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Abstract

We study the structure of the space of coarse Lipschitz maps between Banach
spaces. In particular we introduce the notion of norm attaining coarse Lipschitz
maps. We extend to the case of norm attaining coarse Lipschitz equivalences,
a result of Godefroy on Lipschitz equivalences. This leads us to include the
non separable versions of classical results on the stability of the existence of
asymptotically uniformly smooth norms under Lipschitz or coarse Lipschitz
equivalences.
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1 Introduction

In a recent paper2 Godefroy studied various notions of norm attaining Lipschitz
functions. If (M,d) and (N,δ) are two metric spaces and f :M→N is Lipschitz, it
is natural to say that f attains its norm at the pair (x,y) in M ×M with x , y if

δ(f (x), f (y))
d(x,y)

= Lip(f ),

where Lip(f ) denotes the Lipschitz constant of f .
Godefroy3 introduced the following weaker form of norm attaining vector valued

Lipschitz functions. Let (M,d) be a metric space, (Y ,‖ ‖Y ) a Banach space and
f :M→ Y a Lipschitz map. We say that f attains its norm in the direction y ∈ SY ,

1Univ. Bourgogne Franche-Comté, Laboratoire de Mathématiques de Besançon UMR 6623, 16 route
de Gray, 25030 Besançon Cedex, France.

2Godefroy, 2016, “On norm attaining Lipschitz maps between Banach spaces”.
3Ibid.
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where SY denotes the unit sphere of Y , if there exists a sequence (sn, tn)∞n=0 in M ×M
with sn , tn and such that

lim
n→∞

f (sn)− f (tn)
d(sn, tn)

= yLip(f ).

One of the main results of Godefroy (2016) is that if a Lipschitz isomorphism
f between two Banach spaces X and Y attains its norm in the direction y ∈ SY ,
then there exists a constant c > 0 such that ρY (y,ct) ≤ 2ρX(t), where ρ denotes the
modulus of asymptotic uniform smoothness (see definitions in Section 6 on p. 50).
Then, noticing that this is impossible if one of the spaces is asymptotically uniformly
flat and the other has a norm with the Kadets-Klee property, he provides examples
of pairs of Banach spaces (X,Y ) for which the set of norm attaining Lipschitz maps,
in this weaker sense, is not dense.

The starting point of this work was to notice that this argument could be adapted
to the setting of coarse Lipschitz maps between Banach spaces X and Y . This space
of functions is a vector space on which a natural semi-norm is given by the Lipschitz
constant at infinity of a coarse Lipschitz map. It is then natural to work with the
corresponding quotient space that we shall denote CL(X,Y ).

In Section 2 on the next page we introduce these basic definitions as well as the
analogue of Godefroy’s definition for norm attaining coarse Lipschitz maps.

In Section 3 on p. 42 we define the notion of coarse Lipschitz equivalent Banach
spaces, or quasi-isometric Banach spaces in the terminology introduced by Gromov4.
In Proposition 2 on p. 43, we gather some characterizations of the coarse Lipschitz
equivalence between Banach spaces that were essentially known. In particular we
describe the link with the notion of net equivalence of Banach spaces. We also insist
on the existence of continuous representatives of coarse Lipschitz equivalences.
This will be crucial in our further use of the Gorelik principle.

In Section 4 on p. 46 we address the question of the completeness of our normed
quotient space CL(X,Y ). In Proposition 4 on p. 46 we give a sufficient condition
for CL(X,Y ) to be complete. We also describe situations when the coarse Lipschitz
equivalences can be viewed as an open subset of our quotient space.

In Section 5 on p. 48 we gather the necessary background on the so-called
Gorelik principle. First, we recall its classical version for uniform homeomorphisms
and Lipschitz isomorphisms. Then we prove in Theorem 2 on p. 49 a version of the
Gorelik principle which is a variant of Theorem 3.8 in Godefroy, Lancien, and Zizler
(2014) stated in terms of coarse Lipschitz equivalences instead of net equivalences
of Banach spaces.

Section 6 on p. 50 is devoted to the study of the preservation of the asymptotic
uniform smoothness under Lipschitz isomorphisms and coarse Lipschitz equiva-
lences. First we recall the definitions of the relevant moduli and their relationships.
The stability of the existence of an equivalent asymptotically uniformly smooth

4Gromov, 1987, “Hyperbolic groups”.
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2. Norm attaining coarse Lipschitz maps

norm was proved in Godefroy, Kalton, and Lancien (2001) in the separable case. We
take in Theorem 3 on p. 51 the opportunity to detail its proof in the non separable
case that we have not found in the literature. In Theorem 4 on p. 53 we detail a
precise quantitative version of the stability of asymptotically uniformly smooth
renormings under coarse Lipschitz equivalences, again in the general case. This
result was mentioned in Godefroy, Lancien, and Zizler (2014) with only a very brief
outline of the proof. Moreover the details of this proof will be used in our last
section.

Finally, in Section 7 on p. 57 (Theorem 5), we extend Godefroy’s result to our
setting of norm attaining coarse Lipschitz equivalences and we give examples of
situations when it can be properly stated that the set of norm attaining coarse
Lipschitz maps between two Banach spaces X and Y is not dense in the quotient
space CL(X,Y ).

2 Norm attaining coarse Lipschitz maps

Definition 1 – Let (M,d) and (N,δ) be two metric spaces and a map f :M→N . If
(M,d) is unbounded, we define

∀s > 0, Lips(f ) = sup
{δ((f (x), f (y))

d(x,y)
, d(x,y) ≥ s

}
and Lip∞(f ) = inf

s>0
Lips(f ).

Then f is said to be coarse Lipschitz if Lip∞(f ) <∞.
The set of coarse Lipschitz maps from M to N is denoted CL(M,N ).

The following equivalent formulations are easy to verify.

Proposition 1 – Let X and Y be two Banach spaces and let f : X → Y be a mapping.
Then the following assertions are equivalent.

(A1) The map f is coarse Lipschitz.

(A2) There exist A and θ in [0,+∞) such that

∀x,x′ ∈ X ‖x − x′‖ ≥ θ =⇒ ‖f (x)− f (x′)‖ ≤ Ad(x,y).

(A3) There exist A and B in [0,+∞) such that

∀x,x′ ∈ X ‖f (x)− f (x′)‖ ≤ A‖x − x′‖+B.

