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Abstract

In this paper iteration stable (stit) tessellations of the d-dimensional Eu-
clidean space are considered. By a careful analysis of the capacity functional an
alternative proof is given for the fact that stit tessellations are mixing.
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1 Introduction and result

Random tessellations are used in a variety of practical applications such as for cellu-
lar or polycrystalline materials, plant cells or in the modelling of telecommunication
networks2. The model of iteration stable random tessellations (or stit tessellations,
for short) has been introduced by Nagel and Weiss3 and has quickly attracted con-
siderable interest in stochastic geometry because of its analytical tractability4. Since
stit tessellations have the feature of not being side-to-side, they have the potential

1Ruhr University Bochum, Germany.
2Cf. Beil et al., 2006, “Fitting of random tessellation models to keratin filament networks”;

Lautensack, 2008, “Fitting three-dimensional Laguerre tessellations to foam structures”.
3Nagel and Weiss, 2005, “Crack STIT tessellations: characterization of stationary random tessella-

tions stable with respect to iteration”.
4As demonstrated in Martínez and Nagel, 2014, “STIT tessellations have trivial tail σ -algebra”;

Mecke, Nagel, and Weiss, 2011, “Some distributions for I-segments of planar random homogeneous
STIT tessellations”;

Schreiber and Thäle, 2010, “Second-order properties and central limit theory for the vertex process
of iteration infinitely divisible and iteration stable random tessellations in the plane”;

Schreiber and Thäle, 2011, “Intrinsic volumes of the maximal polytope process in higher dimen-
sional STIT tessellations”;

Schreiber and Thäle, 2012, “Second-order theory for iteration stable tessellations”;
Schreiber and Thäle, 2013a, “Geometry of iteration stable tessellations: connection with Poisson

hyperplanes”;
Schreiber and Thäle, 2013b, “Limit theorems for iteration stable tessellations”;
Thäle and Weiss, 2013, “The combinatorial structure of spatial STIT tessellations”;
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to serve as reference models for crack structures in geology or as an ingredient for
stochastic models for multi-hierarchical networks5.

The present paper deals with stit tessellations in the d-dimensional Euclidean
space. Informally, their continuous time construction can be described as follows.
Given a translation-invariant measure Λ on the space of hyperplanes in R

d with the
property that Λ is not concentrated on less than d families of parallel hyperplanes
with linearly independent directions and a set B ⊂ R

d , we write Λ([B]) for the set
of all hyperplanes that have non-empty intersection with B. At time t = 0 the con-
struction starts with an ‘empty’ polytope W , which is supplied with an exponential
random life-time, whose parameter is Λ([W ]). Now, the time is running and when
the life-time of W runs out, a random hyperplane is picked with respect to the
normalized measure Λ(· ∩ [W ])/Λ([W ]), which splits W into two sub-polytopes W +

and W −. Now, W + and W − are supplied again with exponential random life-times,
whose parameters are Λ([W +]) and Λ([W −]), respectively, and the construction
continues recursively, see Figure 2 on p. 7. It is stopped at a deterministically pre-
scribed time threshold t > 0. The union of all (d −1)-dimensional random polytopes
(i.e., hyperplane pieces) constructed within W until time t is denoted by YW (t). In
other words, this means that YW (t) is a random closed subset of W , see Section 2 on
p. 4 for formal definitions and Figure 1 on the next page for a simulation.

By consistency, YW (t) can be extended to a whole-space random tessellation
Y (t) with the property that for any polytope W as above, Y (t) ∩W coincides in
distribution with YW (t). In other words, Y (t) can be regarded as the canonical
random variable on the probability space

(F d ,B(F d),PY (t)),

where F d is the family of closed subsets of Rd , B(F d) is the Borel σ -field generated
by the Fell topology (see Section 2 on p. 4) and PY (t) stands for the distribution of
Y (t). It is known that Y (t) is stationary, meaning that its distribution is invariant
under all deterministic shifts in R

d .
We recall6 that a general stationary random closed set Z with distribution PZ on

