ(c) be a cycle of M.

Let ΣT (K) =
∑
c∈C kc(Tα(c) + Tβ(c)) and

ΣD (K) =
∑

(i,j,c)∈g2×C

Jjikc
(
〈|p(α(c)), c|α ,βj〉D(αi)− 〈αi , |p(β(c)), c|β〉D(βj )

)
.

There exists a 2-chain ΣΣ(K) in ∂HA whose boundary ∂ΣΣ(K) is∑
(i,j,c)∈g2×C

Jjikc
(
〈αi , |p(β(c)), c|β〉βj − 〈|p(α(c)), c|α ,βj〉αi

)
+
∑
c∈C

kc([p(α(c)), c]α − [p(β(c)), c]β)

so that the boundary of

Σ(K) = ΣΣ(K) +ΣD (K) +ΣT (K)

is K .

Though it is not visible from the notation, the surfaces depend on the basepoints.

Proof (of Lemma 3 on the previous page).

∂ΣT (K)−K =
∑
c∈C

kc([p(β(c)), c]β − [p(α(c)), c]α)

is a cycle. Any 1-cycle σ of ∂HA is homologous to
∑

(i,j)∈g2 Jji(〈σ,βj〉αi + 〈αi ,σ〉βj ).
Therefore by pushing (∂ΣT (K)−K) in the directions of the positive and negative
normals to the α and the β in ∂HA, and by averaging, we see that (K −∂ΣT (K)) is
homologous in ∂HA to∑

(i,j,c)∈g2×C

Jjikc
(
〈|p(α(c)), c|α ,βj〉αi − 〈αi , |p(β(c)), c|β〉βj

)
,

which bounds

ΣD (K) =
∑

(i,j,c)∈g2×C

Jjikc
(
〈|p(α(c)), c|α ,βj〉D(αi)− 〈αi , |p(β(c)), c|β〉D(βj )

)
.

�
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Proposition 2 – For any curve αi (resp. βj), choose a basepoint p(αi) (resp. p(βj )).
These choices being fixed, set

˜̀(c,d) = 〈|p(α(c)), c|α , |p(β(d)),d|β〉 −
∑

(i,j)∈g2

Jji〈|p(α(c)), c|α ,βj〉〈αi , |p(β(d)),d|β〉.

Let K =
∑
c∈C kcγ(c) and L =

∑
d∈C gdγ(d) be two 1-cycles of M. Then

lk(K,L‖) = lk(L,K‖) =
∑

(c,d)∈C2

kcgd ˜̀(c,d).

Proof. The first equality comes from the symmetry of the linking number and from
the observation that lk(K,L‖) = lk(K‖,L). Compute lk(K,L‖) as the intersection of
L‖ with the surface bounded by K provided by Lemma 3 on p. 27. Thus lk(K,L‖) =
〈ΣΣ(K),L‖〉. Now, since L =

∑
d∈C gdγ(d) is a cycle,

L =
∑
d∈C

gd(γ(d)−γ(p(β(d))))

and it suffices to prove the result when L = γ(d) − γ(p(β(d))). For any path [x,y]
from a point x to a point y in ∂HA, when x and y are outside ∂ΣΣ(K),

〈x − y,ΣΣ(K)〉Σ = 〈[x,y],∂ΣΣ(K)〉∂HA .

Thus by averaging,

〈γ(d)‖ −γ(p(β(d)))‖,ΣΣ(K)〉 = 〈∂ΣΣ(K), |p(β(d)),d|β〉∂HA .

This is∑
c∈C

kc〈|p(α(c)), c|α , |p(β(d)),d|β〉∂HA

−
∑

(i,j,c)∈g2×C

kcJji
(
〈|p(α(c)), c|α ,βj〉〈αi , |p(β(d)),d|β〉∂HA

)
=

∑
c∈C

kc
(

˜̀(c,d)− ˜̀(c,p(β(d)))
)
. �

Proof (of Proposition 1 on p. 27). Apply Proposition 2 with the basepoints of m so
that ˜̀ = ˜̀

m. �
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2.3 More on `2(D)

Proposition 3 – For any curve αi (resp. βj), choose a basepoint p(αi) (resp. p(βj )).
These choices being made, for two crossings c and d of C, set

`(c,d) = 〈[p(α(c)), c|α , [p(β(d)),d|β〉 −
∑

(i,j)∈g2

Jji〈[p(α(c)), c|α ,βj〉〈αi , [p(β(d)),d|β〉

and ˜̀(c,d) = 〈|p(α(c)), c|α , |p(β(d)),d|β〉 −
∑

(i,j)∈g2 Jji〈|p(α(c)), c|α ,βj〉〈αi , |p(β(d)),d|β〉.
Then, for any 2-cycle G =

∑
(c,d)∈C2 gcd(γ(c)×γ(d)‖) of M2,

`(2)(G) =
∑

(c,d)∈C2

gcd`(c,d) =
∑

(c,d)∈C2

gcd ˜̀(c,d).

Furthermore, `(2)(G) is independent of the choices of the basepoints p(αi) or p(βj ),
and of the numberings and orientations of the curves αi or βj .

Proof. Let `′ be defined as ` except that the basepoint pi = p(αi) of αi is changed to
a basepoint qi . When c ∈ αi \ [pi ,qi[α ,

`′(c,d)−`(c,d) = −〈[pi ,qi[α , [p(β(d)),d|β〉+
∑

(r,j)∈g2

Jjr〈[pi ,qi[α ,βj〉〈αr , [p(β(d)),d|β〉 (1)

When c ∈ [pi ,qi[α , [qi , c|α \ [pi , c|α = [qi ,pi[α= αi \ [pi ,qi[α . Since

〈αi , [p(β(d)),d|β〉 =
∑

(r,j)∈g2

Jjr〈αi ,βj〉〈αr , [p(β(d)),d|β〉,

`′(c,d)− `(c,d) is given by formula (1), which does not depend on c ∈ αi in this case
either. Then∑

(c,d)∈C2

gcd(`′(c,d)− `(c,d)) =
∑

(c,d)∈αi×C
gcd(`′(c,d)− `(c,d)).

For any d ∈ C, since

∂(γ(c)×γ(d)‖) = (bj(c) − ai(c))×γ(d)‖ −γ(c)× (bj(d)‖ − ai(d)‖),∑
c∈αi gcd = 0. Since the right-hand side of formula (1) does not depend on c ∈ αi ,

this shows that
∑

(c,d)∈C2 gcd`(c,d) does not depend on the basepoint choice on αi .
Similarly, it does not depend on the choices of the basepoints on the βj .

Similarly,
∑

(c,d)∈C2 gcd`(c,d) =
∑

(c,d)∈C2 gcd ˜̀(c,d).
Using ˜̀, changing the orientation of αi changes |p(α(c)), c|α to −αi + |p(α(c)), c|α

for c ∈ αi , and does not change ˜̀(c,d). �
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3. The∞-combings X(w,m) and their p1

Remark 1 – Let [S] be the homology class of {x}×∂Bx in M̌2 \diagonal, where Bx is
a ball of M̌ and x is a point inside Bx. Then H2(M̌2 \diagonal;Q) = Q[S], and it is
proved in Lescop (2015a, Proposition 3.4) that the class of a 2-cycle

G =
∑

(c,d)∈C2

gcd(γ(c)×γ(d)‖)

in H2(M̌2 \diagonal;Q) is `(2)(G)[S]. Furthermore, for two disjoint 1-cycles K and L
of M̌, the class of K ×L in H2(M̌2 \diagonal;Q) is lk(K,L)[S] so that Proposition 2
on p. 29 provides an alternative proof of Lescop (2015a, Proposition 3.4) when G
is the product of two 1-cycles. This is the needed case to produce combinatorial
expressions of linking numbers involved in the variations of p1, which we are going
to study later.

Proposition 4 – Set

G(D) =
∑

(c,d)∈C2

Jj(c)i(d)Jj(d)i(c)σ (c)σ (d)(γ(c)×γ(d)‖)−
∑
c∈C
Jj(c)i(c)σ (c)(γ(c)×γ(c)‖).

Then G(D) is a 2-cycle of M2. Let `2(D) = `(2)(G(D)). Then `2(D) is an invariant of the
Heegaard diagram, which does not depend on the orientations and numberings of the
curves αi and βj . It does not change when the roles of the α-curves or the β-curves are
permuted either.

Proof. It is easy to prove that G(D) is a 2-cycle7.
Permuting the roles of the αi and the βj reverses the orientation of ∂HA and

changes J to the transposed matrix. It does not change `2(D) because of the
symmetry in the definition of `(2). �

3 The∞-combings X(w,m) and their p1

3.1 On the∞-combing X(w,m)

In order to finish our description of X(w,m) started in the introduction, we need
to describe the vector field that replaces the gradient field XfM in regular neighbor-
hoods N (γi = γ(mi)) of the flow lines γi associated with a matching m of D. Up to
renumbering and reorienting the βj , assume that mi ∈ αi ∩ βi to simplify notation.

Choose a natural trivialization (X1,X2,X3) of T M̌ on a regular neighborhood
N (γi) of γi , such that:

7See Lescop, 2015a, “A formula for the Θ-invariant from Heegaard diagrams”, proof of Proposi-
tion 3.2.
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• γi is directed by X1,

• the other flow lines never have X1 as an oriented tangent vector,

• (X1,X2) is tangent to the ascending manifold Ai of ai (except on the parts of
Ai near bi that come from other crossings of αi ∩βi), and (X1,X3) is tangent to
the descending manifold Bi of bi (except on the parts of Bi near ai that come
from other crossings of αi ∩ βi).

This parallelization identifies the unit tangent bundle UN (γi) of N (γi) with S2 ×
N (γi).

There is a homotopy h : [0,1]× (N (γi) \γi)→ S2, such that

• h(0, .) is the unit vector with the same direction as the gradient vector of the
underlying Morse function fM ,

• h(1, .) is the constant map to (−X1) and

• h(t,y) goes from h(0, y) to (−X1) along the shortest geodesic arc [h(0, y),−X1]
of S2 from h(0, y) to (−X1).

Let 2η be the distance between γi and ∂N (γi) and letX(y) = h(max(0,1−d(y,γi)/η), y)
on N (γi) \γi , and X = −X1 along γi .

Note that X is tangent to Ai on N (γi) (except on the parts of Ai near bi that
come from other crossings of αi ∩ βi), and that X is tangent to Bi on N (γi) (except
on the parts of Bi near ai that come from other crossings of αi ∩ βi). More generally,
project the normal bundle of γi to R

2 in the X1-direction by sending γi to 0, Ai
to an axis Li(A) and Bi to an axis Li(B). Then the projection of X goes towards 0
along Li(B) and starts from 0 along Li(A), it has the direction of sa(y) at a point y of
R

2 near 0, where sa is the planar reflexion that fixes Li(A) and reverses Li(B). See
Figure 6.

Li(B)

Li(A)
X2

X3

Figure 6 – Projection of X

Then X(y) is on the half great circle that contains sa(y), X1 and (−X1). In Figure 7
on the next page, γi is a vertical segment, all the other flow lines corresponding to
crossings involving αi go upward from ai , and X is simply the upward vertical field
in a neighborhood of γi ∪D(αi).
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βi

αi

γi

Figure 7 – γi

3.2 On p1(X(w,m))

A combing of a rational homology 3-sphere M is a homotopy class of sections of
the unit tangent bundle UM of M. Recall that ∞-combings are defined in the
introduction. Invariants p1 of ∞-combings and combings of rational homology
3-spheres M are invariants valued in Q, which have been introduced and studied in
Lescop (2015b) as extensions of a relative first Pontrjagin class from parallelizations
to combings.

For a combing that extends to a parallelization τ , the map p1 coincides with
the Hirzebruch defect (or Pontrjagin number) of the parallelization τ , studied in
Hirzebruch (1973), Kirby and Melvin (1999), Lescop (2004a), and Lescop (2013).
For a parallelization τ : M ×R3→ TM of a 3-manifold M that bounds a connected
oriented 4-dimensional manifold W with signature 0, p1(τ) is defined as the evalua-
tion at the fundamental class of [W,∂W ] of the relative first Pontrjagin class of TW
equipped with the trivialization of TW|∂W that is the stabilization by the “outward
normal exterior first” of τ . For∞-combings that extend to parallelizations standard
near∞, p1 is defined similarly by replacing W by a connected oriented signature
0 cobordism Wc with corners between B(1) and the rational homology ball BM . A
neighborhood of the boundary

∂Wc = −B(1)
⋃

∂B(1)∼0×B(1)

(−[0,1]×∂B(1))
⋃

∂BM∼1×∂B(1)

BM ,

of such a cobordism is naturally identified with an open subspace of one of the
products [0,1[×B(1) or ]0,1]×BM near ∂Wc, so that the standard parallelization of
R

3 and τ induce a trivialization of TWc|∂Wc
by stabilizing by the “tangent vector to

[0,1] first”. For more details, see Lescop (2004a, Section 1.5).
Recall that any smooth compact oriented 3-manifold M can be equipped with a

parallelization τ . When such a parallelization τ of M is given, for M̃ =M or M̌, two
sections X and Y of UM̃ induce a map (X,Y ) : M̃→ S2 × S2. Such sections are said
to be transverse if the graphs of the induced maps (X,Y ) and (X,−Y ) are transverse
to M̃ × diag(S2 × S2) in M̃ × S2 × S2, where −Y denotes the section opposite to Y .
This is generic and independent of τ . For two transverse sections X and Y , let
LX=Y be the preimage of the diagonal of S2 under the map (X,Y ). Thus LX=Y is an
oriented link, which is cooriented by the fiber of the normal bundle to the diagonal

33



A combinatorial definition of the Θ-invariant from Heegaard diagrams C. Lescop

of (S2)2. In Lescop (2015b, Theorem 1.2), we proved that our extensions p1 satisfy
the following property, which finishes defining them, unambiguously.

Theorem 1 – When X and Y are two transverse representative sections of∞-combings
(resp. combings) of a rational homology 3-sphere M,

p1(Y )− p1(X) = 4lk(LX=Y ,LX=−Y ).

In Lescop (2015b, Section 4.3), we also proved that p1 coincides with the in-
variant θG defined by Gompf in Gompf (1998, Section 4), for combings of rational
homology 3-spheres.

The following properties of p1 are easy to deduce from its definition.

Proposition 5 – The map p1 has the following properties.

• A constant nonzero section N of TR3 represents an ∞-combing [N ] of S3 such
that p1([N ]) = p1(N ) = 0.

• Let M be a rational homology 3-sphere equipped with a representative section X
of an ∞-combing (resp. of a combing). Let M ′ be a rational homology 3-sphere
equipped with a representative section X ′ of an ∞-combing. Assume that X ′

coincides with a constant section N of B(1) on ∂BM ′ and that there is a standard
ball B(1) embedded in M̌ where X coincides with N . Replacing this embedded ball
(B(1),N ) by (BM ′ ,X ′) gives rise to a representative section of an∞-combing (resp.
of a combing) X ′′ of the obtained manifold such that p1(X ′′) = p1(X) + p1(X ′).

• Changing the orientation of M changes p1(X) to −p1(X).

Let ξ be an oriented plane bundle over a compact oriented surface S and let σ be
a nowhere vanishing section of ξ on ∂S. The relative Euler number e(ξ,S,σ ) of σ is
the algebraic intersection of an extension of σ to S with the zero section of ξ. When
S is connected, it is the obstruction to extending σ as a nowhere vanishing section
of ξ. The following proposition is a direct corollary of consequences of Theorem 1
derived in Lescop (2015b).

Proposition 6 – Let m and m′ be two matchings of D. Let L(m′ ,m) = L(D,m′)−L(D,m),
and let Σ(L(m′ ,m)) be a compact oriented surface bounded by L(m′ ,m) in M \ (S3 \B(1)).
Consider the four following fields Y ++, Y +−, (Y −+ = −Y +−) and (Y −− = −Y ++) in a
neighborhood of the γ(c). Y ++ and Y +− are positive normals for Ai (which is oriented
like D(αi)) on Ai ∩ f −1

M (] −∞,3]), and Y ++ and Y −+ are positive normals for Bj on
Bj ∩ f −1

M ([3,+∞[). These four fields are orthogonal to X(w,m) over L(m′ ,m) and they
define parallels L(m′ ,m)‖Y ε,η of L(m′ ,m) obtained by pushing in the Y ε,η-direction. Then

p1(X(w,m′))− p1(X(w,m)) = −
∑

(ε,η)∈{+,−}2
lk(L(m′ ,m),L(m′ ,m)‖Y ε,η ) +E(w,m′ ,m)
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where

E(w,m′ ,m) = −
∑

(ε,η)∈{+,−}2
e(X(w,m)⊥,Σ(L(m′ ,m)),Y ε,η)

Proof. Set L = L(m′ ,m). Construct a cable L2 of L locally obtained by pushing
one copy of L in each direction normal to the Bj , except near the ai where L2
sits in Ai . Define the field Z over L2 such that, at a point k of L2, Z has the
direction of the vector from the closest point to k on L towards k. Thus X(w,m′) =
D(X(w,m),L,L2,Z,−1) with the notation of Proposition 4.21 in Lescop (2015b).

