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Abstract

It is known for quite some time that the extension theorems play an important
role in the homogenization of the periodic (heterogeneous) mediums. However,
the construction of such extension operators depends on a reflection technique
but for the functions in H l,r (Ωε

p) (l > 2) this reflection technique is not so
straightforward, and would lead to a rather cumbersome anaylsis. In this
work, we will give a short overview of some extension operators mapping from
Lr (S;H l,r (Ωε

p))∩H1,r (S;H l,s(Ωε
p)∗)→ Lr (S;H l,r (Ω))∩H1,r (S;H l,s(Ω)∗) using a

much simpler approach. This note also generalizes the previously known results
to Lipschitz domains and for any r ∈N such that (s.t.) 1

r + 1
s = 1.

Keywords: periodic medium, extension theorems, scaling arguments, periodic
homogenization.

msc: 35B45, 35B27, 47N99.

1 Introduction

Several problems in the fields of physics, chemistry, biology and engineering sci-
ences are governed by partial differential equations (PDEs). One of the most vital
phenomena that can be explained with the help of these equations is the chemical
transport in porous mediums (e.g. in soil, concrete, reservoir, rock etc)2. From litera-
ture it is known that a porous medium is a heterogeneous domain composed of solid
parts (known as solid matrices) and a pore space (connected or disconnected) where
usually transport processes take place3. Due to the heterogeneous structure of these
mediums, it is difficult to perform numerical simulations and it is desirable to have

1Driftmier College of Engineering, University of Georgia, Athens 30602, USA
2Mahato and Böhm, 2013, “Global existence and uniqueness for a system of nonlinear multi-species

diffusion-reaction equations in an H1,p setting”;
Rubin, 1983, “Transport of Reacting Solutes in Porous Media: Relation Between Mathematical

Nature of Problem Formulation and Chemical Nature of Reactions”.
3Bear and Bachmat, 1990, Introduction to Modeling Phenomena of Transport in Porous Media;

Hornung, 1997, Homogenization and Porous Media;
Knabner and Van Duijn, 1996, “Crystal dissolution in porous media flow”;
Peter and Böhm, 2008, “Different choices of scaling in homogenization of diffusion and interfacial

exchange in a porous medium”;
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an effective (upscaled) model which approximates the original model (original PDEs
at the pore scale) and does not involve any heterogeneities. In other words, one
would like to have the macroscopic description of a mathematical model which is
microscopically heterogeneous, i.e. we obtain the effective (global) behaviour of the
physical parameters involved in the micro-scale model. The effective model can be
obtained via homogenization or some averaging method4. In this paper we mainly
concern with the periodic homogenization. For periodic homogenization at first we
obtain the a priori estimates of the solution at the micro-scale, i.e. for the domain
S ×Ωε

p and then we extend these estimates in to all of S ×Ω. Once the extended
estimates are obtained, one can implement the concepts of multi-scale convergence
to obtain the effective models. The homogenization is not our main concern in this
work. Our main goal is to extend the a priori estimates from S ×Ωε

p in to all of S ×Ω.
Let us consider the following example of diffusion-reaction equations:

Assume that the heterogeneities inside a (perforated) porous medium are scaled
by a parameter ε > 0 and uε denotes the concentration of a chemical species present
in the pore space Ωε

p of the medium Ω, then the diffusion-reaction equation is given
as

∂uε

∂t
−∇ ·Dε∇uε = f in S ×Ωε

p, (1)

−Dε∇uε · #»n = 0 on ∂Ω∪ Γ ε,
uε(0,x) = u0(x) in Ωε

p,

for notations and terminologies confer Section 1.1 on p. 108. HereDε is the diffusion-
coefficient and f is the reaction rate or source term. In case Equation (1) is linear,
very often in literature, the solution space H1,2(S;L2(Ωε

p))∩L2(S;H1,2(Ωε
p)), i.e. uε ∈

H1,2(S;L2(Ωε
p))∩L2(S;H1,2(Ωε

p)) and u0 ∈ L2(Ωε
p). In Fatima et al. (2011), Hornung

and Jäger (1991), Neuss-Radu (1992), and Peter and Böhm (2009) it is shown
that there exists an extension operator Eεt : H1,2(S;L2(Ωε

p)) ∩ L2(S;H1,2(Ωε
p)) →

H1,2(S;L2(Ω))∩L2(S;H1,2(Ω)) which extends the estimates from S ×Ωε
p in to all of

S ×Ω. However, if Equation (1) is nonlinear, there are several situations where the
solution space needs to be different than the trivial ones, i.e. the higher integrability
exponent of the function spaces are required. One such example is sketched out
below. Let I ∈N number of mobile chemical species are present in the pore space
Ωε
p of a porous medium Ω, cf. Figure 1 on the next page. These species diffuse and

react with one another via the following reversible reactions:

τ1jX1 + τ2jX2 + · · ·+ τIjXI 
 ν1jX1 + ν2jX2 + · · ·+ νIjXI ,

Van Duijn and Pop, 2004, “Crystal Dissolution and Precipitation in Porous Media: Pore Scale
Analysis”;

Whitaker, 1999, The Method of Volume Averaging.
4Allaire, 1992, “Homogenization and two scale convergence”;

Neuss-Radu, 1992, “Homogenization techniques”;
Whitaker, 1999, The Method of Volume Averaging.
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Figure 1 – Mobile species inside the pore space Ωε
p in Ω.

where J ∈N, the stoichiometric matrix τij ,νij ∈N and Xi are the species. Denote
the concentration vector for each species as uε = (uε1,u

