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Abstract

The invariant © is the simplest 3-manifold invariant defined by counting
graph configurations. It is actually an invariant of rational homology 3-spheres
M equipped with a combing X over the complement of a point, where a combing
is a homotopy class of nowhere vanishing vector fields. The invariant ® (M, X) is
the sum of 6A(M) and p;(X)/4, where A denotes the Casson-Walker invariant,
and p; is an invariant of combings, which is an extension of a first relative
Pontrjagin class, and which is simply related to a Gompf invariant 6. In Lescop
(2015a), we proved a combinatorial formula for the ®-invariant in terms of
decorated Heegaard diagrams. In this article, we study the variations of the
invariants p; or O when the decorations of the Heegaard diagrams that define
the combings change, independently. Then we prove that the formula of Lescop
(2015a) defines an invariant of combed once punctured rational homology 3-
spheres without referring to configuration spaces. Finally, we prove that this
invariant is the sum of 6 A(M) and pj(X)/4 for integer homology 3-spheres, by
proving surgery formulae both for the combinatorial invariant and for p;.

Keywords: ©-invariant, Heegaard splittings, Heegaard diagrams, combings, Gompf
invariant, Casson-Walker invariant, finite type invariants of 3-manifolds, homology
spheres, configuration space integrals, perturbative expansion of Chern-Simons
theory.

msc: 57M27, 57N10, 57M25, 55R80.

1 Introduction

In this article, a Q-sphere or rational homology 3-sphere (resp. a Z-sphere or integer
homology 3-sphere) is a smooth closed oriented 3-manifold that has the same rational
(resp. integral) homology as S3.
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A combinatorial definition of the ©-invariant from Heegaard diagrams C. Lescop

1.1 General introduction

The work of Witten? pioneered the introduction of many Q-sphere invariants,
among which the Le-Murakami-Ohtsuki universal finite type invariant® and the
Kontsevich configuration space invariant*, which was proved to be equivalent to
the LMO invariant for integer homology 3-spheres by Kuperberg and Thurston>.
The construction of the Kontsevich configuration space invariant for a Q-sphere M
involves a point co in M, an identification of a neighborhood of co with a neighbor-
hood $3\ B(1) of o in §3 = R3 U {co}, and a parallelization 7 of (M = M \ {co}) that
coincides with the standard parallelization of R on R®\ B(1), where B(r) denotes
the ball centered at 0 with radius r in R®. The Kontsevich configuration space
invariant is in fact an invariant of (M, 7). Its degree one part ©(M, 7) is the sum of
6A(M) and p;(7)/4, where A is the Casson-Walker invariant and p; is a Pontrjagin
number associated with 7, according to a theorem of Kuperberg and Thurston® gen-
eralized to rational homology 3-spheres in Lescop (2004b). Here, the Casson-Walker
invariant A is normalized like in Akbulut and McCarthy (1990), Guillou and Marin
(1992), and Marin (1988) for integer homology 3-spheres, and like %AW for rational
homology 3-spheres where Ay is the Walker normalisation in Walker (1992).

Let By denote the complement in M of the neighborhood of co identified with
S3\B(1), By is a rational homology ball. An co-combing of such a rational homology
3-sphere M is a section of the unit tangent bundle UM of M that is constant on
M \ By, (via the identifications above with R®\ B(1) near o), up to homotopies
through this kind of sections. As it is shown in Lescop (2015a), ©(M,.) is actually
an invariant of rational homology 3-spheres equipped with such co-combings.

In this article, a genus g handlebody is the 3-manifold bounded by the genus g
surface embedded in a standard way in R? as in Figure 1 on the next page. Every
closed oriented 3-manifold M can be written as the union of two handlebodies H 4
and Hp glued along their common boundary, which is a genus g surface, as

M =HUpn , Hp

where dH 4 = —dHp. Such a decomposition is called a Heegaard decomposition of M.
A system of meridians for H 4 is a system of g disjoint curves «; of dH 4 that bound
disjoint disks D(a;) properly embedded in H 4 such that the union of the «; does
not separate dH 4. For a positive integer g, we will denote the set {1,2,...,g} by
g Let (@i)icg be a system of meridians for H4 and let (B;) e, be such a system for

Hp. Then the surface equipped with the collections of the curves ; and the curves

2Witten, 1989, “Quantum field theory and the Jones polynomial”.

3Le, Murakami, and Ohtsuki, 1998, “On a universal perturbative invariant of 3-manifolds”.
4Kontsevich, 1994, “Feynman diagrams and low-dimensional topology”.

SKuperberg and Thurston, 1999, “Perturbative 3-manifold invariants by cut-and-paste topology”.
61bid.
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Figure 1 — A genus g handlebody equipped with a system {a;};c, of meridians

Bj = 8D([3’j) determines M. When the collections («;);c; and (B;)jeq are transverse,
the data D = (dH 4, (@i)icg) (Bj)jeg) is called a Heegaard diagram.

Such a Heegaard diagram may be obtained from a Morse function fy; of M that
has one minimum mapped to (—3), one maximum mapped to 9, g index one points
a; and g index 2 points b;, such that fy; maps index 1 points to 1 and index 2 points
to 5, and f) satisfies generic Morse-Smale conditions ensuring transversality of
descending and ascending manifolds of critical points, with respect to a Euclidean
metric g of M. Thus the surface dH 4 is f]\;ll(3), the ascending manifolds of the g;
intersect H 4 as disks D(«a;) bounded by the @; and the descending manifolds of
the b; intersect Hy as disks D(f;) bounded by the B;, and the flow line closures
from a; to b; are in natural one-to-one correspondence with the crossings of a; N ;.
Conversely, for any Heegaard diagram, there exists a Morse function fj; with the
properties above.

A matching in a genus ¢ Heegaard diagram

is a set m of g crossings such that every curve of the diagram contains one crossing
of m. An exterior point in such a diagram D is a point of dH 4 \ (]_[;gzl a; U ]_[}gzl /Sj).
The choice of a matching m and of an exterior point w in a diagram D of M equips
M with the following co-combing X(w, m) = X(D,w, m).

Remove an open ball around the flow line from the minimum to the maximum
that goes through w, so that we are left with a rational homology ball

Bum(2) = By Ugp(1)=a8,, B(2)\ B(1)

where the gradient field of fy, is vertical near the boundary. Reversing the gradient
field along the flow lines y(c) through the crossings ¢ of m as in Section 3.1 on p. 31
produces the co-combing X(w, m) of M.

Let 65 denote the invariant of combings of rational homology 3-spheres intro-
duced by Gompf in Gompf (1998, Section 4). A choice of a standard modifica-
tion described in Section 4.2 on p. 37 of X(w, m) in the fixed neighborhood of o
identified with S3\ B(2) transforms X(w, m) into a combing X(M,w, m) such that
p1(X(w,m)) - O5(X(M,w,m)) is independent of (M, w, m).

In Lescop (2015a, Theorem 1.5), we express ©(M, X(w, m)) as a combination

O(D,w,m) =,(D) + s¢(D,m) —e(D,w, m)

19



A combinatorial definition of the ©-invariant from Heegaard diagrams C. Lescop

of invariants of Heegaard diagrams D equipped with a matching m and an exterior
point w. First combinatorial expressions of the ingredients €,(D), s¢(D,m), and
e(D,w, m) are given in the end of this introduction section whereas Section 2 on
p- 24 provides alternative expressions and properties of these quantities.

In this article, we give several expressions of the variations of p; (X(w,m)), or,
equivalently of 65(X(M,w, m)), when w and m vary, for a fixed Heegaard diagram.
Expressions in terms of linking numbers are given in Section 3.2 on p. 33 and
derived combinatorial expressions can be found in Section 4 on p. 36.

The latter ones allow us to give combinatorial proofs that

(4@)(73, w,m)—py(X(w, m)))

is independent of (w, m) in Section 5 on p. 47. We prove that
- 1,
D)= (46(D,w,m) - p; (X (w, m)))

only depends on the presented rational homology 3-sphere M, combinatorially, in
Section 6 on p. 52. We set A(M) = A(D) so that 1 is a topological invariant of rational
homology 3-spheres.

Then we give a direct combinatorial proof that A satisfies the Casson surgery
formula for %—Dehn surgeries along null-homologous knots in Section 7 on p. 68.
This implies that A coincides with the Casson invariant for integer homology 3-
spheres. Our proof also yields a surgery formula for p;, which is stated in Theorem 6
on p. 70.

Thus this article contains an independent construction of the Casson invariant,
which includes a direct proof of the Casson surgery formula, and an independent
combinatorial proof of the formula of Lescop (2015a, Theorem 3.8) for the ©-
invariant in terms of Heegaard diagrams in the case of Z-spheres. It also describes
the behaviour of the four quantities £,(D), s¢(D,m), e(D,w, m) and p; (X (D, w, m)) (or
equivalently 05(X (M, w, m))) associated with Heegaard diagrams D decorated with
(w,m) under standard modifications of Heegaard diagrams, and Dehn surgeries.
These quantities might show up in combinatorial definitions of other invariants
from Heegaard diagrams, as 6, which Gripp and Huang use to define the Heegaard
Floer homology HF grading in Ramos and Huang (2017).

The definitions introduced in Lescop (2015a) are recalled here for the reader’s
convenience.

I thank Jean-Mathieu Magot for useful conversations.

1.2 Conventions and notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented
by the outward normal first convention. Products are oriented by the order of the
factors. More generally, unless otherwise mentioned, the order of appearance of
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1. Introduction

coordinates or parameters orients chains or manifolds. For a manifold M, (-M)
denotes the manifold obtained from M by reversing its orientation. The normal
bundle 2U(A) of an oriented submanifold A is oriented so that the normal bundle
followed by the tangent bundle of the submanifold induce the orientation of the
ambient manifold, fiberwise. The transverse intersection of two submanifolds A
and B of a manifold C is oriented so that the normal bundle 20, (A N B) of AN B at
x is oriented as (U, (A) ®YU,(B)). When the dimensions of two such submanifolds
add up to the dimension of C, each intersection point is equipped with a sign +1,
which is 1 if and only if (U, (A)®U,(B)) (or equivalently (T,(A)® T,(B))) induces the
orientation of C. When A is compact, the sum of the signs of the intersection points
is the algebraic intersection number (A, B)c. The linking number lk(Ly,Ly) = lkc(Ly, Ly)
of two disjoint null-homologous cycles L, and L, of respective dimensions d; and
d, in an oriented (d; + d, + 1)-manifold C is the algebraic intersection (L;, W;)¢
of L, with a chain W, bounded by L, in C. This definition extends to rationally
null-homologous cycles by bilinearity.

1.3 Introduction to the combinatorial definition of ©

In the end of this section, we give explicit formulas for the ingredients €, (D), s¢(D, m)
and e(D,w, m) in the formula

O(D, w,m) = €,(D) + s¢(D,m) — e(D, w, m)
for a Heegaard diagram D equipped with a matching m and an exterior point w.
These ingredients will be studied in more details in Section 2 on p. 24.

Let D = (dH 4, (@;)icg, (Bj)jcg) be a Heegaard diagram of a rational homology
3-sphere. A crossing c of D is an intersection point of a curve @j(c) = @(c) and a curve
Bj(c) = B(c). Its sign o(c) is 1 if dH 4 is oriented by the oriented tangent vector of a(c)
followed by the oriented tangent vector of f(c) at ¢ as above. It is (1) otherwise.
The set of crossings of D is denoted by C.

Let

[Tiil.ireq? = [(ai Bar,) ™!

denote the inverse matrix of the intersection matrix.
g [P
1 ifj=k
Z%i(%ﬁk)&m =0jk = {
i=1

0 otherwise.

When d and e are two crossings of a;, [d, e],, = [d, e], denotes the set of crossings
from d to e (including them) along «;, or the closed arc from d to e in a; depending
on the context. Then [d,e[,=[d,e], \{e}, |d,e]o =[d, €], \ {d} and ]d,e[,= [d, e[, \{d}.

Now, for such a part I of a;,

(L) =L Bar, = )_ olc).

Celﬁﬁ]’
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Figure 2 — Two Heegaard diagrams of RIP

We use the notation | for ends of arcs to say that an end is half-contained in an
arc, and that it must be counted with coefficient 1/2. (“[d,el, = [d,¢e], \ {€}/2”). We
agree that |d,d|, = @.

We use the same notation for arcs [d,elﬁj = [d,elg of B;. For example, if d is a
crossing of a; N B;, then

o(d)

((d.dla,B) = =

and
o(d)
(e, dla[e.dlg) = " Z o(c).
celcd[anled]g

Example 1 - In the Heegaard diagrams of RP3 in Figure 2, ([c,cla, [c,c|ﬁ> = }—L,
([Clclal [C1d|ﬁ> = <[Cld|a' [C,C|ﬂ> = %! ([Cldla! [C1d|/5> = ?I! <[C1C|alﬁ1> = %1 ([C,d|a,[31> =
3
5.

1.4 First combinatorial definitions of ¢, and s,(D, m)

Choose a matching m = {m;;i € g} where m; € a,-1; N B;, for a permutation p of g
For two crossings c and d of C, set

Con(c,d) = (Impice))s Clas 1mja), dlg) — Z Tiillmoice))s lar B eis Imja), dlg)-
(ij)eg?

6D)= ) FieiaTiayoo @) in(e,d) =) Ty (©)m(c,c)
(c,d)eC? ceC

s¢(D,m) = Z Tioie)Tjayiayo (€)o (d)wm(c,d).
(c,d)eC?
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1. Introduction

Example 2 - For the genus one Heegaard diagram D, of Figure 2 on the preceding
page, we have o(c) =1, <051:/31>8HA =2, 711 = %, choose {c} as a matching, Z{C}(c,c) =
ley(c,d) =€y(d,c) =0, {y(d, d) = % —J11 = 0so that £,(Dy) = s5¢(Dy,{c}) = 0.

For the genus two Heegaard diagram D, of Figure 2 on the preceding page,
Ji1 = % =-D51, J22 =1 and Jy, = 0. Choose {c, e} as a matching. For any crossing x
of Dz,

0= e[c,e](c’x) = g[c,e](xr €)= g{c,el(erx) = g{c,e}(xl €)= é{c,e}(dr d),

and
1 3 1
Cee(fo f) = il 1——j12 ‘721_1“722:0
~ 3 3
Ceeyld, )= Z 5“7 1- _j12 =

Uiy (fod) = —5«711 - 5«721 =0

so that €,(D,) = s¢(Dy,{c,e}) = 0.

1.5 Combinatorial definition of ¢(D, w, m)

Let w be an exterior point of D. The choice of m being fixed, represent the Heegaard
diagrams in a plane by removing from dH 4 a disk around w that does not intersect
the diagram curves, and by cutting the surface dH 4 along the ;. Each «; gives
rise to two copies a; and a; of a;, which are represented as the boundaries of two
disjoint disks with opposite orientations in the plane. Locate the crossing m; at the
points with upward tangent vectors of a; and a/, and locate the other crossings
near the points with downward tangent vectors as in Figure 3. Draw the arcs of the
curves f; so that they have horizontal tangent vectors near the crossings.

Rp

Figure 3 — The Heegaard surface cut along the ; and deprived of a neighborhood
of w

The rectangle has the standard parallelization of the plane. Then there is a map
“unit tangent vector” from each partial projection of a beta curve ; in the plane to

S1. The total degree of this map for the curve Bj is denoted by d,(p;). For a crossing
cE /3]-, dg(lmj,clﬁ) € %Z denotes the degree of the restriction of this map to the arc
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[m;, clg. This degree is the average of the degrees of this map at the upward vertical
vector and at the downward one. For any c € C, define

do(c) = de(lmj),clg) - str<ar,|m clpde(Bs).

rseg

Set

e(D,w,m Zj] e(c)

ceC

so that the combinatorial expression
O(D,w,m) = €,(D) + s;(D, m) — e(D,w, m),
which is studied in this article, is completely defined.

Example 3 - For the rectangular diagram of (Dy, {c},w;) of Figure 4, d(|c,clg) = 0
and d,(c) = 0, d,(lc,dlg) = %, d.(1) = 2 so that d,(d) = -3, e(Dy,wy,{c}) = -} and
O(Dy,wy,{c}) = §.

Figure 4 — Rectangular diagrams of (Dy,{c}, w;) and (D5, {c, e}, w;)

For the rectangular dlagram of (Dy,{c

e, w
de(B2) =0, d(d) = do(f) = 5, e(Dy,wp, {c,€}) =

w,) of Figure 4, d,(c) = d( ):de([il):
Yand O(Dy, w, crel) =

2  More on the combinatorial definition of ©

In this section, we show that the quantities £,(D), s,(D, m) and e(D, w, m) defined in
the previous section for a Heegaard diagram D equipped with a matching m and an
exterior point w only depend on their arguments (e.g. on D, for £,(D) ...) and not
on extra data used to define them like numberings or orientations of the diagram
curves. We also give alternative definitions of €;(D) and s¢(D, m).
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2. More on the combinatorial definition of ©

2.1 Moreon e¢(D,w, m)

Recall the notation and definitions of Section 1.5 on p. 23 with respect to a fixed
matching m = {m;;i € g} where m; € a-1(;y N B;, for a permutation p of g.