(F d ,B(F d)) is said to be mixing if

lim
‖x‖→∞

PZ (F1 ∩ϑxF2) = PZ (F1)PZ (F2) for all F1,F2 ∈ B(F d), (1)

where ϑx stands for the shift ϑxF = F + x, x ∈Rd . We further denote by

IZ :=
{
F ∈ B(F d) : PZ (ϑxF∆F) = 0 for all x ∈Rd

}
Thäle, Weiss, and Nagel, 2012, “Spatial STIT tessellations: distributional results for I-segments”;
Weiss, Ohser, and Nagel, 2010, “Second moment measure and K-function for planar STIT tessella-

tions”.
5See Neuhäuser et al., 2016, “A stochastic model for multi-hierarchical networks”;

Nguyen, Weiss, and Cowan, 2015, “Column tessellations”.
6Schneider and Weil, 2008, Stochastic and integral geometry, Chapter 9.3.
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1. Introduction and result

Figure 1 – Realization of two planar stit tessellations in a square (by courtesy of
Joachim Ohser).

the σ -field of all invariant events, where ∆ denotes the symmetric difference op-
eration. We recall7 that a stationary random closed set Z is ergodic if the σ -field
IZ is PZ-trivial, i.e., if PZ(F) ∈ {0,1} for all F ∈ IZ . It is not difficult to verify that
ergodicity of Z is implied by the mixing property of Z.

Mixing or ergodicity properties of random sets play an important role in stochas-
tic geometry. They are particularly useful when pathwise functional densities
of random sets are defined or if one wants to apply an ergodic theorem8, for ex-
ample. Moreover, it can be useful when typical tessellation objects such as the
typical cell should be defined without resorting to Palm calculus for point processes.
The mixing property has been verified for various fundamental models arising
in stochastic geometry including the Boolean model and the Poisson-Voronoi or
Poisson hyperplane tessellation9.

We are now prepared to present the main result of this paper.

Theorem 1 – Let t > 0. The stit tessellation Y (t) is mixing and hence ergodic.

We remark that our proof yields more than Theorem 1, it also delivers in repre-
sentative situations an upper bound for the difference between the left and the right
hand side in (1) of order O(‖x‖−1), see Lemma 2 on p. 11. Both, Theorem 1 as well
as an upper bound for the rate of convergence in (1) are known from Lachièze-Rey

7Again from Schneider and Weil, 2008, Stochastic and integral geometry, Chapter 9.3.
8As in Schreiber and Thäle, 2013b, “Limit theorems for iteration stable tessellations”.
9See Schneider and Weil, 2008, Stochastic and integral geometry, Chapters 9.3 and 10.5.
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(2011)10. However, the main goal of the paper is to present a different and elemen-
tary approach to the mixing property of stit tessellations that is based on a careful
analysis of the capacity functional of a stit tessellation. For a general random closed
set Z in R

d with distribution PZ the capacity functional is defined as

TZ (C) := PZ (FC) with FC = {F ∈ F d : F ∩C , ∅}, C ⊂R
d compact.

It can be considered as a generalization to random sets of the concept of a distribu-
tion function of a real-valued random variable and is one of the most fundamental
quantities associated with a random set. It is thus natural to ask whether the mixing
property of a stit tessellation can be characterized by means of its capacity func-
tional. Our proof of Theorem 1 on the previous page confirms that this is in fact the
case and relies on a characterization of the mixing property of a general random
closed set in terms of its associated capacity functional taken from Schneider and
Weil (2008)11 as well as the recursive representation of the capacity functional of
Y (t) from Nagel and Weiss (2005)12. In addition, we also present a new way, relying
on a simple martingale argument, to compute TY (t)(C) in the case that the compact
set C is connected.

The rest of this paper is structured as follows. In Section 2 we recall some
necessary background material and formally introduce stit tessellations. The
capacity functional of a stit tessellation is considered in Section 3 on p. 8, while the
final Section 4 on p. 10 contains the proof of Theorem 1 on the previous page.

2 Preliminaries

2.1 Random sets

Fix a locally compact topological space E with countable base and let F (E) be the
collection of closed subsets of E. By C(E) we denote the family of all compact subsets
of E and by G(E) that of all open subsets of E. For a set A ⊂ E define

F A := {F ∈ F (E) : F ∩A = ∅} and FA := {F ∈ F (E) : F ∩A , ∅}.

