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Abstract

We characterize the limited operators by differentiability of convex continu-
ous functions. Given Banach spaces Y and X and a linear continuous operator
T : Y → X, we prove that T is a limited operator if and only if, for every con-
vex continuous function f : X → R and every point y ∈ Y , f ◦ T is Fréchet
differentiable at y ∈ Y whenever f is Gâteaux differentiable at T (y) ∈ X.

Keywords: Limited operators, Gâteaux differentiability, Fréchet differentiability,
convex functions.
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1 Introduction

A subset A of a Banach space X is called limited, if every weak∗ null sequence (pn)n
in X∗ converges uniformly on A, that is,

lim
n→+∞

sup
x∈A
|〈pn,x〉| = 0.

We know that every relatively compact subset of X is limited, but the converse
is false in general. A bounded linear operator T : Y → X between Banach spaces
Y and X is called limited, if T takes the closed unit ball BY of Y to a limited
subset of X. It is easy to see that T : Y → X is limited if and only if, the adjoint
operator T ∗ : X∗→ Y ∗ takes weak∗ null sequence to norm null sequence. For useful
properties of limited sets and limited operators we refer to the papers Andrews
(1979), Bourgain and Diestel (1984), Carrión, H. Galindo, and Lourenco (2006), and
Schlumprecht (1987).

The goal of this paper, is to prove the result mentioned in the abstract (Theorem 1
on the next page), which gives a characterization of limited operators in terms of
differentiability of convex continuous functions.

There exists a class of Banach spaces (E,‖.‖E) such that the canonical embedding
i : E→ E∗∗ is a limited operator. This class contains in particular the space c0 and

1Laboratoire SAMM 4543, Université Paris 1 Panthéon-Sorbonne, Centre P.M.F. 90 rue Tolbiac 75634
Paris cedex 13
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any closed subspace F of c0 (this class is also stable by product and quotient2). As
consequence of Theorem 1, we prove in Corollary 1 on p. 65 that when i is a limited
operator, then for each convex lower semicontinuous function g : E∗∗→R∪ {+∞},
if g is Gâteaux differentiable at some point a ∈ E which is in the interior of its
domain, then the restriction of g to E is Fréchet differentiable at a. If moreover we
assume that g is convex and weak∗ lower semicontinuous function, then using a
result of Godefroy3, we also get that the Gâteaux and Fréchet differentiability of g
coincides at each point of E∩

∫
(dom(g)), where

∫
(dom(g)) denotes the norm interior

of dom(g).
This note is organized as follows. In Section 2, we give the proof of the main

result Theorem 1 and some consequences. In Section 3 on p. 67 we give a canonical
construction in infinite dimensional of convex Lipschitz continuous functions f
for which there exists a point at which f is Gâteaux differentiable but not Fréchet
differentiable.

2 Limited operators and differentiability

Recall that the domain of a function f : X→R∪ {+∞}, is the set

dom(f ) := {x ∈ X/f (x) < +∞}.

For a function f with dom(f ) , ∅, the Fenchel transform of f is defined on the dual
space for all p ∈ X∗ by

f ∗(p) := sup
x∈X
{〈p,x〉 − f (x)}.

The second transform (f ∗)∗ is defined on the bidual X∗∗ by the same formula. We
denote by f ∗∗, the restriction of (f ∗)∗ to X, where X is identified to a subspace of X∗∗

by the canonical embedding. Recall that the Fenchel theorem state that f = f ∗∗ if
and only if f is convex lower semicontinuous on X.

Definition 1 – We say that a function g on X∗ has a norm-strong minimum (resp.
weak∗-strong minimum) at p ∈ X∗ if g(p) = infq∈X∗ g(q) and (pn)n ⊂ X∗ norm con-
verges (resp. weak∗ converges) to p whenever g(pn)→ g(p).

A norm-strong minimum and weak∗-strong minimum are in particular unique.

Theorem 1 – Let Y and X be two Banach spaces and T : Y → X be a linear continuous
operator. Then, the following assertions are equivalent:

2For more information, see Carrión, H. Galindo, and Lourenco, 2006, “Banach spaces whose bounded
sets are bounding in the bidual”.

3Godefroy, 1981, “Prolongement de fonctions convexes définies sur un espace de Banach E au bidual
E∗∗”.
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(A1) The operator T is limited.