Note that in the above statement, Lip∞(f ) coincide with the infimum of all A ≥ 0
such that assertion (A2) is satisfied for some θ ≥ 0 and also with the infimum of all
A ≥ 0 such that assertion (A3) is satisfied for some B ≥ 0.
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Suppose now that (M,d) is an unbounded metric space and (Y ,‖ ‖Y ) is a Banach
space. Then it is easy to see that CL(M,Y ) is a vector space on which Lip∞ is a
semi-norm that we shall also denote ‖ ‖CL(M,Y ) or simply ‖ ‖CL if no confusion is
possible. Then we denote N(M,Y ) = {f ∈ CL(M,Y ), Lip∞(f ) = 0} and CL(M,Y )
the quotient space CL(M,Y )/N(M,Y ). The semi-norm Lip∞ induces a norm on
CL(M,Y ) that will also be denoted Lip∞, ‖ ‖CL(M,Y ) or ‖ ‖CL. We shall try to avoid
as much as possible the confusion between elements of CL(M,Y ) and elements of
CL(M,Y ).

We now introduce the notion of norm attaining coarse Lipschitz maps.

Definition 2 – Let (M,d) be an unbounded metric space and (Y ,‖ ‖Y ) a Banach
space. Assume that f :M→ Y is coarse Lipschitz. We say that f attains its norm in
the direction y ∈ SY if there exists a sequence of pairs of distinct points (sn, tn) in M
such that

lim
n→∞

d(sn, tn) = +∞ and lim
n→∞

f (tn)− f (sn)
d(sn, tn)

= yLip∞(f ).

Remark 1 – Note that the above definition is only interesting when Lip∞(f ) , 0,
that is when f , 0 in the quotient space CL(M,Y ).

Note also that if f ∈ CL(M,Y ) attains its norm in the direction y ∈ SY and
g :M→ Y is such that Lip∞(f − g) = 0, then g also attains its norm in the direction
y. Therefore, this notion is well defined for an element f of the quotient space
CL(M,Y ).

3 Coarse Lipschitz equivalence of metric spaces

Definition 3 – Let (M,d) and (N,δ) be two unbounded metric spaces and f :M→
N be a coarse Lipschitz map. We say that f is a coarse Lipschitz equivalence from M
to N , if there exists a coarse Lipschitz map g : N →M and a constant C ≥ 0 such
that

∀x ∈M d
(
(g ◦ f )(x),x

)
≤ C and ∀y ∈N δ

(
(f ◦ g)(y), y

)
≤ C.

We denote CLE(M,N ) the set of coarse Lipschitz equivalences from M to N . If
CLE(M,N ) is non empty, we say that M and N are coarse Lipschitz equivalent and

denote M CL∼ N .

This notion of coarse Lipschitz equivalent metric spaces is exactly the same as
the notion of quasi-isometric metric spaces introduced by Gromov5.

5Gromov, 1987, “Hyperbolic groups”;
see also Ghys and de la Harpe, 1990, Sur les groupes hyperboliques d’après Mikhael Gromov.

42



3. Coarse Lipschitz equivalence of metric spaces

Remark 2 – It is easy to check, for instance using the characterization (A3) in

Proposition 1 on p. 41, that CL∼ is an equivalence relation between Banach spaces.

Definition 4 – Let 0 < a ≤ b. An (a,b)-net in the metric space (M,d) is a subset M
of M such that for every z , z′ in M, d(z,z′) ≥ a and for every x in M, d(x,M) < b.

Then a subset M of M is a net in M if it is an (a,b)-net for some 0 < a ≤ b.

Let us now give two technical equivalent formulations of the notion of coarse
equivalence between Banach spaces, that we shall use later. The main result, which
is the fact that assertion (A2) implies assertion (A3) is essentially contained in the
proof of Theorem 3.8 in Godefroy, Lancien, and Zizler (2014).

Proposition 2 – Let X and Y be two Banach spaces and f : X→ Y be a coarse Lipschitz
map. The following assertions are equivalent.

(A1) The map f belongs to CLE(X,Y )

(A2) There exist A0 > 0 and K ≥ 1 such that for all A ≥ A0 and all maximal A-separated
subset M of X, N = f (M) is a net in Y and

∀x,x′ ∈M
1
K
‖x − x′‖ ≤ ‖f (x)− f (x′)‖ ≤ K‖x − x′‖.

(A3) There exist two continuous coarse Lipschitz maps ϕ : X→ Y and ψ : Y → X and
a constant C ≥ 0 such that ‖ϕ(x)− f (x)‖ ≤ C for all x in X and

∀x ∈ X ‖(ψ ◦ϕ)(x)− x‖ ≤ C and ∀y ∈ Y ‖(ϕ ◦ψ)(y)− y‖ ≤ C.

Proof.

(A1) =⇒ (A2). Assume that there exist g : Y → X and constants C,D,M > 0 such
that

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C,
∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C,

and

∀x,x′ ∈ X ‖f (x)− f (x′)‖ ≤D +M‖x − x′‖,
∀y,y′ ∈ Y ‖g(y)− g(y′)‖ ≤D +M‖y − y′‖.

Let A0 = (2C+D)(M+1), A ≥ A0 and M be a maximal A-separated subset of X.
Note that M is a (A,A)-net of X. Let now x , x′ ∈M, y = f (x) and y′ = f (x′).
Then

‖f (x)− f (x′)‖ ≤D +M‖x − x′‖ ≤ A+M‖x − x′‖ ≤ (M + 1)‖x − x′‖.
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On the other hand ‖g(y)− x‖ ≤ C and ‖g(y′)− x′‖ ≤ C, which implies that

‖g(y)− g(y′)‖ ≥ ‖x − x′‖ − 2C

and therefore

‖x − x′‖ ≤ 2C +D +M‖y − y′‖ ≤ A
M + 1

+M‖y − y′‖ ≤ ‖x − x
′‖

M + 1
+M‖y − y′‖.

It follows that ‖x − x′‖ ≤ (M + 1)‖y − y′‖. So f is a Lipschitz isomorphism
from M onto N = f (M) and K =M + 1 satisfies the required inequalities. In
particular N is a-separated, with a = A(M + 1)−1.

Finally let z ∈ Y . There exists x ∈M such that ‖x − g(z)‖ ≤ A. Then

‖f (x)− z‖ ≤ ‖f (x)− f (g(z))‖+C ≤D +MA+C = b.

We have shown that N is an (a,b)-net in Y , which finishes the proof of this
implication.

(A2) =⇒ (A3). For A ≥ A0, we pick (xi)i∈I a maximal A-separated subset of X. Note
that (xi)i∈I is an (A,A)-net in X. For i ∈ I , let yi = f (xi). Then, by assumption,
(yi)i∈I is an (a,b)-net in Y , for some 0 < a ≤ b, and we have

∀i, j ∈ I 1
K
‖xi − xj‖ ≤ ‖yi − yj‖ ≤ K‖xi − xj‖.