The Fell topology on F (E) is generated by the set system13

{F C : C ∈ C(E)} ∪ {FG : G ∈ G(E)},

We denote by B(F (E)) the Borel σ -field on F (E) generated by this topology. To
simplify our notation, we shall write F d and Cd instead of F (Rd) and C(Rd) if

10Lachièze-Rey, 2011, “Mixing properties for STIT tessellations”.
11Schneider and Weil, 2008, Stochastic and integral geometry.
12Nagel and Weiss, 2005, “Crack STIT tessellations: characterization of stationary random tessella-

tions stable with respect to iteration”.
13Cf. Schneider and Weil, 2008, Stochastic and integral geometry, Chapter 12.2.
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E = R
d for some space dimension d ≥ 1. Let us also introduce the symbol Cd0 for

the subspace of Cd that consists of all compact subsets of Rd with finitely many
connected components.

Definition 1 – Let (Ω,A,P) be a probability space. By a random closed set in E we
understand a (A−B(F (E)))-measurable mapping Z : Ω→F (E). Its distribution is
denoted by PZ and the capacity functional of Z is defined as

TZ (C) := PZ (FC) = P(Z ∩C , ∅), C ∈ C(E).

It is well known that the capacity functional of a random closed set uniquely
determines its distribution14.

As indicated in the introduction it is often convenient to identify a random closed
setZ with the canonical random variable on the probability space (F (E),B(F (E)),PZ )
and we also make use of this convention.

A random closed set Z in R
d with distribution PZ is called stationary provided

that PZ+x = PZ for all x ∈Rd . Equivalently, Z is stationary if its capacity functional
TZ is translation invariant15.

2.2 Tessellations

We work in the Euclidean space R
d with d ≥ 2 and denote by P d the collection of

all (closed) polytopes in R
d that have non-empty interior. We call the elements of

P d cells in the sequel and write ∂c for the boundary of a cell c ∈ P d .

Definition 2 – Let T̂ be a countable subset of P d such that

(i) T̂ is locally finite, i.e., any bounded subset of Rd has non-empty intersection
with only a finite number of cells of T̂ ,

(ii) any two different cells from T̂ have disjoint interiors,

(iii) the cells of T̂ cover the space in that
⋃
c∈T̂ c = R

d .

Then T :=
⋃
c∈T̂ ∂c ∈ F

d is a tessellation of Rd and we call T̂ its associated cell set.

We denote by T d ⊂ F d the space of tessellations of R
d and equip T d with

the trace σ -field B(T d) of B(F d). Let (Ω,A,P) be some abstract probability space.
Then, a random tessellation of Rd can now be defined as a (A−B(T d))-measurable
mapping from Ω into T d .

For a tessellation T ∈ T d and a polytope W ∈ P d (often referred to as window)
we denote by TW = T ∩W the restriction of T to W . By T dW we indicate the space

14See Schneider and Weil, 2008, Stochastic and integral geometry, Theorem 2.1.3.
15See ibid., Theorem 2.4.5.
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of all tessellations of W . That is, TW = (
⋃
c∈T̂W ∂c) \∂W ∈ T

d
W , where T̂W is a finite

subset of the space P dW of cells c ∈ P d satisfying c ⊆W , which have pairwise disjoint
interiors and cover W . Similarly as outlined above, T dW is supplied with a Borel
σ -field B(T dW ).

In the sequel we often apply translations to a tessellation. For T ∈ T d or T ∈ T dW
for some W ∈ P d and z ∈Rd we define ϑzT := {x+ z : x ∈ T }. We will also apply the
shift operator ϑz to arbitrary sets B ⊂R

d which are not necessarily tessellations.

2.3 stit tessellations and stit tessellation processes

We denote by H the space of hyperplanes (i.e., (d − 1)-dimensional affine subspaces)
in R

d , d ≥ 2. For a Borel set B ⊂R
d we define [B] ⊆H as

[B] := {H ∈ H : B∩H , ∅}.

By H0 := [0] we indicate the collection of those hyperplanes in H which contain
the origin. We let Λ0 be a probability measure on the space H0. The measure Λ0
induces a translation invariant σ -finite measure Λ on H by the relation

Λ(·) :=
∫
H0

∫
H⊥

1(H + x ∈ ·)`H⊥(dx)Λ0(dH), (2)

where `H⊥ stands for the Lebesgue measure on the orthocomplement H⊥ of H . In
what follows, it is always assumed that Λ is non-degenerate in that the support of
Λ0 contains d hyperplanes with linearly independent unit normal vectors.