Then ((L‖Y +,+ ,L‖Y −,− ), (Y +,+,Y −,−)) is obtained from (L2,Z) by some half-twists
and

((L‖Y +,− ,L‖Y −,+ ), (Y +,−,Y −,+))

is obtained from (L2,Z) by the opposite half-twists. Then according to Proposi-
tion 4.21 in Lescop (2015b), with the notation of Lescop (2015b, Definition 4.16),

p1(X(w,m′)) =
1
2
p1(D(X(w,m),L,L‖Y +,+ ,Y +,+,−1))

+
1
2
p1(D(X(w,m),L,L‖Y +,− ,Y +,−,−1)).

Thus p1(X(w,m′)) = 1
4
∑

(ε,η)∈{+,−}2 p1(D(X(w,m),L,L‖Y ε,η ,Y ε,η ,−1)) and, according
to Lescop (2015b, Proposition 4.18 and Lemma 4.14),

p1(X(w,m′))− p1(X(w,m)) = −
∑

(ε,η)∈{+,−}2
lk(L(m′ ,m),L(m′ ,m)‖Y ε,η )

−
∑

(ε,η)∈{+,−}2
e(X(w,m)⊥,Σ(L(m′ ,m)),Y ε,η). �

Combinatorial expressions for
∑

(ε,η)∈{+,−}2 lk(L(m′ ,m),L(m′ ,m)‖Y ε,η ) may be de-
duced from Propositions 2 and 3 on p. 29 and on p. 30. A combinatorial expression
for E(w,m′ ,m) will be given in Proposition 7 on p. 37.

The following theorem will be proved in Section 4.5 on p. 43.

Theorem 2 – Let L(w′ ,w) be the union of the closures of the flow line through w′ and
the reversed flow line through w.

p1(X(w′ ,m))− p1(X(w,m)) = 8lk(L(D,m),L(w′ ,w)).

Proposition 10 on p. 47 together with the definition of L(D,m) before Propo-
sition 1 on p. 27 will provide a combinatorial expression for lk(L(D,m),L(w′ ,w)).
Proposition 9 and Corollary 4 on p. 41 and on p. 48 provide other ones.
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4 On the variations of p1(X(w,m))

4.1 More on the variation of p1 when m changes

Lemma 4 – Let K =
∑
c∈C kcγ(c) be a cycle of M, and let Σ(K) be a surface bounded by

K in M̌. For (ε,η) ∈ {+,−}2, let Y ε,η be the field defined in Proposition 6 on p. 34 along
the γ(c). Then∑

(ε,η)∈{+,−}2
e(X(w,m)⊥,Σ(K),Y ε,η) = −4

∑
c∈C

kcde(c)

where de is defined before Lemma 1 on p. 25 with respect to our initial data, which
involve (w,m).

Proof. Set X(m) = X(w,m). Since M is a rational homology 3-sphere, the Euler
number e(X(m)⊥,Σ(K),Y ε,η) does not depend on the surface Σ(K). Choose the
surface constructed in Lemma 3 on p. 27 with the points of m as basepoints. After
removing the neighborhood N (γ(w)) of the flow line through w, f −1

M (] − ∞,0])
behaves as a product by the rectangle RD of Figure 3 on p. 23 and has the product
parallelization induced by the vertical vector field and the parallelization of RD.
This parallelization extends to the one-handles ofHA as the standard parallelization
of R3 in Figure 7 on p. 33 so that it naturally extends to f −1

M (]−∞,3]), it furthermore
extends to the neighborhood of the favourite flow lines in Figure 7 on p. 33. The first
vector of this parallelization is X(m) and its second vector is everywhere orthogonal
to D(αi). It can be chosen to be Y ε,η . In a symmetric way, X(m)⊥ has a unit
section that coincides with the second vector of the above parallelization on the
neighborhoods of the favourite flow lines in Figure 7 on p. 33 and that is orthogonal
to D(βi) on f −1

M ([4,∞[) \N (γ(w)). Thus e(X(m)⊥,Σ(K),Y ε,η) reads∑
c∈C

kce(X(m)⊥, |mj(c), c|β × [3,4],Y ε,η)

−
∑

(i,j,c)∈g2×C

Jjikc〈αi , |mj(c), c|β〉e(X(m)⊥,βj × [3,4],Y ε,η)

where

de(|mj(c), c|β) = −1
4

∑
(ε,η)∈{+,−}2

e(X(m)⊥, |mj(c), c|β × [3,4], Ỹ ε,η)

de(βs) = −1
4

∑
(ε,η)∈{+,−}2

e(X(m)⊥,βs × [3,4], Ỹ ε,η)

with respect to our partial extensions Ỹ ε,η of Y ε,η , as in Lescop (2015a, Lemma 7.5).�
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4. On the variations of p1(X(w,m))

We get the following proposition as a direct corollary of Lemma 4 on the preced-
ing page :

Proposition 7 – Under the hypotheses of Proposition 6 on p. 34, if m′ = {dj }j∈g , then

E(w,m′ ,m) = 4
g∑
j=1

de(dj )

where de is defined with respect to our initial data, which involve (w,m).

Note that Lemma 2 on p. 25 independently implies that
∑g
j=1 de(dj ) only depends

on (w,m,m′).
Lemma 4 on the preceding page also yields the following second corollary, which

is Lescop (2015a, Proposition 7.2), which in turn yields Corollary 3.

Corollary 2 – Let Σ(L(D,m)) be a surface bounded by L(D,m) in M̌.

e(D,w,m) =
1
4

∑
(ε,η)∈{+,−}2

e(X(w,m)⊥,Σ(L(D,m)),Y ε,η)

Corollary 3 – e(D,w,m) is unchanged when the roles of the curves α and the curves β
are permuted.

Proof. Permuting the roles of the curves α and the curves β reverses the orienta-
tion of L(D,m) and changes X(w,m) to its opposite while the set {Y ε,η}(ε,η)∈{+,−}2 is
preserved. �

4.2 Associating a closed combing to a combing

The Heegaard surface f −1
M (0) of our Morse function fM is obtained by gluing the

complement DR of a rectangle in a sphere S2 to the boundary of the rectangle RD
of Figure 3 on p. 23. Let DR × [−2,7] denote the intersection of f −1

M ([−2,7]) with
the flow lines through DR so that fM is the projection to [−2,7] on DR × [−2,7] and
the flow lines read {x} × [−2,7] there. Similarly, our Morse function fM reads as the
projection on the interval on

f −1
M ([−2,0]∪ [6,8]) =

(
S2 × [−2,0]

)
∪

(
S2 × [6,8]

)
while f −1

M ([−3,−2]) and f −1
M ([7,9]) are balls centered at a minimum and a maximum

mapped to −3 and 9, respectively.
The combing X(w,m) of Section 3.1 on p. 31 of BM can be extended as a closed

combing X(M,w,m), which is obtained from the tangent Xφ to the flow lines outside

BM by reversing it along the line {w}×]− 3,9[ as follows:
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Let us first describe X(M,w,m) on DR × [−2,8]. Let D be a small disk of DR
centered at w. Reverse the flow on {w} × [−2,8] so that it coincides with the tangent
Xφ to the flow outside D × [−2,8], and so that on a ray of D × {t} directed by a
vector Z from the center, it describes the half great circle [−Xφ,Xφ]Z from (−Xφ)
to Xφ through Z, if t ∈ [−2,7]. Then on S2 × {−2}, X is naturally homotopic to the
restriction to the boundary of a constant field of B3. See Figure 8 for a vertical
section of the ball centered at the minimum where the constant vector field points
downward. We extend it as such.

w

Figure 8 – The vector field near a minimum in a planar section of f −1
M ([−3,−2])

Now, on S2 × {7}, X looks like in Figure 9. It would naturally be homotopic
to the restriction to the boundary of a constant field of B3 if the half great circle
[−Xφ,Xφ]Z from (−Xφ) to Xφ through Z went through (−Z). Let ρXφ ,θ denote the
rotation with axis Xφ and with angle θ. For t ∈ [7,8], on a ray of D × {t} directed by
a vector Z from the center, let X describe the half great circle [−Xφ,Xφ]ρXφ,(t−7)π(Z)

from (−Xφ) to Xφ through ρXφ ,(t−7)π(Z). Now, we extend X as the constant field of

B3, which we see near the maximum, to obtain the closed combing X(M,w,m).

w

On S2 × {7}

w

On S2 × {8}

Figure 9 – The vector field near a maximum

Lemma 5 – (p1(X(M,w,m))− p1(X(w,m))) is a constant independent of M, w and m.

Proof. This follows from the second item in Proposition 5 on p. 34 since the combing
in the outside ball is unambiguously defined. �

4.3 An abstract expression for the variation of p1 when w varies

This section is devoted to the proof of the following proposition, which describes
the variation of the Pontrjagin class p1(X(w,m)) when w varies.
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4. On the variations of p1(X(w,m))

Proposition 8 – Let w and w′ be two exterior points of D. Let [w,w′]α be a path on
∂HA from w to w′ disjoint from the αi and let [w′ ,w]β be a path on ∂HA from w′ to w
disjoint from the βj . Set [w,w′]β = −[w′ ,w]β . Assume that the tangent vectors of [w,w′]α
and [w,w′]β at w and w′ coincide. Let

L([w,w′]α , [w
′ ,w]β) = ([w,w′]α × {2})∪ ({w′} × [2,4])∪

(
[w′ ,w]β × {4}

)
∪ ({w} × [4,2]) .

Let ε = ±1. Let Y be a vector field defined on L([w,w′]α , [w′ ,w]β) that is tangent to the
Morse levels ∂HA×{t} and that is an ε-normal (positive if ε = 1 and negative otherwise) to
[w,w′]α×{2} and a (−ε) normal to [w′ ,w]β×{4}. Let L([w,w′]α , [w′ ,w]β)‖Y be the induced
parallel of L([w,w′]α , [w′ ,w]β). Let Σ be a surface bounded by L([w,w′]α , [w′ ,w]β). Then

p1(X(w′ ,m)))− p1(X(w,m)))

= 4e(X(w,m)⊥,Σ,Y )− 4lk(L([w,w′]α , [w
′ ,w]β),L([w,w′]α , [w

′ ,w]β)‖Y ).

Proof. First note that X(M,w,m) directs {w′} × [2,4] and {w} × [4,2] so that the right-
hand side of the equality above is independent of the field Y that satisfies the
conditions of the statement. Let L(w′ ,w) be the knot of M that is the union of
the closures of {w′}×]− 3,9[ and {w} × (−]− 3,9[). Let X̃(M,w′ ,m) be obtained from
X(M,w,m) by reversing X(M,w,m) along L(w′ ,w), where X(M,w,m) is tangent to
L(w′ ,w). In this situation, there is a standard way of reversing (namely the one
that was used along {w} × [−2,7] in Section 4.2 on p. 37) by choosing a framing that
determines both the parallel and the orthogonal field.

Proposition 8 is the direct consequence of Lemma 5 on the preceding page and
of the following three lemmas.

Lemma 6 – There exists a constant C0 independent of (M,w,w′ ,m) such that

p1(X̃(M,w′ ,m))− p1(X(M,w,m)) = 4e(X(w,m)⊥,Σ,Y ) + 4C0

− 4lk(L([w,w′]α , [w
′ ,w]β),L([w,w′]α , [w

′ ,w]β)‖Y ).

Lemma 7 – There exists a constant C1 independent of (M,w,w′ ,m) such that

p1(X̃(M,w′ ,m))− p1(X(M,w′ ,m)) = 4C1.

Lemma 8 – The constants C0 and C1 coincide.

Proof (of Lemma 6). Let T ([w,w′]α) be the (closure of the) past of [w,w′]α×{2} under
the flow. This is a triangle and we can assume that it is smoothly embedded (near
the minimum). Similarly, let T ([w′ ,w]β) be the future of [w′ ,w]β × {4} under the
flow, assume without loss that it intersects S2 × {7} as a half-great circle, so that it
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intersects f −1
M ([7,9]) as a hemidisk denoted by T7([w′ ,w]β). Orient T ([w,w′]α) and

T ([w′ ,w]β) so that

∂(Σ+ T ([w,w′]α) + T ([w′ ,w]β)) = L(w′ ,w).

Then Y extends to T ([w,w′]α) as the (ε)-normal on T ([w,w′]α), which is in
X(M,w,m)⊥. Similarly, Y extends to T ([w′ ,w]β) as the (ε)-normal on T ([w′ ,w]β),
it is a unit vector field, which is in X(M,w,m)⊥ outside the interior of T7([w′ ,w]β).
Use Y to frame L(w′ ,w). Then, according to Lescop (2015b, Proposition 4.18 and
Lemma 4.14) where η = 1,

p1(X̃(M,w′ ,m))− p1(X(M,w,m))

= 4e(X(M,w,m)⊥,Σ+ T7([w′ ,w]β),Y )− 4lk(L(w′ ,w),L(w′ ,w)‖Y )

where

e(X(M,w,m)⊥,T7([w′ ,w]β ,Y ) = C0

for a constant C0 independent of (M,w,w′ ,m), and

lk(L(w′ ,w),L(w′ ,w)‖Y ) = lk(L([w,w′]α , [w
′ ,w]β),L([w,w′]α , [w

′ ,w]β)‖Y ). �

Proof (of Lemma 7 on the previous page). Recall that D is a small disk of ∂HA cen-
tered atw. The vector fields X̃(M,w′ ,m) andX(M,w′ ,m) coincide outside f −1

M ([−3,−2]∪
[7,9])∪D × [−2,7]. This is a ball where the definition of these fields is unambiguous
and independent of (M,w,w′ ,m). �

Proof (of Lemma 8 on the previous page). According to the previous lemmas, for any
(M,w,w′ ,m),

p1(X(M,w′ ,m))− p1(X(M,w,m))

= −4lk(L([w,w′]α , [w
′ ,w]β),L([w,w′]α , [w

′ ,w]β)‖Y )

+ 4e(X(w,m)⊥,Σ,Y ) + 4(C0 −C1).

When M is S3 equipped with a Morse function with 2 extrema and no other
critical points, and when w and w′ are two points of S2 related by a geodesic arc
[w,w′]α = −[w′ ,w]β , it is easy to see that the first two terms of the right-hand side
add up to zero, so that (C0 −C1) = 0. �

4.4 A combinatorial formula for the variation of p1 whenw varies

Now, we give an explicit formula for the right-hand side of Proposition 8 on the
previous page.
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4. On the variations of p1(X(w,m))

Proposition 9 – Assume that w is on the upper side of the rectangle RD of Figure 3
on p. 23. Assume that [w,w′]α and [w,w′]β = −[w′ ,w]β point downward near w and
w′ and that [w,w′]β is on the same side of [w,w′]α near w and w′ as in Figure 10. Let

d
(w)
e ([w,w′]α) be the degree of the tangent map to [w,w′]α on the rectangle RD of Figure 3

on p. 23. Let d(w)
e ([w,w′]β) be the degree of the tangent map to [w,w′]β on RD, where

[w,w′]β intersects the α′j and the α′′j on their vertical portions opposite to the crossings of
m, with horizontal tangencies. Then

p1(X(w′ ,m))− p1(X(w,m)) = p′1(m;w,w′)

where

p′1(m;w,w′) = 4d(w)
e ([w,w′]α)− 4d(w)

e ([w,w′]β)

+ 4
∑

(i,j)∈g2

Jji〈αi , [w,w′]β〉d
(w)
e (βj )

− 4〈]w,w′[α , ]w,w′[β〉

+ 4
∑

(i,j)∈g2

Jji〈αi , [w,w′]β〉〈[w,w′]α ,βj〉.

w

[w,w′ ]α

[w,w′ ]β

w′

Figure 10 – [w,w′]α and [w,w′]β

Proof. Define the field Y of Proposition 8 on p. 39 along {w′} × [2,4] and {w} × [4,2],
as the field pointing to the right in Figure 10, which is preserved by the flow
along {w′} × [2,4] and {w} × [4,2], so that it is always normal to [w,w′]α × [2,4] or
[w,w′]β × [2,4] along {w′} × [2,4] and {w} × [4,2]. Let L = L([w,w′]α , [w′ ,w]β) and
let L‖ = L‖Y . The proposition follows by applying Proposition 8 on p. 39, with
the computations of Lemmas 9 and 11 on the current page and on the next page
(replacing [w,w′]β = −[w′ ,w]β). �

Lemma 9 – We have

lk
(
L,L‖

)
= −〈]w,w′[α , ]w′ ,w[β〉+

∑
(i,j)∈g2

Jji〈αi , [w′ ,w]β〉〈[w,w′]α ,βj〉.
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In order to prove Lemma 9 on the previous page, we will use the following
lemma.

