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Cohomologies of deformations of
solvmanifolds and closedness of some

properties
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Abstract

We provide further techniques to study the Dolbeault and Bott-Chern co-
homologies of deformations of solvmanifolds by means of finite-dimensional
complexes. By these techniques, we can compute the Dolbeault and Bott-Chern
cohomologies of some complex solvmanifolds, and we also get explicit examples,
showing in particular that either the ∂∂-Lemma or the property that the Hodge
and Frölicher spectral sequence degenerates at the first level are not closed
under deformations.
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Introduction

Among other techniques, the theory of small deformations of holomorphic structures,
initiated and developed by Kodaira and Spencer, Nirenberg, and Kuranishi, provides
a large source of examples of compact complex manifolds.

As a natural problem, the behaviour of special metrics or cohomological proper-
ties under deformations deserves special interests in order to better understand the
geometry of complex manifolds. In such a context, the stability results for Kähler
structures plays a guiding role: in fact, Kodaira and Spencer proved3 that any small
deformations of a compact Kähler manifold still admits a Kähler metric. On the
other hand, the result holds no more true when replacing the Kähler condition with
weaker metric conditions, such as, for example, the existence of balanced metrics in
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Morgagni 67/a, 50134 Firenze, Italy; daniele.angella(at)gmail.com, daniele.angella(at)unifi.it

2Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka
560-0043, Japan; kasuya(at)math.sci.osaka-u.ac.jp

3Kodaira and Spencer, 1960, “On deformations of complex analytic structures. III. Stability theorems
for complex structures”, Theorem 15.
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the sense of Michelsohn4, or the existence of pluri-closed metrics5 (, nor also in the
non-elliptic context of D-complex geometry in the sense of Harvey and Lawson6,
nor in the non-integrable case of almost-Kähler geometry). As regards cohomologi-
cal properties, the stability of the ∂∂-Lemma under deformations has been proved
in several ways7. (We recall that a compact complex manifold is said to satisfy the
∂∂-Lemma if every ∂-closed, ∂-closed, d-exact form is also ∂∂-exact8.) Kodaira and
Spencer’s result, for example, can be phrased by saying that, for any family of com-
pact complex manifolds parametrized over the manifold B, the set of parameters
of B for which the corresponding complex manifold admits a Kähler metric is open
in the topology of B. In Angella and Kasuya (2017, Theorem 2.20), in studying the
cohomologies of the completely-solvable Nakamura manifold, the authors provided
an example of a curve {Jt}t∈B of complex structures and of a sequence {tk}k∈N ⊂ B
converging to t∞ in the topology of B such that (X,Jtk ) satisfies the ∂∂-Lemma for
any k ∈N but (X,Jt∞ ) does not; in other words, the set of parameters for which the
∂∂-Lemma holds is not closed in the (strong) topology of the base space. Actually,
as Ugarte pointed out to us, in studying the behaviour under limits of compact
complex manifolds, it is common to consider Zariski topology instead of strong
topology: in fact, e.g., Moı̌šezon property9 is supposed to be closed with respect to
the Zariski topology10 for motivations and results, while it is not closed in the strong
topology. With such a notion of (Zariski) closedness, we provide here an example
to prove the following result. Note that the non-closedness of E1-degeneration of
the Hodge and Frölicher spectral sequences was already proven by Eastwood and
Singer11 by using twistor spaces.

Theorem (see Corollary 3 on p. 88) – The property of E1-degeneration of the Hodge
and Frölicher spectral sequences and the property of satisfying the ∂∂-Lemma are not
closed under holomorphic deformations.

In order to provide such an example, we continue in investigating the class of
nilmanifolds and solvmanifolds from the point of view of cohomologies computa-

4Alessandrini and Bassanelli, 1990, “Small deformations of a class of compact non-Kähler manifolds”,
Proposition 4.1.

5Fino and Tomassini, 2009, “Blow-ups and resolutions of strong Kähler with torsion metrics”,
Theorem 2.2.

6Angella and Rossi, 2012, “Cohomology of D-complex manifolds”, Theorem 4.2.
7See Voisin, 2002, Hodge Theory and Complex Algebraic Geometry I, Proposition 9.21;

Wu, 2006, “On the geometry of superstrings with torsion”, Theorem 5.12;
Tomasiello, 2008, “Reformulating supersymmetry with a generalized Dolbeault operator”, § B;
Angella and Tomassini, 2013, “On the ∂∂-lemma and Bott-Chern cohomology”, Corollary 2.7.

8See, e.g., Deligne et al., 1975, “Real homotopy theory of Kähler manifolds”.
9Moı̆šezon, 1966, “On n-dimensional compact complex manifolds having n algebraically indepen-

dent meromorphic functions. I, II, III”.
10See Popovici, 2013, “Deformation limits of projective manifolds: Hodge numbers and strongly

Gauduchon metrics”.
11Eastwood and Singer, 1993, “The Fröhlicher spectral sequence on a twistor space”, Theorem 5.4.
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tions. More precisely, we would enlarge the class of solvmanifolds for which the de
Rham, Dolbeault, and Bott-Chern cohomologies can be computed by means of just
a finite-dimensional sub-complex of the double-complex of differential forms, by
carrying over the results in Angella (2013), Angella and Kasuya (2017), Console and
Fino (2001), Console, Fino, and Kasuya (2016), Console and Fino (2011), Cordero
et al. (2000), Guan (2007), Hattori (1960), Kasuya (2013a,b, 2014a), Mostow (1954,
1957), Nomizu (1954), Rollenske (2009, 2011a), and Sakane (1976). We recall that,
given a double-complex (A•,•,∂,∂), the Dolbeault cohomology is

H•,•
∂

(A•,•) :=
ker∂

im∂

and the Bott-Chern cohomology is

H•,•BC (A•,•) :=
ker∂∩ker∂

im∂∂
;

one can also consider the Aeppli cohomology,

H•,•A (A•,•) :=
ker∂∂

im∂+ im∂
,

which is, in a sense, the dual of the Bott-Chern cohomology; finally, in considering a
complex manifold, the Dolbeault and Bott-Chern cohomology are defined by means
of the double-complex (∧•,•X,∂,∂) of complex-valued differential forms1213. More
precisely, we provide the following stability results for cohomology computations
of deformations of solvmanifolds, in the vein of the results proven in Console and
Fino (2001, Theorem 1) and Angella (2013, Theorem 3.9) for nilmanifolds; (we refer
to Theorems 1 and 2 for the precise statement).

Theorem (see Theorems 1 and 2 on the next page and on p. 77) – Given a solvman-
ifold X = Γ \G endowed with a left-invariant complex structure J , for which there exists
a finite-dimensional sub-complex C•,• ⊂ ∧•,•X computing the Dolbeault cohomology,
we provide conditions in order that suitable deformations of C•,•, still allow to compute
Dolbeault and Bott-Chern cohomologies of some small deformations of J .

The proof of this theorem is inspired by the proof of Kodaira and Spencer’s the-
orem on the upper-semi-continuity of the dimensions of the Dolbeault cohomol-
ogy groups14. Considering downers of cohomologies, differing from upper-semi-
continuity, by this theorem we can observe “nose-diving” phenomena, as in the

12See Aeppli, 1965, “On the cohomology structure of Stein manifolds”;
Bott and Chern, 1965, “Hermitian vector bundles and the equidistribution of the zeroes of their

holomorphic sections”.
13See also Demailly, 2012, Complex Analytic and Differential Geometry;

Schweitzer, 2007, “Autour de la cohomologie de Bott-Chern”.
14Kodaira and Spencer, 1960, “On deformations of complex analytic structures. III. Stability theorems

for complex structures”.
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following examples, which are generalizations of the three-dimensional examples
found by Kodaira and Nakamura15.

Example (see Section 5 on p. 85) – Let N be a complex nilpotent Lie group. Sup-
pose that the Lie algebra of N has a (Z+

√
−1Z)-basis. Then, for certain semidirect

product G = C nφ (N ×N ), we have a lattice Γ of G by the results of Sawai and
Yamada16, and there exists a deformation {Jt}t of the holomorphically parallelizable
solvmanifold Γ \G such that dimH1,0

∂t
( Γ \G ) = 0, where H•,•

∂t
( Γ \G ) is the Dolbeault

cohomology of a deformed complex solvmanifold.

In particular, it follows that the above examples provide a new class of “Dolbeault-
cohomologically-computable” complex solvmanifolds, since they are not holomor-
phic fibre bundles over complex tori as in Console, Fino, and Kasuya (2016) and
Kasuya (2013a, 2014a).

1 Deformations and cohomology

Let (M,J) be a compact complex manifold and (∧•,•J M,∂,∂) be the double-complex
of complex-valued differential forms on M associated with the complex structure
J . We consider deformations {Jt}t∈B over a ball B ⊂ C

m such that J0 = J . We also
consider the double-complex (∧•,•Jt M,∂t ,∂t) associated with the deformed complex
structure Jt .

We are interested in manifolds whose cohomologies can be computed by means
of just a finite-dimensional sub-double-complex of (∧•,•J M,∂,∂). In particular, in
this section, we are concerned in studying the behaviour of such a property under
small deformations of the complex structure.

Inspired by Kodaira and Spencer (1960), we prove the following result.

Theorem 1 – Let (M,J) be a compact complex manifold, and consider deformations
{Jt}t∈B such that J0 = J . We suppose that we have a family

{
C•,•t = C〈φ•,•i (t)〉i

}
t∈B

of
sub-vector spaces of (∧•,•Jt M,∂t ,∂t) parametrized by t ∈ B and spanned by linearly-
independent vectors φ•,•i (t) so that:

(A1) for each t ∈ B, it holds that (C•,•t ,∂t) is a sub-complex of (∧•,•Jt M,∂t);

(A2) φ•,•i (t) is smooth on M ×B, for any i;

(A3) the inclusion C•,•0 ⊂ ∧
•,•
J M induces the cohomology isomorphism

H•,•
∂0

(C•,•0 ) �H•,•
∂

(M);

15Nakamura, 1975, “Complex parallelisable manifolds and their small deformations”.
16Sawai and Yamada, 2005, “Lattices on Benson-Gordon type solvable Lie groups”.
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(A4) there exists a smooth family {gt}t∈B of Jt-Hermitian metrics such that ∗̄gt (C
•,•
t ) ⊆

Cn−•,n−•t , where we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt , and by
2n the real dimension of M.

