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Abstract

An mstd set is a finite set of integers with more sums than differences. It is
proved that, for infinitely many positive integers k, there are infinitely many
affinely inequivalent mstd sets of cardinality k. There are several related open
problems.
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1 Sums and differences

In mathematics, simple calculations often suggest hard problems. This is certainly
true in number theory. Here is an example:

3 + 2 = 2 + 3 but 3− 2 , 2− 3.

This leads to the following question. Let A be a set of integers, a set of real num-
bers, or, more generally, a subset of an additive abelian group G. We denote the
cardinality of the set A by |A|. Define the sumset

A+A =
{
a+ a′ : a,a′ ∈ A

}
and the difference set

A−A =
{
a− a′ : a,a′ ∈ A

}
.

For all a,a′ ∈ G with a , a′, we have a+ a′ = a′ + a because G is abelian. However,
a− a′ , a′ − a if G is a group, such as R or Z, with the property that 2x = 0 if and
only if x = 0. It is reasonable to ask: In such groups, does every finite set have
the property that the number of sums does not exceed the number of differences?
Equivalently, is |A+A| ≤ |A−A| for every finite subset A of G?

The answer is “no.” A set with more sums than differences is called an mstd set.

1Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, USA
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As expected, most finite sets A of integers do satisfy2 |A+A| < |A−A|. For
example, if

A = {0,2,3}

then

A+A = {0,2,3,4,5,6} and A−A = {−3,−2,−1,0,1,2,3}

with

|A+A| = 6 < 7 = |A−A|.

It is also easy to construct finite sets A for which the number of sums equals the
number of differences. For example, if A is an arithmetic progression of length k in
a torsion-free abelian group, that is, a set of the form

A = {a0 + id : i = 0,1,2, . . . , k − 1} (1)

for some d , 0, then the number of sums equals the number of differences:

A+A = {a0 + id : i = 0,1,2, . . . ,2k − 2}

A−A = {a0 + id : i = −(k − 1),−(k − 2), . . . ,−1,0,1, . . . , k − 2, k − 1}

and

|A+A| = |A−A| = 2k − 1.

In an abelian group G, the set A is symmetric if there exists an element w ∈ G
such that a ∈ A if and only if w − a ∈ A. For example, the arithmetic progression (1)
is symmetric with respect to w = 2a0 + (k − 1)d. We can prove that every finite
symmetric set has the same number of sums and differences. More generally, for
0 ≤ j ≤ h, consider the sum-difference set

(h− j)A− jA =


h−j∑
i=1

ai −
h∑

i=h−j+1

ai : ai ∈ A for i = 1, . . . ,h

.
For h = 2 and j = 0, this is the sumset A+A. For h = 2 and j = 1, this is the difference
set A−A.

2Cf. Hegarty and Miller, 2009, “When almost all sets are difference dominated”;
Martin and O’Bryant, 2007, “Many sets have more sums than differences”.

122



1. Sums and differences

Lemma 1 – Let A be a nonempty finite set of real numbers with |A| = k. For j ∈
{0,1,2, . . . ,h}, there is the sum-difference inequality

|(h− j)A− jA| ≥ h(k − 1) + 1.

Moreover,

|(h− j)A− jA| = h(k − 1) + 1

if and only if A is an arithmetic progression.

Proof. If A is a set of k real numbers, then |hA| ≥ h(k − 1) + 1. Moreover, |hA| =
h(k − 1) + 1 if and only if A is an arithmetic progression3.

For every number t, the translated set A′ = A− t satisfies

(h− j)A′ − jA′ = (h− j)A− jA− (h− 2j)t

and so∣∣∣(h− j)A′ − jA′∣∣∣ = |(h− j)A− jA|.

Thus, after translating by t = min(A), we can assume that 0 = min(A). In this case,
we have

(h− j)A∪ (−jA) ⊆ (h− j)A− jA.

Because (h − j)A is a set of nonnegative numbers and −jA is a set of nonpositive
numbers, we have

(h− j)A∩ (−jA) = {0}

and so

|(h− j)A− jA| ≥ |(h− j)A|+ |−jA| − 1

≥
(
(h− j)(k − 1) + 1

)
+
(
j(k − 1) + 1

)
− 1

= h(k − 1) + 1.