ε
2, . . . ,u

ε
I ) and the matrix

S := (sij )1≤j≤J, 1≤i≤I , where sij = νij − τij . Then the system of diffusion-reaction
equations for each species is given by

∂uεi
∂t
−∇ · (Dε∇uε) = SR(uε)i in Ωε

p, (2)

−Dε∇uε · #»n = 0 on ∂Ω∪ Γ ε, (3)

uε(0,x) = u0(x) in Ωε
p, (4)

where the reaction rate for the ith species is given by mass-action kinetics namely as

SR(uε)i :=
J∑
j=1

sij

kfj I∏
m=1
smj <0

(uεm)smj − kbj
I∏

m=1
smj>0

(uεm)smj


and Dε is the diffusive matrix. In Mahato and Böhm (2013) it is shown that the
solution of Equations (2) to (4) exists in the vector-valued function space [Υ ε]I :={
φ ∈ Lr (S;H1,r (Ωε

p))I : ∂φ/∂t ∈ Lr (S;H1,s(Ωε
p)∗)I

}
, i.e. uε ∈ [Υ ε]I and u0 ∈ (H1,s(Ωε

p)∗,

H1,r (Ωε
p))I1−1/r,r , where r > n+ 2 and 1/r + 1/s = 1. For the definition of vector-valued

function spaces we refer the interested reader to Kräutle (2011) and Mahato and
Böhm (2013). The higher order nonlinear terms contribute to the difficulty in order
to treat problems of type Equations (2) to (4). This type of problem has also been
considered by Hoffmann (2010), Kräutle (2011), and Pierre (2010) and references
therein. However, in the context of homogenization theory, not much work has
been done for functions in Υ ε and in (H1,s(Ωε

p)∗,H1,r(Ωε
p))1−1/r,r and their exten-

sions from S ×Ωε
p in to all of S ×Ω. This note generalizes the previous known

extension theorems5 to dual space setting to cover a more wider class of partial
differential equations. In this paper, we shall prove that there exists extension opera-
tors Eεt : Lr (S;H l,r (Ωε

p))∩H1,r (S;H l,s(Ωε
p)∗)→ Lr (S;H l,r (Ω))∩H1,r (S;H l,s(Ω)∗) and

5Cioranescu and Saint Jean Paulin, 1979, “Homogenization in open sets with holes”;
Hornung and Jäger, 1991, “Diffusion, convection, adsorption and reaction of chemicals in porous

media”;
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Fε : (H l,s(Ωε
p)∗,H l,r(Ωε

p))1−1/r,r → (H l,s(Ω)∗,H l,r(Ω))1−1/r,r , where l ∈N0, r ∈N and
1/r + 1/s = 1.

1.1 Notations

Let Ω ⊂ R
n (n ≥ 2) be the perforated porous medium under consideration (see

Figures 2 and 3 on the next page) with Lipschitz boundary and Y := (0,1)n ⊂R
n be a

unit representative cell. To fix the ideas, let us make following assumptions:

• Y = Ys ∪Yp, where the solid part Ys with boundary Γ and a pore part Yp in Y
are such that Y s ⊂ Y and Y s ∩Yp = ∅.

• Ω is composed of a pore space Ωp and the union of disconnected solid parts
Ωs such that Ω := Ωp ∪Ωs and Ωp ∩Ωs = ∅. Γ ∗ and ∂Ω are the union of
boundaries of solid parts and the outer boundary of Ω. Ω is periodic (i.e. the
solid parts in Ω are periodically distributed) and is covered by a finite union
of the cells Yk := Y + k, k ∈Zn. Ypk := Yp + k, Ysk := Ys + k and Γk := Γ + k.

• for a scale parameter ε > 0, we denote the pore space, solid parts and the
union of the boundaries of solid matrices in Ω by Ωε

p, Ωε
s and Γ ε and they

are defined as: Ωε
p := ∪k∈Zn

{
εYpk : εYpk ⊂Ω

}
, Ωε

s := ∪k∈Zn
{
εYsk : εYsk ⊂Ω

}
and

Γ ε := ∪k∈Zn {εΓk : εΓk ⊂Ω}, see Figures 2 and 3 on the next page and on the
next page.

• the boundaries Γ ,Γ ∗,Γ ε and ∂Ω are Lipschitz. We denote by dx and dy the
volume elements in Ω and Y , and by dσy and dσx the surface elements on Γ

and Γ ε respectively.

• for a T > 0, S := [0,T ) is the time interval. Denote R
+
0 := {x ∈R : x ≥ 0}, N :=

{1,2,3, . . .} and N0 := N∪ {0}.

• for Ξ ∈
{
Ω,Ωε

p

}
and l ∈N0, r ∈N – Lr(Ξ) and H l,r(Ξ) are the usual Lebesgue

and Sobolev spaces with their usual norms and they are denoted by ‖·‖r
and ‖.‖l,r . For sake of clarity, if φ ∈H l,r (Ξ), then

∥∥∥φ∥∥∥
l,r

:=
∥∥∥φ∥∥∥

H l,r (Ξ)
:=



∑
|α|≤l

∫
Ξ

∣∣∣Dαφ∣∣∣r dx


1
r

for 1 ≤ r <∞∑
|α|≤l

ess sup
x∈Ξ

∣∣∣Dαφ(x)
∣∣∣ for r =∞,

Miller, 1992, “Extension theorems for homogenization on lattice structures”;
Peter, 2003, “Modelling and homogenization of reaction interfacial exchange in porous media”;
Tartar, 1980, “Incompressible fluid flow in a porous medium. Convergence of the homogenization

process”.
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Figure 2 – A schematic representation of periodic homogenization.