Then, for sufficiently small t, the inclusion C•,•t ⊂ ∧•,•Jt (M) induces the cohomology
isomorphism

H•,•
∂t

(C•,•t ) �H•,•
∂t

(M).

Proof. Consider the operators ∂∗t = −∗̄gt∂t ∗̄gt and ∆∂t
= ∂t∂

∗
t + ∂∗t∂t . Then by the

assumptions (A1) and (A4) on the preceding page and on the current page, the
operator ∆∂t

can be defined on C•,•t . By a result by Kodaira and Spencer17, for
each t ∈ B, we have a basis {e1(t), . . . , ei(t), . . .} of ∧•,•Jt M and continuous functions
a1(t) ≤ . . . ≤ ai(t) ≤ · · · on B such that ∆∂t

ei(t) = ai(t)ei(t) for any i. Since ∆∂t
is

defined on C•,•t , we can take a subset
{
ei1(t), . . . , ei` (t)

}
of {ei(t)}i that is a basis of

C•,•t . Take
{
ej (t), . . . , ej+k(t)

}
= {ei(t) | ai(0) = 0}. Then

{
ej (0), . . . , ej+k(0)

}
is a basis of

ker∆∂0
. By the assumption (A3) on the preceding page, we have ker∆∂0

⊆ C•,•0 .

Hence we have
{
ej (t), . . . , ej+k(t)

}
⊆ C•,•t for any t ∈ B. Since each ai is continuous, we

have, for sufficiently small t ∈ B, that aj−1(t) < 0 and 0 < aj+k+1(t). Hence we have

ker∆∂t ⊆
{
ej (t), . . . , ej+k(t)

}
⊆ C•,•t . Hence the theorem follows. �

Analogously, as regards the Bott-Chern cohomology, by considering the opera-
tors18,

∂∗t = −∗̄gt∂t ∗̄gt ,
∂∗t = −∗̄gt∂t ∗̄gt , and

∆̃BCt = ∂t∂t∂
∗
t∂
∗
t +∂∗t∂

∗
t∂t∂t +∂∗t∂t∂

∗
t∂t +∂∗t∂t∂

∗
t∂t +∂∗t∂t +∂∗t∂t

a similar argument yields the following result.

Theorem 2 – Let (M,J) be a compact complex manifold, and consider deformations
{Jt}t∈B such that J0 = J . We suppose that we have a family

{
C•,•t = C〈φ•,•i (t)〉i

}
t∈B

of
sub-vector spaces of (∧•,•Jt M,∂t ,∂t) parametrized by t ∈ B and spanned by linearly-
independent vectors φ•,•i (t) so that:

1. for each t ∈ B, it holds that (C•,•t ,∂t ,∂t) is a sub-double-complex of (∧•,•Jt M,∂t ,∂t);

17Kodaira and Spencer, 1960, “On deformations of complex analytic structures. III. Stability theorems
for complex structures”, Theorem 11;

see also Kodaira, 2005, Complex manifolds and deformation of complex structures, Theorem 7.1.
18Kodaira and Spencer, 1960, “On deformations of complex analytic structures. III. Stability theorems

for complex structures”, Proposition 5;
Schweitzer, 2007, “Autour de la cohomologie de Bott-Chern”, § 2.b.
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2. φ•,•i (t) is smooth on M ×B, for any i;

3. the inclusion C•,•0 ⊂ ∧
•,•
J M induces the Bott-Chern cohomology isomorphism

H•,•BC (C•,•0 ) �H•,•BC (M);

4. there exists a smooth family {gt}t∈B of Jt-Hermitian metrics such that ∗̄gt (C
•,•
t ) ⊆

Cn−•,n−•t , where we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt , and by
2n the real dimension of M.

Then, for sufficiently small t, the inclusion C•,•t ⊂ ∧
•,•
Jt
M induces the Bott-Chern coho-

mology isomorphism

H•,•BC (C•,•t ) �H•,•BC (M).

2 Applications: nilmanifolds

Consider nilmanifolds, that is, compact quotients of connected simply-connected
nilpotent Lie groups by discrete co-compact subgroups, and take left-invariant
complex structures. By considering the sub-double-complex C•,• = ∧•,•(g⊗

R
C)∗

of left-invariant differential forms, where g is the Lie algebra associated to the
nilmanifold, one recovers the stability results in Angella (2013) and Console and
Fino (2001) by Theorems 1 and 2 on p. 76 and on the previous page.

Corollary 1 (Console and Fino19, Angella20) – Let X = Γ \G be a nilmanifold, and
denote the Lie algebra associated to G by g and its complexification by g

C
:= g⊗

R
C. The

set of G-left-invariant complex structures on X such that the inclusion ∧•,•g∗
C
⊂ ∧•,•X

induces the isomorphism H•,•
∂

(∧•,•g∗) �H•,•
∂

(X), respectively H•,•BC (∧•,•g∗) �H•,•BC (X), is
open in the set of G-left-invariant complex structures on X.

We recall that, in view of Sakane (1976, Theorem 1), Cordero et al. (2000,
main Theorem), Console and Fino (2001, Theorem 2, Remark 4), Rollenske (2009,
Theorem 1.10, 2011a, Corollary 3.10), and Angella (2013, Theorem 3.8), the above
set contains several classes of left-invariant complex structures, among which
holomorphically parallelizable, Abelian, nilpotent, and rational.

19Console and Fino, 2001, “Dolbeault cohomology of compact nilmanifolds”, Theorem 1.
20Angella, 2013, “The cohomologies of the Iwasawa manifold and of its small deformations”, Theo-

rem 3.9.
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3 Applications: solvmanifolds

In order to investigate explicit examples, we recall some results concerning the com-
putations of Dolbeault cohomology for solvmanifolds of two special classes, namely,
solvmanifolds of splitting-type (that is, satisfying Assumption 1)21 and holomorphi-
cally parallelizable solvmanifolds (that is, with holomorphically-trivial holomorphic
tangent bundle)22.

We start by considering solvmanifolds of the following type23. We call them
solvmanifolds of splitting-type.

Assumption 1 – Consider a solvmanifold X = Γ \G endowed with a G-left-invariant
complex structure J . Assume that G is the semi-direct product Cn nφN so that:

(C1) N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed
with an N -left-invariant complex structure JN ;

(C2) for any t ∈ Cn, it holds that φ(t) ∈ GL(N ) is a holomorphic automorphism of N
with respect to JN ;

(C3) φ induces a semi-simple action on the Lie algebra n associated to N ;

(C4) G has a lattice Γ ; (then Γ can be written as Γ = Γ
C
n nφ ΓN such that Γ

C
n and ΓN are

lattices of Cn and, respectively, N , and, for any t ∈ Γ ′ , it holds φ(t) (ΓN ) ⊆ ΓN ;)

(C5) the inclusion ∧•,• (n⊗
R
C)∗ ↪→∧•,• ( ΓN \N ) induces the isomorphism

H•,•
∂

(∧•,• (n⊗
R
C)∗)

�→H•,•
∂

( ΓN \N ) .

Consider the standard basis {X1, . . . ,Xn} of Cn. Consider the decomposition n⊗
R

C = n1,0 ⊕ n0,1 induced by JN . By the condition condition (C2), this decomposition
is a direct sum of Cn-modules. By the condition condition (C3), we have a basis
{Y1, . . . ,Ym} of n1,0 and characters α1, . . . ,αm ∈ Hom(Cn;C∗) such that the induced
action φ on n1,0 is represented by

C
n 3 t 7→ φ(t) = diag(α1(t), . . . ,αm(t)) ∈GL(n1,0).

For any j ∈ {1, . . . ,m}, since Yj is an N -left-invariant (1,0)-vector field on N , the (1,0)-
vector field αjYj on C

n
nφN is (Cn nφN )-left-invariant. Consider the Lie algebra g

of G and the decomposition g
C

:= g⊗
R
C = g1,0 ⊕ g0,1 induced by J . Hence we have

21Kasuya, 2013a, “Minimal models, formality, and hard Lefschetz properties of solvmanifolds with
local systems”.

22Wang, 1954, “Complex parallisable manifolds”.
23See Kasuya, 2013a, “Minimal models, formality, and hard Lefschetz properties of solvmanifolds

with local systems”.
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a basis {X1, . . . ,Xn,α1Y1, . . . ,αmYm} of g1,0, and let
{
x1, . . . ,xn,α

−1
1 y1, . . . ,α

−1
m ym

}
be its

dual basis of ∧1,0g∗
C

. Then we have

∧p,qg∗
C

= ∧p
〈
x1, . . . ,xn,α

−1
1 y1, . . . ,α

−1
m ym

〉
⊗∧q

〈
x̄1, . . . , x̄n, ᾱ

−1
1 ȳ1, . . . , ᾱ

−1
m ȳm

〉
.

The following lemma holds.

Lemma 1 (Kasuya24) – LetX = Γ \G be a solvmanifold endowed with aG-left-invariant
complex structure J as in Assumption 1 on the previous page. With the above nota-
tions, for any j ∈ {1, . . . ,m}, there exist unique unitary characters βj ∈Hom(Cn;C∗) and
γj ∈Hom(Cn;C∗) on C

n such that αjβ−1
j and ᾱjγ−1

j are holomorphic.

