

Limited operators and differentiability

Mohammed Bachir¹

Received: December 2, 2016/Accepted: May 4, 2017/Online: May 6, 2017

Abstract

We characterize the limited operators by differentiability of convex continuous functions. Given Banach spaces *Y* and *X* and a linear continuous operator $T: Y \to X$, we prove that *T* is a limited operator if and only if, for every convex continuous function $f : X \to \mathbb{R}$ and every point $y \in Y$, $f \circ T$ is Fréchet differentiable at $y \in Y$ whenever f is Gâteaux differentiable at $T(y) \in X$.

Keywords: Limited operators, Gâteaux differentiability, Fréchet differentiability, convex functions.

msc: 47B07, 49J50, 58C20.

1 Introduction

A subset *A* of a Banach space *X* is called limited, if every weak^{*} null sequence $(p_n)_n$ in *X* ∗ converges uniformly on *A*, that is,

 $\lim_{n\to+\infty} \sup_{x\in A}$ $\sup_{x \in A} |\langle p_n, x \rangle| = 0.$

We know that every relatively compact subset of *X* is limited, but the converse is false in general. A bounded linear operator $T: Y \rightarrow X$ between Banach spaces *Y* and *X* is called limited, if *T* takes the closed unit ball *B^Y* of *Y* to a limited subset of *X*. It is easy to see that $T: Y \rightarrow X$ is limited if and only if, the adjoint operator $T^*: X^* \to Y^*$ takes weak* null sequence to norm null sequence. For useful properties of limited sets and limited operators we refer to the papers Andrews [\(1979\)](#page-10-0), Bourgain and Diestel [\(1984\)](#page-10-1), Carrión, H. Galindo, and Lourenco [\(2006\)](#page-10-2), and Schlumprecht [\(1987\)](#page-10-3).

The goal of this paper, is to prove the result mentioned in the abstract (Theorem [1](#page-1-0) on the next page), which gives a characterization of limited operators in terms of differentiability of convex continuous functions.

There exists a class of Banach spaces $(E, ||.||_E)$ such that the canonical embedding $i: E \to E^{**}$ is a limited operator. This class contains in particular the space c_0 and

¹Laboratoire SAMM 4543, Université Paris 1 Panthéon-Sorbonne, Centre P.M.F. 90 rue Tolbiac 75634 Paris cedex 13

any closed subspace F of c_0 (this class is also stable by product and quotient^{[2](#page-1-1)}). As consequence of Theorem [1,](#page-1-0) we prove in Corollary [1](#page-4-0) on p. [65](#page-4-0) that when *i* is a limited operator, then for each convex lower semicontinuous function *g* : *E* ∗∗ → R ∪{+∞}, if *g* is Gâteaux differentiable at some point $a \in E$ which is in the interior of its domain, then the restriction of *g* to *E* is Fréchet differentiable at *a*. If moreover we assume that *g* is convex and weak[∗] lower semicontinuous function, then using a result of Godefroy[3](#page-1-2) , we also get that the Gâteaux and Fréchet differentiability of *g* coincides at each point of $E \cap \overline{\int}(\mathrm{dom}(g))$, where $\int(\mathrm{dom}(g))$ denotes the norm interior of dom (g) .

This note is organized as follows. In Section [2,](#page-1-3) we give the proof of the main result Theorem [1](#page-1-0) and some consequences. In Section [3](#page-6-0) on p. [67](#page-6-0) we give a canonical construction in infinite dimensional of convex Lipschitz continuous functions *f* for which there exists a point at which *f* is Gâteaux differentiable but not Fréchet differentiable.

2 Limited operators and differentiability

Recall that the domain of a function $f: X \to \mathbb{R} \cup \{+\infty\}$, is the set

dom(*f*):= { $x \in X/f(x) < +\infty$ }.

For a function *f* with $dom(f) \neq \emptyset$, the Fenchel transform of *f* is defined on the dual space for all $p \in X^*$ by

$$
f^*(p) := \sup_{x \in X} \{ \langle p, x \rangle - f(x) \}.
$$

The second transform $(f^*)^*$ is defined on the bidual X^{**} by the same formula. We denote by *f*^{**}, the restriction of (*f*^{*})^{*} to *X*, where *X* is identified to a subspace of *X*^{**} by the canonical embedding. Recall that the Fenchel theorem state that $f = f^{**}$ if and only if *f* is convex lower semicontinuous on *X*.

Definition 1 – We say that a function *g* on *X* [∗] has a norm-strong minimum (resp. weak^{*}-strong minimum) at $p \in X^*$ if $g(p) = \inf_{q \in X^*} g(q)$ and $(p_n)_n \subset X^*$ norm converges (resp. weak^{*} converges) to *p* whenever $g(p_n) \rightarrow g(p)$.