Then we can find a continuous partition of unity (fi)i∈I subordinated to the
open cover (BX(xi ,A))i∈I of X and a continuous partition of unity (gi)i∈I subor-
dinated to the open cover (BY (yi ,b))i∈I of Y and we set

∀x ∈ X ϕ(x) =
∑
i∈I
fi(x)yi and ∀y ∈ Y ψ(y) =

∑
i∈I
gi(y)xi .

Note first that ϕ and ψ are continuous.

Let x ∈ X and pick i ∈ I such that ‖x−xi‖ ≤ A. Now, if fj (x) , 0, then ‖x−xj‖ ≤ A
and ‖xi − xj‖ ≤ 2A. It follows that

‖ϕ(x)− yi‖ = ‖
∑

j,fj (x),0

fj (x)(yj − yi)‖ ≤ 2AK.

Let now x′ ∈ X and j ∈ I so that ‖x′ − xj‖ ≤ A. Then we have

‖ϕ(x)−ϕ(x′)‖ ≤ 4AK + ‖yi − yj‖ ≤ 4AK +K‖xi − xj‖ ≤ 6AK +K‖x − x′‖.
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3. Coarse Lipschitz equivalence of metric spaces

This shows that ϕ is coarse Lipschitz and Lip∞(ϕ) ≤ K and a similar proof
yields that the same is true for ψ.

For x ∈ X, pick again i ∈ I such that ‖x − xi‖ ≤ A. If gj(ϕ(x)) , 0, then ‖ϕ(x)−
yj‖ ≤ b and ‖yi − yj‖ ≤ ‖ϕ(x)− yi‖+ ‖ϕ(x)− yj‖ ≤ 2AK + b. Therefore

‖ψ(ϕ(x))− xi‖ =
∥∥∥ ∑
j,gj (ϕ(x)),0

gj (ϕ(x))(xj − xi)
∥∥∥ ≤ K(2AK + b).

Finally, we get that

‖ψ(ϕ(x))− x‖ ≤ ‖ψ(ϕ(x))− xi‖+ ‖x − xi‖ ≤ K(2AK + b) +A = C1.

Similarly, we get that there exists C2 ≥ 0 such that for all y ∈ Y , ‖ϕ(ψ(y))−y‖ ≤
C2.

Finally, recall that f is coarse Lipschitz. So, there exist D,E ≥ 0 such that for
all x,x′ ∈ X, ‖f (x)− f (x′)‖ ≤D‖x − x′‖+E. Since

∀x ∈ X ϕ(x)− f (x) =
∑

j,fj (x),0

fj (x)(f (xj )− f (x)),

and ‖xj − x‖ ≤ A, whenever fj (x) , 0, we obtain that

∀x ∈ X, ‖ϕ(x)− f (x)‖ ≤DA+E = C3.

We conclude the proof of this implication by taking C = max{C1,C2,C3}.

(A3) =⇒ (A1) is clear. �

Remark 3 – The main information of Proposition 2 on p. 43 is that for any f in
CLE(X,Y ), there exists ϕ which is a continuous representative of the equivalence
class of f in CL(X,Y ) and also a coarse Lipschitz equivalence with a continuous
“coarse Lipschitz inverse” ψ. This will be crucial when we shall apply the Gorelik
principle whose proof is based on Brouwer’s fixed point theorem.

Let us notice that, using for instance the characterization (A2) of Proposition 2
on p. 43, the following is immediate.

Corollary 1 – Let X, Y be two Banach spaces and f ∈ CLE(X,Y ). Then, for any λ , 0,
λf ∈ CLE(X,Y ).
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4 On the completeness of CL(X,Y )

Definition 5 – Let X and Y be two Banach spaces and M be a net in X. We say that
(M,X,Y ) has the Lipschitz extension property if any Lipschitz function from M to Y
admits a Lipschitz extension from X to Y . We say that the pair (X,Y ) has the net
extension property (in short nep) if there exists a net M in X such that (M,X,Y ) has
the Lipschitz extension property.

Lemma 1 – Assume that X and Y are Banach spaces and M is a net in X such that
(M,X,Y ) has the Lipschitz extension property, then there exists λ ≥ 1 such that any
Lipschitz function f : M→ Y admits an extension g : X→ Y with Lip(g) ≤ λLip(f ).

Proof. We may and do assume that 0 ∈M and f (0) = 0. Then the conclusion follows
from a straightforward application of the open mapping theorem to the restriction
operator to M defined from Lip0(X,Y ) onto Lip0(M,Y ), where Lip0(X,Y ) is the
Banach space of all Lipschitz functions from X to Y that vanish at 0 equipped with
the norm ‖f ‖L = Lip(f ). �

Definition 6 – Let X and Y be two Banach spaces and let µ ≥ 1. We say that (X,Y )
has the µ-Lipschitz representation property (in short µ-lrp) if for any f ∈ CL(X,Y )
and any c > Lip∞(f ), there exists g ∈ Lip0(X,Y ) so that Lip(g) < µc and f − g is
bounded.

Proposition 3 – Assume that X and Y are Banach spaces such that (X,Y ) has the net
extension property. Then there exists µ ≥ 1 such that (X,Y ) has the µ-lrp.

Proof. Let f ∈ CL(X,Y ) such that Lip∞(f ) < c. Pick M be a net in X and λ ≥ 1
such that the conclusion of Lemma 1 is satisfied. It follows from an easy change of
variable argument that for any A ≥ 1, the net AM also satisfies the conclusion of
Lemma 1 with the same constant λ. Then for A large enough, the restriction of f to
AM is c-Lipschitz. So it admits an extension g : X→ Y such that g is λc-Lipschitz.
Since f and g are both coarse Lipschitz and coincide on a net, it is not difficult to see
that f − g is bounded. By adding a constant to g, we may also assume that g(0) = 0,
which concludes the proof. �

Remark 4 – We do not know if the converse of this last proposition is true. However,
it is not difficult to check that the existence of µ ≥ 1 such that (X,Y ) has the µ-lrp is
equivalent to the existence of λ ≥ 1 such that (X,Y ) has the λ-anep. Here, λ-anep
stands for λ-almost net extension property, which is formally weaker than nep and has
the following ad’hoc meaning: there exists a net M in X such that for any Lipschitz
function f : M→ Y , there exists g : X→ Y Lipschitz so that Lip(g) ≤ λLip(f ) and
f − g is bounded on M.