Figure 3 – This figure shows a perforated porous medium (left) under consideration
which is assumed to be periodic and its homogeneous form is obtained via x = εy,
where ε� 1.

where α = (α1,α2, . . .αn) ∈ N
n is a multi-index, |α| = α1 + α2 + · · · + αn and

Dα = ∂|α|

∂
α1
x1 ∂

α2
x2 ...∂

αn
xn

.

The extension and restriction operators are denoted by E and R; the symbols ↪→ and
↪→↪→ denote the continuous and compact embeddings respectively. Moreover, we
denote by X∗ the dual space of X. Then for φ ∈ Lr(S;H l,r(Ξ))∩H1,r(S;H l,s(Ξ)∗) =:
Υt(Ξ), we have∥∥∥φ∥∥∥

Υt(Ξ)
:=

∥∥∥φ∥∥∥
Lr (S;H l,r (Ξ))

+
∥∥∥φ∥∥∥

Lr (S;H l,s(Ξ)∗)
+
∥∥∥∥∥∂φ∂t

∥∥∥∥∥
Lr (S;H l,s(Ξ)∗)

.
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Suppose that X and Y are Banach spaces and Y ↪→ X. The family of intermediate
spaces between X and Y are called real-interpolation space, denoted by (X,Y )θ,p,
0 ≤ θ ≤ 1 and 1 ≤ p ≤ ∞. We define this real-interpolation space with so called
K-functional method. For every x ∈ X and t > 0, we set

K(t,x,X,Y ) = inf
x=a+b

a∈X, b∈Y

(‖a‖X + t‖b‖Y )

then real-interpolation space is defined as

(X,Y )θ,p :=
{
x ∈ X : t 7→ t−θ−

1
pK(t,x,X,Y ) ∈ Lp(0,∞)

}
and is endowed with the norm6

‖x‖(X,Y )θ,p =
∥∥∥∥t−θ− 1

pK(t,x,X,Y )
∥∥∥∥
Lp(0,∞)

.

The real-interpolation space between H l,r(Ξ) and H l,s(Ξ)∗ is denoted by (H l,r(Ξ),
H l,s(Ξ)∗)1−1/r,r , where Ξ ∈

{
Ω,Ωε

p

}
. Finally, C and Cl are the generic positive con-

stants but independent of ε.

2 Main Results

We begin this section by a general case of Second Poincaré inequality7.

Lemma 1 – Let Ω be a bounded Lipschitz domain in R
n. Then, for all φ ∈ H l,r(Ω),

l = 1,2, . . ., we have the following inequality:∥∥∥φ∥∥∥r
l,r
≤ C

∑
|s|=l

∫
Ω

∣∣∣Dsφ∣∣∣r dx+
∑
|s|<l

∣∣∣∣∣∫
Ω

Dsφ

∣∣∣∣∣r dx

 , (5)

where C is independent of φ.

Proof (sketch of proof). By Kolmogorov compactness lemma8, it can be shown that
Hζ1,r

0 (Ω) ↪→↪→ Hζ2,r
0 (Ω), where ζ1,ζ2 ∈ N, ζ1 > ζ2. By extension theorem on

Lipschitz domains, Hζ1,r(Ω)
E→ Hζ1,r

0 (Ω̂) ↪→ Hζ2,r
0 (Ω̂)

R→ Hζ2,r(Ω), where Ω̂ :={
x ∈Rn : dist(x,Ω) < η for η > 0

}
. Since E and R are continuous operators and the

embedding is compact, hence the composition map is compact, i.e. Hζ1,r (Ω) ↪→↪→
Hζ2,r(Ω). Now we assume that Equation (5) is false and there exists a sequence
φn ∈H l,r (Ω) s.t.

∥∥∥φn∥∥∥l,r = 1. By Equation (5) and the compactness criteria, it can be

shown easily that
∥∥∥φn∥∥∥l,r → 0 as n→∞ which is a contradiction to the assumption∥∥∥φn∥∥∥l,r = 1. Hence Equation (5) holds true. �

6Lunardi, 1995, Analytic Semigroups and Optimal Regularity in Parabolic Problems.
7For details see Wloka, 1987, Partial Differential Equations, theorem 7.7.
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Lemma 2 (Miller9) – For every multi-index α there exists a unique polynomial pα(y)
of degree |α| of type

pα(y) =
1
α!
yα +

∑
|s|<|α|

Cαs
1
s!
ys (6)

such that∫
Yp

Dβpα(y)dy = 0 for all |β| < |α|. (7)

Lemma 3 – Let Y ⊂ R
n be a bounded domain and Ys be an open set in Y such that

Y s ⊂ Y , and the boundaries ∂Ys and ∂Y are Lipschitz. Further assume that the domain
Yp = Y \ Y s is also Lipschitz. Then, for l = 1,2, . . ., there exists an extension operator
E :H l,r (Yp)→H l,r (Y ) such that for all φ ∈H l,r (Yp), we have∑

|α|=l

∥∥∥DαEφ∥∥∥r
Lr (Y )

≤ Cl
∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (Yp)

.

In particular, for l = 0, then∥∥∥Eφ∥∥∥
Lr (Y )

≤ C0

∥∥∥φ∥∥∥
Lr (Yp)

for 1 ≤ r ≤∞.

Here the constants Cl and C0 are independent of φ.

Before we prove Lemma 3 we note that the construction of the extension operator
E depends on l, i.e. El :H l,r (Yp)→H l,r (Y ), but for the sake of notations we denote
our operator by E and avoid the subscript l.