Moreover, |(h− j)A− jA| = h(k − 1) + 1 if and only if both |(h− j)A| = (h− j)(k − 1) + 1
and |−jA| = j(k −1) + 1, or, equivalently, if and only if A is an arithmetic progression.
This completes the proof. �

3Nathanson, 1996, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Theo-
rem 1.6.
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Theorem 1 – Let A be a nonempty finite subset of an abelian group G. If A is symmetric,
then

|(h− j)A− jA| = |hA| (2)

for all integers j ∈ {0,1,2, . . . ,h}. In particular, for h = 2 and j = 1,

|A−A| = |A+A|.

Thus, symmetric sets have equal numbers of sums and differences.

Note that the nonsymmetric set

A = {0,1,3,4,5,8}

satisfies

A+A = [0,16] \ {14,15} and A−A = [−8,8] \ {±6}

and so

|A+A| = |A−A| = 15.

This example4 shows that there also exist non-symmetric sets of integers with equal
numbers of sums and differences.

Proof. If j = 0, then (h− j)A− jA = hA. If j = h, then (h− j)A− jA = −hA. Equation (2)
holds in both cases. Thus, we can assume that 1 ≤ j ≤ h− 1.

Let A be a symmetric subset with respect to w ∈ G. Thus, a ∈ A if and only if
w − a ∈ A. For every integer j, define the function fj : G→ G by fj(x) = x+ jw. For
all j, ` ∈Z we have fjf` = fj+`. In particular, fjf−j = f0 = id and fj is a bijection.

Let x =
∑h
i=1 ai ∈ hA, and let a′i = w − ai ∈ A for i = 1, . . . ,h. If 1 ≤ i ≤ j ≤ h, then

f−j (x) =

 h∑
i=1

ai

− jw
=
h−j∑
i=1

ai −
h∑

i=h−j+1

(w − ai)

=
h−j∑
i=1

ai −
h∑

i=h−j+1

a′i ∈ (h− j)A− jA

and so

|hA| ≤ |(h− j)A− jA|.

4Due to Marica, 1969, “On a conjecture of Conway”.
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Let y =
∑h−j
i=1 ai −

∑h
i=h−j+1 ai ∈ (h− j)A− jA. For h− j + 1 ≤ i ≤ h, let a′i = w−ai ∈ A.

Then

fj (y) =


h−j∑
i=1

ai −
h∑

i=h−j+1

ai

+ jw

=
h−j∑
i=1

ai +
h∑

i=h−j+1

(w − ai)

=
h−j∑
i=1

ai +
h∑

i=h−j+1

a′i ∈ hA

and so

|(h− j)A− jA| ≤ |hA|.

Therefore, |(h− j)A− jA| = |hA| and the proof is complete. �

Let A be a nonempty set of integers. We denote by gcd(A) the greatest common
divisor of the integers in A. For real numbers u and v, we define the interval of
integers [u,v] = {n ∈Z : u ≤ n ≤ v}. If u1,v1,u2,v2 are integers, then [u1,v1]+[u2,v2] =
[u1 +u2,v1 + v2].

Theorem 2 – Let A be a finite set of nonnegative integers with |A| ≥ 2 such that 0 ∈ A
and gcd(A) = 1. Let a∗ = max(A). There exist integers h1, C, and D and sets of integers
C∗ ⊆ [0,C +D − 1] and D∗ ⊆ [0,C +D − 1] such that, if h ≥ 2h1, then the sum-difference
set has the structure

ja∗ + (h− j)A− jA = C∗ ∪ [C +D,ha∗ − (C +D)]∪ (ha∗ −D∗)

for all integers j in the interval [h1,h− h1]. Moreover,

|(h− j)A− jA| =
∣∣∣(h− j ′)A− j ′A∣∣∣

for all integers j, j ′ ∈ [h1,h− h1].

Proof. Because A ⊆ [0, a∗], we have hA ⊆ [0,ha∗] for all nonnegative integers h.
By a fundamental theorem of additive number theory5, there exists a positive
integer h0 = h0(A) and there exist nonnegative integers C and D and sets of integers
C ⊆ [0,C − 2] and D ⊆ [0,D − 2] such that, for all h ≥ h0, the sumset hA has the rigid
structure

hA = C∪ [C,ha∗ −D]∪ (ha∗ −D) . (3)
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Let

h1 = h1(A) = max
(
h0,

2C +D
a∗

,
C + 2D
a∗

)
. (4)

Let h ≥ 2h1. If j ∈ [h1,h− h1], then

j ≥ h1 and h− j ≥ h1.