Lemma 10 – There is a surface Σ([w,w′]α , [w′ ,w]β) in ∂HA \ D̊R such that

∂Σ([w,w′]α , [w
′ ,w]β) = [w,w′]α −

∑
(i,j)∈g2

Jji〈[w,w′]α ,βj〉αi

+ [w′ ,w]β −
∑

(i,j)∈g2

Jji〈αi , [w′ ,w]β〉βj .

Let w′E be a point very close to w′ on its right-hand side. Then

〈Σ([w,w′]α , [w
′ ,w]β),w′E〉∂HA = −〈]w,w′[α , ]w′ ,w[β〉

+
∑

(i,j)∈g2

Jji〈αi , [w′ ,w]β〉〈[w,w′]α ,βj〉.

Proof. Since the prescribed boundary ∂Σ([w,w′]α , [w′ ,w]β) is a cycle that does not
intersect the αi and the βj , algebraically, the surface Σ([w,w′]α , [w′ ,w]β) exists. Let
wE be a point very close to w on its right-hand side. Along a path ]wE ,w′E[α parallel
to ]w,w′[α , the intersection of a point with Σ([w,w′]α , [w′ ,w]β) starts with the value
0 and varies when the path meets ∂Σ([w,w′]α , [w′ ,w]β) so that

〈Σ([w,w′]α , [w
′ ,w]β),w′E〉∂HA = −〈]wE ,w′E[α ,∂Σ([w,w′]α , [w

′ ,w]β)〉
= −〈]wE ,w′E[α , ]w

′ ,w[β〉

+
∑

(i,j)∈g2

Jji〈αi , [w′ ,w]β〉〈]wE ,w′E[α ,βj〉. �

Proof (of Lemma 9 on the previous page). L bounds

Σ0 = Σ([w,w′]α , [w
′ ,w]β) + ([w,w′]α × [2,3])− ([w′ ,w]β × [3,4])

+
∑

(i,j)∈g2

Jji〈[w,w′]α ,βj〉D(αi) +
∑

(i,j)∈g2

Jji〈αi , [w′ ,w]β〉D(βj )

The link L‖Y = L([w,w′]α , [w′ ,w]β)‖Y does not meet the D(αi) and the D(βj ).
Therefore its intersection with Σ0 is the intersection of w′E with Σ([w,w′]α , [w′ ,w]β)
so that Lemma 10 yields the conclusion. �

Lemma 11 – Let Σ1 be a surface bounded by L in M. Then

e(X(w,m)⊥,Σ1,Y ) = d
(w)
e ([w,w′]α)− d(w)

e ([w,w′]β)

−
∑

(i,j)∈g2 Jji〈αi , [w′ ,w]β〉d
(w)
e (βj ).
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Proof. Let Σ2 = Σ([w,w′]α , [w′ ,w]β)× {2} with the surface Σ([w,w′]α , [w′ ,w]β) ⊂ ∂HA
of Lemma 10 on the preceding page. The link L bounds

Σ1 = Σ2 − [w′ ,w]β × [2,4] +
∑

(i,j)∈g2

Jji〈[w,w′]α ,βj〉D≤2(αi)

+
∑

(i,j)∈g2

Jji〈αi , [w′ ,w]β〉D≥2(βj )

where D≤2(αi) =D(αi)∩ f −1
M ([−3,2]) and D≥2(βj ) =D(βj )∪ βj × [2,3].

Define a field YE on L such that YE and Y coincide on L \ ([w,w′]α × {2}) and YE
points East or to the right in Figure 3 on p. 23 along [w,w′]α × {2} so that

e(X(w,m)⊥,Σ1,Y ) = e(X(w,m)⊥,Σ1,YE) + d(w)
e ([w,w′]α).

Extend YE to the product by [2,4] of a short vertical segment [w,w(S)] from w to
some point w(S) below w, such that X(w,m) directs w × [4,2] and w(S) × [2,4], and
X(w,m) is tangent to [w,w(S)]× [2,4]. Truncate the rectangle of Figure 10 on p. 41 so
that w(S) is on its boundary and w(S) replaces w in the right-hand side of the equality
of the statement without change. Now, X(w,m) is orthogonal to this rectangle.

In order to compute e(X(w,m)⊥,Σ1,YE), we will first define extensions of YE on
the pieces of Σ1, independently, and we will next compare our extensions on the
boundary’s pieces where they do not match.

On one hand, extend YE to f −1
M ([0,2]) \ (DR × [0,2]) as the field YE that points

East or to the right in Figures 3, 7 and 10 on p. 23, on p. 33 and on p. 41 so that it is
normal to the D≤2(αi). Use this extension on the D≤2(αi) and on Σ2. On the other
hand, extend YE to D≥2(βj ) and to [w′ ,w]β × [2,4] as a field normal to these surfaces.

Now, compute the Euler class of YE with respect to Σ1, by comparing these two
extensions to the standard one above, on [w,w′]β ×{2}+

∑
(i,j)∈g2 Jji〈αi , [w′ ,w]β〉(βj ×

{2}).

e(X(w,m)⊥,Σ1,YE) = −d(w)
e ([w,w′]β)−

∑
(i,j)∈g2

Jji〈αi , [w′ ,w]β〉d
(w)
e (βj ).

�

4.5 Proof of Theorem 2 on p. 35

Thanks to Proposition 9 on p. 41, in order to prove Theorem 2 on p. 35, we are left
with the proof that

p′1(m;w,w′) = 8lk(L(D,m),L(w′ ,w))

where p′1(m;w,w′) is defined in the statement of Proposition 9 on p. 41 and L(w′ ,w)
is the union of the closures of the flow line through w′ and the reversed flow line
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through w. In order to prove this, fix an exterior point w0 of D, and define p′′1 (w),
for any exterior point w of D, as

p′′1 (w) = p′1(m;w0,w)− 8lk(L(D,m),L(w,w0)).

Lemma 12 – p′′1 satisfies the following properties:

• p′′1 (w) only depends on the connected component of w in the complement of the αi
and the βj in the closed surface ∂HA,

• p′′1 (w0) = 0,

• For any 4 points w, S, E, N located around a crossing d <m, as in Figure 11

p′′1 (N ) + p′′1 (S) = p′′1 (w) + p′′1 (E).

αi(d)

βj(d)

w

E

N

S

Figure 11 – Near d

Proof. The first two properties come from the definition. Let us prove the third one.
Set

D = (p′′1 (N ) + p′′1 (S)− (p′′1 (w) + p′′1 (E)))

Note that D is independent of w0, thanks to Proposition 9 on p. 41, and that it
reads D =D1 − 8D2 with

D1 = p′1(m;w,N ) + p′1(m;w,S)− p′1(m;w,E) and D2 = lk(L(N,w) +L(S,E),L(D,m))

and

p′1(m;w,w′) = 4d(w)
e ([w,w′]α)− 4d(w)

e ([w,w′]β)

+ 4
∑

(i,j)∈g2

Jji〈αi , [w,w′]β〉d
(w)
e (βj )

− 4〈Σ([w,w′]α , [w
′ ,w]β),w′E〉∂HA

according to Proposition 9 on p. 41 and Lemma 10 on p. 42.
We are going to prove that

D1 = 8D2 = −8σ (d)Jj(d)i(d).
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Let us first compute D1. Its computation involves paths [w,w′]α and [w,w′]β
starting from w on the upper side of the rectangle RD of Figure 3 on p. 23, before
reaching a point w′ =N , S or E. We assume that all these paths begin by following a
first path [w,w̃] that connects w to a point w̃ near d in the complement of the curves
αi and βj in RD and that this path [w,w̃] has tangent vectors pointing downward
at its ends. The degree of the path [w,w̃] does not matter since it is counted twice

with opposite sign in (d(w)
e ([w,w′]α)− d(w)

e ([w,w′]β)). Thus we may change w to w̃
in p′1(m;w,w′) or equivalently assume that w arises near d as in Figure 11 on the
preceding page split along αi(d) and embedded in Figure 3 on p. 23 as soon as we
translate our initial conventions for tangencies near the boundaries. Now (keeping
the first composition by [w,w̃] in mind) we can draw our paths [w̃,S]α and [w̃,N ]β
in Figure 12 where w̃ is denoted by w. These paths together with the other drawn
paths [N,E]α and [S,E]β bound a “square” C around d. In Figure 12, there are also
dashed paths [w,N ]α and [w,S]β , which may be complicated outside the pictured
neighborhood of our square, but which meet this neighborhood as in the figure.
We choose [w,E]α (resp. [w,E]β) to be the path composition of [w,N ]α and [N,E]α
(resp. [w,S]β and [S,E]β).

αi(d)

βj(d)

w
[w,N ]β

[w,S]α

[N,E]α

S E EE

N

[S,E]β

[w,N ]α [w,S]β

Figure 12 – Near d

With these choices, the contribution to D1 of the parts

d
(w)
e ([w,w′]α)− d(w)

e ([w,w′]β) +
∑

(i,j)∈g2

Jji〈αi , [w,w′]β〉d
(w)
e (βj )

cancel. When w′ is E, N or S, let Σ(w′) = Σ([w,w′]α , [w′ ,w]β), with the notation of
Lemma 10 on p. 42. Then

D1 = 4〈Σ(E),EE〉 − 4〈Σ(N ),NE〉 − 4〈Σ(S),SE〉
= −4〈Σ(N ) +Σ(S)−Σ(E),EE〉 − 4〈[NE ,EE],∂Σ(N )〉 − 4〈[SE ,EE],∂Σ(S)〉

where ∂(Σ(N ) + Σ(S) − Σ(E)) = [w,S]α − [N,E]α + [N,w]β − [E,S]β so that (Σ(N ) +
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Σ(S)−Σ(E)) is our square and 〈Σ(N ) +Σ(S)−Σ(E),EE〉 = 0,

〈[NE ,EE]α ,∂Σ(N )〉 = 〈[NE ,EE]α , [N,w]β −
∑

(i,j)∈g2

Jji〈αi , [N,w]β〉βj〉

= σ (d)Jj(d)i(d)

〈[SE ,EE]β ,∂Σ(S)〉 = 〈−[w,S]α +
∑

(i,j)∈g2

Jji〈[w,S]α ,βj〉αi , [SE ,EE]β〉

= σ (d)Jj(d)i(d)

Then D1 = −8σ (d)Jj(d)i(d).
In order to compute D2, construct a Seifert surface for L(N,w) +L(S,E) made of

• two triangles parallel to the D(β) with bottom boundaries [w,N ]β and [E,S]β ,

• two triangles parallel to the D(α) with top edges [S,w]α and [N,E]α ,

• our square C bounded by ([N,w]β ∪ [w,S]α ∪ [S,E]β ∪ [E,N ]α), which is a
meridian of γ(d).

w

E

N

S

[S,E]β

[w,S]α

Figure 13 – A Seifert surface of L(N,w) +L(S,E)

Therefore D2 = −σ (d)Jj(d)i(d). �

Now, we conclude as follows. According to the above lemma, the variation of p′′1
across a curve αi or βj is constant so that the variation of p′′1 along a path γ reads∑

i

vi〈γ,αi〉+
∑
j

wj〈γ,βj〉

for some vi and wj independent of γ . Since this is zero for any loop γ , the vi and the
wj vanish, and the function p′′1 is constant. Then it is identically zero and Theorem 2
on p. 35 is proved.
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5 Behaviour of Θ̃ when w and m vary

In this section, we compute the variations of Θ̃(w,m) = Θ̃(D,w,m) when w and
m change for a fixed D, and we find that these variations coincide with the vari-
ations of 1

4p1(X(w,m)) computed in the previous section. Thus we prove that(
Θ̃(w,m)− 1

4p1(X(w,m))
)

is independent of (w,m).

5.1 Changing w

Let us first prove the next proposition, which is similar to Proposition 2 on p. 29.

Proposition 10 – Let w and w′ be two exterior points of D. Let L(w′ ,w) be the union of
the closures of the flow line through w′ and the reversed flow line through w,

let [w,w′]α be a path from w to w′ outside the αi . Choose a basepoint p(βj ) for any
curve βj . For any 1-cycle K =

∑
c∈C kcγ(c),

lk(K,L(w′ ,w)) =
∑
c∈C

kc〈[w,w′]α , [p(β(c)), c|β〉

−
∑

(j,i)∈g2

∑
c∈C

kcJji〈αi , [p(β(c)), c|β〉〈[w,w′]α ,βj〉

where β(c) = βj(c).

Proof. As in Lemma 3 on p. 27, K bounds a chain

Σ(K) = ΣΣ(K) +
∑
c∈C

kc(Tβ(c) + Tα(c))

−
∑

(j,i)∈g2

∑
c∈C

kcJji
(
〈αi , |p(β(c)), c|β〉D(βj )− 〈|p(α(c)), c|α ,βj〉D(αi)

)
where ΣΣ(K) is a chain of ∂HA \ {w} with boundary

∂ΣΣ(K) =
∑
c∈C

kc(|p(α(c)), c|α − |p(β(c)), c|β)

+
∑

(j,i)∈g2

∑
c∈C

kcJji
(
〈αi , |p(β(c)), c|β〉βj − 〈|p(α(c)), c|α ,βj〉αi

)
.

Now, lk(L,L(w′ ,w)) is the intersection ofw′ and ΣΣ(K), which is 〈−[w,w′]α ,∂ΣΣ(K)〉.�

Lemma 13 – Let w and w′ be two exterior points of D. Let [w,w′]α be a path of
Σ \ (∪gi=1αi) from w to w′ . Set

Θ̃′ = Θ̃(w′ ,m)− Θ̃(w,m) = e(D,w,m)− e(D,w′ ,m).
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Then

Θ̃′ = 2
∑
c∈C
Jj(c)i(c)σ (c)

 ∑
(r,s)∈g2

Jsr〈αr , |mj(c), c|β〉〈[w,w′]α ,βs〉 − 〈[w,w′]α , |mj(c), c|β〉

 .
Proof. Pick a vertical path [w,w′]α from a point w in the boundary of the rectangle
of Figure 3 on p. 23 to the point w′ that cuts horizontal parts of the β curves. When
w is changed to w′ , the portions or arcs near the intersection points with [w,w′]α are
transformed to arcs that turn around the whole picture of Figure 3 on p. 23. This
operation adds 2 to the degree of an arc oriented from left to right. See Figure 14.

w

w′

w

w′

Figure 14 – Changing w to w′

Therefore

d
(w′)
e (βs)− d

(w)
e (βs) = 2〈[w,w′]α ,βs〉

and

d
(w′)
e (|mj(c), c|β)− d(w)

e (|mj(c), c|β) = 2〈[w,w′]α , |mj(c), c|β〉. �

Corollary 4 – Let L(w′ ,w) be the union of the closures of the flow line through w′ and
the reversed flow line through w.

Θ̃(w′ ,m)− Θ̃(w,m) = 2lk(L(D,m),L(w′ ,w)) =
1
4
p1(X(w′ ,m))− 1

4
p1(X(w,m)).

Proof. This follows from Lemma 13 on the previous page, Proposition 10 on the
previous page and Theorem 2 on p. 35. �

5.2 Changing m

Let m′ = {di ∈ αi ∩ βψ−1(i)} be another matching for a permutation ψ. The matching
m′ replaces our initial matching m of positive crossings mi ∈ αi ∩ βi .