A norm-strong minimum and weak[∗] -strong minimum are in particular unique.

Theorem 1 – Let *Y* and *X* be two Banach spaces and $T: Y \rightarrow X$ be a linear continuous *operator. Then, the following assertions are equivalent:*

²For more information, see [Carrión, H. Galindo, and Lourenco, 2006,](#page-10-2) "Banach spaces whose bounded sets are bounding in the bidual".

³[Godefroy, 1981,](#page-10-4) "Prolongement de fonctions convexes définies sur un espace de Banach *E* au bidual *E* ∗∗".

2. Limited operators and differentiability

- (A_1) *The operator T is limited.*
- (A₂) *For every convex lower semicontinuous function* $f : X \to \mathbb{R} \cup \{+\infty\}$ *and every* $a \in Y$ *such that T* (*a*) *belongs to the interior of* dom(*f*)*, we have that f* ◦ *T is Fréchet differentiable at a* ∈ *Y with Fréchet-derivative T* ∗ (*Q*) ∈ *Y* ∗ *, whenever f is Gâteaux differentiable at* $T(a) \in X$ *with Gâteaux-derivative* $Q \in X^*$ *.*
- (A_3) *for every convex Lipschitz continuous function* $f : X \to \mathbb{R}$ *, we have that* $f \circ T$ *is Fréchet differentiable at* 0 *whenever f is Gâteaux differentiable at* 0*.*

Proof.

 $(A_1) \Longrightarrow (A_2)$ $(A_1) \Longrightarrow (A_2)$ $(A_1) \Longrightarrow (A_2)$. We can assume that $T \neq 0$. Since f is convex lower semicontinuous and $T(a)$ is in the interior of dom(*f*), there exists $r_a > 0$ such that *f* is Lipschitz continuous on the closed ball $B_X(T(a), r_a)$. It is well known that there exists a convex Lipschitz continuous function \tilde{f}_a on *X* such that $\tilde{f}_a = f$ on $B_X(T(a), r_a)^4$ $B_X(T(a), r_a)^4$. It follows that $\tilde{f}_a \circ T = f \circ T$ on $B_Y(a, \frac{r_a}{\|T\|})$, since $T(B_X(a, \frac{r_a}{\|T\|}))$ is a subset of $B_X(T(a), r_a)$. Replacing *f* by $\frac{1}{L_a} \tilde{f}_a$ (where L_a denotes the Lipschitz constant of \tilde{f}_a), we can assume without loss of generality that f is convex 1-Lipschitz continuous on *X*. It follows that $dom(f^*) \subset B_{X^*}$ (the closed unit ball of *X*^{*}).

Claim 1 – *Suppose that* f *is Gâteaux differentiable at* $T(a) \in X$ *with Gâteaux-derivative* $Q \in X^*$, then the function $q \mapsto f^*(q) - \langle q, T(a) \rangle$ has a weak^{*}-strong minimum on B_{X^*} *at Q.*

Proof (of the claim). See Asplund and Rockafellar [\(1969,](#page-10-5) Corollary 1).

Proof (return to Theorem [1](#page-1-0) on the preceding page).

 $(A_1) \longrightarrow (A_2)$ $(A_1) \longrightarrow (A_2)$ $(A_1) \longrightarrow (A_2)$ (continue). Now, suppose by contradiction that $T^*(Q)$ is not the Fréchet derivative of *f* \circ *T* at *a*. There exist ε > 0, $t_n \to 0^+$ and $h_n \in Y$, $||h_n||_Y = 1$ such that for all $n \in \mathbb{N}^*$,

$$
f \circ T(a + t_n h_n) - f \circ T(a) - \langle T^*(Q), t_n h_n \rangle > \varepsilon t_n. \tag{1}
$$

Let $r_n = t_n/n$ for all $n \in \mathbb{N}^*$ and choose $p_n \in B_{X^*}$ such that

$$
f^{*}(p_{n}) - \langle p_{n}, T(a + t_{n}h_{n}) \rangle < \inf_{p \in B_{X^{*}}} \{ f^{*}(p) - \langle p, T(a + t_{n}h_{n}) \rangle \} + r_{n}.
$$
 (2)

From [\(2\)](#page-2-3) we get

$$
f^*(p_n) - \langle p_n, T(a) \rangle < \inf_{p \in B_{X^*}} \{ f^*(p) - \langle p, T(a) \rangle \} + 2t_n ||T|| + r_n.
$$

⁴See e.g. [Phelps, 1993,](#page-10-6) *Convex Functions, Monotone Operators and Differentiability*, Lemma 2.31.