For W ∈ P d , T ∈ T dW , c ∈ T̂ and H ∈ [c] let us define the tessellation �c,H (T ) ∈ T dW
by

�c,H (T ) := T ∪ (c∩H),

where H+ and H− are the two closed half-spaces determined by H and cl(·) stands
for the closure of a set. In other words, �c,H (T ) is the tessellation which arises from
T when the cell c is split by the hyperplane H . Clearly, this definition also applies
to tessellations T ∈ T d , in which case the subtraction of ∂W is superfluous and has
to be omitted in the definition of �c,H (T ).

We are now prepared to introduce the main object of the present paper16.

Definition 3 – By the stit tessellation process in W ∈ P d with initial tessellation
YW (0) := ∅ we understand the continuous time Markov process (YW (t))t≥0 on the
space T dW whose infinitesimal generator L is given by

Lf (T ) :=
∑
c∈T̂

∫
[c]

[
f (�c,H (T ))− f (T )

]
Λ(dH), T ∈ T dW , (3)

where f : T dW →R is bounded and measurable.
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Figure 2 – Illustration of the stit tessellation process in a rectangle.

Informally, the dynamic of the process (YW (t))t≥0 can be described as follows17.
The tessellation evolves according to a branching process on P dW in continuous time.
The cells c behave independently of each other, live for an exponential random time
with parameter Λ([c]) and are then split into two sub-cells by means of a random
hyperplane, which is chosen according to the probability measure Λ(· ∩ [c])/Λ([c]).
This in particular ensures that ‘smaller’ cells live stochastically for a longer time.
Moreover, the process starts with the trivial initial tessellation YW (0) = ∅ that
consists of the single cell W . An illustration of the stit tessellation process is
provided in Figure 2.

Definition 4 – By a stit tessellation of W ∈ P d with time parameter t > 0 we
understand the random tessellation YW (t) ∈ T dW .

A simulation of two stit tessellations in a square with different hyperplane (line)
measures Λ is shown in Figure 1 on p. 3.

2.4 Two key properties

After having formally introduced stit tessellations within polyhedral windows
W ∈ P d , we collect here two of their key properties that are needed throughout this
paper.

16For the necessary background material on Markov process theory we refer the reader to Kallenberg,
2002, Foundations of Modern Probability, Chapter 8.

17See Schreiber and Thäle, 2013a, “Geometry of iteration stable tessellations: connection with Poisson
hyperplanes”. 7
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Global stit tessellation. For any t > 0 there exists a global stit tessellation Y (t) ∈
T d with the property that Y (t)∩W has the same distribution as YW (t) for all
W ∈ P d . We call Y (t) the global stit tessellation with time parameter t > 0. It
will often be convenient for us to suppress the adjective ‘global’ whenever it
is clear from the context that we are dealing with a tessellation of the whole
space.

Stationarity. The global stit tessellations Y (t) are stationary, meaning that ϑzY (t)
has the same distribution as Y (t) for all z ∈Rd and t > 0.

The existence of a global stit tessellation can be concluded from the form of the
capacity functional given in Propositions 1 and 2 on the current page and on the
next page together with the consistency theorem for random closed sets18. A direct
global construction of a stit tessellation can be found in Mecke, Nagel, and Weiss
(2011). Moreover, the stationarity of Y (t) follows from the translation invariance of
the capacity functional in Propositions 1 and 2 on the current page and on the next
page.

3 Capacity functional for stit tessellations

Fix t > 0,W ∈ P d and let YW (t) be a stit tessellation inW with time parameter t. The
goal of this section is to present formulas for the capacity functional TYW (t) of YW (t).
Our first result deals with TYW (t)(C) in the case that C ∈ C(W ) is connected. The
formula is known from Nagel and Weiss (2005), but we give an independent proof
using the representation (3) for the infinitesimal generator L of the stit tessellation
process in W as well as a martingale argument.

Proposition 1 – If C ∈ C(W ) is connected, then

TYW (t)(C) = 1− e−tΛ([C]).

