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Abstract

We consider a multidimensional sde with a Gaussian noise and a drift vec-
tor being a vector function of bounded variation. We prove the existence of
generalized derivative of the solution with respect to the initial conditions and
represent the derivative as a solution of a linear sde with coefficients depending
on the initial process. The obtained representation is a natural generalization
of the expression for the derivative in the smooth case. In the proof we use the
results on continuous additive functionals.

Keywords: Stochastic flow; Continuous additive functional; Differentiability with
respect to initial data.
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Introduction

Consider a d-dimensional nonhomogeneous stochastic differential equation (sde)
dϕt(x) = a(t,ϕt(x))dt +

m∑
k=1

σk(t,ϕt(x))dwk(t),

ϕ0(x) = x,

(1)

where x ∈ Rd , d ≥ 1, m ≥ 1, (w(t))t≥0 = (w1(t), . . . ,wm(t))t≥0 is a standard m-dimen-
sional Wiener process, the drift coefficient a : [0,∞)×Rd →R

d is Borel measurable
and bounded, and the diffusion coefficient σ : [0,∞) ×Rd → R

d ×Rm is bounded
and continuous.

In what follows we assume that σ satisfies the following conditions:
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(C1) σ ∈W 0,1
2d+2,loc([0,∞)×Rd).

(C2) Uniform ellipticity. For each T > 0, there exists an ellipticity constant B > 0
such that for all t ∈ [0,T ], x ∈Rd , θ ∈Rd ,

θ∗σ (t,x)σ ∗(t,x)θ ≥ B|θ|2,

where |·| is a norm in R
d .

(C3) Hölder continuity. For each T > 0, there exist L > 0, 0 < α ≤ 1 such that for all
t1, t2 ∈ [0,T ], x1,x2 ∈Rd , 1 ≤ i ≤ d, 1 ≤ k ≤m,∣∣∣σ ik(t1,x1)− σ ik(t2,x2)

∣∣∣ ≤ L(|t1 − t2|α/2 + |x1 − x2|α
)
.

Under these assumptions on the coefficients there exists a unique strong solution
to Equation (1) on the previous page3).

It is well known4 that if the coefficients of Equation (1) on the previous page are
continuously differentiable in the spatial variable and the derivatives are bounded
and Hölder continuous uniformly in t, then there exists a modification of ϕt(x)
(denoted by the same symbol) which is continuous in (t,x) and continuously differ-
entiable in x almost surely. Moreover, the derivative ∇ϕt(x) := Yt(x) is a solution of
the equation

dYt(x) = ∇a(t,ϕt(x))Yt(x)dt +
m∑
k=1

∇σk(t,ϕt(x))Yt(x)dwk(t), (2)

where for a function f : Rd →R
d , we set ∇f =

(
∂f i

∂xj

)
1≤i,j≤d

.

Flandoli, Gubinelli, and Priola (2010) show that in the case of a smooth, bounded,
uniformly non-degenerate noise and a bounded, uniformly in time Hölder continu-
ous drift term the conditions on the coefficients can be essentially weakened, and
the solution is continuously differentiable with respect to the spatial parameter.

The case of discontinuous drift is studied in Fedrizzi and Flandoli (2013a,b),
Meyer-Brandis and Proske (2010), and Mohammed, Nilssen, and Proske (2015) and
the weak differentiability of the solution to Equation (1) on the previous page is
proved under rather weak assumptions on the drift. Fedrizzi and Flandoli (2013a)
consider Equation (1) on the previous page with the identity diffusion matrix and a
drift vector belonging to Lq(0,T ;Lp(Rd)) for some p, q such that

p ≥ 2, q > 2,
d
p

+
2
q
< 1.

3See Veretennikov, 1981, “On strong solutions and explicit formulas for solutions of stochastic
integral equations”.

4Kunita, 1990, Stochastic Flows and Stochastic Differential Equations.
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Applying a Zvonkin-type transformation they establish the existence of the Gâteaux
derivative with respect to the initial data in L2(Ω× [0,T ];Rd). The authors of Meyer-
Brandis and Proske (2010) and Mohammed, Nilssen, and Proske (2015) use the
Malliavin calculus. In particular, Mohammed, Nilssen, and Proske (2015) prove
that the solution of Equation (1) on p. 1 with a bounded measurable drift vector
a and the identity diffusion matrix belongs to the space L2(Ω;W 1,p(U )) for each
t ∈Rd ,p > 1, and any open and bounded U ∈Rd . Unfortunately, in these works no
representations for the derivatives are given.