Lemma 1 - The number

e(D,w,m ZJ] (c)

ceC

depends neither on our specific way of drawing the diagram with our conventions, nor on
the orientations of the diagram’s curves. It only depends on D, w and m.

The topological interpretation of e(D, w,m) as an Euler class given in Corollary 2
on p. 37 yields a conceptual proof of this lemma. We nevertheless give a purely
combinatorial proof below.

We use the Kronecker symbol 9.4, which is 1 if ¢ = d and 0 otherwise. We first
prove the following lemma.

Lemma 2 — A full positive twist of a curve o] or a curve a; in Figure 3 on p. 23 changes
de(c) to de(c) + 50i(c)i — 5Op(ij(c)-

Proof. When a crossing is moved counterclockwise along a curve «, (like along a;
in Figure 15 on p. 50) the degree increases (by 1 for a full loop) when the crossing
enters (the disk bounded by) « in Figure 3 on p. 23 and decreases when the crossing
goes out. Furthermore the positive crossings enter a; and the negative ones enter
/. Then letting all the crossings make a full positive loop around a;” (resp. around
a;) changes d,(f;) to d.(Bs)—(ai, Bs) (resp. to d.(Bs)+{a;, Bs)). Now, for a full positive
loop around a7, d,(|mj) clg) is changed to

de(|mje) clg) = (ais [mj(c), clp) = 0i()iO(-1)0(c) 9 (€) = Op(i)j(c) D10 (i) O (Mj(c))-

Indeed, right before ¢, §j() hits ;" if and only if o(c) = —1 and i(c) = i. Similarly,
after mj(), Bj(c) exits a/ if and only if o(mj)) =1and p~!(j(c)) = i. This expression
can be rewrltten as

1.

1
de(Imj(c) clg) — @i, Imjc) clg) + Eéi(c)i = 5 %()j)

Similarly, for a full positive loop around «;, de(Imj(c) clg) is changed to

de(lmjc) clg) +<ai, Imje), clg) + %61-@1- - %%(imc»
Now, since
Z Tsr{ar, Imj) clgXai, s) = (i, Imj(c), clg),
(1,5)eg?
d.(c) is changed to d,(c) + %61-(6),- - %6(,(,-)]-(6) in both cases. O
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Proof (of Lemma 1 on the previous page). Note that e(D, w, m) does not depend on the
numberings of the diagram curves. We prove that e(D, w, m) does not depend on our
specific way of drawing the diagram with our conventions when the orientations of
the diagram curves are fixed. When the curves a; and a;” move in the plane without
being twisted, the d,(c) stay in %Z and are therefore invariant. Therefore it suffices
to prove that e(D,w, m) is invariant under a full twist of a curve a; or a curve a;’.
Since

ij(c)i(c)(f(c)(éi(c)i = Op(i)j(c) = ij(c)iﬁ(c)— Z Tp(iji(eolc)=1-1=0,

ceC cea; c€Popi)

e(D,w,m) does not vary under these moves, thanks to Lemma 2 on the previous
page. It is not hard to prove that ¢(D,w, m) does not depend on the orientations of
the curves f. Changing the orientation of a curve a permutes a; and a;” and does
not modify e(D, w, m) either so that the lemma is proved. O

We will see that e(D,w, m) is also unchanged when the roles of the curves a and
the curves  are permuted, in Corollary 3 on p. 37.

2.2 More on sy(D,m)

Fix a point 4; inside each disk D(«;) and a point b; inside each disk D(f;). Then
join a; to each crossing c of a; by a segment [a;,c]p(q,) oriented from g; to ¢ in
D(a;), so that these segments only meet at a; for different c. Similarly define
segments [c, bj(c)]D(/ﬁj(c)) from c to bj(¢) in D(Bj(c))- Then for each c, define the flow line
y(c) = [ai(), C]D(ai(c)) Ule, bj(c)]D(ﬁj(c))' When y(c) is smooth, y(c) is a flow line closure
of a Morse function fy; giving birth to D discussed in the introduction.

For each point 4; in the disk D(a;) as in Section 1.1 on p. 18, choose a point a;
and a point a; close to a; outside D(a;) so that 4] is on the positive side of D(a;)
(the side of the positive normal) and a; is on the negative side of D(a;). Similarly
fix points b;r and b]T close to the b; and outside the D(f;).

Then for a crossing ¢ € ()N Bj(c), ¥(c)) will denote the following chain. Consider
a small meridian curve m(c) of y(c) on dH 4, it intersects B, at two points: c’; on
the positive side of D(a;(¢)) and ¢, on the negative side of D(«;()). The meridian
m(c) also intersects a; () at czg on the positive side of D(fj()) and cjz on the negative
side of D(Bj())- Let [, ci], [l ezl [c,c5] and [c, ci| denote the four quarters
of m(c) with the natural ends and orientations associated with the notation, as in
Figure 5 on the next page.

Let y(c) (resp. y(c)) be an arc parallel to [ai(c),c]D(ai(c)) from a;r(c to c;‘ (resp.

)
to ¢;) that does not meet D(«;(()). Let yg(c) (resp. yz(c)) be an arc parallel

that does not meet D(j())-

from a;

c)

to [c, bj(c)]D(ﬁj(C)) from cj; to b;.r(c) (resp. from cj to b]f(c))

—_

V(O = 3070+ Vale) + 7k bl + [ e+ [ el + [ g + 50730+ 750

N
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2. More on the combinatorial definition of ©

Figure 5 - m(c), c;, ¢y g and ¢y

Set aj = 3(aj +a;) and by = 3(b] +b7). Then dy(c )”:b- 1= ol

Recall our matching m = {m;;i € g} where m; € ay-1(; N B, for a permutation p

P
of g, so that y; = y(m;) goes from a,-1(;) to b;.

Set

LD, ZZJJ v(e)

ceC

Note that L(D, m) is a cycle since

Mw

IL(D,m) = ai)= ) Jjidai Bidar, (b —a;) = 0.

i=1 (i,j)eg?

Set L(D,m); = X5, ¥i = Leee Tj(0)ie) o ()7 (O))-

In this subsection, we prove the following proposition.
Proposition 1 - For any Heegaard diagram D equipped with a matching m,
s¢(D,m) = lk(L(D, m), L(D, m)).
This proposition has the following easy corollary.

Corollary 1 - The real number s¢(D,m) is an invariant of the Heegaard diagram D
equipped with wm, which does not depend on the orientations and numberings of the
curves a; and Bj, and which does not change when the roles of the a-curves or the
B-curves are permuted.

We first prove the following lemma, which will be useful later, too.

Lemma 3 — For any curve a; (resp. ﬁ]-), choose a basepoint p(a;) (resp. p(ﬁ]-)). These
choices being made, for any crossing c of C, define the triangle Ty(c) in the disk D(Bj())
such that

dTg(c) = [p(B(c)),clg + (y(c) "NHp) = (¥ (p(B(c))) N Hp).
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Similarly, define the triangle T,/(c) in the disk D(a;(c)) such that

dTa(c) = =[p(alc)),cla + (y(c) NH4) = (y(p(alc) N Hoa).
Let K=Y .cckcy(c) be acycle of M.
Let ¥1(K) = X cec ke(Ta(c) + Tﬁ(c)) and

Sp(K)= ) Tiike ((Up(@(@))cla B)D(@i) et Ip(B(E)) g DIS))-

(i,j,c)egzxc

There exists a 2-chain Xy (K) in dH 4 whose boundary 0¥y (K) is

Y Tiike (@i Ip(Ble)), clg)B; = Ip(a(e), clas Bjdea:)

(1]c€g xC

+)_ke(lplate)), el = [p(B(e)),clp)

ceC
so that the boundary of
¥(K) = X5 (K) + Ep(K) + X1 (K)
is K.
Though it is not visible from the notation, the surfaces depend on the basepoints.

Proof (of Lemma 3 on the previous page).

ITr(K)=K =) ke(lp(B(e))clg - [plale))cla)

ceC

is a cycle. Any 1-cycle o of JH 4 is homologous to Z(i,j)egz Jjio, Bj)ai +{a;, a)p;).
Therefore by pushing (dX1(K) - K) in the directions of the positive and negative

normals to the a and the 8 in dH 4, and by averaging, we see that (K — dX1(K)) is
homologous in dH 4 to

ZJJI (Ip(@(c))scla, Bjdai = (@i Ip(B(e). clp)B;).

(i,j,c)eg 2xC
which bounds

K) =) Jiike ({Ip(@(c))sclas BYD(@) (i, Ip(B(c)).cl)D(B;)-

1]ceg><C 0
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2. More on the combinatorial definition of ©

Proposition 2 — For any curve a; (resp. f;), choose a basepoint p(a;) (resp. p(B;)).
These choices being fixed, set

U(c,d) = (|p(a(c)), cla, Ip(B(d)), d] ) - Z Jjillp(a(c)), cla, BiX i, [p(B(d)), dlp).
(i.)eg?

Let K=Y .cckey(c)and L=3 ;.0 84v(d) be two 1-cycles of M. Then

Ik(K, L) = k(LK) = Z kegal(c,d
(c,d)eC?

Proof. The first equality comes from the symmetry of the linking number and from
the observation that lk(K,L”) = lk(K||,L). Compute lk(K, L||) as the intersection of
L with the surface bounded by K provided by Lemma 3 on p. 27. Thus Ik(K, L) =
(Ex(K),Lj). Now, since L =} ;.- g47(d) is a cycle,

L=) gly(d)-y(p(p(d)

and it suffices to prove the result when L = y(d) — y(p(B(d))). For any path [x,p]
from a point x to a point y in dH 4, when x and p are outside 0¥y (K),

(x =9, 25 (K))x =([x,9], 0Xs(K))om,-

Thus by averaging,

(@)= y(pB@d), Xx(K)) = (dEx(K),Ip(B(d)), d|g)or -
This is

D kelp(e(©)), cla Ip(B(d)), 1Yo,

ceC

Z keTi (<Ip(a(e))sela, Bi)as Ip(B(d)), dlgYon,)

(l]CEg xC

=) ke(lle.d)~ e, p(B(d))). =

ceC

Proof (of Proposition 1 on p. 27). Apply Proposition 2 with the basepoints of m so
that £ =¢€,,. ]
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2.3 More on ¢,(D)

Proposition 3 — For any curve a; (resp. f;), choose a basepoint p(a;) (resp. p(B;)).
These choices being made, for two crossings ¢ and d of C, set

= ([p((e)) el [P, dlg)~ ) Tidlp(a(e)),cla, Bi)ai, [p(B(d)),dlj)
(i,j)eg?
and {(c,d) = (|p(a(c)), cla, Ip(B(d)), d]g) - L jeg> Jjillp(a(c)), cla, )i, Ip(B(d)), dlg)-
Then, for any 2-cycle G = Z(c,d)eCz Sed(y(c)xy(d))) of M?,

= ) galled)= ) gulled

(c,d)eC? (c,d)ec?

Furthermore, £'?)(G) is independent of the choices of the basepoints p(a;) or p(Bj),
and of the numberings and orientations of the curves a; or ;.

Proof. Let ¢’ be defined as ¢ except that the basepoint p; = p(a;) of a; is changed to
a basepoint g;. When c € a; \ [p;, 4i[a,

(e, d)=€(c,d) = ~([pi, il [P(B@), dlg)+ Y Tinlpis gilas BN, [p(B(@)), dlg) (1)
(rj)eg?

When ¢ € [pi, qila, [9iscla \ [Pircla = [9irPila= @i \ [Pir qila- Since
(@i [p(BNdlgy = ) Tikai, BiXay [p(B(d)), dlg),
(rj)eg?

C'(c,d)—{(c,d) is given by formula (1), which does not depend on c € ¢; in this case
either. Then

Y salllcd)-ted)= Y gall(cd)-Lc,d).

(c,d)eC? (c,d)ea;xC

For any d € C, since

A(y(c)xy(d))) = (bje) = aie) x y(d)) = y(c) x (bj(ay — ai(ay)»

Y ceq; 8cd = 0. Since the right-hand side of formula (1) does not depend on ¢ € a;,
this shows that ). sec2 8cal(c, d) does not depend on the basepoint choice on «;.
Similarly, it does not depend on the choices of the basepoints on the f;.

Similarly, 3 . 4)cc2 8at(6, d) = Xc,arec2 8eall(c,d)-

Using ¢, changing the orientation of a; changes |p(a(c)), cl to —a; +|p(a(c)), clq
for ¢ € a;, and does not change ¢(c, d). O
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3. The co-combings X (w, m) and their p;

Remark 1 - Let [S] be the homology class of {x} x dB, in M?\ diagonal, where By is
a ball of M and x is a point inside By. Then H,(M? \ diagonal; Q) = Q[S], and it is
proved in Lescop (2015a, Proposition 3.4) that the class of a 2-cycle

G= ) guly(©)xy(d))

(c,d)ec?

in H,(M? \ diagonal; Q) is £?)(G)[S]. Furthermore, for two disjoint 1-cycles K and L
of M, the class of K x L in H,(M? \ diagonal; Q) is Ik(K,L)[S] so that Proposition 2
on p. 29 provides an alternative proof of Lescop (2015a, Proposition 3.4) when G
is the product of two 1-cycles. This is the needed case to produce combinatorial
expressions of linking numbers involved in the variations of p;, which we are going
to study later.

Proposition 4 — Set

= ) i o (@) x YD) = ) Tieyo () x y(e)y):

(c,d)eC? ceC

Then G(D) is a 2-cycle of M?. Let £,(D) = 2)(G(D)). Then £,(D) is an invariant of the
Heegaard diagram, which does not depend on the orientations and numberings of the
curves a; and B;. It does not change when the roles of the a-curves or the B-curves are
permuted either.

Proof. 1t is easy to prove that G(D) is a 2-cycle”.

Permuting the roles of the @; and the f; reverses the orientation of JH4 and
changes J to the transposed matrix. It does not change ¢,(D) because of the
symmetry in the definition of £(?). ]

3 The co-combings X(w, m) and their p;

3.1 On the co-combing X(w, m)

In order to finish our description of X(w, m) started in the introduction, we need
to describe the vector field that replaces the gradient field Xy, in regular neighbor-
hoods N(y; = y(m;)) of the flow lines y; associated with a matching m of D. Up to
renumbering and reorienting the f;, assume that m; € a; N p; to simplify notation.

Choose a natural trivialization (X;,X,, X3) of TM on a regular neighborhood
N(y;) of y;, such that:

7See Lescop, 2015a, “A formula for the ©-invariant from Heegaard diagrams”, proof of Proposi-
tion 3.2.
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* y;is directed by X,
¢ the other flow lines never have X; as an oriented tangent vector,

* (X1,Xj,) is tangent to the ascending manifold A; of a; (except on the parts of
A; near b; that come from other crossings of a; N B;), and (X7, X3) is tangent to
the descending manifold B; of b; (except on the parts of B; near a; that come
from other crossings of a; N f;).

This parallelization identifies the unit tangent bundle UN(y;) of N(y;) with S? x

N(y).
There is a homotopy h: [0, 1] x (N(y;)\ ¥;) — S2, such that

* h(0,.) is the unit vector with the same direction as the gradient vector of the
underlying Morse function fy,,

* h(1,.)is the constant map to (—X;) and

* h(t,y) goes from h(0,y) to (—X;) along the shortest geodesic arc [h(0,7),—X;]
of S2 from h(0,y) to (-=X1).

Let 27 be the distance between y; and dN(y;) and let X(y) = h(max(0,1-d(y, ¥;)/1),v)
on N(y;)\ 7;, and X = —-X; along y;.

Note that X is tangent to A; on N(y;) (except on the parts of A; near b; that
come from other crossings of a; N f;), and that X is tangent to B; on N(y;) (except
on the parts of B; near a; that come from other crossings of a; N ;). More generally,
project the normal bundle of y; to R? in the X;-direction by sending y; to 0, A;
to an axis £;(A) and B; to an axis £;(B). Then the projection of X goes towards 0
along £;(B) and starts from 0 along £;(A), it has the direction of s,(v) at a point y of
R? near 0, where s, is the planar reflexion that fixes £;(A) and reverses £;(B). See
Figure 6.