Set L(m) = L(D,m) and L(m′) = L(D,m′).
Let L(m′ ,m) = L(m′)−L(m) =

∑g
i=1(γ(di)−γi).

This subsection is devoted to the proof the following proposition.
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Proposition 11 – Under the assumptions above,

Θ̃(w,m′)− Θ̃(w,m) =
1
4
p1(X(w,m′))− 1

4
p1(X(w,m)).

This proposition is a direct corollary of Propositions 6, 7 and 12 on p. 34, on
p. 37 and on the current page so that we are left with the proof of Proposition 12.

Proposition 12 – Under the assumptions above,

Θ̃(w,m′)− Θ̃(w,m) = lk(L(m′),L(m′)‖)− lk(L(m),L(m)‖) + e(D,w,m)− e(D,w,m′)

=
g∑
i=1

de(di)− lk(L(m′ ,m),L(m′ ,m)‖).

Here, de is defined with respect to our initial data, which involve w and m.

Proposition 12 is a direct consequence of Lemma 14 and Lemma 15, which will
be proved at the end of this subsection.

Lemma 14 – We have

lk(L(m′),L(m′)‖)− lk(L(m),L(m)‖) = 2lk(L(m′ ,m),L(m′)‖)− lk(L(m′ ,m),L(m′ ,m)‖).

Proof. Use the symmetry of the linking number, and replace L(m) = L(m′)−L(m′ ,m).�

Lemma 15 – We have

e(D,w,m′)− e(D,w,m) = 2lk(L(m′ ,m),L(m′)‖)−
g∑
j=1

de(dj )

where de(dψ(j)) = de(|mj ,dψ(j)|β)−
∑g
s=1

∑g
i=1Jsi〈αi , |mj ,dψ(j)|β〉de(βs).

Lemma 16 – The number lk(L(m′ ,m),L(m′)‖) is equal to

g∑
i=1

∑
c∈C

σ (c)Jj(c)i(c)

 ∑
(s,r)∈g2

Jsr〈|mi ,di |α ,βs〉〈αr , |dψ(j(c)), c|β〉


−

g∑
i=1

∑
c∈C

σ (c)Jj(c)i(c)
(
〈|mi ,di |α , |dψ(j(c)), c|β〉

)
.

Proof. Use Proposition 3 on p. 30 with p(αi) =mi , p(βj ) = dψ(j), and ˜̀. �
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α′i α′′i

mi mi didi

α′i

mi di

α′′i

midi

Figure 15 – Making the crossings move around

Proof (of Lemma 15 on the previous page). Move the crossings of [mi ,di], counterclock-
wise along α′′i and clockwise along α′i as in Figure 15 so that mi and di make half
a loop and the crossings of ]mi ,di[ make a (almost) full loop until they reach the
standard position with respect to di .

As in the proof of Lemma 1 on p. 25, on both sides of each crossing c of ]mi ,di[
the degree is incremented by (−σ (c)), and it is incremented by (−σ (mi)/2) on both
sides of mi and by (−σ (di)/2) on both sides of di so that after this modification the
degree d′e(βj ) of βj reads

d′e(βj ) = de(βj )− 2
g∑
i=1

〈|mi ,di |α ,βj〉.

Before this modification, the degree de(|dψ(j(c)), c|β) of the tangent to βj from
dψ(j(c)) to c wasde(|dψ(j(c)),mj(c)|β) + de(|mj(c), c|β) if c ∈ [mj(c),dψ(j(c))[β

de(|dψ(j(c)),mj(c)|β) + de(|mj(c), c|β)− de(βj(c)) if c ∈ [dψ(j(c)),mj(c)[β .

After the modification, it reads

d′e(|dψ(j(c)), c|β) = de(|dψ(j(c)), c|β)− 2
g∑
i=1

〈|mi ,di |α , |dψ(j(c)), c|β〉.

Now

e(D,w,m′) =
∑
c∈C
Jj(c)i(c)σ (c)d′e(c)

where d′e(c) = d′e(|dψ(j(c)), c|β)−
∑

(r,s)∈g2Jsr〈αr , |dψ(j(c)), c|β〉d′e(βs). Thus

e(D,w,m′)− e(D,w,m) = e1(w,m,m′)− e2(w,m,m′)

where

e1(w,m,m′) =
∑
c∈C
Jj(c)i(c)σ (c)

(
d′e(|dψ(j(c)), c|β)− de(|mj(c), c|β)

)
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and e2(w,m,m′) is equal to∑
c∈C
Jj(c)i(c)σ (c)

∑
(r,s)∈g2

Jsr
(
〈αr , |dψ(j(c)), c|β〉d′e(βs)− 〈αr , |mj(c), c|β〉de(βs)

)
.

We have

e1(w,m,m′) =
∑
c∈C
Jj(c)i(c)σ (c)de(|dψ(j(c)),mj(c)|β)−

∑
c∈[dψ(j(c)),mj(c)[β

Jj(c)i(c)σ (c)de(βj(c))

− 2
∑
c∈C
Jj(c)i(c)σ (c)

g∑
i=1

〈|mi ,di |α , |dψ(j(c)), c|β〉

=
g∑
j=1

de(|dψ(j),mj |β)−
g∑
j=1

g∑
i=1

Jji〈αi , [dψ(j),mj [β〉de(βj )

− 2
∑
c∈C
Jj(c)i(c)σ (c)

g∑
i=1

〈|mi ,di |α , |dψ(j(c)), c|β〉.

Since
(
〈αr , |dψ(j(c)), c|β〉d′e(βs)− 〈αr , |mj(c), c|β〉de(βs)

)
is equal to

− 2〈αr , |dψ(j(c)), c|β〉
g∑
i=1

〈|mi ,di |α ,βs〉+ 〈αr , |dψ(j(c)),mj(c)|β〉de(βs)

−χ[dψ(j(c)),mj(c)[β (c)〈αr ,βj(c)〉de(βs),

where χ[dψ(j(c)),mj(c)[β (c) =

1 if c ∈ [dψ(j(c)),mj(c)[β
0 otherwise.

We have

e2(w,m,m′) = −2
∑
c∈C
Jj(c)i(c)σ (c)

∑
(r,s,i)∈g3

Jsr〈|mi ,di |α ,βs〉〈αr , |dψ(j(c)), c|β〉

+
∑

(r,s,j)∈g3

Jsr〈αr , |dψ(j),mj |β〉de(βs)

−
∑

(r,s,j)∈g3

Jsr
g∑
i=1

Jji〈αi , [dψ(j),mj [β〉〈αr ,βj〉de(βs)

= −2
∑
c∈C
Jj(c)i(c)σ (c)

∑
(r,s,i)∈g3

Jsr〈|mi ,di |α ,βs〉〈αr , |dψ(j(c)), c|β〉

+
∑

(r,s,j)∈g3

Jsr〈αr , |dψ(j),mj |β〉de(βs)(Cont. next page)
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−
∑

(i,j)∈g2

Jji〈αi , [dψ(j),mj [β〉de(βj ).

Therefore, according to Lemma 16 on p. 49,

e(D,w,m′)− e(D,w,m) = 2lk(L(m′ ,m),L(m′)‖) +V

where

V =
g∑
j=1

de(|dψ(j),mj |β)−
∑

(r,s,j)∈g3

Jsr〈αr , |dψ(j),mj |β〉de(βs)

= −
g∑
j=1

de(|mj ,dψ(j)|β) +
∑

(r,s,j)∈g3

Jsr〈αr , |mj ,dψ(j)|β〉de(βs)

+
g∑
j=1

de(βj )−
∑

(r,s,j)∈g3

Jsr〈αr ,βj〉de(βs).

Since the last line vanishes, we get the result. �

Corollary 4 and Proposition 11 on p. 48 and on p. 49 allow us to define the
function λ̃ of Heegaard diagrams

λ̃(D) =
Θ̃(D,w,m)

6
−
p1(X(w,m))

24
,

which does not depend on the orientations and numberings of the curves αi and
βj , and which is also unchanged by permuting the roles of the αi and βj , thanks to
Corollary 3 on p. 37.

6 Invariance of λ̃

In this section, we are first going to prove that λ̃ only depends on the Heegaard
decomposition induced by D of M, and not on the curves αi and βj . Then it will be
easily observed that λ̃ is additive under connected sum of Heegaard decompositions
and that λ̃ maps the genus one Heegaard decomposition of S3 to 0. Since according
to the so-called Reidemeister-Singer theorem, two Heegaard decompositions of a
3-manifold become diffeomorphic after some connected sums with this Heegaard
decomposition of S3, we will conclude that λ̃ is an invariant of rational homology
3-spheres, which is additive under connected sum.
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6.1 Systems of meridians of a handlebody

A handle slide in a system {αi}i∈g of meridians of a curve αk across a curve αj , with
j , k, is defined as follows: Choose a path γ in ∂HA from a point γ(0) ∈ αk to a point
γ(1) ∈ αj such that γ(]0,1[) does not meet ∪i∈gαi and change αk to the band sum α′k
of αk and a parallel of αj on the γ-side as in Figure 16.

αk αj
γ αjα′k

Figure 16 – Handle slide in ∂HA

A right-handed Dehn twist about a simple closed curve K(S1) of a surface F is
a homeomorphism of F that fixes the exterior of a collar K(S1)× [−π,π] of K in F
pointwise, and that maps (K(exp(iθ)), t) to (K(exp(i(θ + t +π))), t).

In order to prove that λ̃ only depends on the Heegaard decompositions and not
on the chosen systems {αi}i∈g and {βj }j∈g of meridians of HA and HB we will use the
following standard theorem.

Theorem 3 – Up to isotopy, renumbering of meridians, orientation reversals of merid-
ians, two meridian systems of a handlebody are obtained from one another by a finite
number of handle slides.

Proof. Let {αi}i∈g and {α′i }i∈g be two systems of meridians of HA. There exists an
orientation-preserving diffeomorphism of HA that maps the first system to the
second one.

See HA as the unit ball B(1) of R3 with embedded handles D(αi)× [0,1] attached
along D(αi) × ∂[0,1], so that there is a rotation ρ of angle 2π

g of R
3 that maps

HA to itself and that permutes the handles, cyclically. See the meridians disks
bounded by the αi as disks D(αi) =D(αi)× {12 } that cut the handles. Let Hi denote
the handle of αi . In Suzuki (1977, Theorem 4.1), Suzuki proves that the group of
isotopy classes of orientation-preserving diffeomorphisms of HA is generated by 6
generators represented by the following diffeomorphisms

• the rotation ρ above of Suzuki (1977, p. 3.1), which permutes the αi , cyclically,

and the remaining 5-diffeomorphisms, which fix all the handles Hi , for i > 2,
pointwise,

• the knob interchange ρ12 of Suzuki (1977, p. 3.4), which exchanges H1 and
H2 and maps α1 to α2 and α2 to α1,

• the knob twist ω1 of Suzuki (1977, p. 3.2), which fixes H2 pointwise, and
which maps α1 to the curve with opposite orientation, (it is the final time
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of an ambient isotopy of R3 that performs a half-twist on a disk of HA that
contains the two feet (D(α1)× {0} and D(α1)× {1}) of the handle H1),

• the right-handed Dehn twist τ−1
1 of Suzuki (1977, p. 3.3) along a curve parallel

to α1,

• the sliding ξ12 of Suzuki (1977, 3.5 and 3.9), which is the final time of an
ambient isotopy of R3 ×R that fixes the handles Hi , for i > 2, pointwise, and
that lets one foot of H1 slide along a circle parallel to α2 once,

• the sliding θ12 of Suzuki (1977, 3.5 and 3.8), which is the final time of an
ambient isotopy of R3 that fixes the handles Hi , for i > 2, pointwise, and that
lets one foot of H1 slide along a circle a2 that cuts α2 once and that does not
meet the interiors of the Hi , for i , 2.

All these generators are described more precisely in Suzuki (1977, Section 3). All of
them except θ12 fix the set of curves αi seen as unoriented curves, while θ12 fixes
all the curves αi , for i , 2 pointwise. When the foot of H1 moves along the circle
a2, the curves that cross a2 move with it, so that the meridian α2 is changed as in
Figure 17, which is a figure of a handle slide of α2 across α1. �

α2

a2

foot of H1

a2

θ12(α2)

Figure 17 – Action of θ12 on α2

6.2 Isotopies of systems of meridians

When the αi are fixed on ∂HA, and when the βj vary by isotopy, the only generic
encountered accidents are the births or deaths of bigons, which modify the Heegaard
diagram as in Figure 18, which represents the birth of a bigon between an arc of αi
and an arc of βj .

αi

βj

αi

β′j

Figure 18 – Birth of a bigon

Therefore, in order to prove that λ̃ is invariant when the βj (or the αi) are moved
by an isotopy, it is enough to prove the following proposition:
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Proposition 13 – For any Heegaard diagram D and D′ such that D′ is obtained from D
by a birth of a bigon as above.

λ̃(D′) = λ̃(D).

Since we know that changing the orientation of αi does not modify λ̃, we assume
that our born bigon is one of the two bigons shown in Figure 19, with two arcs going
from a crossing e to a crossing f , without loss.

αiβ′j αi β′j

e
f

e
f

Figure 19 – The considered two bigons

We fix a matching m for D = ((αi), (βj )) and the same one for D′ , and an exterior
point w of D′ outside the bigon so that w is also an exterior point of D.

Lemma 17 – We have

p1(X(D,w,m)) = p1(X(D′ ,w,m))

Proof. The two fields X(D,w,m) and X(D′ ,w,m) may be assumed to coincide outside
a ball that contains the past and the future in f −1

M ([−2,7]) of a disk of HA around
the bigon, with respect to a flow associated with D′. Since both fields are positive
normals to the level surfaces of fM on this ball they are homotopic. �

Now, Proposition 13 is a direct consequence of Lemmas 18 and 19 on the current
page and on the next page.

Lemma 18 – We have

`2(D′) = `2(D) +Jji /2
s`(D′ ,m) = s`(D,m)

Proof. Let C be the set of crossings of D. Note that σ (f ) = −σ (e). With the notations
of Proposition 4 on p. 31,

G(D′)−G(D) =
∑
c∈C
Jj(c)iJji(c)σ (c)σ (f )γ(c)× (γ(f )−γ(e))‖

+
∑
d∈C
Jji(d)Jj(d)iσ (d)σ (f )(γ(f )−γ(e))×γ(d)‖

+J 2
ji (γ(f )−γ(e))× (γ(f )−γ(e))‖

−Jjiσ (f )(γ(f )×γ(f )‖ −γ(e)×γ(e)‖).
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Use Proposition 3 on p. 30 to compute `(2)(G(D′)−G(D)) with the basepoints of
m, so that for any c ∈ C,

`(c, f )− `(c,e) = 〈[p(α(c)), c|α , |e, f |β〉 −
∑

(k,`)∈g2

J`k〈[p(α(c)), c|α ,β`〉〈αk , |e, f |β〉 = 0

since 〈αk , |e, f |β〉 = 0 for any k, and 〈[p(α(c)), c|α , |e, f |β〉 = 0 for any c ∈ C. Similarly,
for any d ∈ C, `(e,d) = `(f ,d) and

`(f − e, f − e) = 〈|e, f |α , |e, f |β〉 = 0.

Finally,

`2(D′)− `2(D) = −Jjiσ (f )(`(f , f )− `(e,e))

where

`(f , f )− `(e,e) = 〈[e, f |α , [e, f |β〉 − 〈[e,e|α , [e,e|β〉 = σ (e) +
1
4
σ (f )− 1

4
σ (e) = −1

2
σ (f )

so that `2(D′)− `2(D) = 1
2Jji . Similarly, s`(D′ ,m) = s`(D,m). �

Lemma 19 – We have

e(D′ ,w,m) = e(D,w,m) +Jji /2.

Proof. Adding a bigon changes Figure 3 on p. 23 as in Figure 20.