This implies that $(p_n)_n$ is a minimizing sequence for the function $q \mapsto f^*(q)$ – $\langle q, T(a) \rangle$ on B_{X^*} . Using the claim, we get that the sequence $(p_n)_n$ weak^{*} converges to *Q*. Now, since *T* is a limited operator, we have

$$
||T^*(p_n - Q)||_{Y^*} \to 0. \tag{3}
$$

On the other hand, since

$$
f(T(a + t_n h_n)) = f^{**}(T(a + t_n h_n)) := - \inf_{p \in B_{X^*}} \{f^*(p) - \langle p, T(a + t_n h_n) \rangle\},\
$$

using [\(2\)](#page-2-3) we obtain that, for all $y \in Y$

$$
f \circ T(a + t_n h_n) - \langle p_n, T(a + t_n h_n) \rangle < -f^*(p_n) + r_n
$$
\n
$$
\leq f \circ T(y) - \langle p_n, T(y) \rangle + r_n.
$$

Replacing *y* by *a* in the above inequality we obtain

$$
f \circ T(a + t_n h_n) - \langle p_n, T(t_n h_n) \rangle \le f \circ T(a) + r_n. \tag{4}
$$

Combining [\(1\)](#page-2-4) and [\(4\)](#page-3-0) we get, for all $n \in \mathbb{N}^*$,

$$
\varepsilon < \langle p_n, T(h_n) \rangle - \langle T^*(Q), h_n \rangle + \frac{r_n}{t_n}
$$
\n
$$
= \langle T^*(p_n), h_n \rangle - \langle T^*(Q), h_n \rangle + \frac{1}{n}
$$
\n
$$
\leq ||T^*(p_n - Q)||_{Y^*} + \frac{1}{n}
$$

which is a contradiction with [\(3\)](#page-3-1). Hence, *f* ◦ *T* is Fréchet differentiable at *a* with Fréchet derivative *T* ∗ (*Q*).

- $(A_2) \Longrightarrow (A_3)$ $(A_2) \Longrightarrow (A_3)$ $(A_2) \Longrightarrow (A_3)$ is trivial.
- $(A_3) \Longrightarrow (A_1)$ $(A_3) \Longrightarrow (A_1)$ $(A_3) \Longrightarrow (A_1)$. Let $(p_n)_n$ be a weak^{*} null sequence in X^* . We want to prove that $||T^*(p_n)||_{Y^*}$ → 0. Let $f : X \to \mathbb{R}$ be the function defined for all $x \in X$ by

$$
f(x) = \sup_{n \in \mathbb{N}^*} \left\{ p_n(x) - \frac{1}{n}, 0 \right\}.
$$

Since $(p_n)_n$ is weak^{*} null sequence in X^* , the convex function f is Lipschitz continuous and Gâteaux differentiable at 0 with Gâteaux derivative $\nabla f(0) = 0^5$ $\nabla f(0) = 0^5$. By assumption *f* ◦*T* is Fréchet differentiable at 0 with Fréchet derivative equal to 0. It follows from Asplund and Rockafellar [\(1969,](#page-10-5) Corollary 2) that (*f* ◦ *T*) ∗ has a norm-strong minimum at 0. Now, we prove that (*T* ∗ (*pn*))*ⁿ* is a minimizing

2. Limited operators and differentiability

sequence for $(f \circ T)^*$, which will implies that $||T^*(p_n)||_{Y^*} \to 0$. Indeed, since $f(0) = 0$, we have

$$
0 = -f(0) \le \sup_{y \in Y} \{ -f \circ T(y) \} := (f \circ T)^{*}(0)
$$

$$
\le \sup_{x \in X} \{ -f(x) \}
$$

$$
\le 0.
$$

It follows that $(f \circ T)^*(0) = 0$. Since $(f \circ T)^*$ has a minimum at 0, we obtain

$$
0 = (f \circ T)^*(0) \le (f \circ T)^*(T^*(p_n)) := \sup_{y \in Y} \{ \langle T^*(p_n), y \rangle - f \circ T(y) \}
$$

$$
= \sup_{y \in Y} \{ \langle p_n, T(y) \rangle - f(T(y)) \}
$$

$$
\le \sup_{x \in X} \{ \langle p_n, x \rangle - f(x) \}
$$

$$
= f^*(p_n)
$$

$$
\le \frac{1}{n}.
$$

It follows that $(f \circ T)^*(T^*(p_n)) \to 0 = (f \circ T)^*(0) = \min_{Y^*} (f \circ T)^*$. In other words, $(T^*(p_n))_n$ is a minimizing sequence for $(f \circ T)^*$. Since $(f \circ T)^*$ has a norm-strong minimum at 0, we obtain that $||T^*(p_n)||_{Y^*} \to 0$, which implies that *T* is a limited operator. □