Let r = h− j. Applying the structure (3) on the previous page, we obtain the sumsets

rA = C∪ [C,ra∗ −D]∪ (ra∗ −D)

and

jA = C∪ [C,ja∗ −D]∪ (ja∗ −D) .

Rearranging the identity for jA gives

ja∗ − jA = D∪ [D,ja∗ −C]∪ (ja∗ − C) .

We have

[C +D,ha∗ − (C +D)] = [C,ra∗ −D] + [D,ja∗ −C]

⊆ rA+ (ja∗ − jA).

It follows from (4) that

min(ja∗ − C) ≥ ja∗ − (C − 2)

> ja∗ −C
≥ h1a

∗ −C
≥ (2C +D)−C = C +D.

Similarly,

min(ra∗ −D) > ra∗ −D ≥ C +D.

These lower bounds imply that for

n ∈ [0,C +D − 1] and j ∈ [h1,h− h1]

we have n ∈ rA+ (ja∗ − jA) if and only if

n ∈ ( C + D)∪ ( C + [D,ja∗ −C])∪ (D + [C,ra∗ −D])

if and only if

n ∈ ( C + D)∪ ( C + [D,C +D])∪ (D + [C,C +D]).
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Therefore,

C∗ = [0,C +D − 1]∩ (( C + D)∪ ( C + [D,C +D])∪ (D + [C,C +D]))

= [0,C +D − 1]∩ (rA+ (ja∗ − jA))

for all j ∈ [h1,h− h1]. Similarly, there exists a set D∗ ⊆ [0,C +D − 1] such that

ha∗ −D∗ = [ha∗ − (C +D) + 1),ha∗]∩ (rA+ (ja∗ − jA))

for all j ∈ [h1,h− h1]. Therefore,

ja∗ + (h− j)A− jA = (rA+ (ja∗ − jA))

= C∗ ∪ [C +D,ha∗ − (C +D)]∪ (ha∗ −D∗)

for all j ∈ [h1,h− h1]. This completes the proof. �

Problem 1 – Let A be a set of k integers. For j = 0,1, . . . ,h, let

fA,h(j) = |(h− j)A− jA|.

• Is max
(
fA,h(j) : j = 0,1, . . . ,h

)
= fA,h

([
h
2

])
?

• Is the function fA,h(j) unimodal?

Although the conjecture that a finite set of integers has no more sums than
differences is reasonable, the conjecture is false. Here are three counterexamples.
The set

A = {0,2,3,4,7,11,12,14}

with |A| = 8 and with sumset

A+A = [0,28] \ {1,20,27}

and difference set

A−A = [−14,14] \ {6,−6,13,−13}

satisfies

|A+A| = 26 > 25 = |A−A|.

Note that A = {0,2,3,7,11,12,14} ∪ {4}, where the set {0,2,3,7,11,12,14} is symmet-
ric. This observation is exploited in Nathanson6.

5Nathanson, 1972, “Sums of finite sets of integers”;
Nathanson, 1996, Additive Number Theory: Inverse Problems and the Geometry of Sumsets.

6Nathanson, 2007b, “Sets with more sums than differences”.
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The set

B = {0,1,2,4,7,8,12,14,15}

with |B| = 9 and with sumset

B+B = [0,30] \ {25}

and difference set

B−B = [−15,15] \ {9,−9}

satisfies

|B+B| = 30 > 29 = |B−B|.

The set

C = {0,1,2,4,5,9,12,13,14,16,17,21,24,25,26,28,29}

with |C| = 17 and with sumset

C +C = [0,58]

and difference set

C −C = [−29,29] \ {±6,±18}

satisfies

|C +C| = 59 > 55 = |C −C|.

Set B appears in Marica7 and set C in Freiman and Pigarev8.
An mstd set in an abelian group G is a finite set that has more sums than

differences. mstd sets of integers have been extensively investigated in recent years,
but they are still mysterious and many open problems remain. mstd sets of real
numbers and mstd sets in arbitrary abelian groups have also been studied. In this
paper we consider only mstd sets contained in the additive groups Z and R. There
are constructions of various infinite families of mstd sets of integers9, but there is
no complete classification.

Problem 2 – A fundamental problem is to classify the possible structures of mstd sets of
integers and of real numbers.