Figure 6 — Projection of X

Then X(y) is on the half great circle that contains s,(y), X; and (—X;). In Figure 7
on the next page, y; is a vertical segment, all the other flow lines corresponding to
crossings involving «; go upward from 4;, and X is simply the upward vertical field
in a neighborhood of y; U D(a;).
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3. The co-combings X (w, m) and their p;

Figure 7 — y;

3.2 Onp(X(w, m))

A combing of a rational homology 3-sphere M is a homotopy class of sections of
the unit tangent bundle UM of M. Recall that co-combings are defined in the
introduction. Invariants p; of co-combings and combings of rational homology
3-spheres M are invariants valued in Q, which have been introduced and studied in
Lescop (2015b) as extensions of a relative first Pontrjagin class from parallelizations
to combings.

For a combing that extends to a parallelization 7, the map p; coincides with
the Hirzebruch defect (or Pontrjagin number) of the parallelization 7, studied in
Hirzebruch (1973), Kirby and Melvin (1999), Lescop (2004a), and Lescop (2013).
For a parallelization 7: M x R> — TM of a 3-manifold M that bounds a connected
oriented 4-dimensional manifold W with signature 0, p;(7) is defined as the evalua-
tion at the fundamental class of [W, dW] of the relative first Pontrjagin class of TW
equipped with the trivialization of T W5y that is the stabilization by the “outward
normal exterior first” of . For co-combings that extend to parallelizations standard
near oo, p; is defined similarly by replacing W by a connected oriented signature
0 cobordism W, with corners between B(1) and the rational homology ball By;. A
neighborhood of the boundary

oW.=-B(1) | ] ([0o1]xaB1) | ] Bu
dB(1)~0xB(1) 0Bp~1xdB(1)

of such a cobordism is naturally identified with an open subspace of one of the
products [0,1[xB(1) or ]0,1] x By; near dW,, so that the standard parallelization of
IR® and 7 induce a trivialization of T W, by stabilizing by the “tangent vector to
[0,1] first”. For more details, see Lescop (2004a, Section 1.5).

Recall that any smooth compact oriented 3-manifold M can be equipped with a
parallelization 7. When such a parallelization 7 of M is given, for M = M or M, two
sections X and Y of UM induce a map (X,Y): M — S? x S2. Such sections are said
to be transverse if the graphs of the induced maps (X, Y) and (X,-Y) are transverse
to M x diag(S? x S%) in M x S% x S2, where —Y denotes the section opposite to Y.
This is generic and independent of . For two transverse sections X and Y, let
Ly—y be the preimage of the diagonal of S? under the map (X, Y). Thus Ly_y is an
oriented link, which is cooriented by the fiber of the normal bundle to the diagonal
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of (S?). In Lescop (2015b, Theorem 1.2), we proved that our extensions p; satisfy
the following property, which finishes defining them, unambiguously.

Theorem 1 - When X and Y are two transverse representative sections of co-combings
(resp. combings) of a rational homology 3-sphere M,

p1(Y)=p1(X) = 4lk(Lx—y,Lx=—y)-

In Lescop (2015b, Section 4.3), we also proved that p; coincides with the in-
variant O defined by Gompf in Gompf (1998, Section 4), for combings of rational
homology 3-spheres.

The following properties of p; are easy to deduce from its definition.

Proposition 5 — The map py has the following properties.

* A constant nonzero section N of TIR® represents an co-combing [N] of S such
that p(N1) = p1(N) = 0.

* Let M be a rational homology 3-sphere equipped with a representative section X
of an co-combing (resp. of a combing). Let M’ be a rational homology 3-sphere
equipped with a representative section X’ of an co-combing. Assume that X’
coincides with a constant section N of B(1) on dBys and that there is a standard
ball B(1) embedded in M where X coincides with N. Replacing this embedded ball
(B(1),N) by (B, X') gives rise to a representative section of an co-combing (resp.
of a combing) X" of the obtained manifold such that p1(X”) = p1(X) + p1(X’).

* Changing the orientation of M changes p1(X) to —p(X).

Let £ be an oriented plane bundle over a compact oriented surface S and let o be
a nowhere vanishing section of & on dS. The relative Euler number e(£,S,0) of o is
the algebraic intersection of an extension of ¢ to S with the zero section of £. When
S is connected, it is the obstruction to extending o as a nowhere vanishing section
of £. The following proposition is a direct corollary of consequences of Theorem 1
derived in Lescop (2015b).

Proposition 6 — Let m and m’ be two matchings of D. Let L(m’,m) = L(D,m’)— L(D, m),
and let ¥(L(m’, m)) be a compact oriented surface bounded by L(m’,m) in M \ (S3\ B(1)).
Consider the four following fields Y**, Y*~, (Y ™" =-Y*")and (Y~ =-Y*™")ina
neighborhood of the y(c). Y™* and Y*~ are positive normals for A; (which is oriented
like D(a;)) on A; N fy (1 = 00,3]), and Y** and Y~ are positive normals for B; on
B;n fur ([3,+00]). These four fields are orthogonal to X(w, m) over L(m’,m) and they
define parallels L(m/, m)yen of L(m’,m) obtained by pushing in the Y *'I-direction. Then

b1 (X(wlm/))_pl (X(w,m)) == Z lk(L(m/’m)’L(m,lm)HYE"l)+E(wrm,lm)

(em)ef+-)?
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3. The co-combings X (w, m) and their p;

where

E(w,m/,m) = — Z e(X(w,m)L, S(L(m’, m)), YE)
(5’77)6{+’_}Z

Proof. Set L = L(m/,m). Construct a cable L, of L locally obtained by pushing
one copy of L in each direction normal to the B;, except near the a; where L,
sits in A;. Define the field Z over L, such that, at a point k of L,, Z has the
direction of the vector from the closest point to k on L towards k. Thus X(w, m’) =
D(X(w,m),L,L,,Z,—1) with the notation of Proposition 4.21 in Lescop (2015b).

Then ((Lyy++,Ljjy--),(Y™",Y™7)) is obtained from (L,,Z) by some half-twists
and

(Lo Lyy-+), (Y7, Y 7))

is obtained from (L,,Z) by the opposite half-twists. Then according to Proposi-
tion 4.21 in Lescop (2015b), with the notation of Lescop (2015b, Definition 4.16),

, 1
p1(X(w,m’) = Zpy (D(X(w,m), L, Ljy+s, Y, ~1))
1 —
+ EPI(D(X(w:m); L, L|\y+f, Yyt -1)).

Thus py (X(w,m’)) = %1 Z(&,I)E{Jr,_}z p1(D(X(w,m),L, Ljyes, Y*',~1)) and, according
to Lescop (2015b, Proposition 4.18 and Lemma 4.14),

X)) ~pr(X(w,m)=— Y k(L' m), L’ m)jyen)
(em)el+-)?
- Z e(X(w,m), T(L(m’, m)), Y. o
(emet+-}?
Combinatorial expressions for Z(s,r;)e{+,—|2 Ik(L(m’,m), L(m’, m)jjyen) may be de-
duced from Propositions 2 and 3 on p. 29 and on p. 30. A combinatorial expression

for E(w,m’,m) will be given in Proposition 7 on p. 37.
The following theorem will be proved in Section 4.5 on p. 43.

Theorem 2 — Let L(w’,w) be the union of the closures of the flow line through w’ and
the reversed flow line through w.

p1(X(w’,m)) = p1 (X(w,m)) = 8Ik(L(D, m), L(w’, w)).

Proposition 10 on p. 47 together with the definition of L(D, m) before Propo-
sition 1 on p. 27 will provide a combinatorial expression for [k(L(D,m), L(w’,w)).
Proposition 9 and Corollary 4 on p. 41 and on p. 48 provide other ones.
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4 On the variations of p;(X(w, m))

4.1 More on the variation of p; when m changes

Lemma 4 - Let K=Y .o k.y(c) be a cycle of M, and let ¥(K) be a surface bounded by
K in M. For (&,1) € {+,—}?, let Y&l be the field defined in Proposition 6 on p. 34 along
the y(c). Then

Z e(X(w,m)L, X(K), Y& = -4 chde(c)

(e)el+,-12 ceC

where d, is defined before Lemma 1 on p. 25 with respect to our initial data, which
involve (w, m).

Proof. Set X(m) = X(w,m). Since M is a rational homology 3-sphere, the Euler
number ¢(X(m)+,2(K), Y4") does not depend on the surface X(K). Choose the
surface constructed in Lemma 3 on p. 27 with the points of m as basepoints. After
removing the neighborhood N(y(w)) of the flow line through w, fl\zl(] — 00,0])
behaves as a product by the rectangle Rp of Figure 3 on p. 23 and has the product
parallelization induced by the vertical vector field and the parallelization of Rp.
This parallelization extends to the one-handles of H 4 as the standard parallelization
of R? in Figure 7 on p. 33 so that it naturally extends to fy;'(]— oo, 3]), it furthermore
extends to the neighborhood of the favourite flow lines in Figure 7 on p. 33. The first
vector of this parallelization is X(m) and its second vector is everywhere orthogonal
to D(a;). It can be chosen to be Y*. In a symmetric way, X(m)! has a unit
section that coincides with the second vector of the above parallelization on the
neighborhoods of the favourite flow lines in Figure 7 on p. 33 and that is orthogonal
to D(f;) on fAjll([4,oo[) \ N(y(w)). Thus e(X(m)*+,X(K), Y&') reads

Y kee(X (m)* Imjie) clg x [3,4], Y©)

ceC

= ) Tikelai Imjo clpe(X (my*, By x 3,41, Y1)
(i,j,c)egzxc

where

1 _
de(Imj(e) clg) =~ Z e(X(m)", [mj(p), clp x [3,4], 751
(el 2

de(ﬁs) = _i Z e(X(m>Lr Bs % [31 4]1 YE’”)

(em)el+,—12

with respect to our partial extensions Y& of Y, as in Lescop (2015a, Lemma 7.5).0
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4. On the variations of p1(X(w,m))

We get the following proposition as a direct corollary of Lemma 4 on the preced-
ing page :

Proposition 7 — Under the hypotheses of Proposition 6 on p. 34, if m" = {d}};c,, then

g
E(w,m’,m) = 4Zde(dj)

j=1
where d, is defined with respect to our initial data, which involve (w, m).

Note that Lemma 2 on p. 25 independently implies that Z]gzl d.(d;) only depends
on (w,m,m’).

Lemma 4 on the preceding page also yields the following second corollary, which
is Lescop (2015a, Proposition 7.2), which in turn yields Corollary 3.

Corollary 2 — Let X(L(D, m)) be a surface bounded by L(D, m) in M.

e(D,w,m):}L Z e(X (w, m)*, Z(L(D,m)), Y

(em)ef+-)?

Corollary 3 — e(D,w, m) is unchanged when the roles of the curves a and the curves
are permuted.

Proof. Permuting the roles of the curves a and the curves p reverses the orienta-
tion of L(D, m) and changes X(w, m) to its opposite while the set {Yf'”}(g,q)e{Jr,_}z is
preserved. ]

4.2 Associating a closed combing to a combing

The Heegaard surface fy;'(0) of our Morse function fy; is obtained by gluing the
complement Dy of a rectangle in a sphere S? to the boundary of the rectangle Rp
of Figure 3 on p. 23. Let Dy x [-2,7] denote the intersection of f,,!([~2,7]) with
the flow lines through Dy so that fys is the projection to [-2,7] on Dg x[-2,7] and
the flow lines read {x} x [-2,7] there. Similarly, our Morse function fy; reads as the
projection on the interval on

i ([=2,0]U[6,8]) = (S? x [-2,0]) U (S? x [6,8])

while f;'([-3,-2]) and f,;'([7,9]) are balls centered at a minimum and a maximum
mapped to —3 and 9, respectively.

The combing X (w, m) of Section 3.1 on p. 31 of By, can be extended as a closed
combing X(M,w, m), which is obtained from the tangent X, to the flow lines outside

By by reversing it along the line {w}x] -3, 9] as follows:
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Let us first describe X(M,w,m) on Dy x [-2,8]. Let D be a small disk of Dy
centered at w. Reverse the flow on {w} x [-2, 8] so that it coincides with the tangent
X¢ to the flow outside D x [-2,8], and so that on a ray of D x {t} directed by a
vector Z from the center, it describes the half great circle [-X4, Xy ]z from (-X)

to Xy through Z, if t € [-2,7]. Then on $?x{-2}, X is naturally homotopic to the

restriction to the boundary of a constant field of B3. See Figure 8 for a vertical
section of the ball centered at the minimum where the constant vector field points
downward. We extend it as such.

Figure 8 — The vector field near a minimum in a planar section of fﬁl ([-3,-2])

Now, on S2 x {7}, X looks like in Figure 9. It would naturally be homotopic
to the restriction to the boundary of a constant field of B? if the half great circle
[-X¢, Xplz from (=Xy) to X, through Z went through (-Z). Let 04,0 denote the

rotation with axis X, and with angle 6. For t € [7,8], on a ray of D x {t} directed by

a vector Z from the center, let X describe the half great circle [_X¢’X¢]PXP,(r—7)n(Z)

from (-X;) to Xy through pX¢,(t_7)n(Z). Now, we extend X as the constant field of

B3, which we see near the maximum, to obtain the closed combing X(M,w, m).

/LI

On S? x {7} On S? x {8}

Figure 9 — The vector field near a maximum

Lemma 5 - (p;(X(M,w, m)) - p;(X(w, m))) is a constant independent of M, w and m.

Proof. This follows from the second item in Proposition 5 on p. 34 since the combing
in the outside ball is unambiguously defined. O

4.3 An abstract expression for the variation of p; when w varies

This section is devoted to the proof of the following proposition, which describes
the variation of the Pontrjagin class p; (X(w, m)) when w varies.
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Proposition 8 — Let w and w’ be two exterior points of D. Let [w,w’], be a path on
JH 4 from w to w’ disjoint from the a; and let [w’,w]g be a path on JH 4 from w’ to w
disjoint from the ;. Set [w,w’]g = —[w’, w]g. Assume that the tangent vectors of [w,w’],
and [w,w’]g at w and w’ coincide. Let

L([w, w')a, [w',w]p) = ([w,w]o x {2) U ({w'} x [2,4]) U ([w', w]g x {4}) U (fw} x [4,2]).

Let ¢ = +1. Let Y be a vector field defined on L([w,w’],, [w’, w]g) that is tangent to the
Morse levels dH 4 x{t} and that is an e-normal (positive if € = 1 and negative otherwise) to
[w, w']ox{2} and a (-&) normal to [w’, w]gx{4}. Let L([w, w']s, [w’, w]p)y be the induced
parallel of L([w, w'], [w’, w]p). Let X be a surface bounded by L([w,w’],, [w’,w]g). Then

p1(X(w’,m))) - p1 (X (w,m)))
= 4de(X(w,m)", %, Y) - 4lk(L([w, '], [w, w]p), L([w, w']a, [w', w]g)y)-

Proof. First note that X(M,w, m) directs {w’} x [2,4] and {w} x [4, 2] so that the right-
hand side of the equality above is independent of the field Y that satisfies the
conditions of the statement. Let L(w’,w) be the knot of M that is the union of
the closures of {w’}x]—3,9[ and {w} x (=] - 3,9[). Let X(M,w’, m) be obtained from
X(M,w, m) by reversing X(M,w, m) along L(w’,w), where X(M,w, m) is tangent to
L(w’,w). In this situation, there is a standard way of reversing (namely the one
that was used along {w} x [-2,7] in Section 4.2 on p. 37) by choosing a framing that
determines both the parallel and the orthogonal field.

Proposition 8 is the direct consequence of Lemma 5 on the preceding page and
of the following three lemmas.

Lemma 6 — There exists a constant Cy independent of (M, w,w’, m) such that

p1(X(M,w’,m)) - py (X(M,w,m)) = 4e(X(w,m)+, %, Y) +4C,
—Alk(L([w, '], [w/'w]ﬁ):L([w:w,]ar [w/:w]ﬁ)HY)-

Lemma 7 — There exists a constant Cy independent of (M, w,w’, m) such that
p1(X(M,w’,m)) - py (X(M,w’,m)) = 4C;.

Lemma 8 — The constants Cy and C; coincide.

Proof (of Lemma 6). Let T([w,w’],) be the (closure of the) past of [w,w’], x{2} under
the flow. This is a triangle and we can assume that it is smoothly embedded (near
the minimum). Similarly, let T([w’,w]g) be the future of [w’,w]s x {4} under the

flow, assume without loss that it intersects $2 x {7} as a half-great circle, so that it
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intersects fl\;ll([7,9]) as a hemidisk denoted by T;([w’,w]s). Orient T([w,w’],) and
T([w’,w]g) so that

IE+T([w,w']y) + T([w',w]p)) = L(w', w).