Corollary 1 – *Suppose that the canonical embedding* $i : E \to E^{**}$ *is a limited operator (we use the identification i*(*x*) = *x). Let g* : *E* ∗∗ → R ∪{+∞} *be a convex lower semicontinuous function. Then, the restriction g*|*^E is Fréchet differentiable on E at any point of E* ∩ R (dom(*g*)) *at which g is Gâteaux differentiable. If moreover, we assume that g is convex weak*[∗] *lower semicontinuous function. Then, Gâteaux and Fréchet differentiability* c oincides for g at each point of $E \cap \widehat{\mathfrak{l}}(\mathrm{dom} (g))$, where $\widehat{\mathfrak{l}}(\mathrm{dom} (g))$ denotes the norm interior $of dom(g)$.

Proof. Suppose that *g* is Gâteaux differentiable at a point $x \in E \cap \int (dom(g))$. Since *i* is a limited operator, it follows from Theorem [1](#page-1-0) on p. [62,](#page-1-0) that the restriction $g_{|E}$ is Fréchet differentiable on *E* at *x*. If moreover, we assume that *g* is convex weak[∗] lower semicontinuous function, then by using Godefroy [\(1981,](#page-10-4) Proposition 5), we get that the Fréchet differentiability of $g_{|E}$ is preserved at points in $E \subset E^{**}$ by any weak^{*} lower semicontinuous extension of *g*|*^E* to *E* ∗∗, in particular *g* is Fréchet differentiable at x .

⁵See [Borwein, Montesinos, and Vanderwer](#page-10-7)ff, [2006,](#page-10-7) "Boundedness, Differentiability and Extensions of Convex Functions", Proposition 2.1.

We will call a Banach space *X* a Gelfand-Phillips space, if all limited sets in *X* are relatively norm-compact^{[6](#page-5-0)}. In this case, for every Banach space *Y* , if $T:Y\to X$ is a limited operator then it is a compact operator. We give the following characterization of compact operators by differentiability of locally Lipschitz function.

Corollary 2 – Let *Y* be a Banach space and *X* be a Gelfand-Phillips space. Let $T: Y \rightarrow X$ *be a linear continuous operator. Then, T is a compact operator if and only if, for every locally Lipschitz function* $f : X \to \mathbb{R}$ *and every point* $y \in Y$, $f \circ T$ *is Fréchet differentiable at* $v \in Y$ *whenever* f *is Gâteaux differentiable at* $T(v) \in X$ *.*

Proof. Suppose that, for every locally Lipschitz function $f: X \to \mathbb{R}$ and every point *y* ∈ *Y*, *f* ◦ *T* is Fréchet differentiable at *y* ∈ *Y* whenever *f* is Gâteaux differentiable at $T(v) \in X$. It follows from Theorem [1](#page-1-0) on p. [62](#page-1-0) that *T* is a limited operator. Since *X* is a Gelfand-Phillips space, then *T* is a compact operator. The converse follows from Bachir and Lancien [\(2003,](#page-10-8) Lemma 3.1).

We obtain the Corollary [3](#page-5-1) below, by combining Proposition [1](#page-5-2) and a delicate result due to Zajicek 7 7 , which says that in a separable Banach space, the set of the points where a convex continuous function is not Gâteaux differentiable, can be covered by countably many *d.c* (that is, delta-convex) *hypersurface*. Recall that in a separable Banach space *Y* , each set *A* which can be covered by countably many d.c hypersurfaces is *σ*-lower porous, also *σ*-directionally porous; in particular it is both Aronszajn (equivalent to Gauss) null and Γ-null. For details about this notions of small sets we refer to Zajicek [\(2005\)](#page-10-9) and references therein. Note that a limited set in a separable Banach space is relatively compact $^{\bf 8}.$ $^{\bf 8}.$ $^{\bf 8}.$

Proposition 1 – Let *Y* and *X* be Banach spaces and $T: Y \rightarrow X$ be a limited operator *with a dense range.* Let $f: X \to \mathbb{R}$ be a convex continuous function. Then $f \circ T$ is *Gâteaux differentiable at* $a \in Y$ *if and only if,* $f \circ T$ *is Fréchet differentiable at* $a \in Y$.