7Marica, 1969, “On a conjecture of Conway”.
8Freiman and Pigarev, 1973, “The relation between the invariants R and T ”.
9E.g. Hegarty, 2007, “Some explicit constructions of sets with more sums than differences”;

Miller, Orosz, and Scheinerman, 2010, “Explicit constructions of infinite families of mstd sets”;
Nathanson, 2007a, Problems in additive number theory. I, Additive Combinatorics.
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1. Sums and differences

Let G denote R or Z. For all λ,µ ∈ G with λ , 0, we define the affine map
f : G→ G by

f (x) = λx+µ.

An affine map is one-to-one. Subsets A and B of G are affinely equivalent if there
exists an affine map f : A→ B or f : B→ A that is a bijection.

Let k ≥ 2 and let A = {a0, a1, . . . , ak−1} be a set of integers such that

a0 < a1 < · · · < ak−1.

Let

d = gcd({ai − a0 : i = 1, . . . , k − 1})

and

a′i =
ai − a0

d

for i = 0,1, . . . , k − 1. Let A′ =
{
a′0, a

′
1, . . . , a

′
k−1

}
. We have

0 = a′0 < a
′
1 < · · · < a

′
k−1.

Note that

min(A′) = 0 and gcd(A′) = 1.

We call A′ the normal form of A.
Consider the affine map f (x) = dx+ a0. We have

A =
{
da′i + a0 : i = 0,1, . . . , k − 1

}
=

{
f (a′i) : i = 0,1, . . . , k − 1

}
= f (A′)

and so f : A′→ A is a bijection and the sets A and A′ are affinely equivalent.
A property of a set is an affine invariant if, for all affinely equivalent sets A and

B, the set A has the property if and only if the set B has the property.
The property of being an mstd set is an affine invariant. Let f be an affine map

on G. For all ai1 , ai2 , ai3 , ai4 ∈ G, the following statements are equivalent:

ai1 − ai2 = ai3 − ai4
ai1 + ai4 = ai2 + ai3
f (ai1 ) + f (ai4 ) = f (ai2 ) + f (ai3 )

f (ai1 )− f (ai2 ) = f (ai3 )− f (ai4 ).

This implies that if A is an mstd set, then B = f (A) is an mstd set for every affine map
f . Thus, to classify mstd sets of real numbers or of integers, it suffices to classify
them up to affine maps.
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In the group of integers, Hegarty10 proved that that there exists no mstd set of
cardinality less than 8, and that every mstd set of cardinality 8 is affinely equivalent
to the set {0,2,3,4,7,11,12,14}.

Let H(k,n) denote the number of affinely inequivalent mstd sets of integers of
cardinality k contained in the interval [0,n]. Thus, Hegarty proved that H(k,n) = 0
for k ≤ 7 and all positive integers n, that H(8,n) = 0 for n ≤ 13, and that H(8,n) = 1
for n ≥ 14.

Problem 3 – Why does there exist no mstd set of integers of size 7?

Problem 4 – Let k ≥ 9. Compute H(k,n). Describe the asymptotic growth of H(k,n) as
n→∞.

Problem 5 – For fixed n, describe the behavior of H(k,n) as a function of k. For example,
is H(k,n) a unimodal function of k? Note that H(k,n) = 0 for k > n.

For fixed k, the function H(k,n) is a monotonically increasing function of n.
Denoting by H(k) the number of affinely inequivalent mstd sets of cardinality k, we
have

H(k) = lim
n→∞

H(k,n).

Thus, H(k) = ∞ if there exist infinitely many affinely inequivalent mstd sets of
integers of cardinality k.

For every finite set A of integers, define

∆(A) = |A−A| − |A+A|.

The set A is an mstd set if and only if ∆(A) < 0.

Lemma 2 – Let A = {a0, a1, . . . , ak−1} be a set of k integers with

0 = a0 < a1 < · · · < ak−1.

If ak is an integer such that

2ak−1 < ak

and if

A′ = A∪ {ak}

then

∆(A′)−∆(A) = k − 1.

10Hegarty, 2007, “Some explicit constructions of sets with more sums than differences”.
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Proof. We have

A′ +A′ = (A+A)∪ {ak + ai : i = 0,1, . . . , k}.

Because max(A+A) = 2ak−1 < ak < ak + a1 < · · · < ak + ak−1 < 2ak we have∣∣∣A′ +A′∣∣∣ = |A+A|+ k + 1.

Similarly,

A′ −A′ = (A−A)∪ {±(ak − ai) : i = 0,1, . . . , k − 1}.