Then Y extends to T([w,w’],) as the (¢)-normal on T([w,w’],), which is in
X(M,w,m)*. Similarly, Y extends to T([w’,w]g) as the (¢)-normal on T([w’,w]p),
it is a unit vector field, which is in X(M, w, m)* outside the interior of T;([w’,w]p).
Use Y to frame L(w’, w). Then, according to Lescop (2015b, Proposition 4.18 and
Lemma 4.14) where =1,

p1(X(M,w’,m)) - py (X (M, w,m))
= de(X(M,w,m)*, T+ T([w', w]p), Y) - 4lk(L(w', w), L(w’, w)}y)
where
e(X(M,w,m)*, Ty ([w', w]g, Y) = Co
for a constant Cy independent of (M, w, w’,m), and

Ik(L(w', w), L(w’, w)yy) = Ik(L([w, w']q, [w', w]g), L([w, w']a, [w', w]g) v )- a]

Proof (of Lemma 7 on the previous page). Recall that D is a small disk of dH 4 cen-
tered at w. The vector fields X(M,w’,m) and X(M,w’, m) coincide outside fl\;fl ([-3,-2]u
[7,9])UD x[-2,7]. This is a ball where the definition of these fields is unambiguous
and independent of (M, w, w’, m). O

Proof (of Lemma 8 on the previous page). According to the previous lemmas, for any
(M, w,w’,m),
p1(X(M,w’,m)) - p1 (X(M, w,m))
= ~AIK(L([w, '), (W', w]p), L[, 0 o [, w]g)yy)
+4e(X(w,m)h, 2, Y) +4(Co— Cy).
When M is S3 equipped with a Morse function with 2 extrema and no other
critical points, and when w and w’ are two points of S? related by a geodesic arc

[w,w']y = =[w’,w]g, it is easy to see that the first two terms of the right-hand side
add up to zero, so that (Cy—Cy) = 0. O

4.4 A combinatorial formula for the variation of p; when w varies

Now, we give an explicit formula for the right-hand side of Proposition 8 on the
previous page.
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4. On the variations of p1(X(w,m))

Proposition 9 — Assume that w is on the upper side of the rectangle Rp of Figure 3
on p. 23. Assume that [w,w’], and [w,w’]g = —[w’,w]y point downward near w and
w’ and that [w,w’]g is on the same side of [w,w’], near w and w’ as in Figure 10. Let

d,(gw)([w,w’]a) be the degree of the tangent map to [w,w’], on the rectangle Rp of Figure 3

on p. 23. Let dgw)([w,w’]ﬂ) be the degree of the tangent map to [w,w’]g on Rp, where

[w, w’]g intersects the a]’- and the a;’ on their vertical portions opposite to the crossings of

m, with horizontal tangencies. Then
p1(X(w',m)) - p1 (X(w,m)) = py (m;w, w’)
where
pi(msw,w') = 4 ([w,w'e) - 445" (w, ')
+4 ) ke [ww'lpd” ()
(i,j)eg>
- 4<]wlw,[a1 ]w'w,[ﬁ>

+4 ) Ty [wwg)(w,w' ], B

(i.)eg?

[wrw/]a

Figure 10 - [w,w’], and [w,w’]g

Proof. Define the field Y of Proposition 8 on p. 39 along {w’} x [2,4] and {w} x [4,2],
as the field pointing to the right in Figure 10, which is preserved by the flow
along {w’} x [2,4] and {w} x [4, 2], so that it is always normal to [w,w’], x [2,4] or
[w,w’]g x [2,4] along {w’} x [2,4] and {w} x [4,2]. Let L = L([w,w’],,[w’,w]3) and
let Lj = Ljy. The proposition follows by applying Proposition 8 on p. 39, with
the computations of Lemmas 9 and 11 on the current page and on the next page
(replacing [w,w’]g = —[w’, w]p). O

Lemma 9 — We have

lk(L,L”) = —(]w,w’[a,]u/',u/[lg>+ Z «7]‘1‘(“1"[w,’w]ﬁX[wxw/]wﬁj)-
(i.j)eg?
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In order to prove Lemma 9 on the previous page, we will use the following
lemma.

Lemma 10 — There is a surface ¥([w, w']q, [w’,w]g) in dH4 \ Dg such that

(ww L W, wlg) = [w,w'le = ) Tiillw,w'la, B)es
(i.j)eg?

Hlwwlg= Y Tiken [ wlp)p;.
(i.j)eg?

Let wy, be a point very close to w’ on its right-hand side. Then

S((w,w'], W, wlp) whdar, = —(w,w' o 1w’ wlg)
+ ) Tida [wwlpXw,w'la, B
(i.j)eg?

Proof. Since the prescribed boundary J¥([w,w’],, [w’,w]g) is a cycle that does not
intersect the a; and the f;, algebraically, the surface X([w, w'],, [w’,w]p) exists. Let
wg be a point very close to w on its right-hand side. Along a path Jwg, wi[, parallel
to Jw,w’[,, the intersection of a point with X([w,w’],, [w’,w]g) starts with the value
0 and varies when the path meets J%([w,w’],, [w’, w]p) so that

Cllw, w']a, [w'wlp) wedon, = —(Jwe, wila OX([w, w']a, [w,w]p))
= _<]wE’w1/S[a']w/’w[/5>

+ ) T W wlpQwewilw ). O

(i.)eg?

Proof (of Lemma 9 on the previous page). L bounds
Zo = X([w, w']a, [w', wlp) [w,u/]a x[2,3]) = ([w', w]p x [3,4])
+ Z u7]z<[w’ ]a’ﬁ]>D Z u7]z<au w’ w]ﬁ>D ﬁ])

(i.j)eg? (i,j)eg?

The link Ljy = L([w,w']q,[w’,w]p)y does not meet the D(a;) and the D(B;).
Therefore its intersection with ¥ is the intersection of wy with ¥([w, w'],, [w’, w]p)
so that Lemma 10 yields the conclusion. O

Lemma 11 - Let X, be a surface bounded by L in M. Then

e(X(w,m)5 2, Y) = 4 ((ww'],)—d ([w,

w’]p)
(i 1eg Tii i W w]ﬁ>d£“’

(B;).
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4. On the variations of p1(X(w,m))

Proof. Let X5 = X([w, w']q, [w’,w]p) x {2} with the surface ¥([w,w’],, [w’, w]g) C IH4
of Lemma 10 on the preceding page. The link L bounds

Bi= S -wwlgx[24]+ ) Jilwwla f)Der(as)
(i,j)eg?

+ Z Jjiai, [w', wg)Dss(B;)

(i.j)eg?

where Doy (a;) = D(a;) N fi;' ([-3,2]) and D (B;) = D(Bj) U Bj x [2,3].
Define a field Yr on L such that Yr and Y coincide on L\ ([w,w’], % {2}) and Yg
points East or to the right in Figure 3 on p. 23 along [w,w’], x {2} so that

e(X(w,m)%, 51, Y) = e(X(w,m)L, 51, )+ d2 ([w, w'],)-

Extend Y to the product by [2,4] of a short vertical segment [w, w'®)] from w to
some point w'S) below w, such that X(w, m) directs w x [4,2] and w'®) x [2,4], and
X(w,m) is tangent to [w,w(®)] x [2,4]. Truncate the rectangle of Figure 10 on p. 41 so
that w(®) is on its boundary and w®) replaces w in the right-hand side of the equality
of the statement without change. Now, X(w, m) is orthogonal to this rectangle.

In order to compute e(X(w,m)+, ¥, Yr), we will first define extensions of Yr on
the pieces of ¥;, independently, and we will next compare our extensions on the
boundary’s pieces where they do not match.

On one hand, extend Yg to fAjII([O, 2])\ (Dg % [0, 2]) as the field Yg that points
East or to the right in Figures 3, 7 and 10 on p. 23, on p. 33 and on p. 41 so that it is
normal to the D.;(a;). Use this extension on the D.,(«;) and on X,. On the other
hand, extend Y to D»5(p;) and to [w’,w] x[2,4] as a field normal to these surfaces.

Now, compute the Euler class of Yr with respect to ¥, by comparing these two
extensions to the standard one above, on [w, w’]g x {2} + Z(i,]‘)eg2 Jjia, [w), w]g)(B) X

{2}).

e(X(w,m)4, 3, V) = ~d ([w,w'lp) = Y Tiidan [wwlp)de” ()
(i.j)eg? O

4.5 Proof of Theorem 2 on p. 35

Thanks to Proposition 9 on p. 41, in order to prove Theorem 2 on p. 35, we are left
with the proof that

pi(m;w,w’) = 81k(L(D, m), L(w’, w))

where pi (m;w,w’) is defined in the statement of Proposition 9 on p. 41 and L(w’, w)
is the union of the closures of the flow line through w’ and the reversed flow line
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through w. In order to prove this, fix an exterior point wy of D, and define p{'(w),
for any exterior point w of D, as

pi(w) = p1(m;wy, w) — 81k(L(D,m), L(w, wy)).
Lemma 12 — p/’ satisfies the following properties:

* pY(w) only depends on the connected component of w in the complement of the a;
and the Bjin the closed surface dH 4,

* p{(wg) =0,

* For any 4 points w, S, E, N located around a crossing d € m, as in Figure 11

p{(N)+p{(S) = p{(w) + p7 (E).

Voo

Bi(a)
5. l L
@i(q)

Figure 11 — Near d

o N

Proof. The first two properties come from the definition. Let us prove the third one.
Set

D = (p{(N)+p{(S) - (p{(w) + p{(E)))

Note that D is independent of wy, thanks to Proposition 9 on p. 41, and that it
reads D = D; — 8D, with

D; =pi(m;w,N) + pj(m;w,S) — p; (m;w, E) and D, = Ik(L(N,w) + L(S, E), L(D, m))
and
pi(mw,w) = 4dy” ([w,w']g) - 4d¢" ([w,w']g)
+4 Y ke [ww'lpd ()

(i.j)eg?
43 ([w, w']o, (W), w]g), wEYoH,,

according to Proposition 9 on p. 41 and Lemma 10 on p. 42.
We are going to prove that

D1 = 8D2 = —SU(d)%(d)i(d)-
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4. On the variations of p1(X(w,m))

Let us first compute D;. Its computation involves paths [w,w’], and [w,w’]g
starting from w on the upper side of the rectangle Rp of Figure 3 on p. 23, before
reaching a point w’ = N, S or E. We assume that all these paths begin by following a
first path [w, w] that connects w to a point W near d in the complement of the curves
a; and Bjin Rp and that this path [w,w] has tangent vectors pointing downward
at its ends. The degree of the path [w,w] does not matter since it is counted twice
with opposite sign in (déw)([w,w’]a) - diw)([w,w’]ﬁ)). Thus we may change w to w
in p](m;w,w’) or equivalently assume that w arises near d as in Figure 11 on the
preceding page split along a;(;) and embedded in Figure 3 on p. 23 as soon as we
translate our initial conventions for tangencies near the boundaries. Now (keeping
the first composition by [w,w] in mind) we can draw our paths [, S], and [w,N];
in Figure 12 where w is denoted by w. These paths together with the other drawn
paths [N, E], and [S, E]g bound a “square” C around d. In Figure 12, there are also
dashed paths [w, N], and [w, S], which may be complicated outside the pictured
neighborhood of our square, but which meet this neighborhood as in the figure.
We choose [w, E], (resp. [w, E]z) to be the path composition of [w, N], and [N, E],
(resp. [w,S]g and [S, E]p).

Bj(a)

r Ai(d)

Figure 12 — Near d

With these choices, the contribution to D; of the parts

de(w,w')e) - ([wwlg)+ Y Tiides, [w,w]p)di™ ()
(i,j)eg?

cancel. When w’is E, N or S, let ¥(w’) = X([w, w'],, [w’, w]g), with the notation of
Lemma 10 on p. 42. Then

Dy = KX(E), Eg) - 4(X(N), Ng) = KX(S), Sg)
=—4(E(N)+X(S) - 2(E), Eg) — 4([Ng, Eg], 0X(N)) - 4([SE, Eg ], dX(S))

where J(X(N) + £(S) = £(E)) = [w,S] — [N, E]s + [N, w]g — [E,S]p so that (X(N) +
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¥(S)—-X(E)) is our square and (X(N)+ X(S) - X(E),Eg) =0,

(INE,Eelas OZ(N)) = ([N, Elas [N wlp = ) Tiidaw, [N, wlg)p)

(i,j)eg?
o (d)Tjtay
([Se Bl 9%(S)) = (= w,51a X T;i{[w, Slas B)exis [Se, Ee]p)
(i,j)eg?
= 0(d)Tjayia)

Then D1 = —SO’(d)‘jj(d),(d)
In order to compute D,, construct a Seifert surface for L(N,w) + L(S, E) made of

* two triangles parallel to the D(B) with bottom boundaries [w, N]g and [E, S]g,
* two triangles parallel to the D(a) with top edges [S,w], and [N, E],,

* our square C bounded by ([N,w]g U [w,S], U[S,E]g U[E,N],), which is a
meridian of y(d).

Figure 13 — A Seifert surface of L(N,w) + L(S,E)
Therefore D) = —0(d)J(a)i(a)- o

Now, we conclude as follows. According to the above lemma, the variation of pi’
across a curve @; or f8j is constant so that the variation of p}" along a path y reads

Y viysad+ ) wi(y.B)
' j

1

for some v; and w; independent of . Since this is zero for any loop y, the v; and the
w; vanish, and the function p{’ is constant. Then it is identically zero and Theorem 2
on p. 35 is proved.
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5. Behaviour of © when w and m vary

5 Behaviour of © when w and m vary

In this section, we compute the variations of @(u},m) = @(D, w,m) when w and
m change for a fixed D, and we find that these variations coincide with the vari-
ations of %Lpl(X(w,m)) computed in the previous section. Thus we prove that

(@(w,m) - %pl (X(w,m))) is independent of (w, m).

5.1 Changing w
Let us first prove the next proposition, which is similar to Proposition 2 on p. 29.

Proposition 10 — Let w and w’ be two exterior points of D. Let L(w’, w) be the union of
the closures of the flow line through w’ and the reversed flow line through w,

let [w,w’], be a path from w to w’ outside the a;. Choose a basepoint p(f;) for any
curve B;. For any 1-cycle K =} cckcy(c),

Ik(K, L(w’,w)) Zk ([w,w']a, [p(B(c)) clp)
ceC
- Z" Tiide [P(Be)),clg)[w,w'as By
]1 egz ceC

where (c) = ﬁ]-(c)
Proof. Asin Lemma 3 on p. 27, K bounds a chain

S(K) = Tp(K)+ ) ke(Tp(e) + Talc))
= ) ) ki ((anlp(Ble),clp)D(B;) = (Ip(a(e)), cla, B;)Diei))

] z eg2 ceC

where Xy (K) is a chain of dH 4 \ {w} with boundary

ITx(K) = ) kellpla(c)),cla = lp(B(c))clp)

ceC

) Zk Tii (€ Ip(B(e)), clg); = dlp(a(c), clas By)at )

] 1 egz ceC
Now, Ik(L, L(w’,w)) is the intersection of w’ and Xy (K), which is (~[w, w’],, 0Xx(K)).O

Lemma 13- Let w and w’ be two exterior points of D. Let [w,w’], be a path of
T\ (U o) from w to w’. Set

0’ =0 (w,m)-O(w,m) = e(D, w,m) — e(D,w’,m).
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Then

0'=2) Tiopoo©)| ) Turlanlmje,clg)(w,wlas fs) = (ww Lo Imjiey lp) |
(

ceC r,s)eg2

Proof. Pick a vertical path [w,w’], from a point w in the boundary of the rectangle
of Figure 3 on p. 23 to the point w’ that cuts horizontal parts of the g curves. When
w is changed to w’, the portions or arcs near the intersection points with [w,w’], are
transformed to arcs that turn around the whole picture of Figure 3 on p. 23. This
operation adds 2 to the degree of an arc oriented from left to right. See Figure 14.

Figure 14 — Changing w to w’

Therefore

d™(Bs) -l (Bs) = 2([w, w' ], B

and

dl )(lmj(c):dﬁ) - dzEW)(lmj(c):C|ﬁ) = 2[w, w']a, Imjc) clp)- o

Corollary 4 — Let L(w’,w) be the union of the closures of the flow line through w’ and
the reversed flow line through w.

6w, m) - & w,m) = 2AK(L(D, m), L(w',w)) = py (X(w',m) ~ 2py (X(w,m).

Proof. This follows from Lemma 13 on the previous page, Proposition 10 on the
previous page and Theorem 2 on p. 35. O

5.2 Changing m

Letm’={d; € a; N By-1(i)} be another matching for a permutation ¢. The matching
m’ replaces our initial matching m of positive crossings m; € a; N B;.

Set L(m) = L(D,m) and L(m’) = L(D,m’).

Let L(m’,m) = L(m') ~ L(m) = L5, (¥(d;) = 71)-

This subsection is devoted to the proof the following proposition.
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Proposition 11 — Under the assumptions above,

& (')~ S(w,m) = L py (X(w ')~ 1p1 (X(w,m)

This proposition is a direct corollary of Propositions 6, 7 and 12 on p. 34, on
p- 37 and on the current page so that we are left with the proof of Proposition 12.