The one-dimensional case is considered in Aryasova and Pilipenko (2012) and
Attanasio (2010) and explicit expressions for the Sobolev derivative are obtained.
The formulas involve the local time of the initial process. There is no direct general-
ization of the expressions for the Sobolev derivative to the multidimensional case
because the local time at a point does not exist in the multidimensional situation.

The aim of this paper is to get a natural representation for the derivative ∇xϕt(x)
of the solution to Equation (1) on p. 1. We assume that σ satisfies conditions (C1)
to (C3) on the preceding page, and for some ρ > 0 and all 1 ≤ k ≤m, 1 ≤ i, j ≤ d, the

function
∣∣∣∣∣∂σ ik∂yj

(s,y)
∣∣∣∣∣2+ρ

belongs to the Kato-type class K, i.e.,

lim
t↓0

sup
t0∈[0,∞)
x0∈Rd

∫ t0+t

t0

ds
∫
R
d

1
(2π(s − t0))d/2

exp

−
∣∣∣y − x0

∣∣∣2
2(s − t0)

×
∣∣∣∣∣∣∂σ ik∂yj

(s,y)

∣∣∣∣∣∣
2+ρ

dy = 0.

We show that the derivative Yt(x) = ∇xϕt(x) is a solution to the sde

Yt(x) = E +
∫ t

0
dAs(ϕ(x))Ys(x) +

m∑
k=1

∫ t

0
∇σk(s,ϕs(x))Ys(x)dwk(s), (3)

where E is the d-dimensional identity matrix, As(ϕ(x)) is a continuous additive
functional of the process (t,ϕt(x))t≥0, which is equal to

∫ t
0 ∇a(s,ϕs(x))ds if a is

differentiable. This representation is a natural generalization of the expressions for
the smooth case.

We prove the main result under the assumption that for each t ≥ 0 and all
1 ≤ i ≤ d, ai(t, ·) is a function of bounded variation on R

d , i.e., for each 1 ≤ j ≤ d, the
generalized derivative µij (t,dy) = ∂ai

∂xj
(t,dy) is a signed measure on R

d . Besides, we

suppose that for all 1 ≤ i, j ≤ d, µij (t,dy)dt is of the class K, i.e.,

lim
t↓0

sup
t0∈[0,∞)
x0∈R

∫ t0+t

t0

ds
∫
R
d

1
(2π(s − t0))d/2

exp

−
∣∣∣y − x0

∣∣∣2
2(s − t0)

∣∣∣µ∣∣∣ij (s,dy) = 0,

where
∣∣∣µ∣∣∣ij = µij,+ + µij,− is the variation of µij ; µij,+, µij,− are measures from the

Hahn-Jordan decomposition µij = µij,+ −µij,−.
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Similar results for a homogeneous sde with the identity diffusion matrix and a
drift being a vector function of bounded variation are obtained in Aryasova and
Pilipenko (2014). In this case, there is no martingale member in the right-hand
side of Equation (3) on the previous page. This essentially simplifies the proof. The
argument is based on the theory of additive functionals of homogeneous Markov
processes developed by Dynkin (1965). In Bogachev and Pilipenko (2015) the
same method is applied to a homogeneous sde with Lévi noise and a drift being a
vector function of bounded variation. The authors prove the existence of a strong
solution and the differentiability of the solution with respect to the initial data.
Unfortunately, Dynkin’s theory can not be directly applied to our problem because
(ϕt(x))t≥0 is not homogeneous.

The paper is organized as follows. In Section 1 we collect some facts from the
theory of additive functionals of homogeneous Markov processes5. We consider a
homogeneous process (t,ϕt)t≥0 and adapt Dynkin’s theory to the functionals of this
process. The main result is formulated in Section 2 on p. 14 and proved in Section 3
on p. 15. The idea of the proof is to approximate the solution of Equation (1) on p. 1
by solutions of equations with smooth coefficients. The key point is the convergence
of continuous homogeneous additive functionals of the approximating processes to
a functional of the process being the solution to Equation (1) on p. 1 (Lemma 6 on
p. 21). The proof of the corresponding statement uses essentially the result on the
convergence of the transition probability densities of the approximating processes,
which is obtained in Section 4 on p. 29.