Hence, we define the differential bi-graded sub-algebra B•,•
Γ
⊂ ∧•,• Γ \G , for

(p,q) ∈Z2, as

B
p,q
Γ

:= C

〈
xI ∧

(
α−1
J βJ

)
yJ ∧ x̄K ∧

(
ᾱ−1
L γL

)
ȳL

∣∣∣∣|I |+ |J | = p and |K |+ |L| = q

such that
(
βJγL

)⌊
Γ

= 1
〉

(1)

(where we shorten, e.g., αI := αi1 . . .αik and xI := xi1 ∧ · · · ∧ xik for a multi-index
I = (i1, . . . , ik) of length |I | = k).

We recall the following result by the second author.

Theorem 3 (Kasuya25) – Let X = Γ \G be a solvmanifold endowed with a G-left-
invariant complex structure J as in Assumption 1 on the previous page. Consider
the differential bi-graded sub-algebra B•,•

Γ
⊂ ∧•,• Γ \G defined in Equation (1). Then the

inclusion B•,•
Γ
⊂ ∧•,• Γ \G induces the cohomology isomorphism

H•,•
∂

(
B•,•
Γ

) �→H•,•
∂

( Γ \G ) .

As regards the Bott-Chern cohomology, define B̄•,•
Γ

:=
{
ω̄ ∈ ∧•,• Γ \G |ω ∈ B•,•Γ

}
and

C•,•
Γ

:= B•,•
Γ

+ B̄•,•
Γ
. (2)

The authors proved the following result.

Theorem 4 (Angella and Kasuya26) – Let Γ \G be a solvmanifold endowed with a
G-left-invariant complex structure J as in Assumption 1 on the previous page. Consider
C•,•
Γ

as in Equation (2). Then the inclusion C•,•
Γ
⊂ ∧•,• Γ \G induces the isomorphisms

H•,•
∂

(
C•,•
Γ

) �→H•,•
∂

( Γ \G ) and H•,•BC (C•,•
Γ

)
�→H•,•BC ( Γ \G ) .

24Kasuya, 2013a, “Minimal models, formality, and hard Lefschetz properties of solvmanifolds with
local systems”, Lemma 2.2.

25Ibid., Corollary 4.2.
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Another class of “cohomologically-computable” solvmanifolds is given by holo-
morphically parallelizable solvmanifolds, namely, compact quotients of connected
simply-connected complex solvable Lie groups by co-compact discrete subgroups27.

Let G be a connected simply-connected complex solvable Lie group admitting a
lattice Γ , and denote by 2n the real dimension of G. Denote the Lie algebra naturally
associated to G by g.

Denote by g+ (respectively, g−) the Lie algebra of the G-left-invariant holomor-
phic (respectively, anti-holomorphic) vector fields on G. As a (real) Lie algebra, we
have an isomorphism g+ � g− by means of the complex conjugation.

Let N be the nilradical of G. We can take a connected simply-connected complex
nilpotent subgroup C ⊆ G such that G = C ·N28. Since C is nilpotent, the map

C 3 c 7→ (Adc)s ∈ Aut(g+)

is a homomorphism, where (Adc)s is the semi-simple part of the Jordan decomposi-
tion of Adc. We have a basis {X1, . . . ,Xn} of g+ such that, for c ∈ C,

(Adc)s = diag(α1(c), . . . ,αn(c))

for some characters α1, . . . ,αn of C. By G = C ·N , we have G/N = C/C ∩N and
regard α1, . . . ,αn as characters of G. Let {x1, . . . ,xn} be the basis of g∗+ which is dual
to {X1, . . . ,Xn}.

Let B•
Γ

be the sub-complex of
(
∧0,• Γ \G , ∂

)
defined as

B•Γ =
〈
ᾱI
αI
x̄I

∣∣∣∣∣∣ I ⊆ {1, . . . ,n} such that
(
ᾱI
αI

)⌊
Γ

= 1
〉

(3)

(where we shorten, e.g., αI := αi1 · · · · ·αik and xI := xi1 ∧ · · · ∧ xik for a multi-index
I = (i1, . . . , ik) of length |I | = k).

The second author proved the following result.

Theorem 5 (Kasuya29) – Let G be a connected simply-connected complex solvable
Lie group admitting a lattice Γ . Consider the finite-dimensional sub-complex B•

Γ
⊂(

∧0,• Γ \G , ∂
)

defined in Equation (3). Then the inclusion B•
Γ
↪→∧0,• Γ \G induces the

cohomology isomorphism

H•
(
B•Γ ,∂

) �→H0,•
∂

( Γ \G ).

26Angella and Kasuya, 2017, “Bott-Chern cohomology of solvmanifolds”, Theorem 2.16.
27Wang, 1954, “Complex parallisable manifolds”;

see also Nakamura, 1975, “Complex parallelisable manifolds and their small deformations”.
28See, e.g., Dekimpe, 2000, “Semi-simple splittings for solvable Lie groups and polynomial struc-

tures”, Proposition 3.3.
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As regards Bott-Chern cohomology, define

B̄•Γ :=
〈
αI
ᾱI
xI

∣∣∣∣∣∣ I ⊆ {1, . . . ,n} such that
(
αI
ᾱI

)⌊
Γ

= 1
〉
,

and

C•1,•2
Γ

:= ∧•1g∗+ ⊗B
•2
Γ

+ B̄•1
Γ
⊗∧•2g∗−. (4)

The authors proved the following result.

Theorem 6 (Angella and Kasuya30) – Let G be a connected simply-connected com-
plex solvable Lie group admitting a lattice Γ . Consider the finite-dimensional sub-double-
complex C•,•

Γ
⊂ ∧•,• Γ \G defined in Equation (4). Then the inclusion C•,•

Γ
↪→∧•,• Γ \G

induces the cohomology isomorphism

H•,•BC
(
C•,•
Γ

) �→H•,•BC ( Γ \G ).

Therefore, by Theorems 1 and 2 on p. 76 and on p. 77, we get the following
result, for which we provide explicit applications in the following.

Corollary 2 – Let X be either a solvmanifold of splitting-type or a holomorphically par-
allelizable solvmanifold. Then the Dolbeault cohomology and the Bott-Chern cohomology
both of X and of some suitable small deformations of X are computable by means of a
finite-dimensional sub-double-complex of (∧•,•X,∂,∂).

We note that small deformations of a holomorphically parallelizable solvmani-
folds does not necessarily remain holomorphically parallelizable. This was firstly
proved by Nakamura31, providing explicit examples on the Iwasawa manifold.
Rollenske studied conditions for which a small deformation of a holomorphically
parallelizable nilmanifold is still holomorphically parallelizable32, proving that
non-tori holomorphically parallelizable nilmanifolds admit non-holomorphically
parallelizable small deformations33. We prove that the same holds true for holo-
morphically parallelizable solvmanifolds.

Theorem 7 – Let X = Γ \G be a holomorphically parallelizable solvmanifold which is
not a torus. Then there exists a non-holomorphically parallelizable small deformation of
Γ \G .

29Kasuya, 2014a, “de Rham and Dolbeault cohomology of solvmanifolds with local systems”, Corol-
lary 6.2 and its proof.

30Angella and Kasuya, 2017, “Bott-Chern cohomology of solvmanifolds”, Theorem 2.24.
31Nakamura, 1975, “Complex parallelisable manifolds and their small deformations”, pp. 86, 96.
32Rollenske, 2011b, “The Kuranishi space of complex parallelisable nilmanifolds”, Theorem 5.1.
33Ibid., Corollary 5.2.
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Proof. By Rollenske (2011b, Corollary 5.2), we can assume that Γ \G is not a nilman-
ifold. Take a connected simply-connected complex nilpotent subgroup C ⊂ G such
that G = C ·N , where N is the nilradical of G. We can take a 1-dimensional complex
Lie subgroup A � C with A ⊂ C and a 1-codimensional complex Lie subgroup G′

with N ⊂ G′ such that we have decomposition G = AnG′ . Take a basis {x1, . . . ,xn} of
g∗+ which diagonalizes the semi-simple part of the C-action (where g+ denotes the
Lie algebra of G-left-invariant holomorphic vector fields on G). With respect to the
above decomposition, we can take x1 = dz for a coordinate z of the 1-dimensional
complex Lie subgroup A, and x2 = ea2 zx′2 for a non-trivial character ea2 z of A and
a holomorphic form x′j on G′, by trigonalizing the A-action. Then the Dolbeault
cohomology of Γ \G is computed by means of

C•,•0 := ∧•g∗+ ⊗B•Γ
where

B•Γ :=
〈
ᾱI
αI
x̄I

∣∣∣∣∣∣ I ⊆ {1, . . . ,n} such that
(
ᾱI
αI

)⌊
Γ

= 1
〉
,

(and where we shorten, e.g., αI := αi1 · · · · ·αik and xI := xi1 ∧· · ·∧xik for a multi-index
I = (i1, . . . , ik) of length |I | = k).

We consider the family {Jt}t of deformations given by

t
∂
∂z
⊗dz̄ ∈H0,1

(
X;T 1,0X

)
.

Then, for any t, we consider the double-complex

D•,•t := ∧•g∗+(t)⊗B•Γ (t)

so that

∧•g∗+(t) = ∧•〈dz − t dz̄,x2, . . . ,xn〉

and

B•Γ (t) = ∧〈dz̄ − t̄ dz〉 ⊗
〈
ᾱI
αI
x̄′I

∣∣∣∣∣∣ I ⊆ {2, . . . ,n} such that
(
ᾱI
αI

)
bΓ = 1

〉
,

and the Jt-Hermitian metrics

gt := (dz − t dz̄)� (dz̄ − t̄ dz) +
n∑
j=2

xj � x̄j .

We can apply Theorem 1 on p. 76.
Now we have

∂t (ea2 zx′2) =
a2 t (dz̄ − t̄ dz)

1− |t|2
ea2 zx′2.
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Hence we have, for t , 0,

H1,0
∂t

( Γ \G ) = ker ∂tb∧1g∗+(t) , ∧1g∗+(t).