Proof (of Lemma 3). For φ ∈ H l,r(Yp), we set ψ(y) = φ(y) −
{∑
|s|<lMYp (Dsφ)ps(y)

}
,

where MYp (ϕ) := 1
|Yp |

∫
Yp
ϕ(y) dy and ps(y) is the polynomial of type Equation (6)

satisfying Equation (7). Since,

Dαps(y) =
{

1 if |α| = |s|,
0 if |α| > |s| and α , s

and it can be shown easily, for |α| < l,∫
Yp

Dαψ(y) dy =
∫
Yp

Dαφ(y)dy −
∑
|s|<l

MYp (Dsφ)
∫
Yp

Dαps(y)dy = 0.

8See Holden and Risebro, 2002, Front Tracking for Hyperbolic Conservation Laws, theorem A.5.
9Miller, 1992, “Extension theorems for homogenization on lattice structures”, Lemma 1.
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Then, by Second Poincaré inequality, we have∥∥∥ψ∥∥∥r
H l,r (Yp)

≤ Cl
∑
|α|=l

∫
Yp

∣∣∣Dαψ(y)
∣∣∣r dy

≤ 2r−1Cl
∑
|α|=l

(∥∥∥Dαφ∥∥∥r
Lr (Yp)

+
∥∥∥∥∑
|s|<l

MYp (Dsφ)Dαps
∥∥∥∥r
Lr (Yp)

)
≤ Cl

∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (Yp)

,

obviously the second term vanishes since the degree of the polynomial ps(y) is up
to l − 1 but the order of weak-differential operator Dα is l, so D lps(y) = 0. By the
extension theorem for Lipschitz domains10, there exists a bounded linear extension
operator F :H l,r (Yp)→H l,r (Y ) such that∥∥∥Fψ∥∥∥r

H l,r (Y )
≤ C

∥∥∥ψ∥∥∥r
H l,r (Yp)

≤ Cl
∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (Yp)

. (8)

Setting Eφ(y) = Fψ(y) +
∑
|s|<lMYp (Dsφ)ps(y). Then

DαEφ(y) =DαFψ(y) +Dα
∑
|s|<l

MYp (Dsφ)ps(y)


=⇒

∑
|α|=l

∥∥∥DαEφ∥∥∥r
Lr (Y )

≤ C
∑
|α|=l

∥∥∥DαFψ∥∥∥r
Lr (Y )

, since Dsps(y) = 0 ∀s = 0,1, . . . , l − 1

=⇒
∑
|α|=l

∥∥∥DαEφ∥∥∥r
Lr (Y )

≤ Cl
∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (Yp)

. �

Theorem 1 – Let Ωε
p, Ω be defined as in Section 1.1 on p. 108. There exists an extension

operator Eε :H l,r (Ωε
p)→H l,r (Ω) such that for any φ ∈H l,r (Ωε

p) and β ∈R+
0 , it holds∑

|α|=l

∥∥∥εβDαEεφ∥∥∥r
Lr (Ω)

≤ C
∑
|α|=l

∥∥∥εβDαφ∥∥∥r
Lr (Ωε

p)
. (9)

In particular,∑
|α|=l

∥∥∥DαEεφ∥∥∥r
Lr (Ω)

≤ C
∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (Ωε

p)
for β = 0 and (10)∥∥∥Eεφ∥∥∥

Lr (Ω)
≤ C

∥∥∥φ∥∥∥
Lr (Ωε

p)
for β = l = 0 and 1 ≤ r ≤∞. (11)

10See Stein, 1970, Singular Integrals and Differentiability Properties of Functions.
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Proof. Define φ(y) = 1
εl
φ(εy) for φ ∈H l,r (Ωε

p) and for each k ∈Zn, φk(y) := φ(y)|Ypk .

Clearly, φ ∈H l,r (Ypk ) and by Lemma 3 on p. 111 E extends it to all Yk . Since Y s ⊂ Y ,
we can define Eφ to all of Ω by H l,r (Ω) 3 Eεφ(x) := εlEφ( xε ). Also, x = εy =⇒ Dαx =

1
ε|α|
Dαy .
Using these terminologies and by a simple scaling argument and Lemma 3 on

p. 111,∑
|α|=l

∥∥∥εβDαEεφ∥∥∥r
Lr (Ω)

= εn+rβ
∑
k∈Zn

∑
|α|=l

∫
Yk

∣∣∣Dαy Eφ(y)
∣∣∣r dy

≤ Cεn+rβ
∑
k∈Zn

∑
|α|=l

∫
Ypk

∣∣∣Dαy φ(y)
∣∣∣r dy

≤ Cεn+rβ
∑
k∈Zn

∑
|α|=l

1
εn

∫
εYpk

|Dαx φ(x)|r dx

≤ Cεrβ
∑
|α|=l

∫
Ωε
p

∣∣∣Dαx φ(x)
∣∣∣r dx.

Repeating the steps of the proof of Equation (9) on the preceding page, Equation (10)
follows by setting β = 0 and Equation (11) follows by setting β = l = 0. �

Using the extension operator Eε defined in previous section, one could define
the time dependent extension operator Eεt : Lr (S;H l,r (Ωε

p))→ Lr (S;H l,r (Ω)) s.t.