α′i α′′i
βj

α′i α′′i
β′j

e

f
or

α′i α′′i
βj

α′i α′′i
β′j

e

f

Figure 20 – Adding a bigon

In particular, the de(βs) of Section 1.5 on p. 23 are unchanged, and so are the de(c),
for c ∈ C. Then e(D′ ,w,m)− e(D,w,m) = Jjiσ (f )de(|e, f |β), which is 1

2Jji , according
to Figure 20. �

Remark 2 – If the two arcs of the bigon did not begin at the same vertex, then Jji
would be replaced by −Jji in the results of Lemmas 18 and 19 on the previous page
and on the current page.
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6.3 Handle slides

This section is devoted to proving that λ̃ is invariant under handle slide. Since λ̃
depends neither on the orientations of the curves αi and βj , nor on their numberings,
and since permuting the roles of the αi and βj does not change λ̃, it is sufficient to
study a handle slide that transforms D to a diagram D′ by changing β1 to a band
sum β′1 of β1 and the parallel β+

2 of β2 (on its positive side) as in Figure 21. Up to
the isotopies treated in the previous section, we may assume that the path γ from
β1 to β2 does not meet the curves αi , without loss, and we do. The first crossing on
β+

2 will be called e+. It corresponds to a crossing e ∈ αi(e) ∩ β2 as in Figure 21.

β1 β2
γ

αi(e)
e

e+

β2
β′1

Figure 21 – The considered handle slide

Fix w outside a neighborhood of the path γ and β2 so that it makes sense to say
that w is the same for D and D′. Fix a matching m for D. Assume m = {mi}i∈g and
mi ∈ αi ∩ βi (by renumbering the α curves if necessary). The set C′ of crossings of
D′ contains C so that m is also a matching for D′ .

Under these assumptions, we are going to prove that λ̃(D′) = λ̃(D) by proving
the following lemmas.

Lemma 20 – We have

p1(X(D,w,m)) = p1(X(D′ ,w,m)).

Lemma 21 – We have

`2(D′)− `2(D) =
∑

c∈β2,d∈[e,c|β

σ (c)σ (d)J1i(c)J2i(d)

def
=

∑
c∈β2,d∈[e,c[β

σ (c)σ (d)J1i(c)J2i(d) +
1
2

∑
c∈β2

J1i(c)J2i(c).

Lemma 22 – We have

s`(D′ ,m)− s`(D,m) =
∑

d∈β2,c∈[e,d|β

σ (c)σ (d)J1i(c)J2i(d) −
∑

c∈[e,m2 |β

σ (c)J1i(c).

Lemma 23 – We have

e(D′ ,w,m)− e(D,w,m) =
∑

c∈|m2,e[β

σ (c)J1i(c).
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Since∑
c∈|m2,e[β

σ (c)J1i(c) +
∑

c∈[e,m2 |β

σ (c)J1i(c) =
∑
c∈β2

σ (c)J1i(c) =
g∑
i=1

J1i〈αi ,β2〉 = 0

and the sum∑
c∈β2,d∈[e,c|β

σ (c)σ (d)J1i(c)J2i(d) +
∑

d∈β2,c∈[e,d|β

σ (c)σ (d)J1i(c)J2i(d)

is equal to∑
(c,d)∈β2

2

σ (c)σ (d)J1i(c)J2i(d) = 0,

these four lemmas imply that λ̃(D′) = λ̃(D).

Proof (of Lemma 20 on the previous page). Let X = X(D,w,m) and X ′ = X(D′ ,w,m).
First note that X and X ′ coincide in HA. We describe a homotopy (Yt)t∈[0,1] from
Y0 = (−X) and Y1 = (−X ′) on HB .

See (−X) in HB as the upward vertical field in the first picture of Figure 23 on
the next page. This field is an outward normal to HB except around w, which is not
shown in our figures, and around the crossings of m, more precisely on the gray
disks Di shown in Figure 22. Inside the disks Di , (−X) is an inward normal to HB .
On the boundary of this disk, it is tangent to the surface. Our homotopy will fix
(−X) in the neighborhood of w where (−X) is not an outward normal to HB , and the
locus of ∂HB where Yt is a positive (resp. negative) normal to HB will not depend
on t. Thus this homotopy can be canonically modified (without changing the locus
where Yt is a positive (resp. negative) normal to HB) so that Yt is fixed on ∂HB .

αi

βi

γi

Figure 22 – The front part of the disk Di where the field points inward the surface

Observe that there is no loss in assuming that the path γ from β1 to β2 that
parametrizes the handle slide is as in the first picture of Figure 23 on the next
page. The next pictures describe various positions of HB under an ambient isotopy
(ht)t∈[0,1] of R3, which first moves the handle of β2 upward (second picture), slides it
over the handle of β1 (fourth picture), moves the handle of β1 upward (fifth picture)
and replaces the slid foot of H2 in its original position by letting it slide away from
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the handles (last picture). The isotopy (ht)t∈[0,1] starts with h0, which is the Identity,
and finishes with a homeomorphism h1 of R3 that maps HB to itself. Let

#»
N be the

upward vector field of R3. Then (ht)−1
∗ (

#»
N |ht(HB )) defines a homotopy of nowhere

zero vector fields from Y0 = (−X) and Y1 = (−X ′) on HB that behaves as wanted on
the boundary. �

α2

β2
γ2

α1

β1

γ

α2

β2

γ

α1

β1

α2

β2

α1

β′1

α1

β′1

β2

α1

β′1

β2

α2

β2

α1

β′1

Figure 23 – Handle slide

Let us start with common preliminaries for the proofs of the remaining three
lemmas.

Set J ′2i = J2i −J1i . For any interval I of an αr , 〈I,β′1〉 = 〈I,β1 + β+
2 〉 and〈

I,J1iβ
′
1 +J ′2iβ2

〉
=

〈
I,J1iβ1 +J2iβ2 +J1i(β

+
2 − β2)

〉
.

Set J ′ji = Jji for any (j, i) such that j , 2. Every quantity associated with D′ will
have a prime superscript. Our definitions of the J ′ji ensure that〈

αk ,
∑
j

J ′jiβ
′
j

〉
=

〈
αk ,

∑
j

Jjiβj
〉

= δik ,

for any i and k, as required.
Let C2 be the set of crossings of D on β2, and let C+

2 be the set of crossings of D′
on β+

2 , C+
2 is in natural one-to-one correspondence with C2 and the crossing of C+

2
that corresponds to a crossing c of C2 will be denoted by c+.

C′ = C ∪C+
2 .

Proof (of Lemma 23 on p. 57). Without loss, assume that β2 goes from right to left
at the place of the band sum as in Figure 24 on the next page. Then β1 is above β2
and it goes from left to right. Thus after the band sum, the degree of β′1 is increased
by (−1/2) before and after β+

2 and by (1/2) before and after m2.
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β2

β1

→
β2

β′1

α′2 α′′2

m2 m2

β′1β′1

σ (m2) = 1

α′2 α′′2

m2 m2

β′1β′1

σ (m2) = −1

Figure 24 – Variation of de

Therefore d′e(β
′
1) = de(β1) + de(β2), and, for any i,

g∑
j=1

J ′jid
′
e(β
′
j ) =

g∑
j=1

Jjide(βj ).

Then for any c that is not in [e+,m1[β′1 , d′e(c) = de(c). Since

de(β2)−
∑

(r,s)∈g2

Jsr〈αr ,β2〉de(βs) = 0,

for any c ∈ [e+,m1[β′1\β
+
2 , d′e(c) = de(c), too, so that

e(D′ ,w,m)− e(D,w,m) =
∑
c∈β2

J1i(c)σ (c)(d′e(c
+)− de(c)).

For c ∈ β2,

d′e(c
+)− d′e(e+) =


de(c)− de(e) if c ∈]e,m2[
de(c)− de(e) + 1 if c ∈]m2, e[
de(c)− de(e) + 1

2 if c =m2. �

For the remaining two lemmas, for any 2-cycle G =
∑

(c,d)∈(C′)2 gcd(γ(c)×γ(d)‖) of

M2, we compute `(2)(G) with Proposition 3 on p. 30 with

`(c,d) = 〈[p(α(c)), c|α , [p(β(d)),d|β〉 −
∑

(i,j)∈g2

J ′ji〈[p(α(c)), c|α ,β′j〉〈αi , [p(β(d)),d|β〉

where p(β2) = e and p(β′1) is the first crossing of β′1 after β+
2 on β1, the p(αi) are not

on β+
2 , and, if p(αi) ∈ β2, then σ (p(αi)) = 1 (up to changing the orientation of αi).

This map `(2) may be used for any 2-cycle G =
∑

(c,d)∈C2 gcd(γ(c)× γ(d)‖) of M2, as
well, and we use it.

(The map contructed from ` by adding∑
i∈g
J1i〈[p(α(c)), c|α ,β+

2 − β2〉〈αi , [p(β(d)),d|β〉
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to `(c,d) when c ∈ β2 would clearly give rise to an appropriate map `(2) with re-
spect to the diagram D. Since 〈[p(α(c)), c|α ,β+

2 − β2〉 = −1
2 for any c ∈ β2, and since∑

(c,d)∈C2;c∈β2
gcd = 0 for any d as in the proof of Proposition 3 on p. 30, ` works as

well.)

Lemma 24 – Recall C′ = C ∪C+
2 . Let (c,d) ∈ C2.

• If c ∈ β2, then

`(c+,d)− `(c,d) +
1
2

g∑
i=1

J2i〈αi , [p(β(d)),d|β〉 =


0 if d < β2

0 if d ∈ β2 and c < [e,d]β
1
2 if d ∈ β2 and c ∈ [e,d[β
1
4 if c = d.

• If d ∈ β2, then

`(c,d+)− `(c,d) =


1
2δj(c)2 −

1
2 if c ∈ [e,d[β

1
2δj(c)2 −

1
4 if c = d

1
2δj(c)2 if c < [e,d]β .

• If (c,d) ∈ C2
2 , then

`(c+,d+)− `(c+,d) = `(c,d+)− `(c,d).

Proof. Let (c,d) ∈ C2. Assume c ∈ β2. If σ (c) = 1, then

`(c+,d)− `(c,d) = 〈|c,c+|α , [p(β(d)),d|β〉 −
∑

(i,j)∈g2

J ′ji〈|c,c
+|α ,β′j〉〈αi , [p(β(d)),d|β〉

= 〈|c,c+|α , [p(β(d)),d|β〉 −
1
2

g∑
i=1

(J ′2i +J ′1i)〈αi , [p(β(d)),d|β〉.

If σ (c) = −1,

`(c+,d)− `(c,d) = −〈|c+, c|α , [p(β(d)),d|β〉 −
1
2

g∑
i=1

J2i〈αi , [p(β(d)),d|β〉.

Let d ∈ β2. For any interval I of an αi , 〈I, [p(β′1),d+|β〉 = 〈I,β1 + [e+,d+|β〉.

`(c,d+)− `(c,d) = 〈[p(α(c)), c|α ,β1 + [e+,d+|β − [e,d|β〉

−
∑

(i,j)∈g2

J ′ji〈[p(α(c)), c|α ,β′j〉〈αi ,β1 + [e+,d+|β − [e,d|β〉
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where

〈αi ,β1 + [e+,d+|β − [e,d|β〉 = 〈αi ,β1〉, = 〈αi ,β′1 − β
′
2〉∑

(i,j)∈g2

J ′ji〈[p(α(c)), c|α ,β′j〉〈αi ,β
′
1 − β

′
2〉 =

∑
j∈g

(δj1 − δj2)〈[p(α(c)), c|α ,β′j〉

= 〈[p(α(c)), c|α ,β′1 − β
′
2〉

= 〈[p(α(c)), c|α ,β1 + β+
2 − β2〉,

and 〈[p(α(c)), c|α ,β+
2 − β2〉 = −1

2
δj(c)2

so that

`(c,d+)− `(c,d) =
1
2
δj(c)2 + 〈[p(α(c)), c|α , [e+,d+|β − [e,d|β〉

=


1
2δj(c)2 −

1
2 if c ∈ [e,d[β

1
2δj(c)2 −

1
4 if c = d

1
2δj(c)2 if c < [e,d]β .

When c ∈ β2, we similarly get `(c+,d+) − `(c+,d) = 1
2 + 〈[p(α(c)), c+|α , [e+,d+|β −

[e,d|β〉 so that `(c+,d+)− `(c+,d) = `(c,d+)− `(c,d). �

Proof (of Lemma 22 on p. 57). Set L = L(D,m) =
∑g
i=1γi −

∑
c∈CJj(c)i(c)σ (c)γ(c) and

L′ = L(D′ ,m). Then

L′ −L =
∑
c∈C2

J1i(c)σ (c)(γ(c)−γ(c+))

is a cycle and

lk(L′ ,L′‖)− lk(L,L‖) = `((L′ −L)× (L′ −L)) + 2`((L′ −L)×L)

thanks to the symmetry of the linking number in Proposition 2 on p. 29.
The last assertion of Lemma 24 on the previous page guarantees that

`((L′ −L)× (L′ −L)) = 0.

Now, `((L′ −L)×L) = `1 + `2 with

`1 =
∑

c∈C2,i∈g
J1i(c)σ (c)(`(c,mi)− `(c+,mi))

where m = {mi}i∈g and mi ∈ αi ∩ βi and

`2 =
∑

c∈β2,d∈C
J1i(c)σ (c)Jj(d)i(d)σ (d)(`(c+,d)− `(c,d)).
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Since the part
(

1
2
∑g
i=1J2i〈αi , [p(β(d)),d|β〉

)
that occurs in the expressions of

(`(c+,d)−`(c,d)) in Lemma 24 on p. 61 is independent of c, the factor
∑
c∈β2
J1i(c)σ (c),

which vanishes, makes it disappear so that

`((L′ −L)×L) = ˜̀
1 + ˜̀

2

where

˜̀
1 = −1

2

 ∑
c∈[e,m2[β

σ (c)J1i(c) +
1
2
σ (m2)J12

 = −1
2

∑
c∈[e,m2 |β

σ (c)J1i(c)

and

˜̀
2 =

1
2

∑
d∈β2,c∈[e,d|β

σ (c)σ (d)J1i(c)J2i(d).

�

Proof (of Lemma 21 on p. 57). Recall

`2(D) =
∑

(c,d)∈C2

Jj(c)i(d)Jj(d)i(c)σ (c)σ (d)`(c,d)−
∑
c∈C
Jj(c)i(c)σ (c)`(c,c).

Define the projection q : C′ →C such that q(c) = c if c ∈ C and q(c+) = c if c ∈ β2.
Since a crossing c of β2 gives rise to two crossings c and c+ of C′ whose coefficients
J ′2r and J ′1r add up to J2r ,

`2(D) =
∑

(c,d)∈(C′)2

J ′j(c)i(d)J
′
j(d)i(c)σ (c)σ (d)`(q(c),q(d))−

∑
c∈C′
J ′j(c)i(c)σ (c)`(q(c),q(c))

so that

`2(D′)− `2(D) =
∑

(c,d)∈(C′)2

J ′j(c)i(d)J
′
j(d)i(c)σ (c)σ (d)(`(c,d)− `(q(c),q(d)))

−
∑
c∈C2

J ′1i(c)σ (c)(`(c+, c+)− `(c,c)).

Write `(c,d)− `(q(c),q(d)) = `(c,d)− `(c,q(d)) + `(c,q(d))− `(q(c),q(d)).