By this, for t , 0, we have dim
C
H1,0
∂t

( Γ \G ) < dim
C
G and hence ( Γ \G ,Jt) is not

holomorphically parallelizable. �

4 Example: deformations of the Nakamura manifold

Consider the Lie group G = Cnφ C
2 where

φ(z) =
(
ez 0
0 e−z

)
.

Then there exists a lattice Γ = (aZ+ 2πZ)n Γ ′′ where Γ ′′ is a lattice in C
2. The solv-

manifold X := Γ \G is called (holomorphically parallelizable) Nakamura manifold34.
In order to compute the Dolbeault, respectively Bott-Chern cohomologies of

the Nakamura manifold, consider the sub-double-complexes B•,•
Γ

and C•,•
Γ

given in
Tables 1 and 2 on p. 90 and on p. 9135. (For the sake of simplicity, we shorten, e.g.,
dz23̄ := dz2 ∧dz̄3, where z1 is the holomorphic coordinate on C and {z2, z3} is the set
of holomorphic coordinates on C

2.)
Then, by Kasuya (2014a, Corollary 6.2) and by Angella and Kasuya (2017, Theo-

rem 2.24), the inclusions B•,•
Γ
⊂ ∧•,•(X) and C•,•

Γ
⊂ ∧•,•(X) induce isomorphisms

H•,•
∂

(B•,•
Γ

) �H•,•
∂

(X) and H•,•BC (C•,•
Γ

) �H•,•BC (X)

We consider deformations {Jt}t∈B over a ball B ⊂C given by

(C1) t ∂
∂z1
⊗dz̄1 ∈H0,1

(
X;T 1,0X

)
, or

(C2) t ∂
∂z1
⊗ ez1 dz̄3 ∈H0,1

(
X;T 1,0X

)
.

As for deformations in case (C1), we can compute the Dolbeault and Bott-Chern
cohomologies by applying Theorems 1 and 2 on p. 76 and on p. 77 to the complexes
B•,•
Γ

(t) and C•,•
Γ

(t) in Tables 5 and 6 on p. 94 and on p. 95, respectively, and by
considering the Jt-Hermitian metrics gt := φ1,0

1 (t)�φ0,1
1 (t)+φ1,0

2 (t)�ϕ0,1
2 (t)+φ1,0

3 (t)�
ϕ0,1

3 (t); the generators of the complexes are defined starting from the forms in

34Nakamura, 1975, “Complex parallelisable manifolds and their small deformations”.
35See Angella and Kasuya, 2017, “Bott-Chern cohomology of solvmanifolds”;

Kasuya, 2013a, “Minimal models, formality, and hard Lefschetz properties of solvmanifolds with
local systems”.
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Table 3 on p. 92, and we summarize the results of the computations of the Dolbeault
and Bott-Chern cohomologies in Tables 7 and 8 on p. 96 and on p. 97, respectively.

As for deformations in case (C2) on the preceding page, we can compute the
Dolbeault cohomology by applying Theorem 1 on p. 76 to the complex B•,•

Γ
(t)

in Table 5 on p. 94, and by considering the Jt-Hermitian metrics gt := φ1,0
1 (t) �

φ0,1
1 (t) +φ1,0

2 (t)�ϕ0,1
2 (t) +φ1,0

3 (t)�ϕ0,1
3 (t); the generators of the complex are defined

starting from the forms in Table 4 on p. 93, and we summarize the results of the
computation of the Dolbeault cohomology in Table 9 on p. 98. (As regards the Bott-
Chern cohomology for deformations in case (C2) on the preceding page, the vector
space C•,•

Γ
(t) does not provide a sub-double-complex for t , 0, and, by modifying it

in order to be closed for both ∂t and ∂t , and ∗̄gt , as required in Theorem 2 on p. 77,
it seems that the finite-dimensionality is no more guaranteed.)

Remark 1 – Hasegawa (2010, Theorem 4) showed that deformations in case (C2)
on the preceding page are not left-invariant. Hence our method is effective for
computing the Dolbeault cohomology of non-left-invariant complex structures.

(As a matter of notations, we shorten, e.g., φ1,0
1 (t)∧φ0,1

12 (t) := φ1,0
1 (t)∧φ0,1

1 (t)∧φ0,1
2 (t).)

Straightforwardly (e.g., from Table 10 on p. 99 and by Angella and Tomassini
(2013, Theorem B)), we get the following result.36

Proposition 1 – Consider the holomorphically parallelizable Nakamura manifold (X,J0),
and its small deformations {Jt}t∈B as in case (C1) or case (C2) on the preceding page.
Then

1. the deformations (X,Jt) as in case (C1) satisfy the ∂∂-Lemma.

2. the deformations (X,Jt) as in case (C2) satisfy the E1-degeneration of the Hodge
and Frölicher spectral sequences, but do not satisfy the ∂∂-Lemma.

5 Example: Sawai and Yamada generalized manifolds

In this section, we study the cohomology of the generalized examples introduced
and studied by Sawai and Yamada37 in order to generalize Benson and Gordon
manifold38.

Following Sawai and Yamada (2005), let n be a complex nilpotent Lie algebra.
We assume that

n = C〈Y1, . . . ,Y` ,Y`+1, . . . ,Ym〉

36See Kasuya, 2014b, “Hodge symmetry and decomposition on non-Kähler solvmanifolds”, for other
examples of non-Kähler solvmanifolds satisfying the ∂∂-Lemma.

37Sawai and Yamada, 2005, “Lattices on Benson-Gordon type solvable Lie groups”.
38Benson and Gordon, 1990, “Kähler structures on compact solvmanifolds”.
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so that [n,n] = C〈Y`+1, . . . ,Ym〉 and [Yi ,Yj ] = Ckij Yk for some Ckij ∈Z, varying i, j,k ∈
{1, . . . ,m}. Define

ñ := C〈Y1,1, . . . ,Y1,` ,Y1,`+1,Y1,m〉 ⊕C〈Y2,1, . . . ,Y2,` ,Y2,`+1,Y2,m〉

where C〈Y1,1, . . . ,Y1,` ,Y1,`+1, . . . ,Y1,m〉 �C〈Y2,1, . . . ,Y2,` ,Y2,`+1, . . . ,Y2,m〉 � n. Consider
the semi-direct product g := C〈X〉n ñ given by

[X,Y1,j ] := kj Y1,j , [X,Y2,j ] := −kj Y2,j

where
{
kj
}
j
⊂N \ {0} is such that the Jacobi identity holds.

Let G = C n Ñ be the connected simply-connected complex Lie group corre-
sponding to g. Then we have

G =
{(
z,

(
w1,1
w2,1

)
, . . . ,

(
w1,m
w2,m

))
: z,w1,j ,w2,j ∈C

}
with the product(

z,

(
w1,1
w2,1

)
, . . . ,

(
w1,m
w2,m

))
·
(
z′ ,

(
w′1,1
w′2,1

)
, . . . ,

(
w′1,m
w′2,m

))
=

(
z+ z′ ,

(
f1,1(z,w1,1, . . . ,w1,m,w

′
1,1, . . . ,w

′
1,m)

f2,1(z,w2,1, . . . ,w2,m,w
′
2,1, . . . ,w

′
2,m)

)
, . . . ,(

f1,m(z,w1,1, . . . ,w1,m,w
′
1,1, . . . ,w

′
1,m)

f2,m(z,w2,1, . . . ,w2,m,w
′
2,1, . . . ,w

′
2,m)

))
,

for certain functions f1,1, . . . , f1,m, f2,1, . . . , f2,m39.
Take a unimodular matrix B ∈ SL(2,Z) with distinct positive eigenvalues λ and

λ−1, and set a := lnλ. Consider

Γ :=
{(
as+ 2π

√
−1 t,

(
w1,1 +λw2,1
w1,1 +λ−1w2,1

)
, . . . ,

(
w1,m +λw2,m
w1,m +λ−1w2,m

))
: s, t ∈Z,w1,j ,w2,j ∈Z+

√
−1Z

}
.

Then, as proved by Sawai and Yamada (2005, Theorem 2.1), Γ is a lattice in G. Hence
we have Γ = (aZ+ 2π

√
−1Z)n Γ ′′ such that Γ ′′ is a lattice in Ñ .

Let
{
y1,1, . . . , y1,` , y1,`+1, . . . , y1,m, y2,1, . . . , y2,` , y2,`+1, . . . , y2,m

}
be the dual basis of

the space
(
ñ1,0

)∗
of the left-invariant (1,0)-forms on Ñ . Then, by the assumption, we

39See Sawai and Yamada, 2005, “Lattices on Benson-Gordon type solvable Lie groups”, Section 2.
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have dy1,j = dy2,j = 0 for 1 ≤ j ≤ `. The space
(
g1,0

)∗
of the left-invariant (1,0)-forms

on G is given by(
g1,0

)∗
= C

〈
dz,e−k1zy1,1, . . . ,e

−kmzy1,m,e
k1zy2,1, . . . ,e

kmzy2,m

〉
.

Consider

B•,•
Γ

:= ∧•,•C
〈
dz,e−k1zy1,1, . . . ,e

−kmzy1,m,e
k1zy2,1, . . . ,e

kmzy2,m

〉
⊗C

〈
dz̄,e−k1zȳ1,1, . . . ,e

−kmzȳ1,m,e
k1zȳ2,1, . . . ,e

kmzȳ2,m

〉
.

Then we have

H•,•
∂

(B•,•
Γ

) �H•,•
∂

( Γ \G ).

We consider deformations {Jt}t∈B over a ball B ⊂C given by:

t
∂
∂z
⊗ ek1zȳ2,1 ∈H0,1( Γ \G ;T 1,0 Γ \G ).

To compute the Dolbeault cohomology of ( Γ \G ,Jt), consider the forms defined
in Table 11 on p. 100.