The suggested method can be considered as a generalization of the local time
approach used in the one-dimensional case.

1 Preliminaries: continuous additive functionals

Let (ξt ,Ft , Pz) be a càdlàg homogeneous Markov process with a phase space (E,B),
where σ -algebra B contains all one-point sets6. Assume that (ξt)t≥0 has the infinite
life-time. Denote Nt = σ {ξs : 0 ≤ s ≤ t}.

Definition 1 – A random function At , t ≥ 0, adapted to the filtration {Nt} is called
a non-negative continuous additive functional of the process (ξt)t≥0 if it is

• non-negative;

• continuous in t;

• homogeneous additive, i.e., for all t ≥ 0, s > 0, z ∈ E,

At+s = As +θsAt Pz − almost surely, (4)

where θ is the shift operator.

5Dynkin, 1965, Markov Processes.
6See notations in ibid.
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1. Preliminaries: continuous additive functionals

If in addition for each t ≥ 0,

sup
z∈E

EzAt <∞,

then At , t ≥ 0, is called a W-functional.

Remark 1 – It follows from Definition 1 on the preceding page that a W-functional
is non-decreasing in t, and for all z ∈ E

Pz{A0 = 0} = 1.

Definition 2 – The function

ft(z) = EzAt

is called the characteristic of a W -functional At .

Remark 2 (Dynkin7) – For all s ≥ 0, t ≥ 0,

‖ft+s‖E ≤ ‖ft‖E + ‖fs‖E ,

where ‖ft‖E = supz∈E |ft(z)|.

The following theorem states the relation between the convergence of W-functionals
and the convergence of their characteristics.

Theorem 1 (Dynkin8) – Let An,t , n ≥ 1, be W-functionals of the process (ξt)t≥0 and
fn,t(z) = EzAn,t be their characteristics. Suppose that for each t > 0, a function ft(z)
satisfies the condition

lim
n→∞

sup
0≤u≤t

sup
z∈E

∣∣∣fn,u(z)− fu(z)
∣∣∣ = 0. (5)

Then ft(z) is the characteristic of a W-functional At . Moreover,

At = l.i.m.
n→∞

An,t ,

where l.i.m. denotes the convergence in the mean square sense (for any initial distribution
ξ0).

Proposition 1 (Dynkin9) – If for any t ≥ 0 the sequence of non-negative additive
functionals

{
An,t : n ≥ 1

}
of the Markov process (ξt)t≥0 converges in probability to a

continuous functional At , then the convergence in probability is uniform, i.e.

∀ T > 0 sup
t∈[0,T ]

∣∣∣An,t −At ∣∣∣→ 0, n→∞, in probability.

7Dynkin, 1965, Markov Processes, Properties 6.15.
8Ibid., Theorem 6.3.
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Example 1 – Let E = R
d , h be a non-negative bounded measurable function on E,

and suppose that the process (ξt)t≥0 has a transition probability density gt(z1, z2).
Then

At :=
∫ t

0
h(ξs)ds

is a W -functional of the process (ξt)t≥0 and its characteristic is equal to

ft(z) =
∫
E

(∫ t

0
gs(z,v)ds

)
h(v)dv =

∫
E
kt(z,v)h(v)dv,

where

kt(z,v) =
∫ t

0
gs(z,v)ds.

Let a measure ν be such that
∫
E
kt(z,v)ν(dv) is well defined. If we can choose a

sequence of non-negative bounded continuous functions {hn : n ≥ 1} such that for
each T > 0,

lim
n→∞

sup
t∈[0,T ]

sup
z∈E

∣∣∣∣∣∫
E
kt(z,v)hn(v)dv −

∫
E
kt(z,v)ν(dv)

∣∣∣∣∣ = 0,

then by Theorem 1 on the previous page there exists a W-functional Aνt correspond-
ing to the measure ν with its characteristic being equal to

∫
E
kt(z,v)ν(dv).

For a given measure ν, we have a sufficient condition for the existence of a
corresponding W-functional.