Proof. We recall from the standard theory of Markov processes that the stochastic
process(

f (YW (t))− f (YW (0))−
∫ t

0
Lf (YW (t))ds

)
t≥0

(4)

is a martingale with respect to the canonical filtration induced by the stit tessellation
process in W for all bounded measurable functions f on T dW . We use the martingale
property of (4) for the special choice f (YW (t)) = 1(YW (t)∩C = ∅) for connected
C ∈ C(W ). Since f (YW (0)) = 1 we conclude from (4) by taking expectations that

P(YW (t)∩C = ∅) = 1 +E

[∫ t

0
Lf (YW (s))ds

]
(Cont. next page)

18Schneider and Weil, 2008, Stochastic and integral geometry, Theorem 2.3.1.
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= 1 +
∫ t

0
E

[ ∑
c∈ŶW (s)

∫
[c]
f (�c,H (YW (s)))− f (YW (s))Λ(dH)

]
ds

= 1 +
∫ t

0
E

[
−

∑
c∈ŶW (s)

∫
[c]

1(C ⊂ c)1(C ∩H , ∅)Λ(dH)
]
ds

= 1−
∫ t

0
E

[ ∑
c∈ŶW (s)

1(C ⊂ c)
∫

[c]
1(C ∩H , ∅)Λ(dH)

]
ds

= 1−Λ([C])
∫ t

0
E

[ ∑
c∈ŶW (s)

1(C ⊂ c)
]
ds

= 1−Λ([C])
∫ t

0
P(YW (s)∩C = ∅)ds.

This leads immediately to the integral equation

y(t) = 1−Λ([C])
∫ t

0
y(s) ds with y(0) = 1

for y(t) = P(YW (t)∩C = ∅). Its unique solution is y(t) = e−tΛ([C]) and we have thus
completed the proof. �

Unfortunately, the above method does not continue to work for C ∈ C(W ) that
have more than one connected component. However, the recursion technique from
Nagel and Weiss (2005) can be used to compute TYW (t)(C) for all C ∈ Cd0 with C ⊂W .
To present the formula we denote by convC the convex hull of C. Since C ∈ Cd0 , it
can be represented as disjoint union of k ≥ 2 connected sets C1, . . . ,Ck ∈ C(W ). We
define

{Z1,Z2} =
{⋃
i∈I
Ci ,

⋃
j∈{1,...,k}\I

Cj

}
for a non-empty subset I ⊂ {1, . . . , k} with less than k elements (the dependence of
{Z1,Z2} on I is suppressed in our notation) and we indicated by

∑
Z1,Z2

a sum taken
over all such sets. Finally, we use the symbol [Z1|Z2] for the set of all hyperplanes
separating Z1 and Z2. We are now in the position to recall a recursion formula for
TYW (t)(C) from Nagel and Weiss (2005, Lemma 5) where we remark that the proof
given makes essential use of the result of Proposition 1 on the preceding page.

Proposition 2 – If C ∈ Cd0 with C ⊂W as above, then

1− TYW (t)(C) = e−tΛ([convC]) + t
∑
Z1,Z2

Λ([Z1|Z2])(Cont. next page)

9



The mixing property of stit tessellations revisited C. Deuß and C. Thäle

×
∫ 1

0
e−tΛ([convC])s(1− TYW (t(1−s))(Z1))(1− TYW (t(1−s))(Z2)) ds.

Finally, we notice that the distribution of the stit tessellation YW (t) in W is
uniquely determined by its capacity functional on sets C ∈ Cd0 with C ⊂W 19 and
the subsequent discussion. The same is true also for a global stit tessellation Y (t).

4 Proof of Theorem 1 on p. 3

Let Z be a stationary random closed set in R
d and let TZ be its capacity functional. It

is known from Schneider and Weil (2008, Theorem 9.3.2) that the mixing property
of Z can be characterized in terms of TZ . Namely, one has that Z is mixing if and
only if

lim
‖x‖→∞

(1− TZ (C1 ∪ϑxC2)) = (1− TZ (C1))(1− TZ (C2)) for all C1,C2 ∈ Cd . (5)

This means that in order to prove Theorem 1 on p. 3 it remains to check condition (5)
for the random closed set Y (t) for all C1,C2 ∈ Cd0 , as discussed at the end of the
previous section, see again the discussion after Theorem 2.4 in Molchanov (1993).
To do so, we fix x ∈Rd and define

C(x) = C1 ∪ϑxC2, C1,C2 ∈ Cd0 .