Because max(A−A) = ak−1 < ak −ak−1 < ak −ak−2 < · · · < ak −a1 < ak and min(A−A) =
−ak−1 > −ak + ak−1 > · · · > −ak + a1 > −ak we have∣∣∣A′ −A′∣∣∣ = |A−A|+ 2k.

Therefore,

∆(A′) =
∣∣∣A′ −A′∣∣∣− ∣∣∣A′ +A′∣∣∣

= (|A−A|+ 2k)− (|A+A|+ k + 1)

= ∆(A) + k − 1.

This completes the proof. �

Lemma 3 – Let B be an mstd set of integers with

|B+B| ≥ |B−B|+ |B|.

There exist infinitely many affinely inequivalent mstd sets of integers of cardinality |B|+1,
that is, H(|B|+ 1) =∞.

Proof. Let |B| = `. Translating the set B by min(B), we can assume that 0 = min(B).
Let b`−1 = max(B). The inequality

|B+B| ≥ |B−B|+ |B|

is equivalent to

∆(B) ≤ −`.

For every integer b` > 2b`−1 and B′ = B ∪ {b`}, Lemma 2 on the preceding page
implies that

∆(B′) = ∆(B) + ` − 1 ≤ −1

and so∣∣∣B′ −B′∣∣∣ < ∣∣∣B′ +B′∣∣∣.
Therefore, B′ is an mstd set of integers of cardinality ` + 1. If b′` > b` > 2b`−1, then

the sets B∪ {b`} and B∪
{
b′`

}
are affinely inequivalent, and so H(` + 1) =∞. �
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Lemma 4 – Let A be a nonempty finite set of nonnegative integers with a∗ = max(A).
Let m be a positive integer with

m > 2a∗.

If n is a positive integer and

B =

n−1∑
i=0

aim
i : ai ∈ A for all i = 0,1, . . . ,n− 1

 (5)

then

|B| = |A|n, |B+B| = |A+A|n and |B−B| = |A−A|n.

Proof. The first two identities follow immediately from the uniqueness of them-adic
representation of an integer.

If y ∈ B−B, then there exist x =
∑n−1
i=0 aim

i ∈ B and x̃ =
∑n−1
i=0 ãim

i ∈ B such that

y = x − x̃ =
n−1∑
i=0

(ai − ãi)mi =
n−1∑
i=0

dim
i

where di ∈ A−A for all i = 0,1, . . . ,n− 1.
Let di ,d′i ∈ A−A for i = 0,1, . . . ,n− 1. We have |di | ≤ a∗,

∣∣∣d′i ∣∣∣ ≤ a∗, and so∣∣∣di − d′i ∣∣∣ ≤ 2a∗ ≤m− 1.

Define y,y′ ∈ B − B by y =
∑n−1
i=0 dim

i and y′ =
∑n−1
i=0 d

′
im

i . Suppose that y = y′. If
dr−1 , d

′
r−1 for some r ∈ {1, . . . ,n} and di = d′i for i = r, . . . ,n− 1, then

0 = y − y′ =
n−1∑
i=0

(di − d′i )m
i =

r−1∑
i=0

(di − d′i )m
i

and so

(d′r−1 − dr−1)mr−1 =
r−2∑
i=0

(di − d′i )m
i .

Taking the absolute value of each side of this equation, we obtain

mr−1 ≤
∣∣∣d′r−1 − dr−1

∣∣∣mr−1 =

∣∣∣∣∣∣∣
r−2∑
i=0

(di − d′i )m
i

∣∣∣∣∣∣∣
≤ 2a∗

r−2∑
i=0

mi(Cont. next page)
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<
( 2a∗

m− 1

)
mr−1 ≤mr−1

which is absurd. Therefore, y = y′ if and only if di = d′i for all i = 0,1, . . . ,n− 1, and
so |B−B| = |A−A|n. This completes the proof. �

Hegarty and Miller; Martin and O’Bryant11 used probability arguments to prove
that there are infinitely many mstd sets of cardinality k for all sufficiently large k.
The following theorem gives a constructive proof that, for infinitely many k, there
exist infinitely many affinely inequivalent mstd sets of integers of cardinality k.

Theorem 3 – If there exists an mstd set of integers of cardinality k, then H(kn + 1) =∞
for all integers n ≥ k.