(A2) For every convex lower semicontinuous function f : X→R∪{+∞} and every a ∈ Y
such that T (a) belongs to the interior of dom(f ), we have that f ◦ T is Fréchet
differentiable at a ∈ Y with Fréchet-derivative T ∗(Q) ∈ Y ∗, whenever f is Gâteaux
differentiable at T (a) ∈ X with Gâteaux-derivative Q ∈ X∗.

(A3) for every convex Lipschitz continuous function f : X→ R, we have that f ◦ T is
Fréchet differentiable at 0 whenever f is Gâteaux differentiable at 0.

Proof.

(A1) =⇒ (A2). We can assume that T , 0. Since f is convex lower semicontinuous
and T (a) is in the interior of dom(f ), there exists ra > 0 such that f is Lipschitz
continuous on the closed ball BX(T (a), ra). It is well known that there exists a
convex Lipschitz continuous function f̃a on X such that f̃a = f on BX(T (a), ra)4.
It follows that f̃a ◦ T = f ◦ T on BY (a, ra‖T ‖ ), since T (BX(a, ra‖T ‖ )) is a subset of

BX(T (a), ra). Replacing f by 1
La
f̃a (where La denotes the Lipschitz constant

of f̃a), we can assume without loss of generality that f is convex 1-Lipschitz
continuous on X. It follows that dom(f ∗) ⊂ BX∗ (the closed unit ball of X∗).

Claim 1 – Suppose that f is Gâteaux differentiable at T (a) ∈ X with Gâteaux-derivative
Q ∈ X∗, then the function q 7→ f ∗(q) − 〈q,T (a)〉 has a weak∗-strong minimum on BX∗
at Q.

Proof (of the claim). See Asplund and Rockafellar (1969, Corollary 1). �

Proof (return to Theorem 1 on the preceding page).

(A1) =⇒ (A2) (continue). Now, suppose by contradiction that T ∗(Q) is not the
Fréchet derivative of f ◦T at a. There exist ε > 0, tn→ 0+ and hn ∈ Y , ‖hn‖Y = 1
such that for all n ∈N∗,

f ◦ T (a+ tnhn)− f ◦ T (a)− 〈T ∗(Q), tnhn〉 > εtn. (1)

Let rn = tn/n for all n ∈N∗ and choose pn ∈ BX∗ such that

f ∗(pn)− 〈pn,T (a+ tnhn)〉 < inf
p∈BX∗

{f ∗(p)− 〈p,T (a+ tnhn)〉}+ rn. (2)

From (2) we get

f ∗(pn)− 〈pn,T (a)〉 < inf
p∈BX∗

{f ∗(p)− 〈p,T (a)〉}+ 2tn‖T ‖+ rn.

4See e.g. Phelps, 1993, Convex Functions, Monotone Operators and Differentiability, Lemma 2.31.
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This implies that (pn)n is a minimizing sequence for the function q 7→ f ∗(q)−
〈q,T (a)〉 on BX∗ . Using the claim, we get that the sequence (pn)n weak∗ con-
verges to Q. Now, since T is a limited operator, we have

‖T ∗(pn −Q)‖Y ∗ → 0. (3)

On the other hand, since

f (T (a+ tnhn)) = f ∗∗(T (a+ tnhn)) := − inf
p∈BX∗

{f ∗(p)− 〈p,T (a+ tnhn)〉},

using (2) we obtain that, for all y ∈ Y

f ◦ T (a+ tnhn)− 〈pn,T (a+ tnhn)〉 < −f ∗(pn) + rn
≤ f ◦ T (y)− 〈pn,T (y)〉+ rn.

Replacing y by a in the above inequality we obtain

f ◦ T (a+ tnhn)− 〈pn,T (tnhn)〉 ≤ f ◦ T (a) + rn. (4)

Combining (1) and (4) we get, for all n ∈N∗,

ε < 〈pn,T (hn)〉 − 〈T ∗(Q),hn〉+
rn
tn

= 〈T ∗(pn),hn〉 − 〈T ∗(Q),hn〉+
1
n

≤ ‖T ∗(pn −Q)‖Y ∗ +
1
n

which is a contradiction with (3). Hence, f ◦ T is Fréchet differentiable at a
with Fréchet derivative T ∗(Q).