Proposition 12 — Under the assumptions above,

O(w,m’) - O(w, m ):lk( (m’), L(m")) = Ik(L(m), L(m)y) + e(D, w, m) — e(D, w, m’)

- Zd — Ik(L(m, m), L(m’, m),).

Here, d, is defined with respect to our initial data, which involve w and m.

Proposition 12 is a direct consequence of Lemma 14 and Lemma 15, which will
be proved at the end of this subsection.

Lemma 14 — We have
Ik(L(m’), L(w/)) = Ik(L(m), L(m);) = 2lk(L(m’, m), L(m");) = Ik(L(m’, m), L(m/, m))).
Proof. Use the symmetry of the linking number, and replace L(m) = L(m’)—L(m’, m).0

Lemma 15 - We have

e(D,w,m’) - e(D,w,m) = 21k(L(w’, m), L(m')) - Zde(dj>

where d(dy(j)) = de(Im;j, dy()ls) = L3, X5, Teilai, Imj, dyj)lp)de(Bs)-

Lemma 16 — The number [k(L(m/,m), L(m’)) is equal to

8
Y ) 0@Tjee| Y Terllmisdilas BXetr, dy(jicy el

i=1 ceC (s, r)egz
ZZ" ATj0it0 ({Imis dilas (e clg))-
i=1 ceC
Proof. Use Proposition 3 on p. 30 with p(a;) = m;, p(B;) = ), and l. O
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’ @ o @ '
a; a
a’ a’/

Figure 15 — Making the crossings move around

Proof (of Lemma 15 on the previous page). Move the crossings of [m;, d;], counterclock-
wise along a;” and clockwise along a; as in Figure 15 so that m; and d; make half
a loop and the crossings of |m;, d;[ make a (almost) full loop until they reach the
standard position with respect to d;.

As in the proof of Lemma 1 on p. 25, on both sides of each crossing ¢ of |m;, d;|
the degree is incremented by (-o(c)), and it is incremented by (-o(m;)/2) on both
sides of m; and by (-0 (d;)/2) on both sides of d; so that after this modification the
degree d;(p;) of B; reads

8
dU(Bj) = de(B)) 2 ) (lmi,dila, B
i=1

Before this modification, the degree d,(|dyj()),clg) of the tangent to f; from
dlp(](c)) to c was

de(ldy(j(e)) mji)lp) + dellmjc), clp) if ¢ € [mjc) dyyjcplp
de(Id o)y Mjo)lp) + dellmjie) clg) = de(Bj(e)  if € € [dy(j(c)) M) -

After the modification, it reads

g
de(ldy ey clp) = de(ldy(j(e)) clp) =2 Z(lmi, dila1dy (i) €lp)-
i-1

Now

e(D,w,m ZJJ 2(c)

ceC
where d;(c) = dé(|dzp(j(c)):c|ﬁ) - Z(r,s)eg2 Tsrlar, |dlp(j(c)),C|ﬁ>dé(ﬁs)- Thus
e(D,w,m’)—e(D,w,m) = ¢; (w,m,m’) — e;(w, m,m’)

where

1w,mm) =Y Tie)iio 0 () (didyiey clp) = deimje) clp))

ceC
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and e;(w, m,m’) is equal to

Y Jiwieo Z Tar (€@ ey €lpdd(Bs) = (r Imjie) clp el Bs))-

ceC (r,s eg
We have
ceC Ce[dlp [ﬁ
g
-2 Jiio(c) Z<|mi,d,»la,|d¢<,-(c)),c|,g>
ceC i=
8 g &
=Y delldygymils) =Y Y Tiidaw [dy(ymjlp)de(B)
j=1 j=11i=1
8
— 22\7] Z<|m1;d |a)|d¢ C|ﬁ>
ceC i=1

Since ((ay, dyj(e)), clp)de(Bs) = (ar Imjie), clp)de(Bs) ) is equal to

g
= 2 ey, dy(jie clg) Y mis dilas Bs) + v (e el se(Bo)
i=1
- X[dl,b(j(c))’mj(r)[ﬁ (C)<ar1 ﬁ](6)>d€(ﬁs)’

L if c € [dyje) mj(o)lp
where Xldy(jiepmjols (€ €)= {0 otherwise.

We have
w,m, __22»7] ) Z ~7sr<|mi:di|alﬂ5><aﬂ|d1,b(j(c))fc|ﬁ>

ceC (rsi)eg’

+ Z Tsr{a,, |d,’[,(]'), m]|ﬁ>de(ﬁs)

(r.s,j)eg?
-y JerJ],wz,[d,p m;lp)a Bj)de(Bs)
(rs.j)eg’ i=

:_2Zx7j(c)i(c)a(c) Z Tsrllmi, dila, Bs) a1 dyje) clp)

ceC (r,s,i)eg®

(Cont. next page) + Z \757’(“1" |d1/J(])1 m]|ﬁ>de(/35)
(r,s.j)eg?
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- Z Jjilai, [dyj), milpg)de(B;)-
(i.j)eg?

Therefore, according to Lemma 16 on p. 49,

e(D,w,m’) - e(D,w,m) = 2lk(L(w’,m), L(m')) + V

where
8
V=Y deldygmil = ) Tekanldygym;l)de(Be)
j=1 (rs,j)eg?
8
==Y dellmpdylp)+ Y Tl lmj,dylp)de(Be)

j=1 (rs,j)eg?

+Zﬁ@ Y Tekarn Bde(Bo)
(r,s ])eg
Since the last line vanishes, we get the result. O

Corollary 4 and Proposition 11 on p. 48 and on p. 49 allow us to define the
function A of Heegaard diagrams

O(D,w,m) py(X(w,m)

A(D) = 6 YR

which does not depend on the orientations and numberings of the curves a; and
Bj, and which is also unchanged by permuting the roles of the a; and f;, thanks to
Corollary 3 on p. 37.

6 Invariance of 1

In this section, we are first going to prove that 1 only depends on the Heegaard
decomposition induced by D of M, and not on the curves a; and ;. Then it will be
easily observed that 1 is additive under connected sum of Heegaard decompositions
and that A maps the genus one Heegaard decomposition of S° to 0. Since according
to the so-called Reidemeister-Singer theorem, two Heegaard decompositions of a
3-manifold become diffeomorphic after some connected sums with this Heegaard
decomposition of S3, we will conclude that A is an invariant of rational homology
3-spheres, which is additive under connected sum.
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6. Invariance of X

6.1 Systems of meridians of a handlebody

A handle slide in a system {a;};c, of meridians of a curve aj across a curve a;, with
j #k, is defined as follows: Choose a path ¥ in dH 4 from a point y(0) € a to a point
y(1) € a; such that y(]0,1[) does not meet U;c,; and change aj to the band sum a;,
of ay and a parallel of a; on the y-side as in Figure 16.

y a
_

Figure 16 — Handle slide in dH 4

A right-handed Dehn twist about a simple closed curve K(S!) of a surface F is
a homeomorphism of F that fixes the exterior of a collar K(S') x [-7, 7] of K in F
pointwise, and that maps (K(exp(i0)),t) to (K(exp(i(0 + t + 1)), £).

In order to prove that A only depends on the Heegaard decompositions and not
on the chosen systems {a;};c; and {B;} e, of meridians of H 4 and Hp we will use the

following standard theorem.

Theorem 3 — Up to isotopy, renumbering of meridians, orientation reversals of merid-
ians, two meridian systems of a handlebody are obtained from one another by a finite
number of handle slides.

Proof. Let {a;}icy and {ai’}ieg be two systems of meridians of H4. There exists an

orientation-preserving diffeomorphism of H, that maps the first system to the
second one.

See H 4 as the unit ball B(1) of IR? with embedded handles D(a;) x [0, 1] attached
along D(a;) x d[0,1], so that there is a rotation p of angle %" of R that maps
H 4 to itself and that permutes the handles, cyclically. See the meridians disks
bounded by the «a; as disks D(a;) = D(a;) x {%} that cut the handles. Let H; denote
the handle of a;. In Suzuki (1977, Theorem 4.1), Suzuki proves that the group of
isotopy classes of orientation-preserving diffeomorphisms of H 4 is generated by 6
generators represented by the following diffeomorphisms

* the rotation p above of Suzuki (1977, p. 3.1), which permutes the a;, cyclically,

and the remaining 5-diffeomorphisms, which fix all the handles H;, for i > 2,
pointwise,

* the knob interchange p;, of Suzuki (1977, p. 3.4), which exchanges H; and
H, and maps a; to a; and a5 to aq,

* the knob twist w; of Suzuki (1977, p. 3.2), which fixes H, pointwise, and
which maps a; to the curve with opposite orientation, (it is the final time
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of an ambient isotopy of R® that performs a half-twist on a disk of H 4 that
contains the two feet (D(a;) x {0} and D(a ) x {1}) of the handle H;),

* the right-handed Dehn twist Tl_l of Suzuki (1977, p. 3.3) along a curve parallel
to aq,

¢ the sliding &;, of Suzuki (1977, 3.5 and 3.9), which is the final time of an
ambient isotopy of R3 x R that fixes the handles H;, for i > 2, pointwise, and
that lets one foot of H; slide along a circle parallel to a, once,

* the sliding 6, of Suzuki (1977, 3.5 and 3.8), which is the final time of an
ambient isotopy of IR3 that fixes the handles H;, for i > 2, pointwise, and that
lets one foot of H; slide along a circle a, that cuts a, once and that does not
meet the interiors of the H;, for i = 2.

All these generators are described more precisely in Suzuki (1977, Section 3). All of
them except 61, fix the set of curves a; seen as unoriented curves, while 0, fixes
all the curves a;, for i # 2 pointwise. When the foot of H; moves along the circle
a,, the curves that cross a, move with it, so that the meridian «, is changed as in
Figure 17, which is a figure of a handle slide of «;, across a;. O

a

foot of Hy
2 012(a2)

Figure 17 — Action of 81, on a,

6.2 Isotopies of systems of meridians

When the a; are fixed on dH4, and when the g; vary by isotopy, the only generic
encountered accidents are the births or deaths of bigons, which modify the Heegaard
diagram as in Figure 18, which represents the birth of a bigon between an arc of «;

and an arc of ;.
> aj )”i
Bj 13]'-

Figure 18 — Birth of a bigon

Therefore, in order to prove that 1 is invariant when the Bj (or the a;) are moved
by an isotopy, it is enough to prove the following proposition:
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Proposition 13 — For any Heegaard diagram D and D’ such that D’ is obtained from D
by a birth of a bigon as above.

AND’) = (D).

Since we know that changing the orientation of a; does not modify 1, we assume
that our born bigon is one of the two bigons shown in Figure 19, with two arcs going
from a crossing e to a crossing f, without loss.

e e
P €
B; ™ a @i ¥ ;i

Figure 19 — The considered two bigons

We fix a matching m for D = ((a;), (8;)) and the same one for D’, and an exterior
point w of D’ outside the bigon so that w is also an exterior point of D.
Lemma 17 — We have

p1(X(D,w,m)) = p1 (X(D',w,m))

Proof. The two fields X(D,w, m) and X(D’, w, m) may be assumed to coincide outside
a ball that contains the past and the future in fy;'([-2,7]) of a disk of H4 around
the bigon, with respect to a flow associated with D’. Since both fields are positive
normals to the level surfaces of fj; on this ball they are homotopic. O

Now, Proposition 13 is a direct consequence of Lemmas 18 and 19 on the current
page and on the next page.

Lemma 18 — We have
0,(D’) =€,(D) + Jjil2
se(D’,m) = s¢(D,m)

Proof. Let C be the set of crossings of D. Note that o(f) = —o(e). With the notations
of Proposition 4 on p. 31,

G(D')=G(D) =) Tjijitao(€)o(Fy(c)x (v(f) -y (o)

ceC

+ iji(d)jj(d)ig(d)o(f)(y(f) —y(e)xy(d)

+ T3 () =vE)x(y(f) =y
= Jio (F)y (F) <y (= v(e)x y(e)).
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Use Proposition 3 on p. 30 to compute {2 (G(D’) — G(D)) with the basepoints of
m, so that for any c € C,

€, f)—Ltlc,e) =([p(a(c) clale. flp) - Z Ter([p(a(c)), clas BeXak,le, flg) = 0

(k,0)eg?

since (ay,le, flg) = 0 for any k, and ([p(a(c)),c|a,le, flz) = O for any c € C. Similarly,
forany d €C, €(e,d) = €(f,d) and

Uf —ef—e)=(le flasle, flg) = 0.

Finally,

(D)= 6(D) = =T (fI(f, f)— (e e)
where

€f )~ e,V = e florles 1)~ leselos e elg) = o) + 0 (/) - F0(e) = ~30(f)

so that €,(D’)—€,(D) = %J]l Similarly, s¢(D’,m) = s¢(D, m). O
Lemma 19 — We have
e(D',w,m) = e(D,w, m) + J;jil 2.

Proof. Adding a bigon changes Figure 3 on p. 23 as in Figure 20.

D — e) or Q — (e
Bj B! 4 Bj f Bl
o o T o o a

Figure 20 — Adding a bigon

In particular, the d,(f;) of Section 1.5 on p. 23 are unchanged, and so are the d,(c),
for c € C. Then (D, w,m) - e(D,w,m) = Jj;o(f)d.(le, f|g), which is %jji, according
to Figure 20. O

Remark 2 — If the two arcs of the bigon did not begin at the same vertex, then Jj;
would be replaced by —J;; in the results of Lemmas 18 and 19 on the previous page
and on the current page.
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6. Invariance of X

6.3 Handle slides

This section is devoted to proving that 1 is invariant under handle slide. Since A
depends neither on the orientations of the curves «; and ﬁj, nor on their numberings,
and since permuting the roles of the a; and f; does not change A, it is sufficient to
study a handle slide that transforms D to a diagram D’ by changing 3 to a band
sum B of B; and the parallel g5 of B, (on its positive side) as in Figure 21. Up to
the isotopies treated in the previous section, we may assume that the path y from
B1 to B, does not meet the curves «;, without loss, and we do. The first crossing on
B5 will be called e*. It corresponds to a crossing e € a;(,) N p, as in Figure 21.

Y
—
Xj(e) et

Figure 21 — The considered handle slide

Fix w outside a neighborhood of the path y and f8, so that it makes sense to say
that w is the same for D and D’. Fix a matching m for D. Assume m = {m;};c, and

m; € a; N B; (by renumbering the a curves if necessary). The set C’ of crossings of
D’ contains C so that m is also a matching for D’.

Under these assumptions, we are going to prove that A(D’) = X(D) by proving
the following lemmas.

Lemma 20 — We have
p1(X(D,w,m)) = py (X(D, w, m)).
Lemma 21 — We have

GD)-6D)= ) oo d) i Taiw)

ceﬁz,de[e,clﬁ

def 1

= Z o(c)o(d)Tie)T2i(a) + 5 Zjli(c)jZi(c)-
cef.deleclp cefy

Lemma 22 — We have

s¢(D’,m)=s,(D,m) = Z a(c)o(d)Tii(e)T2i(d) — Z o (c)T1i(c)-

depa,celed|p cele,mylg
Lemma 23 — We have

e(D',w,m)—e(D, w, m) = Z a(e)J1i(e)-

C€|m276[ﬁ
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Since

g
o(c)Ji(e) + Z (€)Tni(e) = ZG )Ti(e) = 2‘711'((11’)/52):0
i-1

celmy,eg cele,mslg ceB,

and the sum

a(c)o(d)Tie)T2i(a) + Z a(c)o(d)Ti(e)T2i(a)

CEﬂz,dG[C,Clﬁ dGﬁz,CG[e,dlﬁ

is equal to

Z a(c)a(d)Tvie)J2i(ay = 0,

(c.d)ep3
these four lemmas imply that 1(D’) = A(D).

Proof (of Lemma 20 on the previous page). Let X = X(D,w,m) and X’ = X(D’,w, m).
First note that X and X’ coincide in H4. We describe a homotopy (Y})¢[o,1] from
Yy = (-X) and Y; = (-X’) on Hg.

See (—X) in Hp as the upward vertical field in the first picture of Figure 23 on
the next page. This field is an outward normal to Hz except around w, which is not
shown in our figures, and around the crossings of m, more precisely on the gray
disks D; shown in Figure 22. Inside the disks D;, (—X) is an inward normal to Hp.
On the boundary of this disk, it is tangent to the surface. Our homotopy will fix
(—X) in the neighborhood of w where (—X) is not an outward normal to Hg, and the
locus of dHg where Y, is a positive (resp. negative) normal to Hg will not depend
on t. Thus this homotopy can be canonically modified (without changing the locus
where Y} is a positive (resp. negative) normal to Hg) so that Y; is fixed on dHp.