Proposition 4 – Assume that X and Y are Banach spaces such that (X,Y ) has the µ-lrp
for some µ ≥ 1. Then (CL(X,Y ),‖ ‖CL) is a Banach space.
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Proof. Let (fn)∞n=1 be a sequence in CL(X,Y ) such that
∑∞
n=1 ‖fn‖CL <∞. Then for

any n in N, there exists gn ∈ Lip0(X,Y ) such that gn belongs to the equivalence class
of fn and Lip(gn) ≤ µ‖fn‖CL + 2−n. Then using the completeness of (Lip0(X,Y ),‖ ‖L)
we get that there exists g ∈ Lip0(X,Y ) such that

lim
N→∞

‖g −
N∑
n=1

gn‖L = 0.

It follows that limN→∞ ‖g −
∑N
n=1 fn‖CL = 0, which concludes our proof. �

Remark 5 – We do not know if (CL(X,Y ),‖ ‖CL) is a Banach space without any
assumption on the Banach spaces X and Y . We conjecture that it is not the case, but
a counterexample still has to be constructed.

Proposition 5 – Assume that X and Y are Banach spaces such that (X,Y ) and (Y ,X)
have the µ-lrp for some µ ≥ 1. Then for any f ∈ CLE(X,Y ), there exists ε > 0 such that
f −u ∈ CLE(X,Y ), whenever u : X→ Y is such that Lip∞(u) < ε.

Proof. Since f ∈ CLE(X,Y ), there exists C ≥ 1 and g ∈ CLE(Y ,X) so that Lip∞(f ) <
C, Lip∞(g) < C and

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C and ∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C.

Let us now fix u ∈ CL(X,Y ) such that Lip∞(u) < (µ2C)−1.
It follows from our assumptions that there exist ϕ ∈ Lip0(X,Y ), ψ ∈ Lip0(Y ,X)

and v ∈ Lip0(X,Y ) so that Lip(ϕ) < µC, Lip(ψ) < µC, Lip(v) < (µC)−1 and such that
f −ϕ, g −ψ and u − v are bounded.

Note first that it is not difficult to deduce that ψ ◦ϕ − IX is bounded on X and
ϕ ◦ ψ − IdY is bounded on Y . So let K > 0 be such that ‖f −ϕ‖, ‖u − v‖, ‖g − ψ‖,
‖ψ ◦ϕ − IX‖ and ‖ϕ ◦ψ − IdY ‖ are bounded by K on their respective domains.

We now exhibit a coarse Lipschitz inverse G of f −u as follows. For y ∈ Y and
x ∈ X, we define Ly(x) = ψ(y + v(x)). Since Lip(Ly) < 1, the map Ly admits a unique
fixed point in X that we denote G(y), which is thus defined by the equation

G(y) = ψ
(
y + v ◦G(y))

)
.

Classical elementary manipulations of the above equation yield that G is Lipschitz

and more precisely that Lip(G) ≤ Lip(ψ)
(
1 − Lip(v)Lip(ψ)

)−1
. It remains to show

that (f −u)◦G−IY and G◦ (f −u)−IX are bounded. Since G is Lipschitz, it is enough
to show that (ϕ − v) ◦G − IY and G ◦ (ϕ − v)− IX are bounded. Let us first fix y ∈ Y .
Then, using that G(y) is the fixed point of Ly , we get

‖(ϕ − v) ◦G(y)− y‖ = ‖ϕ ◦ψ
(
y + v ◦G(y)

)
− v ◦ψ

(
y + v ◦G(y)

)
− y‖

≤ K + ‖y + v ◦G(y)− v ◦G(y)− y‖ = K.
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Consider now x ∈ X. Then

‖G ◦ (ϕ − v)(x)− x‖ ≤ ‖ψ
(
(ϕ − v)(x) + v ◦G

(
(ϕ − v)(x)

)
−ψ ◦ϕ(x)‖+K

≤ Lip(ψ)‖v ◦G
(
(ϕ − v)(x)

)
− v(x)‖+K

≤ Lip(ψ)Lip(v)‖G ◦ (ϕ − v)(x)− x‖+K.

It follows that

‖G ◦ (ϕ − v)(x)− x‖ ≤ K
(
1−Lip(v)Lip(ψ)

)−1
.

We have proved that f −u ∈ CLE(X,Y ). �

Remark 6 – Note that for X and Y Banach spaces and f : X→ Y coarse Lipschitz,
f ∈ CLE(X,Y ) if and only if all the elements of its equivalence class in CL(X,Y )
belong to CLE(X,Y ) (this is a consequence of Proposition 2 on p. 43). So, in the
particular situation described in Proposition 5 on the previous page, we can denote
CLE(X,Y ) the set of equivalent classes of elements of CLE(X,Y ) and state that it is
open in the quotient space CL(X,Y ).

In this work we have chosen to follow Gromov’s definition for the invertible
elements of CL(X,Y ). One of the advantages of this definition is to coincide with
the notion of net equivalence for Banach spaces. However, in pursuing the study
of our normed quotient space, it could be more natural to say that f ∈ CL(X,Y ) is
“invertible” if there exists g ∈ CL(Y ,X) such that:

Lip∞
(
(f ◦ g)− IdY

)
= Lip∞

(
(g ◦ f )− IdX

)
= 0.

5 Background on the Gorelik principle

The tool that we shall now describe is the Gorelik principle. It was initially devised
by Gorelik in Gorelik (1994) to prove that `p is not uniformly homeomorphic to Lp,
for 1 < p <∞. Then it was developed by Johnson, Lindenstrauss and Schechtman6

to prove that for 1 < p <∞, `p has a unique uniform structure. We now recall the
crucial ingredient in the proof of the Gorelik Principle7. This statement relies on
Brouwer’s fixed point theorem and on the existence of Bartle-Graves continuous
selectors. We refer the reader to Albiac and Kalton (2016) or Benyamini and
Lindenstrauss (2000) for its proof.

6Johnson, Lindenstrauss, and Schechtman, 1996, “Banach spaces determined by their uniform
structures”.

7See Benyamini and Lindenstrauss, 2000, Geometric nonlinear functional analysis, proof of Theo-
rem 10.12, step (i).
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Proposition 6 – Let X0 be a finite-codimensional subspace of a Banach space X and let
0 < c < d. Then, there exists a compact subset A of dBX such that for every continuous
map φ : A→ X satisfying ‖φ(a)− a‖ ≤ c for all a ∈ A, we have that φ(A)∩X0 , ∅.

Let us now state the Gorelik principle as it can be found in Albiac and Kalton
(2016), Benyamini and Lindenstrauss (2000) or Godefroy, Kalton, and Lancien
(2001).

Theorem 1 – Let X and Y be two Banach spaces and let f be a homeomorphism from X
onto Y whose inverse is uniformly continuous. Let b,d > 0 so that ω(f −1,b) < d, where
ω(f −1, .) is the modulus of uniform continuity of f −1. Assume that X0 is a closed finite
codimensional subspace of X. Then there exists a compact subset K of Y so that

bBY ⊂ K + f (2dBX0
).