Eεt φ(t,x) := [Eεφ(t, ·)] (x) for φ ∈ Lr (S;H l,r (Ωε
p)). (12)

Then by the linearity of Eε,

∂
∂t

(Eεt φ(t,x)) :=
∂
∂t

[Eεφ(t, ·)](x) = Eε
(
∂φ

∂t
(t, ·)

)
(x) = Eεt

(
∂φ

∂t

)
(t,x). (13)

As the continuity of Eεt is straightforward, by a simple scaling argument we have:

Theorem 2 – Let Ωε
p, Ω be defined as in Section 1.1 on p. 108. There exists an extension

operator Eεt : Lr (S;H l,r (Ωε
p))→ Lr (S;H l,r (Ω)) such that for any φ ∈ Lr (S;H l,r (Ωε

p)) and
β ∈R+

0 , it holds∑
|α|=l

∥∥∥εβDαEεt φ∥∥∥r
Lr (S;Lr (Ω))

≤ C
∑
|α|=l

∥∥∥εβDαφ∥∥∥r
Lr (S;Lr (Ωε

p))
. (14)

In particular,∑
|α|=l

∥∥∥εβDαEεt φ∥∥∥
L∞(S;Lr (Ω))

≤ C
∑
|α|=l

∥∥∥εβDαφ∥∥∥
L∞(S;Lr (Ωε

p))
,(Cont. next page) (15)
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|α|=l

∥∥∥DαEεt φ∥∥∥r
Lr (S;Lr (Ω))

≤ C
∑
|α|=l

∥∥∥Dαφ∥∥∥r
Lr (S;Lr (Ωε

p))
for β = 0, and (16)∥∥∥Eεt φ∥∥∥

Lr (S;Lr (Ω))
≤ C

∥∥∥φ∥∥∥
Lr (S;Lr (Ωε

p))
for β = l = 0 and 1 ≤ r ≤∞. (17)

Proof. We implement Equation (5) on p. 110 to obtain the Inequalities (14) to (17)
on pp. 113–114. To begin with,∑

|α|=l

∥∥∥εβDαEεt φ∥∥∥r
Lr (S;Lr (Ω))

=
∑
|α|=l

∫
S

∥∥∥εβDα(Eεt φ(t))
∥∥∥r
Lr (Ω)

dt

=
∑
|α|=l

∫
S

∥∥∥εβEεt (Dαφ(t))
∥∥∥r
Lr (Ω)

dt

≤ C
∑
|α|=l

∫
S

∥∥∥εβDαφ(t)
∥∥∥r
Lr (Ωε

p)
dt by (9)

= C
∑
|α|=l

∥∥∥εβDαφ∥∥∥r
Lr (S;Lr (Ωε

p))
.

Also, ∑
|α|=l

∥∥∥εβDαEεt φ∥∥∥
L∞(S;Lr (Ω))

= ess sup
t∈S

∑
|α|=l

∥∥∥εβEεt (Dαφ(t))
∥∥∥
Lr (Ω)

≤ C ess sup
t∈S

∑
|α|=l

∥∥∥εβDαφ(t)
∥∥∥
Lr (Ωε

p)
by (9)

= C
∑
|α|=l

∥∥∥εβDαφ∥∥∥
L∞(S;Lr (Ωε

p))
.

The Inequalities (16) and (17) follow in the similar way as Inequalities (14) and (15)
on the previous page. �

To define the extension operators on the dual spaces, we define the extension op-
erator Fε :H l,s(Ωε

p)∗→H l,s(Ω)∗ and the restriction operator Rε :H l,s(Ω)→H l,s(Ωε
p)

as 〈
FεΘ,φ

〉
H l,s(Ω)∗×H l,s(Ω) =

〈
Θ,Rεφ

〉
H l,s(Ωε

p)∗×H l,s(Ωε
p)

for Θ ∈H l,s(Ωε
p)∗ and φ ∈H l,s(Ω). Therefore,

‖FεΘ‖H l,s(Ω)∗ = sup
‖φ‖Hl,s (Ω)≤1

∣∣∣∣〈FεΘ,φ〉
H l,s(Ω)∗×H l,s(Ω)

∣∣∣∣ ≤ C‖Θ‖H l,s(Ωε
p)∗ .

We know that for a function φ ∈ Lr (S;H l,r (Ωε
p))∩H1,r (S;H l,s(Ωε

p)∗), its trace at t = 0
is in the real-interpolation space (H l,s(Ωε

p)∗,H l,r (Ωε
p))1−1/r,r

11. This means that the

11Remark 1.2.11 in Lunardi, 1995, Analytic Semigroups and Optimal Regularity in Parabolic Problems.
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initial condition from Equation (4) on p. 107 (to be precise in this case the ith compo-
nent of initial condition) is in (H l,s(Ωε

p)∗,H l,r (Ωε
p))1−1/r,r . Thus we need an extension

operator, say Fε s.t. Fε : (H l,s(Ωε
p)∗,H l,r (Ωε

p))1−1/r,r → (H l,s(Ω)∗,H l,r(Ω))1−1/r,r . This
is the aim of next result.

Theorem 3 – Let 1 < r,s <∞ s.t. 1
r + 1

s = 1 and φ ∈ (H l,s(Ωε
p)∗,H l,r(Ωε

p))1− 1
r ,r

. Then

there exists an extension Fεφ of φ s.t. Fεφ ∈ (H l,s(Ω)∗,H l,r (Ω))1− 1
r ,r

.