Figure 22 — The front part of the disk D; where the field points inward the surface

Observe that there is no loss in assuming that the path y from f; to g, that
parametrizes the handle slide is as in the first picture of Figure 23 on the next
page. The next pictures describe various positions of Hz under an ambient isotopy
(ht)tefo,1) of R3, which first moves the handle of 8, upward (second picture), slides it
over the handle of §; (fourth picture), moves the handle of p; upward (fifth picture)
and replaces the slid foot of H; in its original position by letting it slide away from
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6. Invariance of X

the handles (last picture). The isotopy (h;)c[o,1] starts with hg, which is the Identity,
and finishes with a homeomorphism h; of R3 that maps Hp to itself. Let N be the

upward vector field of R3. Then (ht):l(ﬁm,(HB)) defines a homotopy of nowhere
zero vector fields from Y, = (—-X) and Y; = (-X’) on Hp that behaves as wanted on

the boundary.

B2

B! 2 P1
CAVADRNE,
Y
BA ! Bk 1
/ ; ; \ B2
Ay A, PP '
- e s SN - 3

Figure 23 — Handle slide

Let us start with common preliminaries for the proofs of the remaining three

lemmas.
Set J,; = J»i — Jhi- For any interval I of an a,, (I, f1) = (I, p1 + 3 ) and

<L iy + «72’1‘52) = <In71iﬁl +JaiPa+ Ni(B3 —/32)>~

Set ‘7]'1 = Jj; for any (j,1) such that j # 2. Every quantity associated with D’ will
have a prime superscript. Our definitions of the j]’l ensure that

<06k, ij'lﬁ]'> = <ak: Z~7jiﬁj> = Oiks
j j

for any 7 and k, as required.

Let C, be the set of crossings of D on B, and let CJ be the set of crossings of D’
on B3, C3 is in natural one-to-one correspondence with C; and the crossing of C
that corresponds to a crossing ¢ of C, will be denoted by c*.

C'=CucC;.

Proof (of Lemma 23 on p. 57). Without loss, assume that 8, goes from right to left
at the place of the band sum as in Figure 24 on the next page. Then f; is above f,
and it goes from left to right. Thus after the band sum, the degree of B is increased
by (—1/2) before and after g5 and by (1/2) before and after m,.
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o(my) o(mp)=-1
B1 B B B
-0 C @ @ @ S
B2 B2 By B
o) o)
Figure 24 — Variation of 4,
Therefore d,(B]) = d.(p1) + d.(B2), and, for any i,
& g

Y T =) Tiide()).

j=1 j=1
Then for any c that is not in [e*, m; [, d;(c) = d,(c). Since

- Z Tsr{ar, /32>de(/55) =
(r,s)eg?
for any c € [e*, m; [ f\ﬁ;, d,(c) =d,(c), too, so that
e(D'w,m) = e(D,w,m) = ) Jiio(e)d(c*) - de(c)).
255
For c € 55,
d.(c)—d,(e) if ¢ €le, m,|
dy(ct)—d,(e")=3d,(c)—d.(e)+1 if c€]my, e[
de(c)—de(e)+% if ¢ =m,. O

For the remaining two lemmas, for any 2-cycle G = }_ . 4)¢(c7)2 8ea (¥ (c) X ¥(d)))) of
M?, we compute £{?)(G) with Proposition 3 on p. 30 with

U(c,d) ={[p(a(c)),cla, [p(B(d)),dlg) - Z i([p(a(o),cla, B [p(B(d)),dlg)
(i,j Eg
where p(B,) = e and p(p7) is the first crossing of g after f on f, the p(a;) are not
on ﬁ;, and, if p(a;) € B, then o(p(a;)) = 1 (up to changing the orientation of «;).
This map ¢(2) may be used for any 2-cycle G = Y (cdyec? 8ed(y(c) x y(d)) of M?, as
well, and we use it.
(The map contructed from ¢ by adding

Y Tiidlp(a(©).cla, B3 — Bo)as, [p(B()), dl)

165
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to {(c,d) when c¢ € B, would clearly give rise to an appropriate map ¢?) with re-
spect to the diagram D. Since ([p(a(c)),cla, B3 — B2) = —% for any c € ,, and since
(¢, d)eC?;cep, 8cd = 0 for any d as in the proof of Proposition 3 on p. 30, £ works as
well.)

Lemma 24 — Recall C’=CUC]. Let (c,d) € C2.

» Ifce By, then
ifdéep,
ifdepyandcéled]p
ifd € Byandceled|g
ifc=d

€(C d ZJZI(&V d|ﬁ>_

w=—= O O

» Ifd e p,, then

=7 ifceled
Oc,d*)-l(c,d)={ 38— ifc=d
%6j(c)2 ifcé [e,d]ﬂ

e If (c,d) € C3, then
O(ct,d*)=l(ct,d) =(c,d*) - (c,d).
Proof. Let (c,d) € C?. Assume c € 5. If o(c) = 1, then

£ct,d) = £c,d) = (e, Loy [p(B@N) dlg) =Y Tile, ¢ Loy B [p(B()), i)

(i.j)eg?
= (le.c" Lo, [P(B(@)). dlg) ~ 5 Z Ty + T} Kai [p(B(d)) dlp).

Ifo(c)=-1,

8

0t d) = (e,d) = (", clo, [p(B()), dlg) 5 Z Toilai,[p(B(d)),d]p).

=1
Let d € ;. For any interval I of an a;, (I, [p(B}),d*[g) = (I, p1 +[e*,d* )
c,d™) = t(c,d) =([p(a(c)) cla, pr + ", d 7| —[e,d]p)
= ) TiIp(@(©), el Bi)ai, fr +[e*,d |s— e dlg)

z]eg
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where
(@i pr +[e", d+|ﬁ ~ e, dlp) = (i, pr), = (@i, B} — B3)
Y Tilp(a(e)cla,BXai B = B2y =) (61 = 62K[p(a(e)),cla.B))

(ij)eg> jeg
= (Ip(ale)cla.B; - )
= (p(ae)) clas 1 + 5 ~ o),
and {[pla(e).clas 5 ~ B2) = 33502
so that

€e,d*) = €le,d) = 33500+ (Plale)), las [, 4715 ~ [e )

%6 2—3 ifceled[p
= %5 Cz—i ifc=d
%O(C) ifCE[e,d]ﬁ.

When ¢ € f8,, we similarly get £(c*,d*) - €(c*,d) = % +{[p(al(c)),c*la,[e",d g -
le,dlg) so that £(c*,d™)—(c™,d) = t(c,d™) —{(c,d). O

Proof (of Lemma 22 on p. 57). Set L = L(D,m) = Z‘il Vi = Lcec Jj(o)i(e)o(c)y(c) and
L’ =L(D’,m). Then

—L=) Fiiole)y(c)=y(c")

ceCy
is a cycle and
Ik(L', L“) Ik(L,Ly) = €((L' - L)x (L= L))+ 2¢((L’ - L) x L)

thanks to the symmetry of the linking number in Proposition 2 on p. 29.
The last assertion of Lemma 24 on the previous page guarantees that

(L -L)yx(L'~L))=0.
Now, £((L’ = L)x L) = €1 + {, with
Y Fiio () lle,my) = (e, my))

ceCy,icg

where m = {mi}ieg and m; € a; N /51' and

Z Thi(e)o () Tjayi@yo (d)(€(c™,d) — £(c,d)).

cepy,deC
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Since the part (%Zlgzl J2i(ai,[p([3’(d)),d|/5)) that occurs in the expressions of
(€(c*,d)-L(c,d)) in Lemma 24 on p. 61 is independent of c, the factor Zceﬁz Jieyo(c),
which vanishes, makes it disappear so that

(L -L)yxL)=€, +0,

where

~ 1

b=-3 Z o () i) + 50(m2) T2 | = =5 Z o () Thi(e)

ce[e,mz[ﬁ CE[E,leﬁ

and

~ 1

l) = 5 Z a(c)o(d)Ti(e)T2i(d)-

depa,celedly O

Proof (of Lemma 21 on p. 57). Recall

0,(D) = Z «7j(c)i(d)«Z(d)i(c)a(c)a(d)f(c,d)—ij(c)i(c)a(c)f(c,c)-
(

c,d)eC? ceC

Define the projection g: C" — C such that g(c) = cif c€ C and gq(c*) = cif c € 5.
Since a crossing c of 8, gives rise to two crossings ¢ and c* of C’ whose coefficients
J,, and J{, add up to 7y,

6D = ) TioiaThano @@ ad) =) T iqo(€)a(c),q(c))
(c,d)e(C’)? ceC’

e, d") - (c,d) = L(q(c),d") - £(q(c),d) =

for d € C, so that

7 1 7 ’ 7
(Cont. next page) 6(D)~6(D) =5 Z Z(Jzi(d) + Triga) i o (c)o (d)
dGCz C€C2
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1 , , ,
2 Z Z (i) + Tiga)) Ti(eyo (c)o(d) + A

dECz CE[@,dlﬁ
l 7 7
=3 2 Tligole)= ) TlygoleNtic, o —e.c)
CECz CECz

where

Z Tt a0 (0 () E(eald) =gl ()

Z Tl o (c)o(d)(E(c,d) - E(g(c), d))
(c,d)eC’xC
= ) FiaJiaieoo(d) (e, d)=tc,d)
(c,d)eCyxC
Z ‘711 «7] Zjh(azl dlﬁ)
(cdeszC

1 ,
t5 ) ThaJieoleold)
dECz CG[E dlﬁ

Zjll d)Taia, [p(B(d)), dlg)

i=1 dECZ

Z Ti(ayJ2ieo (c)o(d)

dECQ,CE[E,dlﬁ

N =

+

=0,

Z Z(jz/i(d)+‘71/i(d))‘71/i(c)o'(c)o(d) = Z(jz/z + Tia) [Zjh(“vﬁz) =0,

dECz ceCy dECz i=1

and

(c,d)eCE;dele,cls
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We thus get
) 1
0,(D')~€,(D) = ) Z Z TaiayJi(e)o(c)o(d)
deC, ce[e,dlﬁ

1
+5 Z J2i(a)Thi(c)o(c)o(d).
(c,d)eCt;dele,cly
For r,s € g, set
Vis= Z Z Tria)Tsie)o(c)o(d).
ceCy deleclg

Note that V, ;+V; , = 6,705, (recall the argument after the statement of Lemma 23
on p. 57) Thus gz(D’) —gz(D) = %(Vz’l = Vl,Z) = V2/1‘ O

6.4 Connected sums and stabilizations

The previous subsections guarantee that A is an invariant of Heegaard decomposi-
tions.

Lemma 25 - Let
S =TaUgr,~—o1, Tp

be the genus one decomposition of S* as a union of two solid tori Ty and Ty glued along
their boundaries so that the meridian oy of T, meets the meridian B, of Ty once.

Ty U TB]:O.
OTA~—ITg

Proof. Orient @) and p; so that (ay, f1)o7, = 1. Then J7; = 1. Let m = {a; N B} be the
unique matching. Let w be a point of the connected dT4 \ (a1 U B1). Then T4 can be
assumed to intersect a cube [~1,1]? that contains the ball Bgs as in Figure 7 on p. 33,
so that Ty intersects this cube as the closure of the complement of Figure 7 on p. 33.
In particular, X(w,m) is the vertical field of R and p; (X(w,m)) = 0. Figure 25 on
the next page is a rectangular picture of the Heegaard diagram so that e(D, w, m) = 0.
Since G(D) = @ and L(D,m) = @, {,(D) = 0 and s;(D,m) = 0. m|

A

The connected sum MEM’ of two connected closed manifolds M and M’ of
dimension d is obtained by removing the interior of an open ball from M and from
M’ and by gluing the obtained manifolds along their spherical boundaries

MM’ = (M \ B) U (Mm7\B7).

gd-1
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<> B1 (:

7 ”
@ @

Figure 25 — Genus one Heegaard diagram of 3

When the manifolds are 3-manifolds equipped with Heegaard decompositions
M =H Uy, Hgand M" = H); Uan, Hy;, the connected sum of the Heegaard decom-

positions is the Heegaard decomposition

MM’ = HatoH), | | HglhaHp
IHA§0H,

where the open ball B (resp. B’) removed from M (resp. from M’) intersects the
Heegaard surface dH 4 (resp. dH ;) as a properly embedded two dimensional disk

that separates B into two half-balls H 4 N B and Hz N B (resp. HOA/ N B’ and HOB/ NB’),
the connected sum along the boundaries

HafloHy = (Ha\(HanB)) | ] (HA\(HLNB))
H4N9B~(~H;NJB’)

is homeomorphic to the manifold obtained by identifying H4 and H/; along a
two-dimensional disk of the boundary, and Hgfl;Hy, is defined similarly.

Proposition 14 — Under the hypotheses above, if M and M’ are rational homology
3-spheres, then

+ A H, ) Hp
I,

N\ HatoHy | ) HastaHg|=1
OH 4HloH’,

HAUHB

OH 4

Proof. When performing such a connected sum on manifolds equipped with Hee-
gaard diagrams D = (dH4, (a;)icq (Bj)jeg) and D’ = (dH y, (a])icg» (ﬁ]f)jegr) and with
exterior points w and w’ of D and D’, we assume that the balls D and D’ meet the
Heegaard surfaces inside the connected component of w or w’ outside the diagram
curves, without loss, and we choose a basepoint w” in the corresponding region of
JH 4§0dH ;. Then we obtain the obvious Heegaard diagram

D" = (IHA$IH (0] icg (B] )jeg”)

where g’ = ¢g+¢’,a = a;and B’ = ; wheni < g,and, a) = azf_g
i > g, with the associated intersection matrix and its inverse, which are diagonal
with respect to the two blocks corresponding to the former matrices associated with

Dand D'.
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When D and D’ are furthermore equipped with matchings m and m’, m” = muUm’
is a matching for D” and a rectangular figure for (D”,w”, m”) similar to Figure 3 on
p. 23 is obtained from the corresponding figures for D and D’ by juxtapositions of
the two rectangles of D and D’. In particular,

e(D”,w”,m”)=e(D',w', w') + e(D, w, m).

Furthermore, we can see By~ as the juxtaposition of two half-balls glued along
a vertical disk equipped with the vertical field (over the intersection of the two
rectangles above) such that the two half-balls are obtained from By, and By by
removing standard vertical half-balls equipped with the vertical field, so that the
vector field X(w”, m”) coincides with X(w, m) on the remaining part of By; and with
X(w’,m’) on the remaining part of By . This makes clear that

p1(X(w”,m")) = p1(X(w,m)) + p1 (X (w’,m)).
Now it is easy to observe that G(D”) = G(D) + G(D’), that
€2(D”) = £5(D) + £,(D),
that L(D”,m”) = L(D,m) + L(D’,m’) and that

se(D”,m”) = 5,(D,m) +s,(D’', w). O

A connected sum of a Heegaard decomposition with the genus one decompo-
sition of S3 is called a stabilization. A well-known Reidemeister-Singer theorem?,
asserts that any two Heegaard decompositions of the same 3-manifold become
isomorphic after some stabilizations. This Reidemeister-Singer theorem can also be
proved using Cerf theory? as in Ozsvéath and Szabé (2004, Proposition 2.2).

Together with Proposition 14 on the preceding page and Lemma 25 on p. 65, it
implies that 1 does not depend on the Heegaard decomposition and allows us to

prove the following theorem.

Theorem 4 — There exists a unique invariant A of Q-spheres such that for any Heegaard
diagram D of a Q-sphere M, equipped with a matching m and with an exterior point w,

24X(M) = 46,(D) + 4s¢(D, m) — 4e(D,w, m) — p1 (X (w, m)).
Furthermore, A satisfies the following properties.

* For any two rational homology 3-spheres My and M,

(M M) = A(My) + A(M).

8Proved in Siebenmann, 1980, Les bisections expliquent le théoréme de Reidemeister-Singer.
9Cerf, 1970, “La stratification naturelle des espaces de fonctions différentiables réelles et le théoreme
de la pseudo-isotopie”.
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* For any rational homology 3-sphere M, if (—M) denotes the manifold M equipped
with the opposite orientation, then

A(=M) = —A(M).

Proof. The invariance of 1 is already proved. Proposition 14 on p. 66 now implies
that 1 is additive under connected sum. Reversing the orientation of M reverses
the orientation of the surface that contains a diagram D of M. This changes the
signs of the intersection points and reverses the sign of 7. Thus L(D,m), G(D) and
X(w,m) are unchanged, while the map ¢ of Proposition 3 on p. 30 is changed to its
opposite. Changing the orientation of the ambient manifold reverses the sign of p;.
A rectangular diagram of (—M) as in Figure 3 on p. 23 is obtained from the diagram
of M by a orthogonal symmetry that fixes a vertical line so that the d, are changed
to their opposites. Thus all the terms of the formula are multiplied by (-1) when
the orientation of M is reversed. O

7 The Casson surgery formula for A

7.1 The statement and its consequences

In this section, we prove that 1 coincides with the Casson invariant for integer
homology 3-spheres by proving that it satisfies the same surgery formula. More
precisely, we prove the following theorem.