In particular, if f is a Lipschitz isomorphism such that Lip(f ) ≤ 1 and Lip(f −1) ≤M,
the condition ω(f −1,b) < d is satisfied when Mb < d.

We will now state a version of the Gorelik principle that will be used to study
coarse equivalent Banach spaces. For the sake of completeness we shall reproduce
the proof that can be found in Godefroy, Lancien, and Zizler (2014, Theorem 3.8)
with more attention given on keeping optimal estimates and with slightly weaker
assumptions.

Theorem 2 – Let X and Y be two Banach spaces. Assume that f : X→ Y and g : Y → X
are continuous, and that there exist constants C,D,M > 0 such that

∀y,y′ ∈ Y ‖g(y)− g(y′)‖ ≤D +M‖y − y′‖

and

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C and ∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C.

Let λ < 1. Then for any α ≥ α0 = 2(C+D)(1−λ)−1 and any finite codimensional subspace
X0 of X, there is a compact subset K of Y so that

λα
M
BY ⊂ K +CBY + f (2αBX0

).

Proof. Let µ = 1+λ
2 , α0 = C+D

µ−λ = 2(C+D)
1−λ and α ≥ α0. Let also X0 be a finite codimen-

sional subspace of X.
It follows from Proposition 6 that there exists a compact subset A of αBX such

that for every continuous map φ : A→ X satisfying ‖φ(a)− a‖ ≤ µα for all a ∈ A, we
have that φ(A)∩X0 , ∅.

Consider now y ∈ λα
M BY and define φ : A→ X by φ(a) = g(y + f (a)). Then φ is

clearly continuous and

∀a ∈ A, ‖φ(a)− a‖ ≤ C + ‖g(y + f (a))− g(f (a))‖ ≤ C +D +M‖y‖ ≤ C +D +λα ≤ µα.
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Hence, there exists a ∈ A so that φ(a) ∈ X0. Since ‖a‖ ≤ α and ‖φ(a) − a‖ ≤ µα, we
have that φ(a) ∈ 2αBX0

.
Finally, we use the fact that ‖(f ◦ g)(y + f (a))− (y + f (a))‖ ≤ C to conclude that

y ∈ K +CBY + f (2αBX0
), where K = −f (A) is a compact subset of Y . �

Remark 7 – Note that in the above result we have not assumed that f is coarse
Lipschitz.

6 Asymptotic uniform smoothness and coarse
Lipschitz equivalence

We now recall the definitions of the modulus of asymptotic uniform smoothness of
a norm and the modulus of weak∗ asymptotic uniform convexity of a dual norm.
They are due to Milman8 and we follow the notation from Johnson, Lindenstrauss,
Preiss, et al. (2002). So let (X,‖ ‖) be a Banach space. For t > 0, and x ∈ SX we define

ρX(x, t) = inf
Y

sup
y∈SY

(‖x+ ty‖ − 1),

where Y runs through all closed subspaces of X of finite codimension. Then

ρX(t) = sup
x∈SX

ρX(x, t).

The norm ‖ ‖ is said to be asymptotically uniformly smooth (in short aus) if

lim
t→0

ρX(t)
t

= 0.

We say that the norm ‖ ‖ is asymptotically uniformly flat if

∃t0 ∈ (0,+∞) ∀t ∈ [0, t0] ρX(t) = 0.

Now, for t > 0, and x∗ ∈ SX∗ we define

θX(x∗, t) = sup
E

inf
y∗∈SE⊥

(‖x∗ + ty∗‖ − 1),

where E runs through all finite dimensional subspaces of X. Then

θX(t) = inf
x∗∈SX∗

θX(x∗, t).

The norm of X∗ is said to be weak∗ asymptotically uniformly convex (in short w∗-auc)
if

∀t > 0 θX(t) > 0.

The duality between these two moduli is now well understood. The following
complete and precise statement is taken from Dilworth et al. (2017, Proposition 2.1).

8Milman, 1971, “Geometric theory of Banach spaces. Part II. Geometry of the unit ball”.
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Proposition 7 – Let X be a Banach space and 0 < σ,τ < 1.

1. If ρX(σ ) < στ
6 , then θX(τ) > στ

6 .

2. If θX(τ) > στ , then ρX(σ ) < στ .

As an immediate consequence we have that ‖ ‖X is aus if and only if ‖ ‖X∗ is
w∗-auc.

Let us also detail a few other classical consequences. First we recall that for a
function f which is continuous monotone non decreasing on [0,1] and such that
f (0) = 0, its dual Young function is denoted f ∗ and defined by

∀s ∈ [0,1] f ∗(s) = sup{st − f (t), t ∈ [0,1]}.

As a corollary of the previous proposition we obtain:

Corollary 2 – Let X be a Banach space. Then

∀s ∈ [0,1] (θX )∗(s) ≥ ρX
( s

2

)
and (θX )∗

( s
6

)
≤ ρX(s).

Proof. Consider first t = 2
s ρX( s2 ) ∈ [0,1]. Then ρX( s2 ) = s

2 t. So it follows from
Proposition 7, Statement 2 that θX(t) ≤ s

2 t. Therefore (θX)∗(s) ≥ st − θX(t) ≥ s
2 t =

ρX( s2 ).
Assume now that (θX)∗( s6 ) > ρX(s). Then there exists t ∈ [0,1] such that s

6 t −
θX(t) > ρX(s). Thus θX(t) < s

6 t − ρX(s) < s
6 t. It now follows from Proposition 7,

Statement 1 that ρX(s) ≥ s
6 t. But this implies that θX(t) < 0, which is impossible. �

The following theorem states that the existence of an asymptotically uniformly
smooth norm is stable under Lipschitz isomorphisms and appeared first in Godefroy,
Kalton, and Lancien (2001), in a separable setting. Its proof can also be found in the
recent textbook Albiac and Kalton (2016, Paragraph 14.6). The general case can be
deduced by routine arguments of separable saturation and separable determination
of the moduli. However, we shall detail here the direct proof in the general case.
The only modification is that we deal with the definition of the asymptotic moduli
instead of using weak∗-null or weakly null sequences.

Theorem 3 – Let X and Y be two Banach spaces and assume that f : X → Y is a
bijection such that Lip(f ) ≤ 1 and Lip(f −1) ≤M. Then there exists an equivalent norm
| | on Y such that ‖ ‖Y ≤ | | ≤M‖ ‖Y and

∀t ∈ [0,1], θ| |(t) ≥ θX
( t

4M

)
.