(A2) =⇒ (A3) is trivial.

(A3) =⇒ (A1). Let (pn)n be a weak∗ null sequence in X∗. We want to prove that
‖T ∗(pn)‖Y ∗ → 0. Let f : X→R be the function defined for all x ∈ X by

f (x) = sup
n∈N∗

{
pn(x)− 1

n
,0

}
.

Since (pn)n is weak∗ null sequence in X∗, the convex function f is Lipschitz
continuous and Gâteaux differentiable at 0 with Gâteaux derivative ∇f (0) = 05.
By assumption f ◦T is Fréchet differentiable at 0 with Fréchet derivative equal
to 0. It follows from Asplund and Rockafellar (1969, Corollary 2) that (f ◦ T )∗

has a norm-strong minimum at 0. Now, we prove that (T ∗(pn))n is a minimizing
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sequence for (f ◦ T )∗, which will implies that ‖T ∗(pn)‖Y ∗ → 0. Indeed, since
f (0) = 0, we have

0 = −f (0) ≤ sup
y∈Y
{−f ◦ T (y)} := (f ◦ T )∗(0)

≤ sup
x∈X
{−f (x)}

≤ 0.

It follows that (f ◦ T )∗(0) = 0. Since (f ◦ T )∗ has a minimum at 0, we obtain

0 = (f ◦ T )∗(0) ≤ (f ◦ T )∗(T ∗(pn)) := sup
y∈Y
{〈T ∗(pn), y〉 − f ◦ T (y)}

= sup
y∈Y
{〈pn,T (y)〉 − f (T (y))}

≤ sup
x∈X
{〈pn,x〉 − f (x)}

= f ∗(pn)

≤ 1
n
.

It follows that (f ◦ T )∗(T ∗(pn)) → 0 = (f ◦ T )∗(0) = minY ∗(f ◦ T )∗. In other
words, (T ∗(pn))n is a minimizing sequence for (f ◦ T )∗. Since (f ◦ T )∗ has a
norm-strong minimum at 0, we obtain that ‖T ∗(pn)‖Y ∗ → 0, which implies that
T is a limited operator. �

Corollary 1 – Suppose that the canonical embedding i : E→ E∗∗ is a limited operator
(we use the identification i(x) = x). Let g : E∗∗→R∪ {+∞} be a convex lower semicon-
tinuous function. Then, the restriction g|E is Fréchet differentiable on E at any point of
E ∩

∫
(dom(g)) at which g is Gâteaux differentiable. If moreover, we assume that g is

convex weak∗ lower semicontinuous function. Then, Gâteaux and Fréchet differentiability
coincides for g at each point of E∩

∫
(dom(g)), where

∫
(dom(g)) denotes the norm interior

of dom(g).

Proof. Suppose that g is Gâteaux differentiable at a point x ∈ E ∩
∫

(dom(g)). Since i
is a limited operator, it follows from Theorem 1 on p. 62, that the restriction g|E is
Fréchet differentiable on E at x. If moreover, we assume that g is convex weak∗ lower
semicontinuous function, then by using Godefroy (1981, Proposition 5), we get that
the Fréchet differentiability of g|E is preserved at points in E ⊂ E∗∗ by any weak∗

lower semicontinuous extension of g|E to E∗∗, in particular g is Fréchet differentiable
at x. �

5See Borwein, Montesinos, and Vanderwerff, 2006, “Boundedness, Differentiability and Extensions
of Convex Functions”, Proposition 2.1.
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We will call a Banach space X a Gelfand-Phillips space, if all limited sets in X
are relatively norm-compact6. In this case, for every Banach space Y , if T : Y → X
is a limited operator then it is a compact operator. We give the following characteri-
zation of compact operators by differentiability of locally Lipschitz function.

Corollary 2 – Let Y be a Banach space andX be a Gelfand-Phillips space. Let T : Y → X
be a linear continuous operator. Then, T is a compact operator if and only if, for every
locally Lipschitz function f : X→R and every point y ∈ Y , f ◦T is Fréchet differentiable
at y ∈ Y whenever f is Gâteaux differentiable at T (y) ∈ X.