`(c,d+)− `(c,d) = `(q(c),d+)− `(q(c),d) =


1
2δj(c)2 −

1
2 if q(c) ∈ [e,d[β

1
2δj(c)2 −

1
4 if q(c) = d

1
2δj(c)2 if q(c) < [e,d]β

for d ∈ C2 so that

`2(D′)− `2(D) =
1
2

∑
d∈C2

∑
c∈C2

(J ′2i(d) +J ′1i(d))J
′

1i(c)σ (c)σ (d)(Cont. next page)
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− 1
2

∑
d∈C2

∑
c∈[e,d|β

(J ′2i(d) +J ′1i(d))J
′

1i(c)σ (c)σ (d) +A

− 1
4

∑
c∈C2

J ′1i(c)σ (c)−
∑
c∈C2

J ′1i(c)σ (c)(`(c+, c)− `(c,c))

where

A =
∑

(c,d)∈(C′)2

J ′j(c)i(d)J
′
j(d)i(c)σ (c)σ (d)(`(c,q(d))− `(q(c),q(d)))

=
∑

(c,d)∈C′×C
J ′j(c)i(d)Jj(d)i(c)σ (c)σ (d)(`(c,d)− `(q(c),d))

=
∑

(c,d)∈C2×C
J ′1i(d)Jj(d)i(c)σ (c)σ (d)(`(c+,d)− `(c,d))

= −1
2

∑
(c,d)∈C2×C

J ′1i(d)Jj(d)i(c)σ (c)σ (d)

 g∑
i=1

J2i〈αi , [p(β(d)),d|β〉


+

1
2

∑
d∈C2,c∈[e,d|β

J ′1i(d)J2i(c)σ (c)σ (d)

= −1
2

g∑
i=1

∑
d∈C2

J ′1i(d)σ (d)J2i〈αi , [p(β(d)),d|β〉

+
1
2

∑
d∈C2,c∈[e,d|β

J ′1i(d)J2i(c)σ (c)σ (d)

= 0,

∑
d∈C2

∑
c∈C2

(J ′2i(d) +J ′1i(d))J
′

1i(c)σ (c)σ (d) =
∑
d∈C2

(J ′2i(d) +J ′1i(d))σ (d)

 g∑
i=1

J ′1i〈αi ,β2〉

 = 0,

and ∑
c∈C2

J1i(c)σ (c)(`(c+, c)− `(c,c)) = −1
2

∑
c∈C2

J1i(c)σ (c)

 g∑
i=1

J2i〈αi , [p(β(c)), c|β〉


+

1
4

∑
c∈C2

J1i(c)σ (c)

= −1
2

∑
(c,d)∈C2

2 ;d∈[e,c|β

J2i(d)J1i(c)σ (c)σ (d).
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We thus get

`2(D′)− `2(D) = −1
2

∑
d∈C2

∑
c∈[e,d|β

J2i(d)J1i(c)σ (c)σ (d)

+
1
2

∑
(c,d)∈C2

2 ;d∈[e,c|β

J2i(d)J1i(c)σ (c)σ (d).

For r, s ∈ g, set

Vr,s =
∑
c∈C2

∑
d∈[e,c|β

Jri(d)Jsi(c)σ (c)σ (d).

Note that Vr,s+Vs,r = δr2δs2 (recall the argument after the statement of Lemma 23
on p. 57). Thus `2(D′)− `2(D) = 1

2 (V2,1 −V1,2) = V2,1. �

6.4 Connected sums and stabilizations

The previous subsections guarantee that λ̃ is an invariant of Heegaard decomposi-
tions.

Lemma 25 – Let

S3 = TA ∪∂TA∼−∂TB TB

be the genus one decomposition of S3 as a union of two solid tori TA and TB glued along
their boundaries so that the meridian α1 of TA meets the meridian β1 of TB once.

λ̃

TA ⋃
∂TA∼−∂TB

TB

 = 0.

Proof. Orient α1 and β1 so that 〈α1,β1〉∂TA = 1. Then J11 = 1. Let m = {α1∩β1} be the
unique matching. Let w be a point of the connected ∂TA \ (α1 ∪ β1). Then TA can be
assumed to intersect a cube [−1,1]3 that contains the ball BS3 as in Figure 7 on p. 33,
so that TB intersects this cube as the closure of the complement of Figure 7 on p. 33.
In particular, X(w,m) is the vertical field of R3 and p1(X(w,m)) = 0. Figure 25 on
the next page is a rectangular picture of the Heegaard diagram so that e(D,w,m) = 0.
Since G(D) = ∅ and L(D,m) = ∅, `2(D) = 0 and s`(D,m) = 0. �

The connected sum M]M ′ of two connected closed manifolds M and M ′ of
dimension d is obtained by removing the interior of an open ball from M and from
M ′ and by gluing the obtained manifolds along their spherical boundaries

M]M ′ =
(
M \ B̊d

) ⋃
Sd−1

(
M ′ \ B̊′d

)
.
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β1

α′1 α′′1

Figure 25 – Genus one Heegaard diagram of S3

When the manifolds are 3-manifolds equipped with Heegaard decompositions
M =HA ∪∂HA HB and M ′ =H ′A ∪∂H ′A H

′
B , the connected sum of the Heegaard decom-

positions is the Heegaard decomposition

M]M ′ =HA]∂H
′
A

⋃
∂HA]∂H

′
A

HB]∂H
′
B

where the open ball B (resp. B′) removed from M (resp. from M ′) intersects the
Heegaard surface ∂HA (resp. ∂H ′A) as a properly embedded two dimensional disk

that separates B into two half-balls H̊A∩B and H̊B ∩B (resp. H̊A
′ ∩B′ and H̊B

′ ∩B′),
the connected sum along the boundaries

HA]∂H
′
A =

(
HA \ (HA ∩ B̊)

) ⋃
HA∩∂B∼(−H ′A∩∂B′)

(
H ′A \ (H ′A ∩ B̊

′)
)

is homeomorphic to the manifold obtained by identifying HA and H ′A along a
two-dimensional disk of the boundary, and HB]∂H ′B is defined similarly.

Proposition 14 – Under the hypotheses above, if M and M ′ are rational homology
3-spheres, then

λ̃

HA]∂H ′A ⋃
∂HA]∂H

′
A

HB]∂H
′
B

 = λ̃

HA⋃
∂HA

HB

+ λ̃

H ′A⋃
∂H ′A

H ′B


Proof. When performing such a connected sum on manifolds equipped with Hee-
gaard diagrams D = (∂HA, (αi)i∈g , (βj )j∈g ) and D′ = (∂H ′A, (α

′
i )i∈g ′ , (β

′
j )j∈g ′ ) and with

exterior points w and w′ of D and D′, we assume that the balls D and D ′ meet the
Heegaard surfaces inside the connected component of w or w′ outside the diagram
curves, without loss, and we choose a basepoint w′′ in the corresponding region of
∂HA]∂H

′
A. Then we obtain the obvious Heegaard diagram

D′′ = (∂HA]∂H
′
A, (α

′′
i )i∈g ′′ , (β

′′
j )j∈g ′′ )

where g ′′ = g+g ′ , α′′i = αi and β′′i = βi when i ≤ g, and, α′′i = α′i−g and β′′i = β′i−g when
i > g, with the associated intersection matrix and its inverse, which are diagonal
with respect to the two blocks corresponding to the former matrices associated with
D and D′ .
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WhenD andD′ are furthermore equipped with matchings m and m′ , m′′ = m∪m′
is a matching for D′′ and a rectangular figure for (D′′ ,w′′ ,m′′) similar to Figure 3 on
p. 23 is obtained from the corresponding figures for D and D′ by juxtapositions of
the two rectangles of D and D′ . In particular,

e(D′′ ,w′′ ,m′′) = e(D′ ,w′ ,m′) + e(D,w,m).

Furthermore, we can see BM ′′ as the juxtaposition of two half-balls glued along
a vertical disk equipped with the vertical field (over the intersection of the two
rectangles above) such that the two half-balls are obtained from BM and BM ′ by
removing standard vertical half-balls equipped with the vertical field, so that the
vector field X(w′′ ,m′′) coincides with X(w,m) on the remaining part of BM and with
X(w′ ,m′) on the remaining part of BM ′ . This makes clear that

p1(X(w′′ ,m′′)) = p1(X(w,m)) + p1(X(w′ ,m′)).

Now it is easy to observe that G(D′′) = G(D) +G(D′), that

`2(D′′) = `2(D) + `2(D′),

that L(D′′ ,m′′) = L(D,m) +L(D′ ,m′) and that

s`(D′′ ,m′′) = s`(D,m) + s`(D′ ,m′). �

A connected sum of a Heegaard decomposition with the genus one decompo-
sition of S3 is called a stabilization. A well-known Reidemeister-Singer theorem8,
asserts that any two Heegaard decompositions of the same 3-manifold become
isomorphic after some stabilizations. This Reidemeister-Singer theorem can also be
proved using Cerf theory9 as in Ozsváth and Szabó (2004, Proposition 2.2).

Together with Proposition 14 on the preceding page and Lemma 25 on p. 65, it
implies that λ̃ does not depend on the Heegaard decomposition and allows us to
prove the following theorem.

Theorem 4 – There exists a unique invariant λ̃ of Q-spheres such that for any Heegaard
diagram D of a Q-sphere M, equipped with a matching m and with an exterior point w,

24λ̃(M) = 4`2(D) + 4s`(D,m)− 4e(D,w,m)− p1(X(w,m)).

Furthermore, λ̃ satisfies the following properties.

• For any two rational homology 3-spheres M1 and M2,

λ̃(M1]M2) = λ̃(M1) + λ̃(M2).

8Proved in Siebenmann, 1980, Les bisections expliquent le théorème de Reidemeister-Singer.
9Cerf, 1970, “La stratification naturelle des espaces de fonctions différentiables réelles et le théorème

de la pseudo-isotopie”.
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• For any rational homology 3-sphere M, if (−M) denotes the manifold M equipped
with the opposite orientation, then

λ̃(−M) = −λ̃(M).

Proof. The invariance of λ̃ is already proved. Proposition 14 on p. 66 now implies
that λ̃ is additive under connected sum. Reversing the orientation of M reverses
the orientation of the surface that contains a diagram D of M. This changes the
signs of the intersection points and reverses the sign of J . Thus L(D,m), G(D) and
X(w,m) are unchanged, while the map ` of Proposition 3 on p. 30 is changed to its
opposite. Changing the orientation of the ambient manifold reverses the sign of p1.
A rectangular diagram of (−M) as in Figure 3 on p. 23 is obtained from the diagram
of M by a orthogonal symmetry that fixes a vertical line so that the de are changed
to their opposites. Thus all the terms of the formula are multiplied by (−1) when
the orientation of M is reversed. �

7 The Casson surgery formula for λ̃

7.1 The statement and its consequences

In this section, we prove that λ̃ coincides with the Casson invariant for integer
homology 3-spheres by proving that it satisfies the same surgery formula. More
precisely, we prove the following theorem.

Theorem 5 – Let K be a null-homologous knot in a Q-sphere M.
Let Σ be an oriented connected surface of genus g(Σ) in M bounded by K such that

the closure of the complement of a collar

HA = Σ× [−1,1]

of Σ = Σ×{0} in M is homeomorphic to a handlebody HB . This gives rise to the Heegaard
decomposition

M =HA ∪ΨM HB
where ΨM is an orientation reversing diffeomorphism from ∂HB to ∂HA. Let M(K) be
the manifold obtained from M by surgery of coefficient 1 along K , which can be defined
by its Heegaard decomposition

M(K) =HA ∪ΨM◦tK HB
where tK is the right-handed Dehn twist of (−∂HB) about K . Let g = 2g(Σ). Let (zi)i∈g
be closed curves of Σ = Σ × {0} that form a geometric symplectic basis of H1(Σ) as in
Figure 26 on the next page, and let z+

i = zi × {1}. For any i ∈ g(Σ), 〈z2i−1, z2i〉 = 1. Then

λ̃(M(K))− λ̃(M) =
∑

(i,r)∈g(Σ)2

(
lk(z+

2i , z2r )lk(z+
2i−1, z2r−1)− lk(z+

2i , z2r−1)lk(z+
2i−1, z2r )

)
.
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z2 z1

K

. . .
z2g(Σ)

z2g(Σ)−1

Figure 26 – Curves on the surface Σ

We will prove the theorem exactly as it is stated. A Seifert surface Σ of K as in
the statement is said to be unknotted. It is well-known that any Seifert surface can
be transformed to an unknotted one by adding some tubes (to remove unwanted
2-handles from its exterior). (See Marin (1988, Lemme 5.1), Akbulut and McCarthy
(1990, p. 84) or Guillou and Marin (1992, Lemme 4.1) in the original surveys10

of the Casson invariant, for example.) Thus any null-homologous knot bounds an
unknotted surface as in the statement. The manifold M(K ; pq ) obtained from M

by Dehn surgery with coefficient p/q along K , for two coprime integers p and q, is
usually defined as

M(K ;
p

q
) =

(
M \ N̊ (K)

) ⋃
∂N (K)∼∂D2×S1

(
D2 × S1

)
where N (K) is a tubular neighborhood of K , and the gluing homeomorphism from
∂D2 ×S1 to ∂N (K) identifies the meridian ∂D2 ×{x} of D2 ×S1 with a curve homolo-
gous to pm(K)+q`(K) wherem(K) is the meridian of K such that lk(m(K),K) = 1 and
`(K) is the curve parallel to K such that lk(`(K),K) = 0. In our case, for n ∈Z \ {0},
the manifold M(K ; 1

n ) obtained from M by surgery of coefficient 1
n along K can also

be defined by its Heegaard decomposition

M(K ;
1
n

) =HA
⋃

ΨM◦tnK

HB ,

10Marin, 1988, “Un nouvel invariant pour les sphères d’homologie de dimension trois (d’après
Casson)”;

Akbulut and McCarthy, 1990, Casson’s invariant for oriented homology 3-spheres;
Guillou and Marin, 1992, “Notes sur l’invariant de Casson des sphères d’homologie de dimension

trois”.
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and it is easy to observe that the variation (λ̃(M(K ; 1
n ))− λ̃(M)) can be deduced from

the general knowledge of (λ̃(M(K))− λ̃(M)). In our case, Theorem 5 on p. 68 implies
that

λ̃(M(K ;
1
n

))− λ̃(M) = n(λ̃(M(K))− λ̃(M)).

In our proof, we will obtain the variation λ̃(M(K))− λ̃(M) as it is stated, directly,
so that our proof also directly shows that

λ′ =
∑

(i,r)∈g(Σ)2

(
lk(z+

2i , z2r )lk(z+
2i−1, z2r−1)− lk(z+

2i , z2r−1)lk(z+
2i−1, z2r )

)
is a knot invariant. In Lemma 41 on p. 84, we will identify λ′ with 1

2∆
′′
K (1) where ∆K

denotes the Alexander polynomial of K so that the surgery formula of Theorem 5 on
p. 68 coincides with the Casson surgery formula of Marin (1988, Theorem 1.1 (v)),
Akbulut and McCarthy (1990, p. xii) or Guillou and Marin (1992, Theorem 1.5).
Since any integer homology 3-sphere can be obtained from S3 by a finite sequence of
surgeries with coefficients ±111, it follows that λ̃ coincides with the Casson invariant
for integer homology 3-spheres.

Our proof will also yield the following theorem. Recall that the Euler class of
a nowhere zero vector field of a 3-manifold M is the Euler class of its orthogonal
plane bundle in M.

Theorem 6 – Let F be a genus g(F) oriented compact surface with connected boundary
embedded in an oriented compact 3-manifold M whose boundary ∂M is either empty or
identified with ∂B(1). Let [−2,2]× F be a neighborhood of F̊ = {0} × F̊ in M, and let X
be a nowhere zero vector field of M whose Euler class is a torsion element of H2(M;Z),
which is tangent to [−2,2]× {x} at any point (u,x) of [−2,2]×F, and which is constant
on ∂B(1) when ∂M = ∂B(1). Let K be a parallel of ∂F inside F, and let ([−2,2]×F)(K)
be obtained from [−2,2]×F by +1-Dehn surgery along K . Let tK denote the right-handed
Dehn twist about K . Then

([−2,2]×F)(K) = [−2,0]×F
⋃

{0}×F
tK←{0}×F+

[0,2]×F+

where F+ is a copy of F and (0,x) ∈ {0} ×F+ is identified with (0, tK (x)) ∈ {0} ×F. Define
the diffeomorphism

ψF : ([−2,2]×F)(K)→ [−2,2]×F(Cont. next page)

11See Marin, 1988, “Un nouvel invariant pour les sphères d’homologie de dimension trois (d’après Cas-
son)”, Section 4; or Guillou and Marin, 1992, “Notes sur l’invariant de Casson des sphères d’homologie
de dimension trois”, Lemme 2.1, for example.
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(t,x) 7→

(t,x) if (t,x) ∈ [−2,0]×F
(t, tK (x)) if (t,x) ∈ [0,2]×F+

and let Y be a nowhere zero vector field of M(K) that coincides with X outside ]−1,1[×F̊
and that is normal to ψ−1

F ({t} ×F) on ψ−1
F ({t} ×F) for any t ∈ [−2,2]. Then

p1(Y )− p1(X) = (4g(F)− 1)g(F).

7.2 A preliminary lemma on Pontrjagin numbers

Lemma 26 – Under the assumptions of Theorem 6 on the preceding page, the variation
(p1(Y )− p1(X)) does not depend on M, K and F. This variation only depends on g(F). It
will be denoted by p1(g(F)).