More precisely, by applying Theorem 1 on p. 76 to the double-complex

B•,•
Γ

(t) = ∧•,•C
〈
φ1,0

0 (t),φ1,0
1,1(t), . . . ,φ1,0

1,m(t),φ1,0
2,1(t), . . . ,φ1,0

2,m(t)
〉

⊗ C

〈
φ0,1

0 (t),φ0,1
1,1(t), . . . ,φ0,1

1,m(t),φ0,1
2,1(t), . . . ,φ0,1

2,m(t)
〉

(5)

and to the Jt-Hermitian metric

gt := φ1,0
0 (t)�φ0,1

0 (t) +
m∑
j=1

φ1,0
1,j (t)�ϕ0,1

1,j (t) +
m∑
j=1

φ1,0
2,j (t)�ϕ0,1

2,j (t),

since (B•,•
Γ

(t),∂t) is a sub-complex of (∧•,•( Γ \G ),∂t) and ∗̄t(B
•,•
Γ

(t)) ⊆ B2m+1−•,2m+1−•
Γ

(t),
then we have

H•,•
∂t

(B•,•
Γ

(t)) �H•,•
∂t

( Γ \G ).

By simple computations we have the following result.

Proposition 2 – Consider the Sawai and Yamada generalized manifold X = Γ \G of
complex dimension 2m + 1, and its small deformations {Jt}t∈B⊂C induced by t ∂∂z ⊗
ek1zȳ2,1 ∈H0,1(X;T 1,0X). Then

dimH1,0
∂t

(X) = 0 and dimH2m+1,0
∂t

(X) = 0.
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Remark 2 – In Console, Fino, and Kasuya (2016) and Kasuya (2013a, 2014a), struc-
tures of holomorphic fibre bundles over complex tori with nilmanifold-fibres play
a very important role for computing the Dolbeault cohomology of certain solv-
manifolds. But, by Proposition 2 on the previous page, such deformed complex
solvmanifolds are not holomorphic fibre bundles over complex tori. Hence they
provide new examples of “Dolbeault-cohomologically-computable” complex solv-
manifolds.

6 Closedness and openness under holomorphic
deformation

We recall that a property P concerning complex manifolds is called open under
holomorphic deformations if, whenever it holds for a compact complex manifold X,
it holds also for any small deformations of X. It is called (Zariski-)closed (simply,
closed) if, for any family {Xt}t∈∆ of compact complex manifolds such that P holds
for any t ∈ ∆ \ {0} in the punctured-disk, then P holds also for X0.

It is known that the ∂∂-Lemma is open under holomorphic deformations40.
Angella and Kasuya (2017, Theorem 2.20) proved that the ∂∂-Lemma is not strongly-
closed under holomorphic deformations, namely, there exists a family {Xt}t∈∆ of
compact complex manifolds and a sequence {tk}k∈N ⊂ ∆ converging to 0 ∈ ∆ in the
Euclidean topology of ∆ such that Xtk satisfies the ∂∂-Lemma and X0 does not; more
precisely, in Angella and Kasuya (2017, Example 2.17), X0 is the completely-solvable
Nakamura manifold.

We prove now that the ∂∂-Lemma is also non-(Zariski-)closed. Indeed, consider
the holomorphically parallelizable Nakamura manifold Γ \G and its small deforma-
tions as in Section 4 on p. 84. While Γ \G does not satisfy the E1-degeneration of the
Hodge and Frölicher spectral sequences, deformations as in cases (C1) and (C2) on
p. 84 do. While Γ \G does not satisfy the ∂∂-Lemma, deformations as in case (C1)
on p. 84 do. Hence we get the following result.

Corollary 3 – The properties of E1-degeneration of the Hodge and Frölicher spectral
sequences and the ∂∂-Lemma are not closed under holomorphic deformations.

The non-closedness of the property of E1-degeneration of the Hodge and Frölicher
spectral sequences was firstly proven by Eastwood and Singer41, by considering
twistor spaces.

40See, e.g. Voisin, 2002, Hodge Theory and Complex Algebraic Geometry I, Proposition 9.21;
or Wu, 2006, “On the geometry of superstrings with torsion”, Theorem 5.12;
or Tomasiello, 2008, “Reformulating supersymmetry with a generalized Dolbeault operator”, § B;
or Angella and Tomassini, 2013, “On the ∂∂-lemma and Bott-Chern cohomology”, Corollary 2.7.

41Eastwood and Singer, 1993, “The Fröhlicher spectral sequence on a twistor space”, Theorem 5.4.
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Remark 3 – Note that the small deformations ( Γ \G ,Jt) as in case (C1) on p. 84
of the holomorphically parallelizable Nakamura manifold Γ \G provide examples
of compact complex manifolds that are not in Fujiki class C42 but satisfy the ∂∂-
Lemma. This follows from Chiose (2014, Theorem 2.3). See also Arapura (2004,
Theorem 9), or Angella and Kasuya (2014, Theorem 3.3).

This is in accord with the conjectures that the property of being Moı̌šhezon is
closed under holomorphic deformations43, and that the Fujiki class C is closed
under holomorphic deformations44.

42Fujiki, 1978, “On automorphism groups of compact Kähler manifolds”.
43See Popovici, 2010, “Limits of Moı̆šezon Manifolds under Holomorphic Deformations”.
44Popovici, 2014, “Deformation openness and closedness of various classes of compact complex

manifolds; examples”, standard Conjecture 1.17;
compare also Popovici, 2013, “Deformation limits of projective manifolds: Hodge numbers and

strongly Gauduchon metrics”, Question 1.5.
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B•,•
Γ

(0,0) C〈1〉
(1,0) C〈dz1,e−z1 dz2,ez1 dz3〉
(0,1) C〈dz1̄,e

−z1 dz2̄,e
z1 dz3̄〉

(2,0) C〈e−z1 dz12,ez1 dz13,dz23〉

(1,1) C

〈
dz11̄,e

−z1 dz12̄,e
z1 dz13̄,e

−z1 dz21̄,e
−2z1 dz22̄,dz23̄,e

z1 dz31̄,dz32̄,e
2z1 dz33̄

〉
(0,2) C〈e−z1 dz1̄2̄,e

z1 dz1̄3̄,dz2̄3̄〉
(3,0) C〈dz123〉

(2,1) C

〈
e−z1 dz121̄,e

−2z1 dz122̄,dz123̄,e
z1 dz131̄,dz132̄,e

2z1 dz133̄,dz231̄,e
−z1 dz232̄,e

z1 dz233̄

〉
(1,2) C

〈
dz31̄2̄,dz21̄3̄,dz12̄3̄,e

−z1 dz11̄2̄,e
z1 dz11̄3̄,e

−2z1 dz21̄2̄,e
−z1 dz22̄3̄,e

2z1 dz31̄3̄,e
z1 dz32̄3̄

〉
(0,3) C〈dz1̄2̄3̄〉
(3,1) C〈dz1231̄,e

−z1 dz1232̄,e
z1 dz1233̄〉

(2,2) C

〈
e−2z1 dz121̄2̄,dz121̄3̄,e

−z1 dz122̄3̄,dz131̄2̄,e
2z1 dz131̄3̄,e

z1 dz132̄3̄,e
−z1 dz231̄2̄,e

z1 dz231̄3̄,dz232̄3̄

〉
(1,3) C〈dz11̄2̄3̄,e

−z1 dz21̄2̄3̄,e
z1 dz31̄2̄3̄〉

(3,2) C〈e−z1 dz1231̄2̄,e
z1 dz1231̄3̄,dz1232̄3̄〉

(2,3) C〈e−z1 dz121̄2̄3̄,e
z1 dz131̄2̄3̄,dz231̄2̄3̄〉

(3,3) C〈dz1231̄2̄3̄〉

Table 1 – The double-complex B•,•
Γ

for computing the Dolbeault cohomology of the
holomorphically parallelizable Nakamura manifold Γ \G .
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C•,•
Γ