Proof. Suppose that, for every locally Lipschitz function f : X→R and every point
y ∈ Y , f ◦ T is Fréchet differentiable at y ∈ Y whenever f is Gâteaux differentiable
at T (y) ∈ X. It follows from Theorem 1 on p. 62 that T is a limited operator. Since
X is a Gelfand-Phillips space, then T is a compact operator. The converse follows
from Bachir and Lancien (2003, Lemma 3.1). �

We obtain the Corollary 3 below, by combining Proposition 1 and a delicate
result due to Zajicek7, which says that in a separable Banach space, the set of the
points where a convex continuous function is not Gâteaux differentiable, can be
covered by countably many d.c (that is, delta-convex) hypersurface. Recall that in
a separable Banach space Y , each set A which can be covered by countably many
d.c hypersurfaces is σ -lower porous, also σ -directionally porous; in particular it is
both Aronszajn (equivalent to Gauss) null and Γ -null. For details about this notions
of small sets we refer to Zajicek (2005) and references therein. Note that a limited
set in a separable Banach space is relatively compact8.

Proposition 1 – Let Y and X be Banach spaces and T : Y → X be a limited operator
with a dense range. Let f : X → R be a convex continuous function. Then f ◦ T is
Gâteaux differentiable at a ∈ Y if and only if, f ◦ T is Fréchet differentiable at a ∈ Y .

Proof. Suppose that f ◦ T is Gâteaux differentiable at a ∈ Y . It follows that f is
Gâteaux differentiable at T (a) with respect to the direction T (Y ) which is dense in
X. It follows (from a classical fact on locally Lipschitz continuous functions) that f
is Gâteaux differentiable at T (a) on X. So by Theorem 1 on p. 62, f ◦ T is Fréchet
differentiable at a ∈ Y . The converse is always true. �

Corollary 3 – Let Y be a separable Banach space, X be a Banach space and T : Y → X
be a compact operator with a dense range. Let f : X→ R, be a convex and continuous
function. Then, the set of all points at which f ◦ T is not Fréchet differentiable can be
covered by countably many d.c hypersurfaces.

Proof. The proof is a consequence of Zajicek (1979, Theorem 2) and Proposition 1.�

6See Schlumprecht, 1987, Limited sets in Banach spaces.
7See Zajicek, 1979, “On the differentiation of convex functions in finite and infinite dimensional

spaces”, Theorem 2.
8See Bourgain and Diestel, 1984, “Limited operators and strict cosingularity”.
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3. Canonical construction of pgnf-function

3 Canonical construction of pgnf-function

A real valued function f on a Banach space will be called a pgnf-function9 if there
exists a point at which f is Gâteaux but not Fréchet differentiable. A jn-sequence10

is a sequence (pn)n in a dual space Y ∗ that is weak∗ null and infn ‖pn‖ > 0. There exist
different way to build a pgnf-function in infinite dimentional Banach spaces. We
can find examples of such constructions in Borwein and Fabian (1993). We present
below a different method for constructing a pgnf-function on a Banach space X
canonically from a jn-sequence.

We need the following probably known lemma. Since we do not know a specific
reference to this lemma, we give its proof, for completeness. If B is a subset of a
dual Banach space X∗, we denote by cow

∗
(B) the weak∗ closed convex hull of B.

Lemma 1 – Let X be a Banach space and K be a subset of X∗.

1. Suppose that K is norm separable, then there exists a sequence (xn)n in the unit
sphere SX of X which separate the points of K i.e. for all p,p′ ∈ K , if 〈p,xn〉 =
〈p′ ,xn〉 for all n ∈N, then p = p′ . Consequently, if K is a weak∗ compact and norm
separable set of X∗, then the weak∗ topology of X∗ restricted to K is metrizable.

2. Let (pn)n be a weak∗ null sequence in X∗. Then, the set cow
∗
{pn : n ∈N} is convex

weak∗ compact and norm separable.

Proof.