Proof. Let τF : F ×R2 → T F be a parallelization of F such that the parallelization
X ⊕ τF of [−2,2]×F extends to a trivialization τ of M — which is standard on ∂M
if ∂M = S2. (Since M is parallelizable and since π1(SO(3)) is generated by a loop
of rotations with arbitrary fixed axis, there exists a parallelization of M that has
this prescribed form on [−2,2] × F.) Observe that the degree of the tangent map
to K is (1− 2g) with respect to τF . (This degree does not depend on τF and can be
computed in Figure 26 on p. 69.) Let K × [−1,1] be a tubular neighborhood of K in
F such that K × {−1} = ∂F. Then [−1,1]×K × [−1,1] is a neighborhood N�(K) of K in
M that has a standard parallelization τν = (X,T K,ν) where TK stands for the unit
tangent vector to K and ν is tangent to {(h,x)} × [−1,1]. Without loss, assume that

τ−1
ν τ

(
(t,k = exp(2iπθ),u),v ∈R3

)
=

(
(t,k,u),ρ(2g−1)θ(v)

)
where ρ(2g−1)θ is the rotation whose axis is directed by the first basis vector e1 of R3

with angle (2g − 1)θ.
Let K̂ be the image of K (which is fixed by tK ) in M(K). The neighborhood

N�(K̂) = ψ−1
F (N�(K)) of K̂ in ([−2,2]×F)(K) is also equipped with a standard paral-

lelization τ̂ν = (Y ,T K̂, ν̂) = ψ−1
F∗ ◦ τν .

Define the parallelization τ ′ of M(K) that coincides with τ outside ] − 1,1[×F̊
and that is the following stabilization of the positive normal Y to F on [−1,1]× F.
Let F̌ = F \ (K × [−1,1[). On [−1,1]× F̌,

τ ′
(
t,x,v ∈R3

)
= τ

(
t,x,ρ(1−2g)π(t+1)(v)

)
.

This parallelization extends to N�(K̂) as a stabilization of Y because it extends
to a square bounded by the following square meridian µK of K̂

µK = {−1} × {k} × [−1,1] + ([−1,1]× (k,1))− {1} × t−1
K ({k} × [−1,1])− ([−1,1]× (k,−1))

written with respect to coordinates of ∂N�(K).
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Write a (round) tubular neighborhood N (K) in N�(K) as S1 ×D2 = ∂D2 ×D2 so
that µK induces the same parallelization of K as the longitude ({x} ×D2). Let

WF =

([0,1]× [−1,1]×F
) ⋃
{1}×N (K)∼∂D2×D2

D2 ×D2

](−CP 2)

be a cobordism from [−1,1]×F to ([−1,1]×F)(K) obtained from [0,1]× [−1,1]×F by
gluing a 2-handleD2×D2 alongN (K) using the identification ofN (K) with ∂D2×D2

above, by smoothing in a standard way, and by next performing a connected sum
with a copy of (−CP 2) in the interior of the 2-handle. We compute (p1(τ ′)− p1(τ))
by using the cobordism WF completed to a signature 0 cobordism by the product
[0,1]× (M \ Int([−1,1]×F)) where T [0,1]⊕τ extends both τ and τ ′ . Since π1(SU (2))
is trivial, the induced complex parallelization over ∂([0,1]× [−1,1])× F̌ extends as a
stabilization of T [0,1]⊕X whose restriction to [0,1]× [−1,1]×∂F̌ only depends on
the genus of F. Thus (p1(τ ′)−p1(τ)) is the obstruction to extending this extension to(
[0,1]×N�(K)∪{1}×N (K)∼∂D2×D2 D2 ×D2

)
](−CP 2) and it only depends on g(F). Call

it p1(g(F)).
Now compose τ and τ ′ by a small rotation whose axis is the second basis vector

e2 of R3 around [−2,2] × F, so that X , ±τ(e1) on [−1,1] × F, and X and τ(e1) are
transverse. Then LX=τ(e1) = LY=τ ′(e1), LX=−τ(e1) = LY=−τ ′(e1). Furthermore, since
LX=τ(e1) does not meet [−1,1]×F, and since it is rationally null-homologous (because
the Euler class of X is a torsion element of H2(M;Z)12) LX=τ(e1) bounds a Seifert
surface disjoint from N�(K) and LY=τ ′(e1) bounds the same Seifert surface in M(K) \
N�(K̂) so that

lk(LX=τ(e1),LX=−τ(e1)) = lk(LY=τ ′(e1),LY=−τ ′(e1))

and

p1(X)− p1(τ) = p1(Y )− p1(τ ′)

according to Theorem 1 on p. 34, if H1(M;Q) = 0, and according to Lescop (2015b,
Theorem 1.2), more generally. �

7.3 Introduction to the proof of the surgery formula

Let us now begin our proof of Theorem 5 on p. 68 by fixing the Heegaard diagrams
that we are going to use.

Let ui be non-intersecting curves of Σ as in Figure 27 on the next page with
boundaries in ∂Σ such that ui is homologous to zi in H1(Σ,∂Σ). Then the ui × [−1,1]

12For details, see Lescop, 2015b, “On homotopy invariants of combings of three-manifolds”, Theo-
rem 1.1.
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z2 z1

u2 u1

K

. . .
z2g(Σ)

z2g(Σ)−1
u2g(Σ)

u2g(Σ)−1

Figure 27 – The curves ui on the surface Σ

form a system of (topological) meridian disks for the handlebody HA. Set αi =
−∂(ui×[−1,1]). Fix a system of meridians (βj )j∈g that meet the α curves transversally
and that meet K × [−1,1] as a product by [−1,1]. Set Σ+ = Σ× {1} and Σ− = Σ× {−1}.
Assume that the Heegaard diagram D = ((αi)i∈g , (βj )j∈g ) has a matching m = {mi}i∈g
where mi ∈ αi ∩ βi and mi ∈ Σ− (up to isotopies of the curves β). The invariant λ̃(M)
will be computed with the diagram D, and the invariant λ̃(M(K)) will be computed
with the diagram

D′ =
(
(αi)i∈g , (β

′
j = tK (βj ))j∈g

)
.

We fix a common exterior point w for D and D′ in Σ−.

Lemma 27 – The variation (p1(X(D′ ,w,m))− p1(X(D,w,m))) is equal to p1(g(Σ)) where
p1(g(Σ)) is defined in Lemma 26 on p. 71.

Proof. Apply Lemma 26 on p. 71 to

F = Σ+ ∪K×{1} (K × [−1,1]) ⊂ ∂HA,

X = X(D,w,m) and Y = X(D′ ,w,m). �

Let ui also denote ui × {1} = αi ∩Σ+.
Assume that along K , from some basepoint of K , we first meet all the intersection

points of K with the βj and next the intersection points of K with the αi , which
correspond to the endpoints of the ui , as in Figure 28 on the next page.

Recall λ′ =
∑

(i,r)∈g(Σ)2

(
lk(z+

2i , z2r )lk(z+
2i−1, z2r−1)− lk(z+

2i , z2r−1)lk(z+
2i−1, z2r )

)
.

We are going to prove the following lemmas.

Lemma 28 – We have

`2(D′)− `2(D) = 8λ′ .
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K

. . . αg−1αg

ug ug−1

α1α2

u2 u1

. . . . . .

q+
q−

Intersection of K with the β curves

Figure 28 – The intersections of K with the curves of D

Lemma 29 – We have

s`(D′ ,m)− s`(D,m) = −g(Σ)2 − 2λ′ .

Lemma 30 – We have

e(D′ ,w,m)− e(D,w,m) = (1− 2g(Σ))g(Σ).

It follows from these lemmas that

24λ̃(M(K))− 24λ̃(M) = 24λ′ + 4g(Σ)(g(Σ)− 1)− p1(g(Σ)).

Applying this formula to a trivial knot U seen as the boundary of a genus g(Σ)
surface ΣU for which λ′ = 0 shows that

p1(g(Σ)) = 4g(Σ)(g(Σ)− 1)

since M(U ) is diffeomorphic to M.
Thus Lemmas 28 to 30 on pp. 73–74 imply Theorems 5 and 6 on p. 68 and on

p. 70, and we are left with their proofs that occupy most of the end of this section.

7.4 Preliminaries for the proofs of the remaining three lemmas

Set 2r = 2r − 1 and 2r − 1 = 2r.

Lemma 31 – For any (i, r) ∈ g2,

g∑
j=1

Jji〈ur ,βj〉 = 〈zi , zi〉lk(z+
r , zi).

Proof. Think of HA as a thickening of a wedge of the zi . Let m(zi) denote a meridian
of zi on ∂HA. Then z+

r =
∑g
k=1 lk(z+

r , zk)m(zk) in H1(HB ;Q). Since m(zk) is homolo-
gous to 〈zk , zk〉(z

+
k
− z−

k
) in ∂HA,

〈m(zk),βj〉 = 〈zk , zk〉〈uk −u
−
k
,βj〉(Cont. next page)
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= 〈zk , zk〉〈αk ,βj〉,

〈ur ,βj〉 = 〈z+
r ,βj〉 =

g∑
k=1

lk(z+
r , zk)〈zk , zk〉〈αk ,βj〉,

and
g∑
j=1

Jji〈ur ,βj〉 = 〈zi , zi〉lk(z+
r , zi). �

Lemma 32 – We have∑
(i,j)∈g2

Jji〈ui ,βj〉 = g(Σ).

Proof.
∑g
i=1〈zi , zi〉lk(z+

i , zi) =
∑g(Σ)
r=1

(
lk(z+

2r−1, z2r )− lk(z+
2r , z2r−1)

)
. �

. . . αg−1αg

ug ug−1

α1α2

u2 u1
tK (q+)

tK (q−)

Figure 29 – The diagram D′ in a neighborhood of K on ∂HA

For j ∈ g, letQj denote the set of connected components of β′j∩(Σ+∪(∂Σ×[−1,1])).

Let Q = ∪gj=1Qj . For an arc q of Qj , set j(q) = j. The intersection of an arc q of Q
with Σ+ × {1} will be denoted by q+. Let C and C′ denote the set of crossings of D
and D′ , respectively.

For each (q, i) ∈Q × g, there is a set C(q, i) = αi ∩ (q \ q+) of 4 crossings. Then

C′ = C
∐ ∐

(q,i)∈Q×g
C(q, i)

 .
Denote C(q, i) = {d1(q, i),d2(q, i),d3(q, i),d4(q, i)} where following αi from mi ,

d1(q, i), d2(q, i), d3(q, i) and d4(q, i) are met in this order. Set σ (q, i) = σ (d2(q, i)).
Then

σ (q, i) = σ (d2(q, i)) = σ (d4(q, i)) = −σ (d1(q, i)) = −σ (d3(q, i)).
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ui

q

h(q, i)

t(q, i)

d1(q, i)

d2(q, i)

d4

d3

C(q, i) when σ (q, i) = −1

ui

q

t(q, i)

h(q, i)

d1(q, i)

d2(q, i)

d4

d3

C(q, i) when σ (q, i) = 1

Figure 30 – The new crossings of D′

Let t(q, i) denote the (tail) arc of q before q+ with its ends in C(q, i) and let h(q, i)
denote the (head) arc of q after q+ with its ends in C(q, i).

If σ (q, i) = −1, then q goes from left to right as q− in Figures 28 and 29 on p. 74
and on the previous page, following q we meet C(q, i) in the order d3, d2, d1, d4,
t(q, i) = |d3,d2|β and h(q, i) = |d1,d4|β .

If σ (q, i) = 1, then q goes from right to left as q+ in Figures 28 and 29 on p. 74
and on the previous page, following q we meet C(q, i) in the reversed order d4, d1,
d2, d3, t(q, i) = |d4,d1|β and h(q, i) = |d2,d3|β . Thus t(q, i) begins at db(q,i)(q, i) where
b(q, i) = 3 if σ (q, i) = −1 and b(q, i) = 4 if σ (q, i) = 1.

Note that for any (i, j) ∈ g2, 〈αi ,βj〉 = 〈αi ,β′j〉 so that the coefficients Jji are the
same for D and D′ .

The set of crossings of D on Σ+ (resp. on Σ−) will be denoted by C+ (resp. by C−).

Proof (of Lemma 30 on p. 74). On the rectangle RD of Figure 3 on p. 23 for (D,w,m),
let p′i (resp. p′′i ) denote the other end of the diameter of α′i (resp. α′′i ) that contains
the crossing mi of m. Draw the knot K on a picture of the Heegaard diagram as
in Figure 3 on p. 23 so that K meets the curves α′ and α′′ as the βj do, away from
the points of m, with horizontal tangent vectors near the p′i and the p′′i . Let N (m)
denote an open tubular neighborhood of m in ∂HA made of 2g(Σ) open disks. See
∂HA \ N̊ (m) as obtained from the rectangle RD with holes bounded by the α′i and
the α′′i , by gluing horizontal thin rectangles Di along their two vertical small sides,
which are neighborhoods of p′i or p′′i in α′i or α′′i . The standard parallelization of
this picture equips ∂HA \ N̊ (m) with a parallelization so that the degree de(K) of the
tangent to K is 1− 2g(Σ) in this figure. A similar picture for (D′ ,w,m) is obtained
by performing the Dehn twist about K on the β-curves in this figure. Since these
curves do not intersect K algebraically, the de(βj ) are unchanged by this operation.
Similarly, for any crossing c of C−, de(|mj(c), c|β) is unchanged and so is de(c). For any
crossing c of C+, we have d′e(c) = de(c) + 1− 2g(Σ) since 〈K, |mj(c), c|β〉 = 1. Now, let
(q, i) ∈Q × g. The contribution of C(q, i) to (e(D′ ,w,m)− e(D,w,m)) is

±Jj(q)i

de(h(q, i)) + de(t(q, i))−
∑

(r,s)∈g2

Jsr〈αr ,h(q, i) + t(q, i)〉de(βs)

 ,
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which is zero. Finally, according to Lemma 32 on p. 75,

e(D′ ,w,m)− e(D,w,m) = (1− 2g(Σ))
∑
c∈C+

Jj(c)i(c)σ (c)

= (1− 2g(Σ))
∑

(i,j)∈g2

Jji〈ui ,βj〉

= (1− 2g(Σ))g(Σ) �

7.5 Study of `

Let ` and `′ be the maps of Proposition 3 on p. 30 associated with D and D′,
respectively, with respect to the basepoints mi of Σ−.

`(c,d) = 〈[mi(c), c|α , [mj(d),d|β〉 −
∑

(i,j)∈g2

Jji〈[mi(c), c|α ,βj〉〈αi , [mj(d),d|β〉

Lemma 33 – Let (c,d) ∈ C2. If (c,d) ∈ (C+)2, then

`′(c,d) = `(c,d)− 1.

Otherwise,

`′(c,d) = `(c,d).

Proof. Recall that the mi are in Σ−. Note that tK ([mj(d),d|β) is obtained from
[mj(d),d|β by adding some multiple of K located in K × [−1,1], algebraically, so
that

〈αi , tK ([mj(d),d|β)〉 = 〈αi , [mj(d),d|β〉

for any i ∈ g. Since tK (βj ) differs from βj by an algebraically null sum of copies of K
in K × [−1,1],

〈[mi(c), c|α ,β′j〉 = 〈[mi(c), c|α ,βj〉

for any j ∈ g. Thus in any case,

`′(c,d)− `(c,d) = 〈[mi(c), c|α , tK ([mj(d),d|β)− [mj(d),d|β〉.

If d ∈ Σ−, then tK ([mj(d),d|β) differs from [mj(d),d|β by an algebraically null sum
of copies of K in K × [−1,1] so that `′(c,d) = `(c,d). If d ∈ Σ+, then `′(c,d)− `(c,d) =
〈[mi(c), c|α ,K〉. If c ∈ Σ−, then the arc [mi(c), c|α meets K × [−1,1] as the empty set or
as two parallel arcs with opposite direction and `′(c,d) = `(c,d). If c ∈ Σ+, then the
arc [mi(c), c|α meets K × [−1,1] as an arc that crosses K once with a negative sign. �
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Lemma 34 – Let c ∈ C and let (q, i) ∈Q × g.∑
d∈C(q,i)

σ (d)`′(c,d) =
∑

d∈C(q,i)

σ (d)`′(d,c) = 0.

Proof. For any interval I of a β′-curve,∑
d∈C(q,i)

σ (d)〈[mi ,d|α , I〉 = σ (q, i)〈|d1(q, i),d2(q, i)|α + |d3(q, i),d4(q, i)|α , I〉,

which is zero if I has no end points in K × [−1,1]. This shows that
∑

d∈C(q,i)

σ (d)`′(d,c) = 0.
For any interval I of an α-curve,∑

d∈C(q,i)

σ (d)〈I, [mj(q),d|β〉 = −〈I, t(q, i) + h(q, i)〉.