Proof. Suppose that $f \circ T$ is Gâteaux differentiable at $a \in Y$. It follows that f is Gâteaux differentiable at $T(a)$ with respect to the direction $T(Y)$ which is dense in *X*. It follows (from a classical fact on locally Lipschitz continuous functions) that *f* is Gâteaux differentiable at $T(a)$ on *X*. So by Theorem [1](#page-1-0) on p. [62,](#page-1-0) $f \circ T$ is Fréchet differentiable at *a* ∈ *Y*. The converse is always true. $□$

Corollary 3 – Let *Y* be a separable Banach space, *X* be a Banach space and $T: Y \rightarrow X$ *be a compact operator with a dense range. Let* $f : X \to \mathbb{R}$ *, be a convex and continuous function. Then, the set of all points at which f* ◦ *T is not Fréchet differentiable can be covered by countably many d.c hypersurfaces.*

Proof. The proof is a consequence of Zajicek [\(1979,](#page-10-10) Theorem 2) and Proposition [1.](#page-5-2) \Box

⁶See [Schlumprecht, 1987,](#page-10-3) *Limited sets in Banach spaces*.

 7 See [Zajicek, 1979,](#page-10-10) "On the differentiation of convex functions in finite and infinite dimensional spaces", Theorem 2.

⁸See [Bourgain and Diestel, 1984,](#page-10-1) "Limited operators and strict cosingularity".

3 Canonical construction of PGNF-function

A real valued function f on a Banach space will be called a $\mathtt{p}_\mathtt{GNF}\text{-}\mathsf{function}^\mathbf{9}$ $\mathtt{p}_\mathtt{GNF}\text{-}\mathsf{function}^\mathbf{9}$ $\mathtt{p}_\mathtt{GNF}\text{-}\mathsf{function}^\mathbf{9}$ if there exists a point at which *f* is Gâteaux but not Fréchet differentiable. A JN-sequence^{[10](#page-6-2)} is a sequence $(p_n)_n$ in a dual space Y^* that is weak^{*} null and $\inf_n ||p_n|| > 0$. There exist different way to build a pgnF-function in infinite dimentional Banach spaces. We can find examples of such constructions in Borwein and Fabian [\(1993\)](#page-10-11). We present below a different method for constructing a pgnF-function on a Banach space *X* canonically from a jn-sequence.

We need the following probably known lemma. Since we do not know a specific reference to this lemma, we give its proof, for completeness. If *B* is a subset of a dual Banach space X^* , we denote by $\overline{cov}^{w^*}(B)$ the weak^{*} closed convex hull of *B*.

Lemma 1 – *Let X be a Banach space and K be a subset of X* ∗ *.*

- 1. Suppose that K is norm separable, then there exists a sequence $(x_n)_n$ in the unit *sphere S_X of X which separate the points of K i.e.* for all $p, p' \in K$ *, if* $\langle p, x_n \rangle =$ $\langle p', x_n \rangle$ for all $n \in \mathbb{N}$, then $p = p'$. Consequently, if K is a weak^{*} compact and norm *separable set of X* ∗ *, then the weak*[∗] *topology of X* ∗ *restricted to K is metrizable.*
- 2. Let $(p_n)_n$ be a weak^{*} null sequence in X^* . Then, the set $\overline{co}^{w^*}\{p_n : n \in \mathbb{N}\}\)$ is convex *weak*[∗] *compact and norm separable.*

Proof.

1. Since *K* is norm separable, then $K - K := \{a - b/(a, b) \in K \times K\}$ is also norm separable and so there exists a sequence $(q_n)_n$ of $K - K$ which is dense in $K - K$. According to the Bishop-Phelps theorem^{[11](#page-0-0)}, the set

 $D = {r \in X^* \mid r \text{ attains its supremum on the sphere } S_X}$

is norm-dense in the dual X^* . Thus, for each $n \in \mathbb{N}^*$, there exists $r_n \in D$ such that $||q_n - r_n|| < \frac{1}{n}$. For each $n \in \mathbb{N}^*$, let $x_n \in S_X$ be such that $||r_n|| = \langle r_n, x_n \rangle$. We claim that the sequence $(x_n)_n$ separate the points of *K*. Indeed, let $q \in K - K$ and suppose that $\langle q, x_n \rangle = 0$, for all $n \in \mathbb{N}^*$. There exists a subsequence $(q_{n_k})_k \subset$ *K*—*K* such that $||q_{n_k} - q|| < \frac{1}{k}$ for all $k \in \mathbb{N}^*$ and so we have $||r_{n_k} - q|| < \frac{1}{n_k} + \frac{1}{k}$. It follows that

$$
||r_{n_k}|| = \langle r_{n_k}, x_{n_k} \rangle
$$

⁹See [Borwein and Fabian, 1993,](#page-10-11) "On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability".