Lemma 1 – For i ∈ {1,2} let Ci ∈ Cd0 with Λ(Ci) > 0. Then there are constants c1, c2 ∈
(0,∞) such that

c1‖x‖ ≤Λ([convC(x)]) ≤ c2‖x‖

for sufficiently large ‖x‖.

Proof. For the upper bound we notice that

sup
z1∈C1,z2∈ϑxC2

‖z1 − z2‖ = sup
z1∈C1,z2∈C2

‖z1 − z2 + x‖ ≤ sup
z1∈C1,z2∈C2

‖z1 − z2‖+ ‖x‖

= c0 + ‖x‖

with a finite constant c0 := supz1∈C1,z2∈C2
‖z1 − z2‖. Now, we choose ‖x‖ ≥ 1, define

r(x) := (c0 + 1)‖x‖ and observe that

sup
z1∈C1,z2∈ϑxC2

‖z1 − z2‖ ≤ r(x).

19See Molchanov, 1993, Limit Theorems for Unions of Random Closed Sets, Theorem 2.4.
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Let B(x) be a ball with radius r(x) that contains convC(x). In view of (2) we conclude
that

Λ([convC(x)]) ≤Λ([B(x)]) =
∫
H0

∫
H⊥

1((H + x)∩B(x) , ∅)`H⊥(dx)Λ0(dH)

= 2r(x)
∫
H0

Λ0(dH) = 2r(x) = c2‖x‖

with a constant c2 := 2(c0 + 1) ∈ (0,∞).
To obtain the lower bound, we choose two arbitrary, but different points z1 ∈ C1

and z2 ∈ ϑxC2 and denote by z1z2 the line segment determined by z1 and z2. One
clearly has that Λ([convC(x)]) ≥ Λ([z1z2]). We choose ‖x‖ large enough to ensure
that ‖z1 − z2‖ ≥ ‖x‖/2, say. To bound the quantity Λ([z1z2]) from below we use (2)
and the fact that Λ0 contains d hyperplanes with linearly independent unit normal
vectors. This ensures the existence of a constant c1 ∈ (0,∞) such that

Λ([z1z2]) =
∫
H0

∫
H⊥

1((H + x)∩ z1z2 , ∅)`H⊥(dx)Λ0(dH)

=
∫
H0

`(z1z2|H⊥)Λ0(dH) ≥ ‖x‖
2

∫
H0

|cos∠(z1z2,H
⊥)|Λ0(dH)

=: c1‖x‖,

where `(z1z2|H⊥) stands for the length of the orthogonal projection of z1z2 to H⊥

and ∠(z1z2,H
⊥) denotes the angle between H⊥ and the line through z1 and z2. Thus,

Λ([convC(x)]) ≥ c1‖x‖ and this completes the proof. �

In what follows, let us write f ∈ O(g) for two functions f ,g : R→ R whenever
limsupy→∞

f (y)
g(y) ∈ (−∞,∞). By slight abuse of notation we will also use the symbol

O(g) to indicate a quantity f satisfying f ∈ O(g).

Lemma 2 – As ‖x‖ →∞, one has that

|1− TY (t)(C1 ∪ϑxC2)− (1− TY (t)(C1))(1− TY (t)(C2))| = O
(
‖x‖−1

)
(6)

for all C1,C2 ∈ Cd0 .

Proof. Without loss of generality we can assume that Λ([C1]),Λ([C2]) > 0, since
otherwise (6) is trivially satisfied.

We write C1 =
⋃n
k=1C1,k and C2 =

⋃m
`=1C2,` with C1,k ∈ Cd and C2,` ∈ Cd con-

nected. It is easily verified that

Λ([convC(x)]) = Λ([C1]) +Λ([C2]) +Λ([C1|ϑxC2])−Λ([C1 ∩ϑxC2]) (7)

11
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for all x ∈Rd , since Λ is translation invariant. From Lemma 1 on p. 10 we conclude
that there are constants c′1, c

′
2 ∈ (0,∞) such that

c′1‖x‖ ≤Λ([C1|ϑxC2]) ≤ c′2‖x‖

for sufficiently large x. Furthermore, from Proposition 2 on p. 9 we have that, for
all x ∈Rd ,