Proof. Let θ = 1 − 1/r ∈ (0,1). Assume that φ ∈ (H l,s(Ωε
p)∗,H l,r(Ωε

p))1− 1
r ,r

and its

extension is denoted by φ̄ := Fεφ ∈ (H l,s(Ω)∗,H l,r (Ω))1− 1
r ,r

. We use the K-functional

definition for real-interpolation space (H l,s(Ωε
p)∗,H l,r(Ωε

p))θ,p. To begin with, let
v ∈H l,s(Ω), then there exists a restriction operator Qε such that

Qεv := v|Ωε
p

and ‖Qεv‖H l,s(Ωε
p) ≤ C‖v‖H l,s(Ω), (18)

where C is independent of ε and v. Let a0 ∈H l,s(Ωε
p)∗, then we define the extension

ā0 of a0 as

〈ā0,v〉H l,s(Ω)∗×H l,s(Ω) :=
〈
a0,Q

εv
〉
H l,s(Ωε

p)∗×H l,s(Ωε
p). (19)

This implies that

‖ā0‖H l,s(Ω)∗ = sup
‖v‖Hl,s (Ω)≤1

∣∣∣〈ā0,v〉H l,s(Ω)∗×H l,s(Ω)

∣∣∣
= sup
‖Qεv‖Hl,s (Ωεp )≤C

∣∣∣∣〈a0,Q
εv

〉
H l,s(Ωε

p)∗×H l,s(Ωε
p)

∣∣∣∣ by (18) and (19)

=⇒ ‖ā0‖H l,s(Ω)∗ ≤ C‖|a0‖H l,s(Ωε
p)∗ .

Again assume that b0 ∈H l,r (Ωε
p). Let b̄0 ∈H l,r (Ω) denotes the extension of b0 s.t.∥∥∥b̄0

∥∥∥
H l,r (Ω)

≤ C‖|b0‖H l,r (Ωε
p) for b0 ∈H l,r (Ωε

p),

where C is independent of ε and b0. Let t > 0. Then

‖ā0‖H l,s(Ω)∗ + t
∥∥∥b̄0

∥∥∥
H l,r (Ω)

≤ C
(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)
≤ C

(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)
.

Taking the infimum on both sides, we get successively

inf
φ̄=ā0+b̄0

ā0∈H l,s(Ω)∗,b̄0∈H l,r (Ω)

(
‖ā0‖H l,s(Ω)∗ + t

∥∥∥b̄0

∥∥∥
H l,r (Ω)

)
≤ C inf

φ=a0+b0
a0∈H l,s(Ωε

p)∗,b0∈H l,r (Ωε
p)

(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)
,
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t−θ inf
φ̄=ā0+b̄0

ā0∈H l,s(Ω)∗,b̄0∈H l,r (Ω)

(
‖ā0‖H l,s(Ω)∗ + t

∥∥∥b̄0

∥∥∥
H l,r (Ω)

)
︸                                           ︷︷                                           ︸

positive

≤ C t−θ inf
φ=a0+b0

a0∈H l,s(Ωε
p)∗,b0∈H l,r (Ωε

p)

(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)
︸                                             ︷︷                                             ︸

positive

,

∣∣∣∣t−θ inf
φ̄=ā0+b̄0

ā0∈H l,s(Ω)∗,b̄0∈H l,r (Ω)

(
‖ā0‖H l,s(Ω)∗ + t

∥∥∥b̄0

∥∥∥
H l,r (Ω)

)∣∣∣∣r ≤ Cr ∣∣∣∣t−θ inf
φ=a0+b0

a0∈H l,s(Ωε
p)∗,b0∈H l,r (Ωε

p)

(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)∣∣∣∣r .
Thus ∫ ∞

0

1
t

∣∣∣∣t−θ inf
φ̄=ā0+b̄0

ā0∈H l,s(Ω)∗,b̄0∈H l,r (Ω)

(
‖ā0‖H l,s(Ω)∗ + t

∥∥∥b̄0

∥∥∥
H l,r (Ω)

)∣∣∣∣r dt

≤ Cr
∫ ∞

0

1
t

∣∣∣∣t−θ inf
φ=a0+b0

a0∈H l,s(Ωε
p)∗,b0∈H l,r (Ωε

p)

(
‖a0‖H l,s(Ωε

p)∗ + t‖b0‖H l,r (Ωε
p)

)∣∣∣∣r
=⇒

∫ ∞
0

1
t

∣∣∣t−θK(t, φ̄,H l,s(Ω)∗,H l,r (Ω))
∣∣∣r dt

≤ Cr
∫ ∞

0

1
t

∣∣∣t−θK(t,φ,H l,s(Ωε
p)∗,H l,r (Ωε

p))
∣∣∣r dt

=⇒
∥∥∥φ̄∥∥∥

(H l,s(Ω)∗,H l,r (Ω))1− 1
r ,r

≤ C
∥∥∥φ∥∥∥

(H l,s(Ωε
p)∗,H l,r (Ωp

ε ))1− 1
r ,r
,

where the constant C is independent of ε and u. �

Next we will prove the last theorem of this work which is basically the extension
theorem on Bochner spaces.

Theorem 4 – For any function φ ∈ Lr (S;H l,r (Ωε
p))∩H1,r (S;H l,s(Ωε

p)∗), there exists an
extension operator Eεt : Lr (S;H l,r (Ωε

p))∩H1,r (S;H l,s(Ωε
p)∗)→ Lr (S;H l,r (Ω))∩H1,r (S;

H l,s(Ω)∗) s.t.