1. Since K is norm separable, then K − K := {a− b/(a,b) ∈ K ×K} is also norm
separable and so there exists a sequence (qn)n of K −K which is dense in K −K .
According to the Bishop-Phelps theorem11, the set

D = {r ∈ X∗ | r attains its supremum on the sphere SX}

is norm-dense in the dual X∗. Thus, for each n ∈N∗, there exists rn ∈D such
that ‖qn − rn‖ < 1

n . For each n ∈N∗, let xn ∈ SX be such that ‖rn‖ = 〈rn,xn〉. We
claim that the sequence (xn)n separate the points of K . Indeed, let q ∈ K −K
and suppose that 〈q,xn〉 = 0, for all n ∈N∗. There exists a subsequence (qnk )k ⊂
K −K such that ‖qnk − q‖ <

1
k for all k ∈N∗ and so we have ‖rnk − q‖ <

1
nk

+ 1
k . It

follows that

‖rnk ‖ = 〈rnk ,xnk 〉(Cont. next page)

9See Borwein and Fabian, 1993, “On convex functions having points of Gâteaux differentiability
which are not points of Féchet-differentiability”.

10Due to Josefson-Nissenzweig theorem, see Diestel, 1984, Sequences and series in Banach spaces,
Chapter XII.
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= 〈rnk ,xnk 〉 − 〈q,xnk 〉
≤ ‖rnk − q‖

<
1
nk

+
1
k
.

Hence, for all k ∈ N∗, ‖q‖ ≤ ‖q − rnk ‖ + ‖rnk ‖ < 2( 1
nk

+ 1
k ), which implies that

q = 0, and so that (xn)n separate the points of K . Now, if we assume that K is
separable and weak∗ compact subset of X∗, it is then classical to see that the
weak∗ topology on K is induced from the metric

d(p,p′) :=
+∞∑
n=0

2−n
|〈p − p′ ,xn〉|

1 + |〈p − p′ ,xn〉|
.

Hence the weak∗ topology on K is metrizable.

2. Let (pn)n be a weak∗ null sequence inX∗ and setK = cow
∗
{pn : n ∈N}. ClearlyK

is a convex and weak∗ compact subset of X∗. According to Haydon’s theorem12

the weak∗ compact convex set K is the norm closed convex hull of its extreme
points whenever ex(K) (the set of extreme points of K) is norm separable. By

the Milman theorem13 ex(K) ⊂ {pn : n ∈N}
w∗

= {pn : n ∈N} ∪ {0} so that ex(K)
is norm separable and, hence, by Haydon’s theorem, K itself is weak∗ compact,
convex, and norm separable. �

We also need the following proposition.

Proposition 2 – Let X be a Banach space and K be a weak∗ compact subset of X∗

containing 0. Suppose that there exists a sequence (xn)n ⊂ SX that separates the points of
K (in this case K is weak∗ metrizable). Then, the function h : X∗→R defined by:

h(x∗) =

∑
k≥0

2−k(〈x∗,xk〉)2


1
2

, ∀x∗ ∈ X∗,

has the following properties:

1. h is a continuous seminorm on X∗

2. h is weak∗ lower semicontinuous and sequentially weak∗ continuous,

11See Bishop and Phelps, 1961, “A proof that every Banach space is subreflexive”.
12See Haydon, 1976, “An extreme point criterion for separability of a dual Banach space, and a new

proof of a theorem of Corson”, Theorem 3.3.
13See Phelps, 1966, Lectures on Chaquet’s theorem, p. 9.
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3. the restriction h|K of h to K has a weak∗-strong minimum at 0, with minK h|K =
h(0) = 0.

Proof. It is clear that h is a seminorm, and since h(x∗) ≤ ‖x∗‖ for all x∗ ∈ X∗, it is also
continuous. Since h is the supremum of a sequence of weak∗ continuous functions,
it is weak∗ lower semicontinuous. On the other hand, the series

∑
k≥0 2−k(〈x∗,xk〉)2

uniformly converges on bounded sets of X∗ and the maps x̂k : x∗ 7→ 〈x∗,xk〉 are weak∗

continuous for all k ∈ N, it follows that h is sequentially weak∗ continuous. If
p ∈ K and h(p) = 0, then 〈p,xk〉 = 0 for all k ∈N which implies that p = 0, since the
sequence (xk)k separate the points of K . Hence, the restriction of h to K has a unique
minimum at 0. This minimum is necessarily a weak∗-strong minimum since K is
weak∗ metrizable, this follows from a general fact which say that for every lower
semicontinuous function on a compact metric space (K,d), a unique minimum is
necessarily a strong minimum for the metric d in question. �

Canonical construction of pgnf-function. Let X be an infinite dimensional Ba-
nach space. Given a jn-sequence (pn)n ⊂ X∗, we set K = cow

∗
{pn : n ∈N}.