¹⁰Due to Josefson-Nissenzweig theorem, see [Diestel, 1984,](#page-10-12) *Sequences and series in Banach spaces*, Chapter XII.

$$
= \langle r_{n_k}, x_{n_k} \rangle - \langle q, x_{n_k} \rangle
$$

\n
$$
\leq ||r_{n_k} - q||
$$

\n
$$
< \frac{1}{n_k} + \frac{1}{k}.
$$

Hence, for all $k \in \mathbb{N}^*$, $||q|| \le ||q - r_{n_k}|| + ||r_{n_k}|| < 2(\frac{1}{n_k} + \frac{1}{k})$, which implies that $q = 0$, and so that $(x_n)_n$ separate the points of *K*. Now, if we assume that *K* is separable and weak^{*} compact subset of X^* , it is then classical to see that the weak[∗] topology on *K* is induced from the metric

$$
d(p, p') := \sum_{n=0}^{+\infty} 2^{-n} \frac{|\langle p-p', x_n \rangle|}{1 + |\langle p-p', x_n \rangle|}.
$$

Hence the weak[∗] topology on *K* is metrizable.

2. Let $(p_n)_n$ be a weak^{*} null sequence in X^* and set $K = \overline{co}^{w^*} \{p_n : n \in \mathbb{N}\}\)$. Clearly K is a convex and weak^{*} compact subset of *X*^{*}. According to Haydon's theorem^{[12](#page-0-0)} the weak[∗] compact convex set *K* is the norm closed convex hull of its extreme points whenever $ex(K)$ (the set of extreme points of K) is norm separable. By the Milman theorem^{[13](#page-7-0)} ex(*K*) $\subset \overline{\{p_n : n \in \mathbb{N}\}}^{w^*} = \{p_n : n \in \mathbb{N}\} \cup \{0\}$ so that ex(*K*) is norm separable and, hence, by Haydon's theorem, *K* itself is weak[∗] compact, convex, and norm separable.

We also need the following proposition.

Proposition 2 – *Let X be a Banach space and K be a weak*[∗] *compact subset of X* ∗ *containing* 0*. Suppose that there exists a sequence* $(x_n)_n \subset S_X$ *that separates the points of K* (in this case *K* is weak^{*} metrizable). Then, the function $h: X^* \to \mathbb{R}$ defined by:

$$
h(x^*) = \left(\sum_{k\geq 0} 2^{-k} (\langle x^*, x_k \rangle)^2\right)^{\frac{1}{2}}, \ \forall x^* \in X^*,
$$

has the following properties:

- *1. h is a continuous seminorm on X* ∗
- *2. h is weak*[∗] *lower semicontinuous and sequentially weak*[∗] *continuous,*

¹¹See [Bishop and Phelps, 1961,](#page-10-13) "A proof that every Banach space is subreflexive".

¹²See [Haydon, 1976,](#page-10-14) "An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson", Theorem 3.3.

¹³See [Phelps, 1966,](#page-10-15) *Lectures on Chaquet's theorem*, p. 9.

3. Canonical construction of pgNF-function

3. the restriction $h_{|K}$ *of h to K has a weak*^{*}-strong minimum at 0, with $\min_{K} h_{|K} =$ $h(0) = 0.$

Proof. It is clear that *h* is a seminorm, and since $h(x^*) \le ||x^*||$ for all $x^* \in X^*$, it is also continuous. Since *h* is the supremum of a sequence of weak[∗] continuous functions, it is weak* lower semicontinuous. On the other hand, the series $\sum_{k\geq 0} 2^{-k} (\langle x^*, x_k \rangle)^2$ uniformly converges on bounded sets of X^* and the maps $\hat{x}_k : x^* \mapsto \overline{\langle x^*, x_k \rangle}$ are weak^{*} continuous for all $k \in \mathbb{N}$, it follows that *h* is sequentially weak^{*} continuous. If *p* ∈ *K* and *h*(*p*) = 0, then $\langle p, x_k \rangle$ = 0 for all *k* ∈ **N** which implies that *p* = 0, since the sequence (*x^k*)*^k* separate the points of *K*. Hence, the restriction of *h* to *K* has a unique minimum at 0. This minimum is necessarily a weak[∗] -strong minimum since *K* is weak[∗] metrizable, this follows from a general fact which say that for every lower semicontinuous function on a compact metric space (K, d) , a unique minimum is necessarily a strong minimum for the metric *d* in question.