(0,0) C〈1〉

(1,0) C

〈
dz1,e−z1 dz2,ez1 dz3,e−z̄1 dz2,ez̄1 dz3

〉
(0,1) C

〈
dz1̄,e

−z1 dz2̄,e
z1 dz3̄,e

−z̄1 dz2̄,e
z̄1 dz3̄

〉
(2,0) C

〈
e−z1 dz12,ez1 dz13,dz23,e−z̄1 dz12,ez̄1 dz13

〉
(1,1) C

〈
dz11̄,e

−z1 dz12̄,e
z1 dz13̄,e

−z1 dz21̄,e
−2z1 dz22̄,dz23̄,e

z1 dz31̄,dz32̄,e
2z1 dz33̄,

e−z̄1 dz21̄,e
−z̄1 dz12̄,e

z̄1 dz13̄,e
z̄1 dz31̄,e

−2z̄1 dz22̄,e
2z̄1 dz33̄

〉
(0,2) C

〈
e−z1 dz1̄2̄,e

z1 dz1̄3̄,dz2̄3̄,e
−z̄1 dz1̄2̄,e

z̄1 dz1̄3̄

〉
(3,0) C〈dz123〉

(2,1) C

〈
e−z1 dz121̄,e

−2z1 dz122̄,dz123̄,e
z1 dz131̄,dz132̄,e

2z1 dz133̄,dz231̄,e
−z1 dz232̄,e

z1 dz233̄,

e−z̄1 dz121̄,e
z̄1 dz131̄,e

−2z̄1 dz122̄,e
−z̄1 dz232̄,e

2z̄1 dz133̄,e
z̄1 dz233̄

〉
(1,2) C

〈
e−z̄1 dz11̄2̄,e

−2z̄1 dz21̄2̄,dz31̄2̄,e
z̄1 dz11̄3̄,dz21̄3̄,e

2z̄1 dz31̄3̄,dz12̄3̄,e
−z̄1 dz22̄3̄,e

z̄1 dz32̄3̄,

e−z1 dz11̄2̄,e
z1 dz11̄3̄,e

−2z1 dz21̄2̄,e
−z1 dz22̄3̄,e

2z1 dz31̄3̄,e
z1 dz32̄3̄

〉
(0,3) C〈dz1̄2̄3̄〉

(3,1) C

〈
dz1231̄,e

−z1 dz1232̄,e
z1 dz1233̄,e

−z̄1 dz1232̄,e
z̄1 dz1233̄

〉
(2,2) C

〈
e−2z1 dz121̄2̄,dz121̄3̄,e

−z1 dz122̄3̄,dz131̄2̄,e
2z1 dz131̄3̄,e

z1 dz132̄3̄,e
−z1 dz231̄2̄,e

z1 dz231̄3̄,

dz232̄3̄,e
−2z̄1 dz121̄2̄,e

−z̄1 dz231̄2̄,e
−z̄1 dz122̄3̄,e

z̄1 dz132̄3̄,e
2z̄1 dz131̄3̄,e

z̄1 dz231̄3̄

〉
(1,3) C

〈
dz11̄2̄3̄,e

−z̄1 dz21̄2̄3̄,e
z̄1 dz31̄2̄3̄,e

−z1 dz21̄2̄3̄,e
z1 dz31̄2̄3̄

〉
(3,2) C

〈
e−z1 dz1231̄2̄,e

z1 dz1231̄3̄,dz1232̄3̄,e
−z̄1 dz1231̄2̄,e

z̄1 dz1231̄3̄

〉
(2,3) C

〈
e−z1 dz121̄2̄3̄,e

z1 dz131̄2̄3̄,dz231̄2̄3̄,e
−z̄1 dz121̄2̄3̄,e

z̄1 dz131̄2̄3̄

〉
(3,3) C〈dz1231̄2̄3̄〉

Table 2 – The double-complex C•,•
Γ

for computing the Bott-Chern cohomology of
the holomorphically parallelizable Nakamura manifold Γ \G .
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Cohomologies of deformations of solvmanifolds D. Angella and H. Kasuya

case (C1)
ψ dψ

φ1,0
1 (t) := dz1 − tdz̄1 dφ1,0

1 (t) = 0

φ1,0
2 (t) := e−z1 dz2 dφ1,0

2 (t) = − 1
1−|t|2 φ

1,0
1 (t)∧φ1,0

2 (t) + t
1−|t|2 φ

1,0
2 (t)∧φ0,1

1 (t)

φ1,0
3 (t) := ez1 dz3 dφ1,0

3 (t) = 1
1−|t|2 φ

1,0
1 (t)∧φ1,0

3 (t)− t
1−|t|2 φ

1,0
3 (t)∧φ0,1

1 (t)

ϕ1,0
2 (t) := e−z̄1 dz2 dϕ1,0

2 (t) = − t̄
1−|t|2 φ

1,0
1 (t)∧ϕ1,0

2 (t) + 1
1−|t|2 ϕ

1,0
2 (t)∧φ0,1

1 (t)

ϕ1,0
3 (t) := ez̄1 dz3 dϕ1,0

3 (t) = t̄
1−|t|2 φ

1,0
1 (t)∧ϕ1,0

3 (t)− 1
1−|t|2ϕ

1,0
3 (t)∧φ0,1

1 (t)

φ0,1
1 (t) := dz̄1 − t̄dz1 dφ0,1

1 (t) = 0

φ0,1
2 (t) := e−z1 dz̄2 dφ0,1

2 (t) = − 1
1−|t|2φ

1,0
1 (t)∧φ0,1

2 (t)− t
1−|t|2 φ

0,1
1 (t)∧φ0,1

2 (t)

φ0,1
3 (t) := ez1 dz̄3 dφ0,1

3 (t) = 1
1−|t|2 φ

1,0
1 (t)∧φ0,1

3 (t) + t
1−|t|2 φ

0,1
1 (t)∧φ0,1

3 (t)

ϕ0,1
2 (t) := e−z̄1 dz̄2 dϕ0,1

2 (t) = − t̄
1−|t|2 φ

1,0
1 (t)∧ϕ0,1

2 (t)− 1
1−|t|2 φ

0,1
1 (t)∧ϕ0,1

2 (t)

ϕ0,1
3 (t) := ez̄1 dz̄3 dϕ0,1

3 (t) = t̄
1−|t|2 φ

1,0
1 (t)∧ϕ0,1

3 (t) + 1
1−|t|2 φ

0,1
1 (t)∧ϕ0,1

3 (t)

Table 3 – Definitions for setting the generators of the complexes B•,•
Γ

(t), see Table 5
on p. 94, and C•,•

Γ
(t), see Table 6 on p. 95, for the deformations in case (C1) on p. 84,

which are given by t ∂
∂z1
⊗ dz̄1, of the holomorphically parallelizable Nakamura

manifold Γ \G .
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6. Closedness and openness under holomorphic deformation

case (C2)
ψ dψ

φ1,0
1 (t) := dz1 − tez1 dz̄3 dφ1,0

1 (t) = −tφ1,0
1 (t)∧φ0,1

3 (t)

φ1,0
2 (t) := e−z1 dz2 dφ1,0

2 (t) = −φ1,0
1 (t)∧φ1,0

2 (t) + tφ1,0
2 (t)∧φ0,1

3 (t)

φ1,0
3 (t) := ez1 dz3 dφ1,0

3 (t) = φ1,0
1 (t)∧φ1,0

3 (t)− tφ1,0
3 (t)∧φ0,1

3 (t)

ϕ1,0
2 (t) := e−z̄1 dz2 dϕ1,0

2 (t) = t̄ ϕ1,0
2 (t)∧ϕ1,0

3 (t) +ϕ1,0
2 (t)∧φ0,1

1 (t)

ϕ1,0
3 (t) := ez̄1 dz3 dϕ1,0

3 (t) = −ϕ1,0
3 (t)∧φ0,1

1 (t)

φ0,1
1 (t) := dz̄1 − t̄ez̄1 dz3 dφ0,1

1 (t) = t̄ ϕ1,0
3 (t)∧φ0,1

1 (t)

φ0,1
2 (t) := e−z1 dz̄2 dφ0,1

2 (t) = −φ1,0
1 (t)∧φ0,1

2 (t) + tφ0,1
2 (t)∧φ0,1

3 (t)

φ0,1
3 (t) := ez1 dz̄3 dφ0,1

3 (t) = φ1,0
1 (t)∧φ0,1

3 (t)

ϕ0,1
2 (t) := e−z̄1 dz̄2 dϕ0,1

2 (t) = −t̄ ϕ1,0
3 (t)∧ϕ0,1

2 (t)−φ0,1
1 (t)∧ϕ0,1

2 (t)

ϕ0,1
3 (t) := ez̄1 dz̄3 dϕ0,1

3 (t) = t̄ ϕ1,0
3 (t)∧ϕ0,1

3 (t) +φ0,1
1 (t)∧ϕ0,1

3 (t)

Table 4 – Definitions for setting the generators of the complex B•,•
Γ

(t), see Table 5
on the next page, for the deformations in case (C2) on p. 84, which are given by
t ∂
∂z1
⊗ ez1 dz̄3, of the holomorphically parallelizable Nakamura manifold Γ \G .
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Cohomologies of deformations of solvmanifolds D. Angella and H. Kasuya

B•,•
Γ

(t)

(0,0) C〈1〉

(1,0) C

〈
φ1,0

1 (t),φ1,0
2 (t),φ1,0

3 (t)
〉

(0,1) C

〈
φ0,1

1 (t),φ0,1
2 (t),φ0,1

3 (t)
〉

(2,0) C

〈
φ1,0

12 (t),φ1,0
13 (t),φ1,0

23 (t)
〉

(1,1) C

〈
φ1,0

1 (t)∧φ0,1
1 (t),φ1,0

1 (t)∧φ0,1
2 (t),φ1,0

1 (t)∧φ0,1
3 (t),φ1,0

2 (t)∧φ0,1
1 (t),φ1,0

2 (t)∧φ0,1
2 (t),

φ1,0
2 (t)∧φ0,1

3 (t),φ1,0
3 (t)∧φ0,1

1 (t),φ1,0
3 (t)∧φ0,1

2 (t),φ1,0
3 (t)∧φ0,1

3 (t)
〉

(0,2) C

〈
φ0,1

12 (t),φ0,1
13 (t),φ0,1

23 (t)
〉

(3,0) C

〈
φ1,0

123(t)
〉

(2,1) C

〈
φ1,0

12 (t)∧φ0,1
1 (t),φ1,0

12 (t)∧φ0,1
2 (t),φ1,0

12 (t)∧φ0,1
3 (t),φ1,0

13 (t)∧φ0,1
1 (t),φ1,0

13 (t)∧φ0,1
2 (t),

φ1,0
13 (t)∧φ0,1

3 (t),φ1,0
23 (t)∧φ0,1

1 (t),φ1,0
23 (t)∧φ0,1

2 (t),φ1,0
23 (t)∧φ0,1

3 (t)
〉

(1,2) C

〈
φ1,0

3 (t)∧φ0,1
12 (t),φ1,0

2 (t)∧φ0,1
13 (t),φ1,0

1 (t)∧φ0,1
23 (t),φ1,0

1 (t)∧φ0,1
12 (t),φ1,0

1 (t)∧φ0,1
13 (t),

φ1,0
2 (t)∧φ0,1

12 (t),φ1,0
2 (t)∧φ0,1

23 (t),φ1,0
3 (t)∧φ0,1

13 (t),φ1,0
3 (t)∧φ0,1

23 (t)
〉

(0,3) C

〈
φ0,1

123(t)
〉

(3,1) C

〈
φ1,0

123(t)∧φ0,1
1 (t),φ1,0

123(t)∧φ0,1
2 (t),φ1,0

123(t)∧φ0,1
3 (t)