Theorem 5 — Let K be a null-homologous knot in a Q-sphere M.
Let X be an oriented connected surface of genus g(X) in M bounded by K such that

the closure of the complement of a collar

Hy=Yx[-1,1]
of £ =X x{0} in M is homeomorphic to a handlebody Hg. This gives rise to the Heegaard
decomposition

M =H,4 Uy, Hg
where Wy is an orientation reversing diffeomorphism from dHpg to dH 4. Let M(K) be
the manifold obtained from M by surgery of coefficient 1 along K, which can be defined
by its Heegaard decomposition

M(K) = H.A U\I—'MOtK HB
where ty is the right-handed Dehn twist of (~dHpg) about K. Let g = 2¢(X). Let (z;)eq

be closed curves of ¥ = X x {0} that form a geometric symplectic basis of H,(X) as in
Figure 26 on the next page, and let z7 = z; x {1}. For any i € g(X), (23i_1,22;) = 1. Then

i(1\/I(K))_/X(IVI) = Z (lk(zérl‘fZZr)lk(z;ri_erZr—l)_lk(zgi:ZZr—l)lk(ziri_l;zh))-
(i,r)eg(x)?
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22¢(%
z B 228(2)-1
K

Figure 26 — Curves on the surface X

We will prove the theorem exactly as it is stated. A Seifert surface ¥ of K as in
the statement is said to be unknotted. It is well-known that any Seifert surface can
be transformed to an unknotted one by adding some tubes (to remove unwanted
2-handles from its exterior). (See Marin (1988, Lemme 5.1), Akbulut and McCarthy
(1990, p. 84) or Guillou and Marin (1992, Lemme 4.1) in the original surveys!?
of the Casson invariant, for example.) Thus any null-homologous knot bounds an
unknotted surface as in the statement. The manifold M(K; g) obtained from M
by Dehn surgery with coefficient p/q along K, for two coprime integers p and g, is
usually defined as

ML =(m\Nm) | ) (D?xs!)
1 ON(K)~dD2xS]

where N(K) is a tubular neighborhood of K, and the gluing homeomorphism from
dD? x S! to IN(K) identifies the meridian dD? x {x} of D? x S with a curve homolo-
gous to pm(K)+q€(K) where m(K) is the meridian of K such that Ik(m(K),K) =1 and
{(K) is the curve parallel to K such that lk(¢(K),K) = 0. In our case, for n € Z\ {0},
the manifold M(K; 1) obtained from M by surgery of coefficient % along K can also
be defined by its Heegaard decomposition

1
M(K; ) = Ha U Hp,
K

10Marin, 1988, “Un nouvel invariant pour les sphéres d’homologie de dimension trois (d’aprés
Casson)”;
Akbulut and McCarthy, 1990, Casson’s invariant for oriented homology 3-spheres;
Guillou and Marin, 1992, “Notes sur 'invariant de Casson des sphéres d’homologie de dimension
trois”.
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and it is easy to observe that the variation (A(M(K; ,ll)) — A(M)) can be deduced from
the general knowledge of (1(M(K))—A(M)). In our case, Theorem 5 on p. 68 implies
that
~ 1 - - ~
AM(K; —)) = AM) = n(A(M(K)) = A(M)).
In our proof, we will obtain the variation 1(M(K))— A(M) as it is stated, directly,
so that our proof also directly shows that

N= ) (kG znk(2h g zar ) = k(25 20 1)IK(Z5 Ly, 22r)
(i,r)eg(X)?

is a knot invariant. In Lemma 41 on p. 84, we will identify A’ with %A}é(l) where Ag
denotes the Alexander polynomial of K so that the surgery formula of Theorem 5 on
p. 68 coincides with the Casson surgery formula of Marin (1988, Theorem 1.1 (v)),
Akbulut and McCarthy (1990, p. xii) or Guillou and Marin (1992, Theorem 1.5).
Since any integer homology 3-sphere can be obtained from S° by a finite sequence of
surgeries with coefficients +111 it follows that 1 coincides with the Casson invariant
for integer homology 3-spheres.

Our proof will also yield the following theorem. Recall that the Euler class of
a nowhere zero vector field of a 3-manifold M is the Euler class of its orthogonal
plane bundle in M.

Theorem 6 — Let F be a genus g(F) oriented compact surface with connected boundary
embedded in an oriented compact 3-manifold M whose boundary oM is either empty or
identified with dB(1). Let [-2,2] x F be a neighborhood of F = (0} x F in M, and let X
be a nowhere zero vector field of M whose Euler class is a torsion element of H>(M;Z),
which is tangent to [-2,2] x {x} at any point (u,x) of [-2,2]x F, and which is constant
on dB(1) when dM = dB(1). Let K be a parallel of dF inside F, and let ([-2,2] x F)(K)
be obtained from [—2,2] x F by +1-Dehn surgery along K. Let tx denote the right-handed
Dehn twist about K. Then

([-2,2] x F)(K) = [-2,0] x F U [0,2] x F*
{O}XF:E{O}XF*'

where F* is a copy of F and (0,x) € {0} x F* is identified with (0,tg(x)) € {0} X F. Define
the diffeomorphism

Yr: ([-2,2]xF)(K) > [-2,2] x F

115ee Marin, 1988, “Un nouvel invariant pour les sphéres d’homologie de dimension trois (d’aprés Cas-
son)”, Section 4; or Guillou and Marin, 1992, “Notes sur 'invariant de Casson des sphéres d’homologie
de dimension trois”, Lemme 2.1, for example.
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() [ 6% (L2 €[-2,0]xF
) i (b2 €[0,2]xF*

and let Y be a nowhere zero vector field of M(K) that coincides with X outside |- 1,1 [xF
and that is normal to z,b;l({t} x F) on t,bgl({t} x F) for any t € [-2,2]. Then

p1(Y)=p1(X) = (4g(F) - 1)g(F).

7.2 A preliminary lemma on Pontrjagin numbers

Lemma 26 — Under the assumptions of Theorem 6 on the preceding page, the variation
(p1(Y) —p1(X)) does not depend on M, K and F. This variation only depends on g(F). It
will be denoted by p,(g(F)).

Proof. Let 1z: F x R? — TF be a parallelization of F such that the parallelization
X @ tp of [-2,2] x F extends to a trivialization 7 of M — which is standard on dM
if JM = S2. (Since M is parallelizable and since 71 (SO(3)) is generated by a loop
of rotations with arbitrary fixed axis, there exists a parallelization of M that has
this prescribed form on [-2,2] x F.) Observe that the degree of the tangent map
to K is (1 —2g) with respect to t¢. (This degree does not depend on 7y and can be
computed in Figure 26 on p. 69.) Let K x[-1,1] be a tubular neighborhood of K in
F such that K x{—1} = JF. Then [-1,1] x K x [-1,1] is a neighborhood Ng(K) of K in
M that has a standard parallelization 7, = (X, TK, v) where TK stands for the unit
tangent vector to K and v is tangent to {(h,x)} x [-1,1]. Without loss, assume that

T;IT((t,k =exp(2in0),u),v € IR3) = ((t, k,u),p(zg_l)g(v))

where p(y4_1)¢ is the rotation whose axis is directed by the first basis vector e; of R3
with angle (2¢g-1)6.

Let K be the image of K (which is fixed by tx) in M(K). The neighborhood
Ng(K) = 1/);1 (N5(K)) of K in ([-2,2] x F)(K) is also equipped with a standard paral-
lelization , = (Y, TK,v) = 1/);*1 oT,.

Define the parallelization 7’ of M(K) that coincides with T outside ] — 1, 1[xF
and that is the following stabilization of the positive normal Y to F on [-1,1] x F.
Let F=F\ (K x[-1,1[). On [-1,1] x F,

T’(t,x,v € 1R3) = T(t,x, p(l—zg)n(t+1)(v))'

This parallelization extends to N(K) as a stabilization of Y because it extends
to a square bounded by the following square meridian pg of K

pxc = {=1)x (k) x [=1, 1]+ ([=1, 1] x (k, 1) = {1} x ! ({k} < [=1,1]) = ([=1, 1] x (k, =1))

written with respect to coordinates of dN(K).
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Write a (round) tubular neighborhood N(K) in N5(K) as S! x D? = dD? x D? so
that pg induces the same parallelization of K as the longitude ({x} x D?). Let

We = [([0,1] % [-1,1] x F) L D2 x D? |#(-CP?)
(11xN(K)~9D2xD2

be a cobordism from [-1,1]x F to ([-1,1] x F)(K) obtained from [0,1] x [-1,1] x F by
gluing a 2-handle D?xD? along N (K) using the identification of N(K) with dD?xD?
above, by smoothing in a standard way, and by next performing a connected sum
with a copy of (—~CP?) in the interior of the 2-handle. We compute (p;(t’) - p1(7))
by using the cobordism Wp completed to a signature 0 cobordism by the product
[0,1]x (M \Int([-1,1] x F)) where T[0,1]® t extends both T and 7’. Since 71 (SU(2))
is trivial, the induced complex parallelization over d([0,1] x [~1,1]) x F extends as a
stabilization of T[0,1]@® X whose restriction to [0,1] x [-1,1] x F only depends on
the genus of F. Thus (p1(t’) —p1(7)) is the obstruction to extending this extension to
([O, 1]x Ng(K) Ugg )N (k)~ap2xp2 D? X Dz)ﬂ(—CPz) and it only depends on g(F). Call
it p1(g(F)).

Now compose T and 7’ by a small rotation whose axis is the second basis vector
e, of R3 around [-2,2] x F, so that X # +7(e;) on [-1,1] x F, and X and 7(e;) are
transverse. Then Lx_r(,;) = Ly=¢/(e;)» Lx=—t(e;) = Ly=—rv/(¢;)- Furthermore, since
Lx—r(c,) does not meet [-1,1]x F, and since it is rationally null-homologous (because
the Euler class of X is a torsion element of H?(M;Z)?) Lx—q(¢,) bounds a Seifert
surface disjoint from N(K) and Ly_./(,,) bounds the same Seifert surface in M(K)\

Ng(K) so that

Ik(Lx=r(e;) Lx=-1(e;)) = tk(Ly=c/(e;)r Ly=—v/(ey))
and

p1(X)=p1(7) = p1(Y) = p1 (1)

according to Theorem 1 on p. 34, if H;(M;Q) = 0, and according to Lescop (2015b,
Theorem 1.2), more generally. O

7.3 Introduction to the proof of the surgery formula

Let us now begin our proof of Theorem 5 on p. 68 by fixing the Heegaard diagrams
that we are going to use.

Let u; be non-intersecting curves of ¥ as in Figure 27 on the next page with
boundaries in d such that u; is homologous to z; in H; (X, dY). Then the u; x[-1,1]

12For details, see Lescop, 2015b, “On homotopy invariants of combings of three-manifolds”, Theo-
rem 1.1.
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Uzg(3)-1

K

Figure 27 — The curves u; on the surface X

form a system of (topological) meridian disks for the handlebody H4. Set a; =
—d(u;x[~1,1]). Fix a system of meridians (f;) e, that meet the & curves transversally

and that meet K x[-1,1] as a product by [-1,1]. Set 2" =X x {1} and X~ = X x {-1}.
Assume that the Heegaard diagram D = ((@;)ieg, (Bj)jeg) has a matching m = {m;};c,

where m; € a; N f; and m; € £~ (up to isotopies of the curves ). The invariant A(M)
will be computed with the diagram D, and the invariant A(M(K)) will be computed
with the diagram

D= ((ai)iegf (B; = tK(ﬁj))jeg)-
We fix a common exterior point w for D and D’ in ™.

Lemma 27 — The variation (p(X(D’, w,m)) — p1 (X(D,w, m))) is equal to p1(g(X)) where
p1(g(X)) is defined in Lemmma 26 on p. 71.

Proof. Apply Lemma 26 on p. 71 to
F=3x* UKx{l} (K X [—l, 1]) C aHA,
X =X(D,w,m)and Y = X(D’, w,m). O

Let u; also denote u; x {1} = a; N X1,

Assume that along K, from some basepoint of K, we first meet all the intersection
points of K with the g; and next the intersection points of K with the a;, which
correspond to the endpoints of the u;, as in Figure 28 on the next page.

Recall V' =Y ;o052 (Ik(z5;, 221 1K(25; 1, 2201) = Tk(25;, 20,1 TR (25, 221))-

We are going to prove the following lemmas.
Lemma 28 — We have

05(D’) = €5(D) = 8V
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Figure 28 — The intersections of K with the curves of D

Lemma 29 — We have
s¢(D',m) = s(D,m) = —g(3)* - 21",
Lemma 30 — We have
e(D',w,m)—e(D,w,m) = (1-2g(X))g(X).
It follows from these lemmas that
24M(M(K)) - 24A(M) = 241" + 4g(2)(g(2) - 1) ~ p1(g(2))-

Applying this formula to a trivial knot U seen as the boundary of a genus g(X)
surface Xy for which A’ = 0 shows that

p1(g(X)) = 4g(X)(g(X) - 1)

since M(U) is diffeomorphic to M.
Thus Lemmas 28 to 30 on pp. 73-74 imply Theorems 5 and 6 on p. 68 and on
p- 70, and we are left with their proofs that occupy most of the end of this section.

7.4 Preliminaries for the proofs of the remaining three lemmas

Set 2r =2r—1and 2r—1 = 2r.

Lemma 31 — For any (i,r) € g2,
8
) T By = (i 21k 27).
j=1
Proof. Think of H 4 as a thickening of a wedge of the z;. Let m(z;) denote a meridian
of z; on dH4. Then z = Zi:l lk(zf,zx)m(zg) in Hy(Hg; Q). Since m(z;) is homolo-
gous to (zg, zk>(z% - zi) in 0H 4,

(Cont. next page) (m(zk), ﬁ]> = <ZE’ zk><uE— ui, ﬁ]>
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=z zXag Bj)

g
(up, Bj) =<z}, Bj) = Zlk(zj,zk)(zﬁ, zag Bj)»
k=1
and

8
JjiCurs Bj) = (zi 21k (2] 27). a
=1

]

Lemma 32 — We have

Y TiiCui By =g(%).

(i.)eg?

b
Proof. Y5 (z;,z)Ik(z}, z;) = Y50 (Ik(23,_1,22,) — 1k(23,,22,1))- o

7> 7>
’42\‘( e ”g\‘( ) l”XD

az a . Qg Ag-1

Figure 29 — The diagram D’ in a neighborhood of K on dH 4

For j € g, let Q; denote the set of connected components of ﬁ;n(Z*U(aEx[—l, 11)).

Let Q = U}g:le. For an arc g of Qj, set j(q) = j. The intersection of an arc q of Q
with £* x {1} will be denoted by g*. Let C and C’ denote the set of crossings of D
and D’, respectively.

For each (q,i) € Q x g, thereis aset C(q,i) = a; N (q\ q*) of 4 crossings. Then

c=c|| ( || cailf

9,i)eQxg

Denote C(q,i) = {d1(q,1),d2(q,1),d5(q,1),d4(q,i)} where following «; from m;,
di(q,1), dy(q,1), d3(q,i) and dy(q,7) are met in this order. Set o(q,i) = o(d,(g,1)).
Then

o(q,i) = 0(d(q,1)) = 0(d4(q, 1)) = =0 (d1(q, 1) = o (d3(g,1)).
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Ui, == Uiy ==«
/ \ / \
d3( h(q,i) | 42(4,7) d3| t(g,i) | d2(q,i)
wq Y
/ 7/
f dg| 1@ [ d(qi) r dy| B | di(q0)
C(q,i) when o(g,i) =1 C(q,i) when o(g,i) = -1

Figure 30 — The new crossings of D’

Let t(q,1) denote the (tail) arc of g before g* with its ends in C(g, 1) and let h(q, i)
denote the (head) arc of g after g* with its ends in C(g, 7).

If 0(q,1) = -1, then g goes from left to right as q_ in Figures 28 and 29 on p. 74
and on the previous page, following g we meet C(q,i) in the order ds, d,, d;, dg,
t(q,i) = |d3,dslg and h(q, 1) = |d1, dylp.

If 0(g,i) = 1, then g goes from right to left as g, in Figures 28 and 29 on p. 74
and on the previous page, following q we meet C(g,i) in the reversed order dy, d;,
dy, d3, t(q,1) = |dy, dy|g and h(q, 1) = |d,, d3|g. Thus t(q,1) begins at dy,,;)(q,1) where
b(g,i)=3if 0(q,i)=-1and b(q,i) =4if o(q,i) = 1.