Using Lemma 1 on p. 67, there exists a sequence (xn)n ∈ SX which separates
the points of K , and by Proposition 2 on the preceding page, the function
h : X∗→R defined by:

h(x∗) =

∑
k≥0

2−k(〈x∗,xk〉)2


1
2

, ∀x∗ ∈ X∗,

is weak∗ lower semicontinuous and weak∗ sequentially continuous such that
h|K has a weak∗-strong minimum at 0.

Since (pn)n weak∗ converges to 0 and h is weak∗ sequentially continuous, then
(pn)n is a minimizing sequence for h|K . Since (pn)n is a jn-sequence, it follows
that 0 is not a norm-strong minimum for h|K . Define the function f by

f (x) = (h+ δK )∗(x̂), ∀x ∈ X,

where δK denotes the indicator function, which is equal to 0 on K and equal
to +∞ otherwise and where for each x ∈ X, we denote by x̂ ∈ X∗∗ the linear
and weak∗ continuous map x∗ 7→ 〈x∗,x〉 for all x∗ ∈ X∗. Then f is convex
Lipschitz continuous, Gâteaux differentiable at 0 (since h+ δK has a weak∗-
strong minimum14) but is not Fréchet differentiable at 0 (because 0 is not a
norm-strong minimum for h+ δK15.

Remark 1 – Let Y be a Banach space. Then the following assertions are equivalent.

14See Asplund and Rockafellar, 1969, “Gradients of convex functions”, Corollary 1.
15See ibid., Corollary 2.
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(A1) Y is infinite dimensional.

(A2) There exists a convex weak∗ compact and norm separable subset K of Y ∗

contaning 0 and a continuous seminorm h on Y ∗ which is weak∗ lower semi-
continuous and weak∗ sequentially continuous, such that the restriction h|K
has a weak∗-strong minimum but not norm-strong minimum at 0.

(A3) There exists a Banach space X and a linear continuous non-limited operator
T : Y → X.

(A4) There exists on Y a convex Lipschitz continuous pgnf-function.

Proof.

(A1) =⇒ (A2). We know from the Josefson-Nissenzweig theorem16 that there ex-
ists a weak∗ null sequence (pn)n in Y ∗ such that infn ‖pn‖ > 0. Set K =
cow

∗
{pn : n ∈N}. By Lemma 1 on p. 67, the set K is convex weak∗ compact

and norm separable. On the other hand, from Proposition 2 on p. 68, there
exists a continuous seminorm h which is weak∗ lower semicontinuous and
weak∗ sequentially continuous on Y ∗ such that the restriction of h to K has a
weak∗-strong minimum at 0. It remains to show that 0 is not a norm-strong
minimum for h|K . Indeed, since (pn)n is weak∗ null and h is weak∗ sequentially
continuous, then limn h(pn) = h(0) = minK h. So (pn)n is a minimizing sequence
for h|K which not norm converges to 0 since infn ‖pn‖ > 0. Hence, 0 is not a
norm-strong minimum for h|K .

(A2) =⇒ (A3). Since 0 is not a norm-strong minimum for the restriction h|K , there
exists a sequence (pn)n that minimize h on K but ‖pn‖9 0. Since h|K has a
weak∗-strong minimum at 0, it follows that (pn)n weak∗ converges to 0. Hence,
(pn)n weak∗ converges to 0 but ‖pn‖9 0. It follows that the identity operator
on Y is not limited, so we can take X = Y .

(A3) =⇒ (A4). If there exists a Banach space X and a non-limited operator T : Y →
X, by using Theorem 1 on p. 62, there exists a convex Lipschitz continuous
function f : X→R and a point y ∈ Y such that f is Gâteaux differentiable at
T (y) ∈ X but f ◦ T is not Fréchet differentiable at y. So f ◦ T is Gâteaux but
not Fréchet differentiable at y. Hence, f ◦ T is a convex Lipschitz continuous
pgnf-function on Y .

(A4) =⇒ (A1) is well known. �

16See Diestel, 1984, Sequences and series in Banach spaces, Chapter XII.
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