Proof. Let

C = conv
{
f (x)− f (x′)
‖x − x′‖

, x , x′ ∈ X
}
.
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Clearly, C is closed convex symmetric and C ⊂ BY . Let now y ∈ Y such that ‖y‖ = 1
M .

For t ∈ [0,+∞), denote xt = f −1(ty). We have that ‖x1 − x0‖ ≤ 1 and ‖xM − x0‖ ≥ 1.
So, there exists t ∈ [1,M] such that ‖xt − x0‖ = 1. It follows that ty ∈ C. Since
C is convex and symmetric, we deduce that 1

MBY ⊂ C. So, if we denote | | the
Minkowski functional of C, we have that | | is an equivalent norm on Y such that
‖ ‖Y ≤ | | ≤M‖ ‖Y . Its dual norm is given by

∀y∗ ∈ Y ∗ |y∗| = sup
{
〈y∗, f (x)− f (x′)〉
‖x − x′‖

, x , x′
}
.

Let t ∈ (0,1] and assume as we may that θX
(
t

4M

)
> 0. So let y∗ ∈ Y ∗ such that

|y∗| = 1 and η > 0. We can pick x , x′ ∈ X such that

〈y∗, f (x)− f (x′)〉 ≥ (1− η)‖x − x′‖.

We may assume that x′ = −x and f (x′) = −f (x), so that we have

〈y∗, f (x)〉 ≥ (1− η)‖x‖. (1)

Pick 0 < δ < θX( t
4M ). It follows from Statement 2 in Proposition 7 on the previous

page that ρX( 4Mδ
t ) < δ. So, there exists a finite codimensional subspace X0 of X such

that

∀z ∈ 4Mδ‖x‖
t

BX0
, ‖x+ z‖ ≤ (1 + δ)‖x‖. (2)

Pick b < 4δ‖x‖
t . It now follows from the Gorelik principle (Theorem 1 on p. 49) that

there exists a compact subset K of Y such that

bBY ⊂ K + f
(

8Mδ‖x‖
t

BX0

)
. (3)

Fix now ε > 0, consider a finite ε-net F of K and denote E the finite dimensional
subspace of Y spanned by F ∪ {f (x)}. For any z∗ ∈ E⊥ such that |z∗| = t, we have
‖z∗‖ ≥ t and, if ε > 0 was initially chosen small enough, by Equation (3) we deduce
that

∃z ∈ 8Mδ‖x‖
t

BX0
〈z∗,−f (z)〉 ≥ (b − η)t.

It now follows from the fact that |y∗| = 1 and Equation (2) that

〈y∗, f (x) + f (z)〉 = 〈y∗, f (z)− f (x′)〉 ≤ ‖x′ − z‖ ≤ (1 + δ)‖x‖.

Then Equation (1) implies that 〈y∗, f (z)〉 ≤ (δ+ η)‖x‖. Combining this last inequality
with the fact that 〈z∗, f (x)〉 = 0 and Equations (1) to (3), we obtain that

〈y∗ + z∗, f (x)− f (z)〉 ≥ (1− η)‖x‖ − (δ+ η)‖x‖+ (b − η)t.

52



6. Asymptotic uniform smoothness and coarse Lipschitz equivalence

Using again the definition of | | and Equation (2) on the preceding page we get

|y∗ + z∗| ≥
(
(1− η)‖x‖ − (δ+ η)‖x‖+ (b − η)t

)(
(1 + δ)‖x‖

)−1
.

Letting b tend to 4δ‖x‖
t and η tend to 0, we deduce that

θ| |(y
∗, t) ≥ 1 + 3δ

1 + δ
− 1 ≥ δ.

In the above estimate, which does not depend on y∗ in the unit sphere of | |, we
let δ tend to θX( t

4M ) to conclude our proof. �

Corollary 3 – Let X and Y be two Banach spaces and assume that f : X → Y is a
bijection such that Lip(f ) ≤ 1 and Lip(f −1) ≤M. Then there exists an equivalent norm
| | on Y such that ‖ ‖Y ≤ | | ≤M‖ ‖Y and

∀t ∈ [0,1] ρ| |
( t

48M

)
≤ ρX(t).

Proof. Let f ,g be continuous monotone non decreasing on [0,1] with f (0) = g(0) = 0.
If there exists a constant C ≥ 1 such that for all t ∈ [0,1], f (t) ≥ g(t/C), then it is
clear that for all t ∈ [0,1], f ∗(t/C) ≤ g∗(t). Since the norm | | given by Theorem 3 on
p. 51 satisfies

∀t ∈ [0,1] θ| |(t) ≥ θX
( t

4M
),

the conclusion of the proof follows now directly from Corollary 2 on p. 51. �

We now turn to the study of the preservation of the modulus of weak∗ asymptotic
uniform convexity, up to renorming, under coarse Lipschitz equivalence. The
following precise quantitative statement is a slight modification of Theorem 3.12
in Godefroy, Lancien, and Zizler (2014), in which the proof is only very briefly
outlined. It will also be crucial for us to use the details of the construction of this
equivalent norm in our last section.

Theorem 4 – Let X and Y be two Banach spaces and M > 1. Assume that f : X → Y
and g : Y → X are continuous with Lip∞(f ) ≤ 1, Lip∞(g) < M and that there exists a
constant C ≥ 0 such that

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C and ∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C.

Then for any ε in (0,1), there exists an equivalent norm | | on Y such that

1
1 + ε

‖ ‖Y ≤ | | ≤M‖ ‖Y and ∀t ∈ [0,1] θ| |(t) ≥ θX
( t

48M2

)
− ε.

53



Some properties of CL maps between Banach spaces A. Dalet and G. Lancien

Proof (beginning of proof of Theorem 4 on the previous page). We will adapt the proof
of Theorem 5.3 in Godefroy, Kalton, and Lancien (2001). For k ∈N, we define

Ck = conv
{
f (x)− f (x′)
‖x − x′‖

, ‖x − x′‖ ≥ 2k
}
.

Then (Ck)∞k=1 is a decreasing sequence of closed convex and symmetric subsets of
Y . Since Lip∞(f ) ≤ 1, we have that Ck ⊂ (1 + εk)BY , where (εk)∞k=1 is a sequence of
positive numbers tending to 0. In particular there exists k0 ∈N such that

∀k ≥ k0 Ck ⊂ (1 +
ε

16M
)BY ⊂ (1 + ε)BY ⊂ 2BY .

Fix now k ∈N, y ∈ SY and denote y0 = f (0). It follows easily from our assumptions
that limt→∞ ‖g(ty)‖ =∞. Recall also that f (g(ty)) = ty +ut , with ‖ut‖ ≤ C. So, for t
large enough

f (g(ty))− y0

‖g(ty)‖
=

ty

‖g(ty)‖
+
ut − y0

‖g(ty)‖
∈ Ck .