Note that for any (i,j) € gz, (ai,Bj) = (a,-,ﬁ]f) so that the coefficients Jj; are the
same for D and D’.

The set of crossings of D on X* (resp. on £7) will be denoted by C* (resp. by C7).

Proof (of Lemma 30 on p. 74). On the rectangle Rp of Figure 3 on p. 23 for (D, w, m),
let p/ (resp. p!’) denote the other end of the diameter of a; (resp. a’) that contains
the crossing m; of m. Draw the knot K on a picture of the Heegaard diagram as
in Figure 3 on p. 23 so that K meets the curves @’ and a” as the ; do, away from
the points of m, with horizontal tangent vectors near the p and the p/’. Let N (m)
denote an open tubular neighborhood of m in dH 4 made of 2¢g(X) open disks. See
dH 4\ N(m) as obtained from the rectangle Rp with holes bounded by the a] and
the a;’, by gluing horizontal thin rectangles D; along their two vertical small sides,
which are neighborhoods of p; or p;” in a; or a;". The standard parallelization of
this picture equips dH 4 \ N(m) with a parallelization so that the degree d,(K) of the
tangent to K is 1 — 2¢(X) in this figure. A similar picture for (D', w, m) is obtained
by performing the Dehn twist about K on the -curves in this figure. Since these
curves do not intersect K algebraically, the d,(f;) are unchanged by this operation.
Similarly, for any crossing c of C, d,(|mj(c), ¢|g) is unchanged and so is d,(c). For any
crossing c of C*, we have d;(c) = d,(c) + 1 - 2¢(X) since (K, |m; ), c|g) = 1. Now, let
(q,1) € Q x g. The contribution of C(g,1) to (e(D’,w,m) — e(D, w,m)) is

+Tj(q)i | de(h(q, 1)) +de(t(q, 1)) - Z Tsrlar, h(q, i) +£(q,1))dc(Bs) |

(rs)eg?
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which is zero. Finally, according to Lemma 32 on p. 75,

e(D',w,m)—e(D,w,m) = (1-2¢(X Zj]

ceCt
1_2g Z u7]z<uzlﬁ]
(i.j)eg?
= (1-2g(X))g(2) o

7.5 Studyof ¢

Let ¢ and ¢’ be the maps of Proposition 3 on p. 30 associated with D and D’,
respectively, with respect to the basepoints m; of ™.

tle,d) = ([mie),clas [mja) dlg) - Z Tii[miq,cla: Bi)ai, [mjay,dly)
(i,j)eg?
Lemma 33 — Let (c,d) € C%. If (c,d) € (C*)?, then
O(c,d) = (c,d) -
Otherwise,
O(c,d) = (c,d).

Proof Recall that the m; are in 7. Note that tx([m(), |ﬁ) is obtained from
[ dIﬁ by adding some multiple of K located in K x [-1,1], algebraically, so
that

(it ([mjay dlg)) = (ai, [mja), dlg)

for any i € g. Since tg(p;) differs from f; by an algebraically null sum of copies of K
in K x[-1,1],

([mi(c)s€las Bj) = mic)s clas Bj)
for any j € g. Thus in any case,
U(c,d)—L(c,d) = [mj), cla, tx ([mja), dlg) = [mja) dlp)-

If d € X7, then tg([m;(4),d|g) differs from [m;4), d|s by an algebraically null sum
of copies of K in K x[-1,1] so that £’(c,d) = {(c,d). If d € %, then ¢'(c,d) - {(c,d) =
([mi(c),cla, K). If c € £7, then the arc [m;(), c|, meets K x[~1,1] as the empty set or
as two parallel arcs with opposite direction and ¢’(c,d) = €(c,d). If c € £F, then the
arc [mj(c),cl, meets K x [~1,1] as an arc that crosses K once with a negative sign. O
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Lemma 34— Let c€C and let (q,i) € Qx g.

Z o(d)l'(c,d) = Z o(d)'(d,c) = 0.

deC(q,i) deC(q,i)

Proof. For any interval I of a f’-curve,

Z o(d)[mi,dla, I} = 0(q,i)|d1(q, 1), d2(q, D)o +1d3(q, 1), da(q, e, T),

deC(qi)
which is zero if I has no end points in K x [-1,1]. This shows that Za(d)f’(d,c) =0.
For any interval I of an a-curve, deC(q,i)
Y old)L, [mjg) dlg) = ~(I, t(g,1) + (g, 1)),
d€C(q,i)
Again, this is zero if I has no end points in K x [-1,1]. ]

Lemma 35 — Let (q,i) and (q,r) belong to Qx g. If g = q" and i = r, then
o () (d)E'(¢,d) = ~Tkgngy) (94", 94" i) (s, I ).
(c,d)eC(q,i)xC(q’,r)
Ifq = q/ ori= T, then Z(c,d)eC(q,i)xC(q’,r) U(C)O'(d)g/(c,d) =0.
Proof. Set A=} (. ajec(qiyxc(q,n @(€)o(d)l’(c,d). As in the proof of Lemma 34,
A== )" o(el[micla,t(q’,r)+ (g, 7))

ceC(q,i)
=—0(q,i)|d1(q,1),da(q, D)o +1d3(q, 1), da(q, D)o, t(q', 1) + h(q', 7))

This is zero unless q = ¢’, i = r and 1k(dq, dq’)1k(du;, du,) # 0. When the sign of
q’ changes, so does the result. Furthermore, the result is symmetric when (g,i) and
(q’,r) are exchanged, thanks to the symmetry of the linking number (see Proposi-
tion 2 on p. 29).

Therefore, it suffices to prove the lemma when o(q,i) = o(q’,7) =1 and (i,r) =
(2k — 1, 2k). When we have the order h(q’,r)h(q,i)t(q’,7)t(g,i) on K, which coincides
with h(u,)h(u;)t(u,)t(u;), we get A = —1 as in Figure 31 on the next page. For the
order h(q,i)h(q’,1)t(q,i)t(q’, ), we get A =1. ]

Lemma 36 — When i # 1, lkg1)(du;, du,) = —(z;, z,).
When q = q’,

8
lkkx(1)(d9",9q™") = - Z(Zk,zﬁ(ukﬂ)(upfi')
k=1
and, for any q € Q, Y{_, (zk, zp)(up, q)ug, 4’y = 0.
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(Cont. next page)

7. The Casson surgery formula for A

Uk 7 SAT ) B2kt
7/ N
/ / \ \
! 1 \ \

h(q’,2k)
A

ds da(q,2k-1) ~q
(N <
Ha' 2k Y 1 »
( dy d1(q,2k-1)

o(g2k-1)=0(q,2k) =1

Figure 31 — Computation of 1k(dg, dq’)lk(duy_1, duyy)

Proof. Let y(q’) be a curve on K x {1} that does not meet the a-curves, such that
dy(q’) = dq"*. Then lkg,1)(dq",dq"") = (9", ¥(q’))x. Since q and g’ do not intersect,
this also reads lkxy1}(d9",0q9"") = —(q,9"" = v(q’))on, where (" —¥(q)) is a closed
curve of £* whose homology class reads

g g
(@7 -»@)) = Z(Zkyzz)@]“r -v@) zp) 2k = Z(Zk’zﬁ(q/: UE)9H 4 Zk-
k=1 k=1

= o
Lemma 37 — We have
g
Y oo d(ed)=~(zi,2) ) (e zp) s Bi)up o)

(9.9')€Q;%Qs (¢,d)€C(q,i)xC(q’,r) k=1

Proof. According to Lemmas 35 and 36 on the preceding page,
8
o(c)a(d)l'(c,d) = ~(zi,2,) ) (2 2Ntk ) q)-
(c,d)eC(q,i)xC(q’,r) k=1 O

Lemma 38 — We have

ij(c)i(c)ff(c)f'(c,c): Z Tji Tsr(uis BsXtir, B} — 8(X)

C€C'\C (i,j,r,s)eg‘1

= ) Tz a2 Bi)up By

(i,j,k,s)eg4

Proof. Let us fix (q,1) € Q x g and compute } ¢,y 0(c)€’(c,0).
Since the arc [m;, d(q,1)[, does not intersect the arcs [dyq,i)(q,1),¢],

Y o(eXmiclasmjgelpd = Y o (eXldi(@i) clas [dpq,i)(a, 1), clp)

ceC(g,i) ceC(q,i)
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+ ) ole)[di(a 1), cla Mgy dugg,(a1)]p)
ceC(q,1)
where ZCEC(q,i) o(c)[d (q,1), Clas [mj(q)’ dh(q,i)(q’ 1)[,8> equals
o(q,i)X|d1(q,1),d2(q,1)|a +1d3(q,1),da(q, )lar [1(g), db(q,i) (1)) = O

since the arc [m;(,), dp(q,i)(q,1)[p intersects the arcs [d;(q,1),c], as whole arcs g’ of

Qj(o)-
Thus
) ole)lmicla [mjgelg) =1+ ) o(e)[di(qi),clar [dugi)(a, 1), clp).
ceC(q,i) ceC(q,i)

Note that neither d;(q, i) nor dj, ;) contributes to the new sum.

oldi(q,i)=-1 ifolq,i)=1

([1(.1) (6, ) [ o4 1), (4, )[p) = {O ot 1.

If 0(g,i) = 1, then we are left with the computation of
([41(9,1),d3(q, D)o [db(g,i)(q,1), d3(q,1)[p) = (ui, q)-

If 0(q,i) = -1, then we are left with the computation of
([41(9,1),d4(q, D)o [db(g,i)(q,1), da(q, 1) [ p)ui, q) + 0 (d3(g, 1))

In any case,

Y o(e)Imisclas [mjiq) clp = i q)-

ceC(q,i)

Let us fix (r,s) € gz and compute A = ZceC(q,i) o(c)[m;, cla, B ar, [Mmjg).clp). Ob-
serve

([mi,dy(q, )lar Bo) = [mi, di(q,i)lar Be) +(ui, Bs)
and

([mi, d3(q,1)la Be) = ([mi, d2(q, i), Bs) + (1, Bs)-
Let

B =0(q,i)(u;, Bs) ((ar [m(q), da(q, D)) = @y, [m(q), d3(a, 1)|5)) = —(ui, BsXatr, g 7).

(Cont. next page) A-B= G(q'i)qmir dy (qii)lar /55/>(<06r; [mj(q): d4(qli)|ﬁ> —(ay, [mj(q)l dy (q11)|ﬁ>)
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7. The Casson surgery formula for A

+ 0 (q i)[mi, da(4, Dl B (s [115q), A (1) g) = (r, [mq), d3(9, )
_G(q’ ')(<[mud1(q’ )la’ﬁs) <[mlld2 )la'ﬂs»(aw ( q,1 )>
=-o(q,i <|d1(q’ i),d(q, 1 )la'ﬁs><ar1 q,1))

where (a,, h(q,i)) = lkgy1)(du,, du;) when r = i, so that (a,, h(q,i)) = (z;,z,) in any
case. Summarizing, }_ccc(q,i) 0 (c)f’(c,¢) is equal to

Z Tsr iy Bs)ttr, @) + 0(q, i)|d1 (4, 1), d2(q, 1)l Ps )21, 21)) — (i, 9)-

(rs)eg?
where
o(q, 1)1 (4,1),do(q,)ar B == ) Tk} (99, 94)
9'€Qs39'#q
= ) Ikee(94,99)
9'€Qs39'#q

g
=) (7)o ), B
k=1

according to Lemma 36 on p. 78.
Now, let us fix j € g and compute

Y oY = —Cup By + ) Terits, BiXuip, By)

g€Qj ceC(q,i) (r, s)eg

- Jsr<zz,zy>Z<zk,zk><uk,ﬁ]><uk,ﬁs>

(r.s)eg?

= —Cup By + ) Tarits, BiXuip, By)

(rs)eg?

- Z Tz 25Xz 2p) ik, B )iy Bs)

(k,s)eg?

Y T = ) Ti| D Torluwin B B = (uis )

ceC’\C (i, ])eg (r, s)eg

Y Tz ez B )ug, Bo)-

(i,jks)eg

Conclude with Lemma 32 on p. 75. O
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7.6 Proofs of the remaining two lemmas
Lemma 39 — We have
2V =) Ik, )k (E 20 2 2)
(i,r)eg?
Y Tz 2z 2 B) g )
(i,j,k,s)eg4

Proof. Let C be the expression of the second line. Computing C with Lemma 31 on
p. 74 yields

C= Z lk(z,j,z;)(z,-,z;-)zlk(zki,zi)(z;-,zink,zE).

(i.k)eg? ]

Proof (of Lemma 29 on p. 74). According to Propositions 1 and 3 on p. 27 and on
p- 30, and to Remark 1 on p. 31,

Z Tioy i@ () (c,d)
C/)Z

+ O (mj,mj) — Z Tio)i (' (mj, )+ (c,m;)),
(,"]‘)552 (i,c)egxC’

so that Lemmas 33, 34 and 37 on p. 77, on p. 78 and on p. 79 imply

se(D’,m) —s;(D,m) = Z Z d)i(d)o(d)

Z T;i T 21,2020 2) (i By Yt Bo)-

(i,j,k,s)eg4

Therefore, according to Lemma 39,

se(D’,m) —s,(D, m) Z Tiiui, Bj) | =24,
(4,)) eg
which equals (—g(Z)2 - 2/\’), according to Lemma 32 on p. 75. ]

Lemma 40 — Set

B =) Ik z)I(E 20 2z 7).

(i,r)eg?
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Then
N(B)== ) TiiTerui, BiXur By = 21 - (%),

(i,jrs)egt

Proof. Using Lemma 31 on p. 74, we get

Y (T B ) == ) Ik(zy, 2z Kz, 2K (2] 2620 28)
(i,jr,s)eg (i,r)eg?
Z k() 2i) k(22,22 K2, 2020 27)
(i,r)eg?
= Ik(z],2,)lk (22, z7)(zi, ;X200 Z5)
(i,r)eg2
= ) (@)K z ) 7))
(ir)eg?
mpyL Zlk(zzi,zi)(zi,z;) =21 —g(%). O
Eg

Proof (of Lemma 28 on p. 73). According to Propositions 3 and 4 on p. 30 and on

p- 31,
= Z ‘7J(C)i(d)G(C)jj(d)i(C)U(d)g,(C'd)_ij(c)i(c)a(c)g,(c;c)~
(cd)elC')?

ceC’

According to Lemmas 38 to 40 on p. 79 and on the preceding page,

) Tiito(©) (e,¢) = =A,(F) - g(X) = 20" = 4\,

ceC’\C
Therefore

ZJj@i(c)a (c,¢) ZJJ Clcc) =41+ Z Jjiui, pj) = 41" +g(X)
ceC ceC’ (1])6&

according to Lemmas 32 and 33 on p. 75 and on p. 77. Using Lemmas 33, 34 and 37
on p.77,on p. 78 and on p. 79 again, we get

0,(D') - Z T57 i€z 27)20 2 ) v B )t Bs)
z]kseg
(Cont. next page) - Z k7}rk7'sl<ul’/3]><u7”ﬁ5>+4/\,+g(2)
(i,j,k,s)eg4
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=2V + A () +4) +g(X) =8N
thanks to Lemma 40 on p. 82. O
Finally, we identify A’ to %A;é(l) where

Ag(t) = 8 det([tlk(z:,zs) - lk(z:,zr)](,’s)egz)
denotes the Alexander polynomial of K.
Lemma 41 — We have

1 77 ’

EAK(l) = /\ .
Proof. Note tlk(z},zs) - lk(zf,z,) = (t — DIk(z], z5) + (2, z5)-

Ag(t) = t78%) 1 =8P (1 _ 1) ZZk(zj,z;xzi,z;) + 1783 (= 1)2A+ B(t—1)3,
ieg

for some polynomial B, where }_;c, lk(z],z7)(zi, z;) = g(X) (see Lemma 32 on p. 75)
and, thanks to Lemma 40 on p. 82,

A= Z (zi,z;)(z,,zﬂ(lk(z;“,z;)lk(z;r,zﬂ—Zk(z;r,zﬂlk(z;r,z;))

{i,r}cg
:% Z (21, 2)(2p 20) Ik (2] 20) k(27 27) — Lk (27, 25) Ik (2], 7))
(i,r)eg2
)2 1
:g(z) 5 ) kG z)IKE 2 2 2
(i,r)eg?
1 )
=5 (8@ +1L(®),

For some polynomial C
Ag(t) = —g(R) 831 4 g(x)(#78%) — g(2) 83N (1 = 1)) + 2678 (1= 1)A+ C(t-1)°
Therefore, according to Lemma 40 on p. 82,

Ag(1)=g(X)(g(X) +1-2¢(X))+2A =g(X) + A, (Z) = 21 O

Index of notations
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