Theorem 2 (Dynkin10) – Suppose that

lim
t↓0

sup
z∈E

ft(z) = lim
t↓0

sup
z∈E

∫
E
kt(z,y)ν(dy) = 0. (6)

Then ft(z) is the characteristic of a W-functional Aνt . Moreover,

Aνt = l.i.m.
ε↓0

∫ t

0

fε(ξu)
ε

du,

and the sequence of characteristics of integral functionals
∫ t

0
fε(ξu )
ε du converges to ft(z)

in sense of Equation (5) on the previous page.

9Dynkin, 1965, Markov Processes, Lemma 6.1’.

6
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Consider a process ηt = (η1
t ,η

2
t ), t ≥ 0, which is a (unique) solution to the system

of sdes:
dη1

t = dt,

dη2
t = a(η1

t ,η
2
t )dt +

m∑
k=1

σk(η
1
t ,η

2
t )dwk(t).

(7)

For the initial condition η1
0 = t0, η2

0 = x0, denote the corresponding distribution of
the process (ηt)t≥0 by Pt0,x0

.
Since (ηt)t≥0 is a homogeneous Markov process, we can apply for its investigation

the theory of additive functionals.
Let h be a non-negative bounded measurable function on E = [0,∞)×Rd . Then

(cf. Example 1 on the preceding page)

At =
∫ t

0
h(ηs)ds

is a W-functional of the process (ηt)t≥0. Its characteristic is equal to

ft(t0,x0) = Et0,x0

∫ t

0
h(ηs)ds =

∫ t

0
ds

∫
R
d
G(t0,x0, t0 + s,y)h(t0 + s,y)dy

=
∫ t0+t

t0

ds
∫
R
d
G(t0,x0, s,y)h(s,y)dy, (8)

where G(s,x, t,y), 0 ≤ s ≤ t, x ∈ Rd , y ∈ Rd , is the transition probability density of
the process (η2

t )t≥0.
Let a measure ν on [0,∞) ×Rd be such that

∫ t0+t
t0

∫
R
d G(t0,x0, s,y)ν(ds,dy) < ∞

for all t ≥ 0, t0 ≥ 0, x0 ∈ Rd . If there exists a sequence of non-negative bounded
continuous functions {hn : n ≥ 1} such that for each T > 0,

lim
n→∞

sup
t∈[0,T ]
t0∈[0,∞)
x0∈Rd

∣∣∣∣∣∣
∫ t0+t

t0

ds
∫
R
d
G(t0,x0, s,y)hn(s,y)dy −

∫ t0+t

t0

∫
R
d
G(t0,x0, s,y)ν(ds,dy)

∣∣∣∣∣∣ = 0,

then by Theorem 1 on p. 5 there exists a W-functional corresponding to the measure
ν with its characteristic being equal to

∫ t0+t
t0

∫
R
d G(t0,x0, s,y)ν(ds,dy).

Theorem 3 (Corollary of Theorem 2 on the preceding page) – Suppose that

lim
t↓0

sup
t0∈[0,∞)
x0∈Rd

ft(t0,x0) = lim
t↓0

sup
t0∈[0,∞)
x0∈Rd

∫ t0+t

t0

∫
R
d
G(t0,x0, s,y)ν(ds,dy) = 0. (9)

10Dynkin, 1965, Markov Processes, Theorem 6.6.
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Then ft(z), z ∈ [0,∞)×Rd , is the characteristic of a W-functional Aνt . Moreover,

Aνt = l.i.m.
ε↓0

∫ t

0

fε(ηu)
ε

du,

and the sequence of characteristics of integral functionals
∫ t

0
fε(ηu )
ε du converges to ft(z)

in sense of Equation (5) on p. 5.