Proof. For all integers n ≥ k ≥ 1, we have 2k − 1 ≥ k and

n(2k − 1)n−1 ≥ k · kn−1 = kn.

Let A be a nonempty set of integers of cardinality k. After an affine transforma-
tion, we can assume that min(A) = 0, gcd(A) = 1, and max(A) = a∗. Moreover,

A−A ⊇ {0} ∪ {±a : a ∈ A \ {0}}
and so

|A−A| ≥ 2k − 1.

Choose m > 2a∗ and n ≥ k, and define the set B by Equation (5) on the preceding
page.

If A is an mstd set, then |A+A| ≥ |A−A|+1. Applying Lemma 4 on the preceding
page, we obtain |B| = kn and

|B+B| = |A+A|n

≥ (|A−A|+ 1)n

> |A−A|n +n|A−A|n−1

≥ |A−A|n +n(2k − 1)n−1

≥ |A−A|n + kn

= |B−B|+ |B|.

Applying Lemma 3 on p. 131 with ` = kn, we see that B is an mstd set. Because
we have infinitely many choices of m and n, it follows that H(kn + 1) = ∞. This
completes the proof. �

Problem 6 – Compute the smallest k such that H(k) =∞. We know only that k ≥ 9.

Problem 7 – Do there exist infinitely many affinely inequivalent mstd sets of integers
of cardinality k for all sufficiently large k?

11Hegarty and Miller, 2009, “When almost all sets are difference dominated”;
Martin and O’Bryant, 2007, “Many sets have more sums than differences”.
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2 An incomplete history

Marica wrote the first paper on sets with more sums than differences. His paper
starts with a quotation from unpublished mimeographed notes of Croft12:

Problem 7 of Section VI of H. T. Croft’s “Research Problems” (August,
1967 edition) is by J. H. Conway:

A is a finite set of integers {ai}. A +A denotes {ai + aj }, A −A denotes
{ai − aj }. Prove that A−A always has more numbers than A+A unless A
is symmetrical about 0.13

I have been unable to obtain a copy of these notes. Conway (personal communi-
cation) says that he did not make this conjecture, and, in fact, produced a coun-
terexample. The smallest mstd set is {0,2,3,4,7,11,12,14}, but I do not know where
this set first appeared. The first published example of an mstd set is Marica’s set
{1,2,3,5,8,9,13,15,16}. There is a related note of Spohn14. Freiman and Pigarev
(1973) is another significant early work.

Nathanson15 introduced the term mstd sets. There is important early work of
Roesler16 and Ruzsa17, and the related paper of Hennecart, Robert, and Yudin18.
Steve Miller and his students and colleagues have contributed greatly to this sub-
ject19.

There has also been great interest in the Lebesgue measure of sum and difference
sets20.

12Croft, 1967, “Research problems, Problem 7, Section VI”.
13Marica, 1969, “On a conjecture of Conway”.
14Spohn, 1971, “On Conway’s conjecture for integer sets”.
15Nathanson, 2007a, Problems in additive number theory. I, Additive Combinatorics.
16Roesler, 2000, “A mean value density theorem of additive number theory”.
17Ruzsa, 1978, “On the cardinality of A+A and A−A”;

Ruzsa, 1984, “Sets of sums and differences”;
Ruzsa, 1992, “On the number of sums and differences”.

18Hennecart, Robert, and Yudin, 1999, “On the number of sums and differences”.
19Do, Kulkarni, Miller, Moon, and Wellens, 2015, “Sums and differences of correlated random sets”;

Do, Kulkarni, Miller, Moon, Wellens, and Wilcox, 2015, “Sets characterized by missing sums and
differences in dilating polytopes”;

Iyer et al., 2012, “Generalized more sums than differences sets”;
Iyer et al., 2014, “Finding and counting mstd sets”;
Miller, Orosz, and Scheinerman, 2010, “Explicit constructions of infinite families of mstd sets”;
Miller, Robinson, and Pegado, 2012, “Explicit constructions of large families of generalized more

sums than differences sets”;
Miller and Scheinerman, 2010, “Explicit constructions of infinite families of mstd sets”;
Zhao, 2010a, “Constructing mstd sets using bidirectional ballot sequences”;
Zhao, 2010b, “Counting mstd sets in finite abelian groups”;
Zhao, 2011, “Sets characterized by missing sums and differences”.

20E.g. Oxtoby, 1971, Measure and category. A survey of the analogies between topological and measure
spaces;
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