Canonical construction of pgnF-function. Let *X* be an infinite dimensional Ba- $\lim_{n \to \infty} \frac{1}{n}$ construction of $\lim_{n \to \infty} \frac{1}{n}$ constraint $\lim_{n \to \infty} \frac{1}{n}$ construction $\lim_{n \to \infty} \frac{1}{n}$. Using Lemma [1](#page-6-3) on p. [67,](#page-6-3) there exists a sequence $(x_n)_n \in S_X$ which separates the points of *K*, and by Proposition [2](#page-7-1) on the preceding page, the function $h: X^* \to \mathbb{R}$ defined by:

$$
h(x^*) = \left(\sum_{k\geq 0} 2^{-k} (\langle x^*, x_k \rangle)^2\right)^{\frac{1}{2}}, \ \forall x^* \in X^*,
$$

is weak[∗] lower semicontinuous and weak[∗] sequentially continuous such that $h_{|K}$ has a weak * -strong minimum at 0.

Since $(p_n)_n$ weak* converges to 0 and *h* is weak* sequentially continuous, then $(p_n)_n$ is a minimizing sequence for $h_{\vert K}$. Since $(p_n)_n$ is a JN-sequence, it follows that 0 is not a norm-strong minimum for h_{IK} . Define the function f by

$$
f(x) = (h + \delta_K)^*(\hat{x}), \ \forall x \in X,
$$

where δ_K denotes the indicator function, which is equal to 0 on *K* and equal to +∞ otherwise and where for each $x \in X$, we denote by $\hat{x} \in X^{**}$ the linear and weak^{*} continuous map $x^* \mapsto \langle x^*, x \rangle$ for all $x^* \in X^*$. Then f is convex Lipschitz continuous, Gâteaux differentiable at 0 (since $h + \delta_K$ has a weak^{*}strong minimum[14](#page-8-0)) but is not Fréchet differentiable at 0 (because 0 is not a norm-strong minimum for $h + \delta_K^{15}$ $h + \delta_K^{15}$ $h + \delta_K^{15}$.

Remark 1 – Let *Y* be a Banach space. Then the following assertions are equivalent.

¹⁴See [Asplund and Rockafellar, 1969,](#page-10-5) "Gradients of convex functions", Corollary 1. ¹⁵See [ibid.,](#page-10-5) Corollary 2.

- (A1) *Y* is infinite dimensional.
- (A2) There exists a convex weak[∗] compact and norm separable subset *K* of *Y* ∗ contaning 0 and a continuous seminorm *h* on *Y* [∗] which is weak[∗] lower semicontinuous and weak[∗] sequentially continuous, such that the restriction *h*|*^K* has a weak[∗] -strong minimum but not norm-strong minimum at 0.
- (A3) There exists a Banach space *X* and a linear continuous non-limited operator $T: Y \rightarrow X$.
- $(A₄)$ There exists on *Y* a convex Lipschitz continuous pgnF-function.

Proof.

- $(A_1) \Longrightarrow (A_2)$ $(A_1) \Longrightarrow (A_2)$ $(A_1) \Longrightarrow (A_2)$. We know from the Josefson-Nissenzweig theorem^{[16](#page-9-2)} that there exists a weak^{*} null sequence $(p_n)_n$ in Y^* such that $\inf_n ||p_n|| > 0$. Set $K =$ \overline{co}^{w^*} { p_n : $n \in \mathbb{N}$ }. By Lemma [1](#page-6-3) on p. [67,](#page-6-3) the set *K* is convex weak* compact and norm separable. On the other hand, from Proposition [2](#page-7-1) on p. [68,](#page-7-1) there exists a continuous seminorm *h* which is weak[∗] lower semicontinuous and weak[∗] sequentially continuous on *Y* ∗ such that the restriction of *h* to *K* has a weak[∗] -strong minimum at 0. It remains to show that 0 is not a norm-strong minimum for $h_{|K}$. Indeed, since $(p_n)_n$ is weak^{*} null and h is weak^{*} sequentially continuous, then $\lim_{n} h(p_n) = h(0) = \min_{K} h$. So $(p_n)_n$ is a minimizing sequence for $h_{\vert K}$ which not norm converges to 0 since $\inf_n ||p_n|| > 0$. Hence, 0 is not a norm-strong minimum for *h*|*K*.
- $(A_2) \implies (A_3)$ $(A_2) \implies (A_3)$ $(A_2) \implies (A_3)$. Since 0 is not a norm-strong minimum for the restriction h_{1K} , there exists a sequence $(p_n)_n$ that minimize *h* on *K* but $||p_n|| \rightarrow 0$. Since $h_{|K}$ has a weak^{*}-strong minimum at 0, it follows that $(p_n)_n$ weak^{*} converges to 0. Hence, $(p_n)_n$ weak^{*} converges to 0 but $||p_n|| \nrightarrow 0$. It follows that the identity operator on *Y* is not limited, so we can take $X = Y$.
- $(A_3) \Longrightarrow (A_4)$ $(A_3) \Longrightarrow (A_4)$ $(A_3) \Longrightarrow (A_4)$. If there exists a Banach space *X* and a non-limited operator $T: Y \rightarrow Y$ *X*, by using Theorem [1](#page-1-0) on p. [62,](#page-1-0) there exists a convex Lipschitz continuous function $f: X \to \mathbb{R}$ and a point $y \in Y$ such that f is Gâteaux differentiable at *T* (*y*) ∈ *X* but *f* ◦ *T* is not Fréchet differentiable at *y*. So *f* ◦ *T* is Gâteaux but not Fréchet differentiable at *y*. Hence, *f* ◦ *T* is a convex Lipschitz continuous pgnf-function on *Y* .