〉
(2,2) C

〈
φ1,0

12 (t)∧φ0,1
12 (t),φ1,0

12 (t)∧φ0,1
13 (t),φ1,0

12 (t)∧φ0,1
23 (t),φ1,0

13 (t)∧φ0,1
12 (t),φ1,0

13 (t)∧φ0,1
13 (t),

φ1,0
13 (t)∧φ0,1

23 (t),φ1,0
23 (t)∧φ0,1

12 (t),φ1,0
23 (t)∧φ0,1

13 (t),φ1,0
23 (t)∧φ0,1

23 (t)
〉

(1,3) C

〈
φ1,0

1 (t)∧φ0,1
123(t),φ1,0

2 (t)∧φ0,1
123(t),φ1,0

3 (t)∧φ0,1
123(t)

〉
(3,2) C

〈
φ1,0

123(t)∧φ0,1
12 (t),φ1,0

123(t)∧φ0,1
13 (t),φ1,0

123(t)∧φ0,1
23 (t)

〉
(2,3) C

〈
φ1,0

12 (t)∧φ0,1
123(t),φ1,0

13 (t)∧φ0,1
123(t),φ1,0

23 (t)∧φ0,1
123(t)

〉
(3,3) C

〈
φ1,0

123(t)∧φ0,1
123(t)

〉
Table 5 – The double-complex B•,•

Γ
(t) for computing the Dolbeault cohomology

of the small deformations in cases (C1) and (C2) on p. 84 of the holomorphically
parallelizable Nakamura manifold Γ \G .
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6. Closedness and openness under holomorphic deformation

C•,•
Γ

(t)

(0,0) C〈1〉

(1,0) C

〈
φ1,0

1 (t),φ1,0
2 (t),φ1,0

3 (t),ϕ1,0
2 (t),ϕ1,0

3 (t)
〉

(0,1) C

〈
φ0,1

1 (t),φ0,1
2 (t),φ0,1

3 (t),ϕ0,1
2 (t),ϕ0,1

3 (t)
〉

(2,0) C

〈
φ1,0

12 (t),φ1,0
13 (t),φ1,0

23 (t),φ1,0
1 (t)∧ϕ1,0

2 (t),φ1,0
1 (t)∧ϕ1,0

3 (t)
〉

(1,1) C

〈
φ1,0

1 (t)∧φ0,1
1 (t),φ1,0

1 (t)∧φ0,1
2 (t),φ1,0

1 (t)∧φ0,1
3 (t),φ1,0

2 (t)∧φ0,1
1 (t),φ1,0

2 (t)∧φ0,1
2 (t),

φ1,0
2 (t)∧φ0,1

3 (t),φ1,0
3 (t)∧φ0,1

1 (t),φ1,0
3 (t)∧φ0,1

2 (t),φ1,0
3 (t)∧φ0,1

3 (t),φ1,0
1 (t)∧ϕ0,1

2 (t),

φ1,0
1 (t)∧ϕ0,1

3 (t),ϕ1,0
2 (t)∧φ0,1

1 (t),ϕ1,0
2 (t)∧ϕ0,1

2 (t),ϕ1,0
3 (t)∧φ0,1

1 (t),ϕ1,0
3 (t)∧ϕ0,1

3 (t)
〉

(0,2) C

〈
φ0,1

12 (t),φ0,1
13 (t),φ0,1

23 (t),φ0,1
1 (t)∧ϕ0,1

2 (t),φ0,1
1 (t)∧ϕ0,1

3 (t)
〉

(3,0) C

〈
φ1,0

123(t)
〉

(2,1) C

〈
φ1,0

12 (t)∧φ0,1
1 (t),φ1,0

12 (t)∧φ0,1
2 (t),φ1,0

12 (t)∧φ0,1
3 (t),φ1,0

13 (t)∧φ0,1
1 (t),φ1,0

13 (t)∧φ0,1
2 (t),φ1,0

13 (t)∧φ0,1
3 (t),

φ1,0
23 (t)∧φ0,1

1 (t),φ1,0
23 (t)∧φ0,1

2 (t),φ1,0
23 (t)∧φ0,1

3 (t),φ1,0
1 (t)∧ϕ1,0

2 (t)∧φ0,1
1 (t),φ1,0

1 (t)∧ϕ1,0
2 (t)∧ϕ0,1

2 (t),

φ1,0
1 (t)∧ϕ1,0

3 (t)∧φ0,1
1 (t),φ1,0

1 (t)∧ϕ1,0
3 (t)∧ϕ0,1

3 (t),φ1,0
23 (t)∧ϕ0,1

2 (t),φ1,0
23 (t)∧ϕ0,1

3 (t)
〉

(1,2) C

〈
φ1,0

1 (t)∧φ0,1
1 (t)∧ϕ0,1

2 (t),ϕ1,0
2 (t)∧φ0,1

1 (t)∧ϕ0,1
2 (t),φ1,0

3 (t)∧φ0,1
12 (t),φ1,0

1 (t)∧φ0,1
1 (t)∧ϕ0,1

3 (t),

φ1,0
2 (t)∧φ0,1

13 (t),ϕ1,0
3 (t)∧φ0,1

1 (t)∧ϕ0,1
3 (t),φ1,0

1 (t)∧φ0,1
23 (t),ϕ1,0

2 (t)∧ϕ0,1
23 (t),ϕ1,0

3 (t)∧ϕ0,1
23 (t),

φ1,0
1 (t)∧φ0,1

12 (t),φ1,0
2 (t)∧φ0,1

12 (t),φ1,0
1 (t)∧φ0,1

13 (t),φ1,0
3 (t)∧φ0,1

13 (t),φ1,0
2 (t)∧φ0,1

23 (t),φ1,0
3 (t)∧φ0,1

23 (t)
〉

(0,3) C

〈
φ0,1

123(t)
〉

(3,1) C

〈
φ1,0

123(t)∧φ0,1
1 (t),φ1,0

123(t)∧φ0,1
2 (t),φ1,0

123(t)∧φ0,1
3 (t),φ1,0

123(t)∧ϕ0,1
2 (t),φ1,0

123(t)∧ϕ0,1
3 (t)

〉
(2,2) C

〈
φ1,0

12 (t)∧φ0,1
12 (t),φ1,0

12 (t)∧φ0,1
13 (t),φ1,0

12 (t)∧φ0,1
23 (t),φ1,0

13 (t)∧φ0,1
12 (t),φ1,0

13 (t)∧φ0,1
13 (t),

φ1,0
13 (t)∧φ0,1

23 (t),φ1,0
23 (t)∧φ0,1

12 (t),φ1,0
23 (t)∧φ0,1

13 (t),φ1,0
23 (t)∧φ0,1

23 (t),φ1,0
1 (t)∧ϕ1,0

2 (t)∧φ0,1
1 (t)∧ϕ0,1

2 (t),

φ1,0
1 (t)∧ϕ1,0

2 (t)∧φ0,1
23 (t),φ1,0

1 (t)∧ϕ1,0
3 (t)∧φ0,1

1 (t)∧ϕ0,1
3 (t),φ1,0

1 (t)∧ϕ1,0
3 (t)∧φ0,1

23 (t),

φ1,0
23 (t)∧φ0,1

1 (t)∧ϕ0,1
2 (t),φ1,0

23 (t)∧φ0,1
1 (t)∧ϕ0,1

3 (t)
〉

(1,3) C

〈
φ1,0

1 (t)∧φ0,1
123(t),φ1,0

2 (t)∧φ0,1
123(t),φ1,0

3 (t)∧φ0,1
123(t),ϕ1,0

2 (t)∧φ0,1
123(t),ϕ1,0

3 (t)∧φ0,1
123(t)

〉
(3,2) C

〈
φ1,0

123(t)∧φ0,1
12 (t),φ1,0

123(t)∧φ0,1
13 (t),φ1,0

123(t)∧φ0,1
23 (t),φ1,0

123(t)∧φ0,1
1 (t)∧ϕ0,1

2 (t),φ1,0
123(t)∧φ0,1

1 (t)∧ϕ0,1
3 (t)

〉
(2,3) C

〈
φ1,0

12 (t)∧φ0,1
123(t),φ1,0

13 (t)∧φ0,1
123(t),φ1,0

23 (t)∧φ0,1
123(t),φ1,0

1 (t)∧ϕ1,0
2 (t)∧φ0,1

123(t),φ1,0
1 (t)∧ϕ1,0

3 (t)∧φ0,1
123(t)

〉
(3,3) C

〈
φ1,0

123(t)∧φ0,1
123(t)

〉
Table 6 – The double-complex C•,•

Γ
(t) for computing the Bott-Chern cohomology of

the small deformations in case (C1) on p. 84 of the holomorphically parallelizable
Nakamura manifold Γ \G .
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Cohomologies of deformations of solvmanifolds D. Angella and H. Kasuya

case (C1) H•,•
∂t

(X)

(0,0) C〈1〉

(1,0) C

〈
φ1,0

1 (t)
〉

(0,1) C

〈
φ0,1

1 (t)
〉

(2,0) C

〈
φ1,0

23 (t)
〉

(1,1) C

〈
φ1,0

1 (t)∧φ0,1
1 (t),φ1,0

2 (t)∧φ0,1
3 (t),φ1,0

3 (t)∧φ0,1
2 (t)

〉
(0,2) C

〈
φ0,1

23 (t)
〉

(3,0) C

〈
φ1,0

123(t)
〉

(2,1) C

〈
φ1,0

12 (t)∧φ0,1
3 (t),φ1,0

13 (t)∧φ0,1
2 (t),φ1,0

23 (t)∧φ0,1
1 (t)

〉
(1,2) C

〈
φ1,0

3 (t)∧φ0,1
12 (t),φ1,0

2 (t)∧φ0,1
13 (t),φ1,0

1 (t)∧φ0,1
23 (t)