∥∥∥Eεt φ∥∥∥
Lr (S;H l,r (Ω))

+
∥∥∥∥∥ ∂∂t (Eεt φ)

∥∥∥∥∥
Lr (S;H l,s(Ω)∗)

≤ C
∥∥∥φ∥∥∥

Lr (S;H l,r (Ωε
p))

+
∥∥∥∥∥∂φ∂t

∥∥∥∥∥
Lr (S;H l,s(Ωε

p)∗)

 ,
where C is independent of ε and φ.
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Proof. Here:

φ ∈ Υ ε := Lr (S;H l,r (Ωε
p))∩H1,r (S;H l,s(Ωε

p)∗)

:=
{
ζ ∈ Lr (S;H l,r (Ωε

p)) :
∂ζ
∂t
∈ Lr (S;H l,s(Ωε

p)∗)
}

Then by Theorem 2 on p. 113 the operator Eεt φ ∈ Lr(S;H l,r(Ω)). We claim that Eεt
extends ∂φ

∂t from Lr (S;H l,s(Ωε
p)∗) to Lr (S;H l,s(Ω)∗). Let ∂φ

∂t denotes the extension of
∂φ
∂t in Lr(S;H l,s(Ω)∗). To accomplish the claim we just need to show that Eεt

(
∂φ
∂t

)
=

∂
∂t (E

ε
t φ) = ∂φ

∂t in Lr (S;H l,s(Ω)∗), i.e.∥∥∥∥∥∥Eεt
(
∂φ

∂t

)
− ∂
∂t

(Eεt φ)

∥∥∥∥∥∥r
Lr (S;H l,s(Ω)∗)

=
∫
S

sup
‖θ‖Hl,s (Ω)≤1

∣∣∣∣∣∣∣
〈
Eεt

(
∂φ

∂t

)
− ∂
∂t

(Eεt φ),θ
〉
H l,s(Ω)∗×H l,s(Ω)

∣∣∣∣∣∣∣
r

dt

=
∫
S

sup
‖θ‖Hl,s (Ω)≤1

∣∣∣∣∣∣∣
〈
Eεt

(
∂φ

∂t

)
,θ

〉
H l,s(Ω)∗×H l,s(Ω)

−
〈
∂
∂t

(Eεt φ),θ
〉
H l,s(Ω)∗×H l,s(Ω)

∣∣∣∣∣∣∣
r

dt

=
∫
S

sup
‖Rεθ‖Hl,s (Ωεp )≤C

∣∣∣∣∣∣∣
〈
∂φ

∂t
,Rεθ

〉
H l,s(Ωε

p)∗×H l,s(Ωε
p)
−
〈
∂φ

∂t
,Rεθ

〉
H l,s(Ωε

p)∗×H l,s(Ωε
p)

∣∣∣∣∣∣∣
r

dt.

Hence, the operator Eεt extends the function φ in Lr (S;H l,r (Ωε
p))∩H1,r (S;H l,s(Ωε

p)∗)
to all of Lr(S;H l,r(Ω))∩H1,r(S;H l,s(Ω)∗). The a priori estimate is straightforward
from Theorem 2 on p. 113 and Definition 2 on p. 114. �

3 Conclusions

We saw in Section 2 on p. 110 how one could define the extension operator for
Bochner spaces in dual space settings, which were to author’s knowledge unknown
results. We also extended the a-priori estimates in real-interpolation spaces. Both
of these two extension results are very vital when one deals with general classes
of parabolic equations in heterogeneous mediums. The results obtained by the
author in this paper also generalize the previous known results from Cioranescu
and Saint Jean Paulin (1979), Hornung and Jäger (1991), Miller (1992), Neuss-Radu
(1992), Peter and Böhm (2008), and Tartar (1980) for L2-space settings.

117



A note on extension type theorems in heterogeneous mediums H. S. Mahato

Acknowledgments

The author would like to thank the Center of Industrial Mathematics, located at
University of Bremen, for providing nice working conditions during his stay there.

References

Allaire, G. (1992). “Homogenization and two scale convergence”. SIAM Journal
on Mathematical Analysis 23 (6), pp. 1482–1518. doi: 10.1137/0523084 (cit. on
p. 106).

Bear, J. and Y. Bachmat (1990). Introduction to Modeling Phenomena of Transport in
Porous Media. 4. Theory and Applications of Transport in Porous Media. Springer
Netherlands. doi: 10.1007/978-94-009-1926-6 (cit. on p. 105).

Cioranescu, D. and J. Saint Jean Paulin (1979). “Homogenization in open sets with
holes”. Journal of Mathematical Analysis and Applications 71 (2), pp. 590–607. doi:
10.1016/0022-247X(79)90211-7 (cit. on pp. 107, 117).

Fatima, T. et al. (2011). “Homogenization of a reaction-diffusion system modeling
sulfate corrosion of concrete in locally periodic perforated domains”. Journal of
Engineering Mathematics 69, pp. 261–276. doi: 10.1007/s10665-010-9396-6
(cit. on p. 106).

Hoffmann, J. (2010). “Reactive Transport and Mineral Dissolution, Precipitation in
Porous Media”. Efficient Solution Algorithms, Benchmark Computations and
Existence of Global Solutions. PhD thesis. Friedrich-Alexander University of
Erlangen-Nürnberg. url: http://nbn-resolving.de/urn:nbn:de:bvb:29-
opus-17735 (cit. on p. 107).

Holden, H. and N. H. Risebro (2002). Front Tracking for Hyperbolic Conservation
Laws. 152. Applied Mathematical Sciences. Springer Verlag Berlin Heidelberg.
doi: 10.1007/978-3-642-56139-9 (cit. on p. 111).

Hornung, U., ed. (1997). Homogenization and Porous Media. 6. Interdisciplinary
Applied Mathematics. Springer-Verlag New York. doi: 10.1007/978-1-4612-
1920-0 (cit. on p. 105).