It follows from the assumption that Lip∞(g) < M that there exist α ≥ 1
M and a

sequence (tn)n tending to +∞ such that tn
‖g(tny)‖ tends to α. Since Ck is closed, we

obtain that αy ∈ Ck . Finally, we use the fact that Ck is convex and symmetric to
deduce that 1

M y ∈ Ck and thus that 1
MBY ⊂ Ck .

So, if we denote | |k the Minkowski functional of Ck , we have that for all k ≥ k0,
| |k is an equivalent norm on Y such that (1 + ε

16M )−1‖ ‖Y ≤ | |k ≤M‖ ‖Y . It will be
useful to describe the dual norm of | |k , also denoted | |k , as follows

∀y∗ ∈ Y ∗ |y∗|k = sup
{
〈y∗, f (x)− f (x′)〉
‖x − x′‖

, x,x′ ∈ X, ‖x − x′‖ ≥ 2k
}
.

Note that our assumptions also imply the existence of D ≥ 0 such that

∀y,y′ ∈ Y ‖g(y)− g(y′)‖ ≤D +M‖y − y′‖. (4)

This will enable us to apply the Gorelik principle as it is stated in Theorem 2 on
p. 49.

The key lemma is the following.

Lemma 2 – Let t ∈ (0,1] and assume that θX
(

t
48M2

)
> 0. Let y∗ ∈ Y ∗ such that ‖y∗‖ ≤

M, ε > 0 and k1 ∈N such that

k1 ≥ k0, 24M2θX
( t

48M2

)
2k1 > 4(C +D)t, and 2−k1(CM + 1) ≤ ε

8
.

Then there exists a finite dimensional subspace E of Y so that for all k ≥ k1 and all
z∗ ∈ E⊥ such that t

2 ≤ ‖z
∗‖ ≤ tM, we have

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k +θX
( t

48M2

)
− ε

2
. (5)
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Proof (of Lemma 2 on the preceding page). Let η = ε
16M and pick 0 < δ < θX( t

48M2 )
such that

24M2δ2k1 > 4(C +D)t. (6)

Let k ≥ k1 and choose x , x′ ∈ X such that ‖x − x′‖ ≥ 2k+1 and

〈y∗, f (x)− f (x′)〉 ≥ (1− η)|y∗|k+1‖x − x′‖.

We may assume that x′ = −x and f (x′) = −f (x), so that we have

〈y∗, f (x)〉 ≥ (1− η)|y∗|k+1‖x‖. (7)

Since 0 < δ < θX( t
48M2 ). It follows from Statement 2 in Proposition 7 on p. 51 that

ρX( 48M2δ
t ) < δ. So, there exists a finite codimensional subspace X0 of X such that

∀z ∈ 48M2δ‖x‖
t

BX0
‖x+ z‖ ≤ (1 + δ)‖x‖ and ‖x+ z‖ ≥ ‖x‖ ≥ 2k . (8)

From Equations (4) and (6) on the preceding page and on the current page and
Theorem 2 on p. 49, applied with λ = 1

2 and α = t−124M2δ‖x‖, we infer the existence
of a compact subset K of Y such that

12Mδ‖x‖
t

BY ⊂ K +CBY + f
(48M2δ‖x‖

t
BX0

)
.

As in the previous proof, fix η′ > 0, pick a finite η′-net F of K and let E be the linear
span of F ∪ {f (x)}. Let now z∗ ∈ E⊥ such that t

2 ≤ ‖z
∗‖ ≤ tM. Then,

∃z ∈ 48M2δ‖x‖
t

BX0
〈z∗,−f (z)〉 ≥ 6Mδ‖x‖ − (CM + 1), (9)

if η′ was initially chosen small enough.
We then deduce from Equation (8) that

〈y∗, f (x) + f (z)〉 = 〈y∗, f (z)− f (x′)〉 ≤ |y∗|k‖x′ − z‖ ≤ (1 + δ)|y∗|k‖x‖. (10)

Thus, combining the above informations we get

〈y∗ + z∗, f (x)− f (z)〉 ≥
(
2(1− η)|y∗|k+1 − (1 + δ)|y∗|k + 6Mδ

)
‖x‖ − (CM + 1).

Using again Equation (8) we then have

|y∗ + z∗|k ≥
1

1 + δ

(
2(1− η)|y∗|k+1 − (1 + δ)|y∗|k + 6Mδ − 2−k1(CM + 1)

)
.

So, it follows from our initial choice of k1 and the fact that δ ≤ 1 and M ≥ 1 that

|y∗ + z∗|k ≥ 2(1− η)(1− δ)|y∗|k+1 − |y∗|k + (2M + 1)δ − ε
8
.
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Note that ‖y∗‖ ≤M implies that |y∗|k+1 ≤ (1 + ε
16M )M and recall that η = ε

16M . So
we obtain that

|y∗ + z∗|k ≥ 2(1− η)|y∗|k+1 − |y∗|k − 2Mδ+ (2M + 1)δ − ε
8
.

Then with our choice of η implies that

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k + δ − 3ε
8
.

So, if δ was initially chosen close enough to θX( t
48M2 ), we obtain

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k +θX
( t

48M2

)
− ε

2
. �

Proof (end of proof of Theorem 4 on p. 53). Note that a simple convexity argument
shows that for any space Z, the function t 7→ t−1θZ (t) is increasing on (0,1].

Assume first that θX
(

1
48M2

)
≤ ε

2 . Then for any t ∈ (0,1] we have that

θY (t) ≥ 0 > θX
( 1

48M2

)
− ε ≥ θX

( t

48M2

)
− ε,

and the original norm on Y works.
Assume now that θX

(
1

48M2

)
> ε

2 . Since θX is continuous, there exists t0 ∈ (0,1)

so that θX
(

t0
48M2

)
= ε

2 . As above, we easily have that for any equivalent norm N on

Y and any t ∈ (0, t0], θN (t) ≥ 0 ≥ θX
(

t
48M2

)
− ε. So we only have to treat the problem

for t ∈ [t0,1]. Let us pick k1 ∈N satisfying the assumptions of Lemma 2 on p. 54
for t0. It then follows from the monotonicity of t 7→ t−1θX(t) that the conclusion of
Lemma 2 on p. 54 applies for any t ∈ [t0,1] and any k ≥ k1.