 $(A_4) \Longrightarrow (A_1)$ $(A_4) \Longrightarrow (A_1)$ $(A_4) \Longrightarrow (A_1)$ is well known.

¹⁶See [Diestel, 1984,](#page-10-12) *Sequences and series in Banach spaces*, Chapter XII.

References

- Andrews, K. T. (1979). "Dunford-Pettis sets in the space of Bochner integrable functions". *Math. Ann.*, pp. 35–41 (cit. on p. [61\)](#page-0-0).
- Asplund, E. and R. T. Rockafellar (1969). "Gradients of convex functions". *Trans. Amer. Math. Soc.*, pp. 443–467 (cit. on pp. [63, 64, 69\)](#page-0-0).
- Bachir, M. and G. Lancien (2003). "On the composition of differentiable functions". *Canadian Bull. of Math.*, pp. 481–494 (cit. on p. [66\)](#page-0-0).
- Bishop, E. and R. R. Phelps (1961). "A proof that every Banach space is subreflexive". *Bull. Amer. Math. Soc.*, pp. 97–98 (cit. on p. [68\)](#page-0-0).
- Borwein, J. M. and M. Fabian (1993). "On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability". *Can. J. Math.*, pp. 1121–1134 (cit. on p. [67\)](#page-0-0).
- Borwein, J. M., V. Montesinos, and J. D. Vanderwerff (2006). "Boundedness, Differentiability and Extensions of Convex Functions". *J. Convex Analysis*, pp. 587–602 (cit. on p. [65\)](#page-0-0).
- Bourgain, J. and J. Diestel (1984). "Limited operators and strict cosingularity". *Math. Nachr.*, pp. 55–58 (cit. on pp. [61, 66\)](#page-0-0).
- Carrión, P. H. Galindo, and M. L. Lourenco (2006). "Banach spaces whose bounded sets are bounding in the bidual". *Annales Academiae Scientiarum Fennicae Mathematica*, pp. 61–70 (cit. on pp. [61, 62\)](#page-0-0).
- Diestel, J. (1984). *Sequences and series in Banach spaces*. Graduate texts in Mathematics, Springer Verlag, N.Y., Berlin, Tokyo (cit. on pp. [67, 70\)](#page-0-0).
- Godefroy, G. (1981). "Prolongement de fonctions convexes définies sur un espace de Banach *E* au bidual *E* ∗∗". *C. R. Acad. Sci. Paris*, pp. 371–374 (cit. on pp. [62, 65\)](#page-0-0).
- Haydon, R. (1976). "An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson". *Quart. J. Math. Oxford Ser.*, pp. 379–385 (cit. on p. [68\)](#page-0-0).
- Phelps, R. R. (1966). *Lectures on Chaquet's theorem*. Van Nostrand, Princeton, N. J. (cit. on p. [68\)](#page-0-0).
- Phelps, R. R. (1993). *Convex Functions, Monotone Operators and Differentiability*. Lecture Notes in Mathematics 1364, Springer-Verlag, Berlin (cit. on p. [63\)](#page-0-0).
- Schlumprecht, T. (1987). *Limited sets in Banach spaces*. Dissertation, München (cit. on pp. [61, 66\)](#page-0-0).
- Zajicek, L. (1979). "On the differentiation of convex functions in finite and infinite dimensional spaces". *Czechoslovak Math. J.*, pp. 340–348 (cit. on p. [66\)](#page-0-0).
- Zajicek, L. (2005). "On sigma-porous sets in abstract spaces". *Abstract and Applied Analysis*, pp. 509–534 (cit. on p. [66\)](#page-0-0).

Contents

Contents