Hornung, U. and W. Jäger (1991). “Diffusion, convection, adsorption and reaction of
chemicals in porous media”. Journal of Differential Equations 92, pp. 199–225.
doi: 10.1016/0022-0396(91)90047-D (cit. on pp. 106, 107, 117).

Knabner, P. and C. J. Van Duijn (1996). “Crystal dissolution in porous media flow”.
Journal of Applied Mathematics and Mechanics 76 (S2), pp. 329–332. doi: 10.1016/
0309-1708(95)00005-4 (cit. on p. 105).

Kräutle, S. (2011). “Existence of global solutions of multicomponent reactive trans-
port problems with mass action kinetics in porous media”. Journal of Applied
Analysis and Computation 1, pp. 497–515. doi: 10.11948/2011034 (cit. on p. 107).

Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems.
Birkhäuser Basel (cit. on pp. 110, 114).

118

https://doi.org/10.1137/0523084
https://doi.org/10.1007/978-94-009-1926-6
https://doi.org/10.1016/0022-247X(79)90211-7
https://doi.org/10.1007/s10665-010-9396-6
http://nbn-resolving.de/urn:nbn:de:bvb:29-opus-17735
http://nbn-resolving.de/urn:nbn:de:bvb:29-opus-17735
https://doi.org/10.1007/978-3-642-56139-9
https://doi.org/10.1007/978-1-4612-1920-0
https://doi.org/10.1007/978-1-4612-1920-0
https://doi.org/10.1016/0022-0396(91)90047-D
https://doi.org/10.1016/0309-1708(95)00005-4
https://doi.org/10.1016/0309-1708(95)00005-4
https://doi.org/10.11948/2011034


References

Mahato, H. S. and M. Böhm (2013). “Global existence and uniqueness for a system of
nonlinear multi-species diffusion-reaction equations in an H1,p setting”. Journal
of Applied Analysis and Computation 3 (4), pp. 357–376 (cit. on pp. 105, 107).

Miller, R. E. (1992). “Extension theorems for homogenization on lattice structures”.
Applied Mathematics Letters 5 (6), pp. 73–78. doi: 10.1016/0893-9659(92)90018-
5 (cit. on pp. 108, 111, 117).

Neuss-Radu, M. (1992). “Homogenization techniques”. PhD thesis. Germany: Uni-
versity of Heidelberg (cit. on pp. 106, 117).

Peter, M. A. (2003). “Modelling and homogenization of reaction interfacial exchange
in porous media”. PhD thesis. University of Bremen (cit. on p. 108).

Peter, M. A. and M. Böhm (2008). “Different choices of scaling in homogenization of
diffusion and interfacial exchange in a porous medium”. Mathematical Methods
in the Applied Sciences 31, pp. 1257–1282. doi: 10.1002/mma.966 (cit. on pp. 105,
117).

Peter, M. A. and M. Böhm (2009). “Multiscale Modelling of Chemical Degradation
Mechanisms in Porous Media with Evolving Microstructure”. Multiscale Modeling
and Simulation 7 (4), pp. 1643–1668. doi: 10.1137/070706410 (cit. on p. 106).

Pierre, M. (2010). “Global Existence in Reaction-Diffusion Systems with Control of
Mass: a Survey”. Milan Journal of Mathematics 78, pp. 417–455. doi: 10.1007/
s00032-010-0133-4 (cit. on p. 107).

Rubin, J. (1983). “Transport of Reacting Solutes in Porous Media: Relation Be-
tween Mathematical Nature of Problem Formulation and Chemical Nature
of Reactions”. Water Resources Research 19 (5), pp. 1231–1252. doi: 10.1029/
WR019i005p01231 (cit. on p. 105).

Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions.
Princeton University Press (cit. on p. 112).

Tartar, L. (1980). “Incompressible fluid flow in a porous medium. Convergence of
the homogenization process”. In: Sanchez-Palencia, E. Non-Homogeneous Media
and Vibration Theory. Vol. 127. Lecture notes in Physics. Springer-Verlag Berlin
Heidelberg, pp. 368–377. doi: 10.1007/3-540-10000-8 (cit. on pp. 108, 117).

Van Duijn, C. J. and I. S. Pop (2004). “Crystal Dissolution and Precipitation in Porous
Media: Pore Scale Analysis”. Journal für die Reine und Angewandte Mathematik
577, pp. 171–211. doi: 10.1515/crll.2004.2004.577.171 (cit. on p. 106).

Whitaker, S. (1999). The Method of Volume Averaging. 13. Theory and Applications
of Transport in Porous Media. Springer Netherlands. doi: 10.1007/978-94-017-
3389-2 (cit. on p. 106).

Wloka, J. (1987). Partial Differential Equations. Cambridge: Cambridge University
Press. doi: 10.1017/CBO9781139171755 (cit. on p. 110).

119

https://doi.org/10.1016/0893-9659(92)90018-5
https://doi.org/10.1016/0893-9659(92)90018-5
https://doi.org/10.1002/mma.966
https://doi.org/10.1137/070706410
https://doi.org/10.1007/s00032-010-0133-4
https://doi.org/10.1007/s00032-010-0133-4
https://doi.org/10.1029/WR019i005p01231
https://doi.org/10.1029/WR019i005p01231
https://doi.org/10.1007/3-540-10000-8
https://doi.org/10.1515/crll.2004.2004.577.171
https://doi.org/10.1007/978-94-017-3389-2
https://doi.org/10.1007/978-94-017-3389-2
https://doi.org/10.1017/CBO9781139171755


Contents

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

i


	1 Introduction
	1.1 Notations

	2 Main Results
	3 Conclusions
	Acknowledgments
	References
	Contents