Again, this is zero if I has no end points in K × [−1,1]. �

Lemma 35 – Let (q, i) and (q′ , r) belong to Q × g. If q , q′ and i , r, then∑
(c,d)∈C(q,i)×C(q′ ,r)

σ (c)σ (d)`′(c,d) = −lkK×{1}(∂q+,∂q′+)lkK×{1}(∂ui ,∂ur ).

If q = q′ or i = r, then
∑

(c,d)∈C(q,i)×C(q′ ,r)σ (c)σ (d)`′(c,d) = 0.

Proof. Set A =
∑

(c,d)∈C(q,i)×C(q′ ,r)σ (c)σ (d)`′(c,d). As in the proof of Lemma 34,

A = −
∑

c∈C(q,i)

σ (c)〈[mi , c|α , t(q′ , r) + h(q′ , r)〉

= −σ (q, i)〈|d1(q, i),d2(q, i)|α + |d3(q, i),d4(q, i)|α , t(q′ , r) + h(q′ , r)〉

This is zero unless q , q′, i , r and lk(∂q,∂q′)lk(∂ui ,∂ur ) , 0. When the sign of
q′ changes, so does the result. Furthermore, the result is symmetric when (q, i) and
(q′ , r) are exchanged, thanks to the symmetry of the linking number (see Proposi-
tion 2 on p. 29).

Therefore, it suffices to prove the lemma when σ (q, i) = σ (q′ , r) = 1 and (i, r) =
(2k − 1,2k). When we have the order h(q′ , r)h(q, i)t(q′ , r)t(q, i) on K , which coincides
with h(ur )h(ui)t(ur )t(ui), we get A = −1 as in Figure 31 on the next page. For the
order h(q, i)h(q′ , r)t(q, i)t(q′ , r), we get A = 1. �

Lemma 36 – When i , r, lkK×{1}(∂ui ,∂ur ) = −〈zi , zr〉.
When q , q′ ,

lkK×{1}(∂q
+,∂q′+) = −

g∑
k=1

〈zk , zk〉〈uk ,q〉〈uk ,q
′〉

and, for any q ∈Q,
∑g
k=1〈zk , zk〉〈uk ,q〉〈uk ,q

′〉 = 0.
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u2k

q′

t(q′ ,2k)

h(q′ ,2k)

u2k−1

q

d1(q,2k − 1)

d2(q,2k − 1)

d4

d3

σ (q,2k − 1) = σ (q′ ,2k) = 1

Figure 31 – Computation of lk(∂q,∂q′)lk(∂u2k−1,∂u2k)

Proof. Let γ(q′) be a curve on K × {1} that does not meet the α-curves, such that
∂γ(q′) = ∂q′+. Then lkK×{1}(∂q+,∂q′+) = 〈∂q+,γ(q′)〉K . Since q and q′ do not intersect,
this also reads lkK×{1}(∂q+,∂q′+) = −〈q,q′+ −γ(q′)〉∂HA where (q′+ −γ(q′)) is a closed
curve of Σ+ whose homology class reads

(q′+ −γ(q′)) =
g∑
k=1

〈zk , zk〉〈q
′+ −γ(q′), zk〉Σ+zk =

g∑
k=1

〈zk , zk〉〈q
′ ,uk〉∂HAzk .

�

Lemma 37 – We have∑
(q,q′)∈Qj×Qs

∑
(c,d)∈C(q,i)×C(q′ ,r)

σ (c)σ (d)`′(c,d) = −〈zi , zr〉
g∑
k=1

〈zk , zk〉〈uk ,βj〉〈uk ,βs〉.

Proof. According to Lemmas 35 and 36 on the preceding page,∑
(c,d)∈C(q,i)×C(q′ ,r)

σ (c)σ (d)`′(c,d) = −〈zi , zr〉
g∑
k=1

〈zk , zk〉〈uk ,q〉〈uk ,q
′〉.

�

Lemma 38 – We have∑
c∈C′\C

Jj(c)i(c)σ (c)`′(c,c) =
∑

(i,j,r,s)∈g4

JjiJsr〈ui ,βs〉〈ur ,βj〉 − g(Σ)

−
∑

(i,j,k,s)∈g4

JjiJsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉.

Proof. Let us fix (q, i) ∈Q × g and compute
∑
c∈C(q,i)σ (c)`′(c,c).

Since the arc [mi ,d1(q, i)[α does not intersect the arcs [db(q,i)(q, i), c]β ,∑
c∈C(q,i)

σ (c)〈[mi , c|α , [mj(q), c|β〉 =
∑

c∈C(q,i)

σ (c)〈[d1(q, i), c|α , [db(q,i)(q, i), c|β〉(Cont. next page)
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+
∑

c∈C(q,i)

σ (c)〈[d1(q, i), c|α , [mj(q),db(q,i)(q, i)[β〉

where
∑
c∈C(q,i)σ (c)〈[d1(q, i), c|α , [mj(q),db(q,i)(q, i)[β〉 equals

σ (q, i)〈|d1(q, i),d2(q, i)|α + |d3(q, i),d4(q, i)|α , [mj(q),db(q,i)(q, i)[β〉 = 0

since the arc [mj(q),db(q,i)(q, i)[β intersects the arcs [d1(q, i), c]α as whole arcs q′ of
Qj(c).

Thus∑
c∈C(q,i)

σ (c)〈[mi , c|α , [mj(q), c|β〉 = 1 +
∑

c∈C(q,i)

σ (c)〈[d1(q, i), c[α , [db(q,i)(q, i), c[β〉.

Note that neither d1(q, i) nor db(q,i) contributes to the new sum.

〈[d1(q, i),d2(q, i)[α , [db(q,i)(q, i),d2(q, i)[β〉 =

σ (d1(q, i)) = −1 if σ (q, i) = 1
0 if σ (q, i) = −1.

If σ (q, i) = 1, then we are left with the computation of

〈[d1(q, i),d3(q, i)[α , [db(q,i)(q, i),d3(q, i)[β〉 = 〈ui ,q〉.

If σ (q, i) = −1, then we are left with the computation of

〈[d1(q, i),d4(q, i)[α , [db(q,i)(q, i),d4(q, i)[β〉〈ui ,q〉+ σ (d3(q, i)).

In any case,∑
c∈C(q,i)

σ (c)〈[mi , c|α , [mj(q), c|β〉 = −〈ui ,q〉.

Let us fix (r, s) ∈ g2 and compute A =
∑
c∈C(q,i)σ (c)〈[mi , c|α ,β′s〉〈αr , [mj(q), c|β〉. Ob-

serve

〈[mi ,d4(q, i)|α ,β′s〉 = 〈[mi ,d1(q, i)|α ,β′s〉+ 〈ui ,βs〉
and

〈[mi ,d3(q, i)|α ,β′s〉 = 〈[mi ,d2(q, i)|α ,β′s〉+ 〈ui ,βs〉.

Let

B = σ (q, i)〈ui ,βs〉
(
〈αr , [mj(q),d4(q, i)|β〉 − 〈αr , [mj(q),d3(q, i)|β〉

)
= −〈ui ,βs〉〈αr ,q+〉.

A−B = σ (q, i)〈[mi ,d1(q, i)|α ,β′s〉
(
〈αr , [mj(q),d4(q, i)|β〉 − 〈αr , [mj(q),d1(q, i)|β〉

)
(Cont. next page)
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+ σ (q, i)〈[mi ,d2(q, i)|α ,β′s〉
(
〈αr , [mj(q),d2(q, i)|β〉 − 〈αr , [mj(q),d3(q, i)|β〉

)
= σ (q, i) (〈[mi ,d1(q, i)|α ,β′s〉 − 〈[mi ,d2(q, i)|α ,β′s〉)〈αr ,h(q, i)〉
= −σ (q, i)〈|d1(q, i),d2(q, i)|α ,β′s〉〈αr ,h(q, i)〉

where 〈αr ,h(q, i)〉 = lkK×{1}(∂ur ,∂ui) when r , i, so that 〈αr ,h(q, i)〉 = 〈zi , zr〉 in any
case. Summarizing,

∑
c∈C(q,i)σ (c)`′(c,c) is equal to∑

(r,s)∈g2

Jsr (〈ui ,βs〉〈ur ,q〉+ σ (q, i)〈|d1(q, i),d2(q, i)|α ,β′s〉〈zi , zr〉)− 〈ui ,q〉.

where

σ (q, i)〈|d1(q, i),d2(q, i)|α ,β′s〉 = −
∑

q′∈Qs ;q′,q
lkK×{1}(∂q

′ ,∂q)

=
∑

q′∈Qs ;q′,q
lkK×{1}(∂q,∂q

′)

= −
g∑
k=1

〈zk , zk〉〈uk ,q〉〈uk ,βs〉

according to Lemma 36 on p. 78.
Now, let us fix j ∈ g and compute∑

q∈Qj

∑
c∈C(q,i)

σ (c)`′(c,c) = −〈ui ,βj〉+
∑

(r,s)∈g2

Jsr〈ui ,βs〉〈ur ,βj〉

−
∑

(r,s)∈g2

Jsr〈zi , zr〉
g∑
k=1

〈zk , zk〉〈uk ,βj〉〈uk ,βs〉

= −〈ui ,βj〉+
∑

(r,s)∈g2

Jsr〈ui ,βs〉〈ur ,βj〉

−
∑

(k,s)∈g2

Jsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉

∑
c∈C′\C

Jj(c)i(c)σ (c)`′(c,c) =
∑

(i,j)∈g2

Jji

 ∑
(r,s)∈g2

Jsr〈ui ,βs〉〈ur ,βj〉 − 〈ui ,βj〉


−

∑
(i,j,k,s)∈g4

JjiJsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉.

Conclude with Lemma 32 on p. 75. �
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7.6 Proofs of the remaining two lemmas

Lemma 39 – We have

2λ′ =
∑

(i,r)∈g2

lk(z+
r , zi)lk(z+

r , zi)〈zi , zi〉〈zr , zr〉

=
∑

(i,j,k,s)∈g4

JjiJsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉

Proof. Let C be the expression of the second line. Computing C with Lemma 31 on
p. 74 yields

C =
∑

(i,k)∈g2

lk(z+
k , zi)〈zi , zi〉

2lk(z+
k
, zi)〈zi , zi〉〈zk , zk〉.

�

Proof (of Lemma 29 on p. 74). According to Propositions 1 and 3 on p. 27 and on
p. 30, and to Remark 1 on p. 31,

s`(D′ ,m) =
∑

(c,d)∈(C′)2

Jj(c)i(c)σ (c)Jj(d)i(d)σ (d)`′(c,d)

+
∑

(i,j)∈g2

`′(mi ,mj )−
∑

(i,c)∈g×C′
Jj(c)i(c)σ (c) (`′(mi , c) + `′(c,mi)) ,

so that Lemmas 33, 34 and 37 on p. 77, on p. 78 and on p. 79 imply

s`(D′ ,m)− s`(D,m) = −
∑

(c,d)∈(C+)2

Jj(c)i(c)σ (c)Jj(d)i(d)σ (d)

−
∑

(i,j,k,s)∈g4

JjiJsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉.

Therefore, according to Lemma 39,

s`(D′ ,m)− s`(D,m) = −

 ∑
(i,j)∈g2

Jji〈ui ,βj〉


2

− 2λ′ ,

which equals
(
−g(Σ)2 − 2λ′

)
, according to Lemma 32 on p. 75. �

Lemma 40 – Set

λ′+(Σ) =
∑

(i,r)∈g2

lk(z+
r , zi)lk(z+

i
, zr )〈zi , zi〉〈zr , zr〉.
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Then

λ′+(Σ) = −
∑

(i,j,r,s)∈g4

JjiJsr〈ui ,βs〉〈ur ,βj〉 = 2λ′ − g(Σ).

Proof. Using Lemma 31 on p. 74, we get∑
(i,j,r,s)∈g4

(
−JjiJsr〈ui ,βs〉〈ur ,βj〉

)
= −

∑
(i,r)∈g2

lk(z+
r , zi)〈zi , zi〉lk(z+

i , zr )〈zr , zr〉

=
∑

(i,r)∈g2

lk(z+
r , zi)lk(z+

i
, zr )〈zi , zi〉〈zr , zr〉

=
∑

(i,r)∈g2

lk(z+
i , zr )lk(z+

i
, zr )〈zi , zi〉〈zr , zr〉

−
∑

(i,r)∈g2

〈zi , zr〉lk(z+
i
, zr )〈zi , zi〉〈zr , zr〉

= 2λ′ +
∑
i∈g

lk(z+
i
, zi)〈zi , zi〉 = 2λ′ − g(Σ). �

Proof (of Lemma 28 on p. 73). According to Propositions 3 and 4 on p. 30 and on
p. 31,

`2(D′) =
∑

(c,d)∈(C′)2

Jj(c)i(d)σ (c)Jj(d)i(c)σ (d)`′(c,d)−
∑
c∈C′
Jj(c)i(c)σ (c)`′(c,c).

According to Lemmas 38 to 40 on p. 79 and on the preceding page,∑
c∈C′\C

Jj(c)i(c)σ (c)`′(c,c) = −λ′+(Σ)− g(Σ)− 2λ′ = −4λ′ .

Therefore∑
c∈C
Jj(c)i(c)σ (c)`(c,c)−

∑
c∈C′
Jj(c)i(c)σ (c)`′(c,c) = 4λ′ +

∑
(i,j)∈g2

Jji〈ui ,βj〉 = 4λ′ + g(Σ)

according to Lemmas 32 and 33 on p. 75 and on p. 77. Using Lemmas 33, 34 and 37
on p. 77, on p. 78 and on p. 79 again, we get

`2(D′)− `2(D) = −
∑

(i,j,k,s)∈g4

JjiJsi〈zi , zi〉〈zk , zk〉〈uk ,βj〉〈uk ,βs〉

−
∑

(i,j,k,s)∈g4

JjrJsi〈ui ,βj〉〈ur ,βs〉+ 4λ′ + g(Σ)(Cont. next page)
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= 2λ′ +λ′+(Σ) + 4λ′ + g(Σ) = 8λ′

thanks to Lemma 40 on p. 82. �

Finally, we identify λ′ to 1
2∆
′′
K (1) where

∆K (t) = t−g(Σ) det
([
tlk(z+

r , zs)− lk(z+
s , zr )

]
(r,s)∈g2

)
denotes the Alexander polynomial of K .

Lemma 41 – We have

1
2
∆′′K (1) = λ′ .

Proof. Note tlk(z+
r , zs)− lk(z+

s , zr ) = (t − 1)lk(z+
r , zs) + 〈zr , zs〉.

∆K (t) = t−g(Σ) + t−g(Σ)(t − 1)
∑
i∈g

lk(z+
i , zi)〈zi , zi〉+ t

−g(Σ)(t − 1)2A+B(t − 1)3,

for some polynomial B, where
∑
i∈g lk(z+

i , zi)〈zi , zi〉 = g(Σ) (see Lemma 32 on p. 75)
and, thanks to Lemma 40 on p. 82,

A =
∑
{i,r}⊂g

〈zi , zi〉〈zr , zr〉
(
lk(z+

i , zi)lk(z+
r , zr )− lk(z+

i , zr )lk(z+
r , zi)

)
=

1
2

∑
(i,r)∈g2

〈zi , zi〉〈zr , zr〉
(
lk(z+

i , zi)lk(z+
r , zr )− lk(z+

i , zr )lk(z+
r , zi)

)
=
g(Σ)2

2
+

1
2

∑
(i,r)∈g2

lk(z+
r , zi)lk(z+

i
, zr )〈zi , zi〉〈zr , zr〉

=
1
2

(
g(Σ)2 +λ′+(Σ)

)
,

For some polynomial C

∆′K (t) = −g(Σ)t−g(Σ)−1 + g(Σ)(t−g(Σ) − g(Σ)t−g(Σ)−1(t − 1)) + 2t−g(Σ)(t − 1)A+C(t − 1)2

Therefore, according to Lemma 40 on p. 82,

∆′′K (1) = g(Σ)(g(Σ) + 1− 2g(Σ)) + 2A = g(Σ) +λ′+(Σ) = 2λ′ �

Index of notations
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