Pick now N ∈N such that 4M
N < ε

2 and define

|y∗| = 1
N

k1+N∑
k=k1+1

|y∗|k

which is a dual norm on Y ∗ with

M−1‖y∗‖ ≤ |y∗| ≤ (1 +
ε

16M
)‖y∗‖ ≤ (1 + ε)‖y∗‖ ≤ 2‖y∗‖.

Let y∗ ∈ Y ∗, with |y∗| = 1. It follows from Lemma 2 on p. 54 that for any t ∈ [t0,1],
there exists a finite dimensional subspace E of Y so that for all k ∈ [k1, k1 +N ] and
all z∗ ∈ E⊥ such that |z∗| = t, we have

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k +θX
( t

48M2

)
− ε

2
,
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which implies, summing over k, that

|y∗ + z∗| ≥ |y∗|+ 2
N

(
|y∗|k1+N+1 − |y∗|k1+1

)
+θX

( t

48M2

)
− ε

2
.

Since |y∗| = 1, we have that ‖y∗‖ ≤M and |y∗|k+1 ≤ 2M. So

|y∗ + z∗| ≥ |y∗|+θX
( t

48M2

)
− ε

2
− 4M
N
≥ |y∗|+θX

( t

48M2

)
− ε.

This shows that for all t ∈ [t0,1], θ| |(t) ≥ θX
(

t
48M2

)
− ε and concludes our proof. �

Corollary 4 – Let X and Y be two Banach spaces and M > 1. Assume that f : X→ Y
and g : Y → X are continuous with Lip∞(f ) ≤ 1, Lip∞(g) < M and that there exists a
constant C ≥ 0 such that

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C and ∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C.

Then for any ε in (0,1), there exists an equivalent norm | | on Y such that

1
1 + ε

‖ ‖Y ≤ | | ≤M‖ ‖Y and ∀t ∈ [0,1] ρ| |
( t

576M2

)
≤ ρX(t) + ε.

Proof. Let ϕ, ψ be continuous monotone non decreasing on [0,1] with ϕ(0) = ψ(0) =
0. If there exists D ≥ 1 and ε > 0 such that for all t ∈ [0,1], ϕ(t) ≥ ψ(t/D)− ε, then it
is clear that for all t ∈ [0,1], ϕ∗(t/D) ≤ ψ∗(t) + ε. Then we can apply Corollary 2 on
p. 51 to get that if | | is the norm given by Theorem 4 on p. 53, then for all t ∈ [0,1]:

ρ| |

( t

576M2

)
≤ (θ| |)

∗
( t

288M2

)
≤ (θX )∗

( t
6

)
+ ε ≤ ρX(t) + ε.

�

7 Application to norm attaining coarse Lipschitz maps

In this section, we will extend to the setting of coarse Lipschitz maps and equiva-
lences, the results obtained in Godefroy (2016) on norm attaining Lipschitz maps.
Our first result is the analogue of Theorem 3.2 of Godefroy (2016).

Theorem 5 – Let X and Y be two Banach spaces and M > 1. Assume that f : X → Y
and g : Y → X are continuous with Lip∞(f ) = 1, Lip∞(g) < M and that there exists a
constant C ≥ 0 such that

∀x ∈ X ‖(g ◦ f )(x)− x‖ ≤ C and ∀y ∈ Y ‖(f ◦ g)(y)− y‖ ≤ C.

Assume also that f attains its norm ‖f ‖CL = 1 in the direction y ∈ SY . Then

∀t ∈ (0,1] ρY
(
y,

t

576M3

)
≤ ρX(t).
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Proof. Let us fix ε in (0,1) and denote | | the norm constructed in Theorem 4 on
p. 53.

There exists sequences (xn)∞n=1, (x′n)∞n=1 in X such that

lim
n→∞
‖xn − x′n‖ =∞ and lim

n→∞
f (xn)− f (x′n)
‖xn − x′n‖

= y.

Note that for any k in N, f (xn)−f (x′n)
‖xn−x′n‖

∈ Ck for n large enough. So y ∈ Ck and |y|k ≤ 1.

Therefore, |y| ≤ 1. On the other hand |y| ≥ (1 + ε)−1 ≥ 1− ε.
Denote u = y

|y| . It follows from Corollary 4 that ρ| |
(
u, t

576M2

)
≤ ρX(t) + ε.

Then there exists a finite codimensional subspace E of Y such that for all v ∈ E
with |v| ≤ t

576M2 , we have

|u + v| ≤ 1 + ρX(t) + 2ε.

It follows that for all v ∈ E with ‖v‖ ≤ t
576M3 ,

‖y + v‖ ≤ (1 + ε)(|y −u|+ |u + v|) ≤ (1 + ε)(1 + ρX(t) + 3ε).

Since ε > 0 is arbitrary in the above inequality, this concludes our proof. �

Let us now recall that a Banach space X has the Kadets-Klee property if the norm
and weak topologies coincide on the unit sphere of X. The following corollaries are
the coarse Lipschitz analogues of Corollary 3.5 in Godefroy (2016).

Corollary 5 – Let X and Y be two infinite dimensional Banach spaces such that X
is asymptotically uniformly flat and Y has the Kadets-Klee property and assume that
f : X → Y is a coarse Lipschitz equivalence. Then f does not attain its norm in any
direction in SY .

Proof. Assume on the contrary that f : X→ Y is a coarse Lipschitz equivalence and
that f attains its norm in the direction y ∈ SY . Assume also, as we may by Corollary 1
on p. 45, that ‖f ‖CL = 1. Since X is asymptotically uniformly flat, it follows from
Theorem 5 on the previous page that there exits t0 > 0 so that for all t ∈ [0, t0],
ρY (y, t) = 0. Consider now a weakly null net (yα)α∈A in Y such that ‖yα‖ = t0 for all
α in A. Then (‖y + yα‖)α∈A tends to 1, which contradicts the assumption that Y has
the Kadets-Klee property. �

Corollary 6 – There exists a pair of Banach spaces (X,Y ) such that the norm attaining
coarse Lipschitz maps are not dense in CL(X,Y ).

Proof. Consider X = (c0,‖ ‖∞) and Y = (c0,‖ ‖Y ), where ‖ ‖Y is an equivalent norm
on c0 with the Kadets-Klee property. We recall that such an equivalent norm exits
on any separable Banach space9. Moreover X is clearly asymptotically uniformly
flat. Since X is an absolute retract10, we have in particular that (X,Y ) and (Y ,X)
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have the net extension property. Therefore, by Propositions 3 and 5 on p. 46 and on
p. 47, CLE(X,Y ) can be viewed as an open subset of CL(X,Y ). Since it contains the
identity map on c0, it is a non empty open subset of CL(X,Y ). Combining this with
Corollary 5 on the preceding page finishes our proof. �
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