〉
(0,3) C

〈
φ0,1

123(t)
〉

(3,1) C

〈
φ1,0

123(t)∧φ0,1
1

〉
(2,2) C

〈
φ1,0

12 (t)∧φ0,1
13 (t),φ1,0

13 (t)∧φ0,1
12 (t),φ1,0

23 (t)∧φ0,1
23 (t)

〉
(1,3) C

〈
φ1,0

1 (t)∧φ0,1
123(t)

〉
(3,2) C

〈
φ1,0

123(t)∧φ0,1
23 (t)

〉
(2,3) C

〈
φ1,0

23 (t)∧φ0,1
123(t)

〉
(3,3) C

〈
φ1,0

123(t)∧φ0,1
123(t)

〉
Table 7 – The harmonic representatives of the Dolbeault cohomology of the small
deformations in case (C1) on p. 84, which are given by t ∂

∂z1
⊗dz̄1, of the holomor-

phically parallelizable Nakamura manifold, with respect to the Hermitian metric
gt := φ1,0

1 (t)�φ0,1
1 (t) +φ1,0

2 (t)�ϕ0,1
2 (t) +φ1,0

3 (t)�ϕ0,1
3 (t).
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6. Closedness and openness under holomorphic deformation

case (C1) H•,•BCJt
(X)

(0,0) C〈1〉

(1,0) C

〈
φ1,0

1 (t)
〉

(0,1) C

〈
φ0,1

1 (t)
〉

(2,0) C

〈
φ1,0

23 (t)
〉

(1,1) C

〈
φ1,0

1 (t)∧φ0,1
1 (t),φ1,0

2 (t)∧φ0,1
3 (t),φ1,0

3 (t)∧φ0,1
2 (t)

〉
(0,2) C

〈
φ0,1

23 (t)
〉

(3,0) C

〈
φ1,0

123(t)
〉

(2,1) C

〈
φ1,0

12 (t)∧φ0,1
3 (t),φ1,0

13 (t)∧φ0,1
2 (t),φ1,0

23 (t)∧φ0,1
1 (t)

〉
(1,2) C

〈
φ1,0

3 (t)∧φ0,1
12 (t),φ1,0

2 (t)∧φ0,1
13 (t),φ1,0

1 (t)∧φ0,1
23 (t)

〉
(0,3) C

〈
φ0,1

123(t)
〉

(3,1) C

〈
φ1,0

123(t)∧φ0,1
1 (t)

〉
(2,2) C

〈
φ1,0

12 (t)∧φ0,1
13 (t),φ1,0

13 (t)∧φ0,1
12 (t),φ1,0

23 (t)∧φ0,1
23 (t)

〉
(1,3) C

〈
φ1,0

1 (t)∧φ0,1
123(t)

〉
(3,2) C

〈
φ1,0

123(t)∧φ0,1
23 (t)

〉
(2,3) C

〈
φ1,0

23 (t)∧φ0,1
123(t)

〉
(3,3) C

〈
φ1,0

123(t)∧φ0,1
123(t)

〉
Table 8 – The harmonic representatives of the Bott-Chern cohomology of the small
deformations in case (C1) on p. 84, which are given by t ∂

∂z1
⊗dz̄1, of the holomor-

phically parallelizable Nakamura manifold, with respect to the Hermitian metric
gt := φ1,0

1 (t)�φ0,1
1 (t) +φ1,0

2 (t)�ϕ0,1
2 (t) +φ1,0

3 (t)�ϕ0,1
3 (t).
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case (C2) H•,•
∂t

(X)

(0,0) C〈1〉
(1,0) 0

(0,1) C

〈
φ0,1

1 (t),φ0,1
3 (t)

〉
(2,0) C

〈
φ1,0

12 (t),φ1,0
23 (t)

〉
(1,1) C

〈
φ1,0

1 (t)∧φ0,1
2 (t),φ1,0

3 (t)∧φ0,1
2 (t)

〉
(0,2) C

〈
φ0,1

13 (t)
〉

(3,0) 0

(2,1) C

〈
φ1,0

12 (t)∧φ0,1
1 (t),φ1,0

12 (t)∧φ0,1
3 (t),φ1,0

23 (t)∧φ0,1
1 (t),φ1,0

23 (t)∧φ0,1
3 (t)

〉
(1,2) C

〈
φ1,0

3 (t)∧φ0,1
12 (t),φ1,0

1 (t)∧φ0,1
23 (t),φ1,0

1 (t)∧φ0,1
12 (t),φ1,0

3 (t)∧φ0,1
23 (t)

〉
(0,3) 0

(3,1) C

〈
φ1,0

123(t)∧φ0,1
2

〉
(2,2) C

〈
φ1,0

12 (t)∧φ0,1
13 (t),φ1,0

23 (t)∧φ0,1
13 (t)

〉
(1,3) C

〈
φ1,0

1 (t)∧φ0,1
123(t),φ1,0

3 (t)∧φ0,1
123(t)

〉
(3,2) C

〈
φ1,0

123(t)∧φ0,1
12 (t),φ1,0

123(t)∧φ0,1
23 (t)

〉
(2,3) 0

(3,3) C

〈
φ1,0

123(t)∧φ0,1
123(t)

〉
Table 9 – The harmonic representatives of the Dolbeault cohomology of the small
deformations in case (C2) on p. 84, which are given by t ∂

∂z1
⊗ez1 dz̄3, of the holomor-

phically parallelizable Nakamura manifold, with respect to the Hermitian metric
gt := φ1,0

1 (t)�φ0,1
1 (t) +φ1,0

2 (t)�ϕ0,1
2 (t) +φ1,0

3 (t)�ϕ0,1
3 (t).
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6. Closedness and openness under holomorphic deformation

dim
C
H•,•
]

Nakamura case (C1) case (C2)
dR ∂ BC dR ∂ BC dR ∂

(0,0) 1 1 1 1 1 1 1 1

(1,0)
2

3 1
2

1 1
2

0

(0,1) 3 1 1 1 2

(2,0)
5

3 3
5

1 1
5

2

(1,1) 9 7 3 3 2

(0,2) 3 3 1 1 1

(3,0)

8

1 1

8

1 1

8

0

(2,1) 9 9 3 3 4

(1,2) 9 9 3 3 4

(0,3) 1 1 1 1 0

(3,1)
5

3 3
5

1 1
5

1

(2,2) 9 11 3 3 2

(1,3) 3 3 1 1 2

(3,2)
2

3 5
2

1 1
2

2

(2,3) 3 5 1 1 0

(3,3) 1 1 1 1 1 1 1 1

Table 10 – Summary of the dimensions of the cohomologies of the holomorphically
parallelizable Nakamura manifold X (Angella and Kasuya 2017, Example 2.25) and
of its small deformations in cases (C1) and (C2) on p. 84, given, respectively, by
t ∂
∂z1
⊗dz̄1 and by t ∂

∂z1
⊗ ez1 dz̄3.
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ψ dψ

φ1,0
0 (t) := dz − tek1zȳ2,1 dφ1,0

0 (t) = −t k1φ
1,0
0 (t)∧φ0,1

2,1(t)

φ1,0
1,j (t) := e−kjzy1,j dφ1,0

1,j (t) = −kjφ
1,0
0 (t)∧φ1,0

1,j (t) + t kjφ
1,0
1,j (t)∧φ0,1

2,1(t) + e−kjzdy1,j

φ1,0
2,j (t) := ekjzy2,j dφ1,0

2,j (t) = kjφ
1,0
0 (t)∧φ1,0

2,j (t)− t kjφ
1,0
2,j (t)∧φ0,1

2,1(t) + ekjzdy2,j

ϕ1,0
1,j (t) := e−kj z̄y1,j dϕ1,0

1,j (t) = −kjφ
0,1
0 (t)∧ϕ1,0

1,j (t) + t̄ kjϕ
1,0
1,j (t)∧ϕ1,0

2,1(t) + e−kj z̄dy1,j

ϕ1,0
2,j (t) := ekj z̄y2,j dϕ1,0

2,j (t) = kjφ
0,1
0 (t)∧ϕ1,0

2,j (t)− t̄ kjϕ
1,0
2,j (t)∧ϕ1,0

2,1(t) + ekj z̄dy2,j

φ0,1
0 (t) := dz̄ − t̄ek1z̄y2,1 dφ0,1

0 (t) = −t k1φ
0,1
0 (t)∧ϕ1,0

2,1(t)

φ0,1
1,j (t) := e−kjzȳ1,j dφ0,1

1,j (t) = −kjφ
1,0
0 (t)∧φ0,1

1,j (t) + t kjφ
0,1
1,j (t)∧φ0,1

2,1(t) + e−kjzdȳ1,j

φ0,1
2,j (t) := ekjzȳ2,j dφ0,1

2,j (t) = kjφ
1,0
0 (t)∧φ0,1

2,j (t)− t kjφ
0,1
2,j (t)∧φ0,1

2,1(t) + ekjzdȳ2,j

ϕ0,1
1,j (t) := e−kj z̄ȳ1,j dϕ0,1

1,j (t) = −kjφ
0,1
0 (t)∧ϕ0,1

1,j (t) + t̄ kjϕ
0,1
1,j (t)∧ϕ1,0

2,1(t) + e−kj z̄dȳ1,j

ϕ0,1
2,j (t) := ekj z̄ȳ2,j dϕ0,1

2,j (t) = kjφ
0,1
0 (t)∧ϕ0,1

2,j (t)− t̄ kjϕ
0,1
2,j (t)∧φ1,0

2,1(t) + ekj z̄dȳ2,j

Table 11 – Definitions for setting the generators of the complex B•,•
Γ

(t), see Equa-
tion (5) on p. 87, for the deformations induced by t ∂∂z ⊗ e

k1zȳ2,1, of the Sawai and
Yamada generalized manifold Γ \G .
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