1− TY (t)(C(x)) = e−tΛ([convC(x)]) + t
∑
Z1,Z2

Λ([Z1|Z2])

×
∫ 1

0
e−tΛ([convC(x)])s(1− TY (t(1−s))(Z1))(1− TY (t(1−s))(Z2))ds;

note that for each x ∈ R
d one can find a polytopal window Wx ∈ P d such that

C(x) ⊂Wx, which allows to replace Y (t) by YWx
(t) in the above argument. We also

remark that Z1 and Z2 are not independent of x ∈Rd , although this is not visible in
our notation.

We may now assume that C1 ∩ ϑxC2 = ∅. In what follows, we argue that in
the above representation for 1− TY (t)(C(x)), all summands except of Z1 = C1 and
Z2 = ϑxC2 are negligible, as ‖x‖ → ∞. For this, we consider the following three
cases. In case that Z1 ∩ C1 , ∅, Z1 ∩ ϑxC2 , ∅, Z2 ∩ C1 , ∅ and Z2 ∩ ϑxC2 , ∅

one immediately has that Λ([Z1|Z2]) = O(1). If Z1 ∩ C1 , ∅, Z1 ∩ ϑxC2 , ∅ and
Z2 ∩C1 = ∅, we can choose `1, `2 ∈ {1, . . . ,m} with `1 , `2 such that

Z1 ∩ϑxC2,`1
= ∅ and Z2 ∩ϑxC2,`2

= ∅.

It follows that

Λ([Z1|Z2]) ≤Λ([ϑxC2,`1
|ϑxC2,`2

]) = Λ([C2,`1
|C2,`2

]) = O(1).

In the remaining case that Z1 ∩C1 , ∅, Z1 ∩ ϑxC2 , ∅ and Z2 ∩ ϑxC2 = ∅ we can
similarly conclude that Λ([Z1|Z2]) = O(1) and we have thus shown that Λ([Z1|Z2]) =
O(1) for all Z1,Z2 with Z1 , C1. We can now apply Lemma 1 on p. 10 and conclude
that

tΛ([Z1|Z2])
∫ 1

0
e−tΛ([convC(x)])s(1− TY (t(1−s))(Z1))(1− TY (t(1−s))(Z2))ds

≤ tΛ([Z1|Z2])
∫ 1

0
e−tΛ([convC(x)])sds

= Λ([Z1|Z2])
1− e−tΛ([convC(x)])

Λ([convC(x)])
= O

(
‖x‖−1

)
, as ‖x‖ →∞.

Thus, it remains to consider the case that Z1 = C1 and Z2 = ϑxC2. To handle it, we
notice that TY (t)(C) is continuously differentiable in t for all C =

⋃p
j=1Cj ∈ C

d
0 and

12
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satisfies

sup
s∈(0,1)

∂(1− TY (t(1−s))(C2))

∂s
≤ cp

for a constant cp ∈ (0,∞). We can thus apply integration-by-parts to see that

tΛ([C1|ϑxC2])
∫ 1

0
e−tΛ([convC(x)])s(1− TY (t(1−s))(C1))(1− TY (t(1−s))(ϑxC2))ds

=
Λ([C1|ϑxC2])
Λ([convC(x)])

[
− e−tΛ([convC(x)])s(1− TY (t(1−s))(C1))(1− TY (t(1−s))(C2))

]1

s=0

+
Λ([C1|ϑxC2])
Λ([convC(x)])

∫ 1

0
e−tΛ([convC(x)])s

×
∂((1− TY (t(1−s))(C1))(1− TY (t(1−s))(C2)))

∂s
ds

=
Λ([C1|ϑxC2])
Λ([convC(x)])

(
(1− TY (t)(C1))(1− TY (t)(C2)) +O(‖x‖−1)

)
, as ‖x‖ →∞.

In combination with (7), we deduce that the last expression equals

(1− TY (t)(C1))(1− TY (t)(C2)) +O
(
‖x‖−1

)
, as ‖x‖ →∞.

Together with (3), the proof is thus complete. �

Proof (of Theorem 1 on p. 3). The result follows by combining (5) with Lemma 2 on
p. 11. �
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