Let ηt(t0,x0) = (η1
t (t0,x0),η2

t (t0,x0)) be a solution of Equation (7) on the pre-
vious page with the initial condition (t0,x0) and defined on a probability space
(Ω,F,Ft ,P). Let Pt0,x0

be the distribution of the process (ηt(t0,x0))t≥0, where t0 ≥ 0,
x0 ∈ R

d . In Dynkin’s notation11 (ηt(t0,x0))t≥0,Ft ,P), t0 ≥ 0, x0 ∈ R
d , is called a

Markov family of random functions.
Suppose that the measure ν satisfies the condition of Theorem 3 on the previ-

ous page. Then there exists a W-functional Aνt of the process (ηt)t≥0. According
to the definition of W-functionals, the functional is measurable w.r.t. σ -algebra
generated by the process (ηt)t≥0. Since the process (ηt)t≥0 is continuous and has
the infinite life-time, we can consider Aνt = Aνt (·) as a measurable function on
[0,∞)×C([0,∞),Rd) that depends only on the behavior of the process on [0, t]. The
compositionAνt (η·(t0,x0)), t ≥ 0, is called a W-functional of (ηt(t0,x0))t≥0 correspond-
ing to the measure ν. The function Aνt (η·(t0,x0)) is defined for all t0 ≥ 0,x0 ∈Rd .

If t0 = 0, x0 = x, the process η2
t (0,x) = η2

t (x) is the solution of Equation (1) on p. 1
starting from x and therefore η2

t (x) = ϕt(x). Then ηt(0,x) = (t,ϕt(x)). Since the first
coordinate η1

t (t0,x0) = t0 + t is non-random, we denote Aνt (η·(0,x)) as Aνt (ϕ·(x)).
Let us formulate the sufficient condition for Equation (9) on the previous page.

If a and σ are bounded and measurable, and σ satisfies conditions conditions (C2)
and (C3) on p. 2 then the transition probability density of the process (η2(t))t≥0
satisfies the Gaussian estimate12:

G(s,x, t,y) ≤ C

(t − s)d/2
exp

−c
∣∣∣y − x∣∣∣2
t − s

 (10)

valid in every domain of the form 0 ≤ s < t ≤ T , x ∈ R
d , y ∈ R

d , where T > 0.
Constants C, c are positive and depend only on d, T , ‖a‖T ,∞, ‖σk‖T ,∞, 1 ≤ k ≤m, and
the ellipticity constant B, where ‖a‖T ,∞ = supt∈[0,T ] supx∈Rd ‖a(t,x)‖.

Denote by p0(s,x, t,y) the transition probability density of a Wiener process:

p0(s,x, t,y) =
1

(2π(t − s))d/2
exp

−
∣∣∣y − x∣∣∣2
2(t − s)

 . (11)

11See Dynkin, 1965, Markov Processes.
12See N. I. Portenko, 1990, Generalized Diffusion Processes, Ch. II.
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The following definition is analogous to the definition of the Kato class13.

Definition 3 – A measure ν on [0,∞)×Rd is of the class K, if

lim
t↓0

sup
t0∈[0,∞)
x0∈Rd

∫ t0+t

t0

∫
R
d
p0(t0,x0, s,y)ν(ds,dy) = 0. (12)

Taking into account Equation (10) on the preceding page it is easy to see that if ν is
of the class K then it satisfies condition Equation (9) on p. 7.

Definition 4 – A signed measure ν is of the class K if the measure |ν| is of the class
K, where |ν| = ν+ + ν− is the variation of ν. Here ν+, ν− are the measures from the
Hahn-Jordan decomposition ν = ν+ − ν−.

Let ν = ν+ − ν− be a signed measure belonging to K. Then by Theorem 2 on p. 6
there exist W-functionals Aν

±
t . Denote Aνt = Aν

+

t −Aν
−
t .

Remark 3 – Suppose that the signed measure ν can be represented in the form
ν = ν̃+− ν̃−, where ν̃+, ν̃− are of the class K but are not necessarily orthogonal. Then
one can see that Aν

+

t −Aν
−
t = Aν̃

+

t −Aν̃
−
t .

In what follows we often deal with measures which have densities with respect
to the Lebesgue measure on [0,∞)×Rd .

Definition 5 – A measurable function h on [0,∞)×Rd is called a function of the
class K if the signed measure ν(ds,dy) = h(s,y)dsdy is of the class K.

Remark 4 – Let ν(ds,dx) = µ(dx)ds, where µ is a measure on R
d . Then the Equa-

tion (12) transforms into the following one

lim
t↓0

sup
x0∈Rd

∫ t

0
ds

∫
R
d
p0(0,x0, s,y)µ(dy) = 0. (13)

It is proved14 that µ satisfies the condition Equation (13) if and only if

sup
x∈R

∫
|x−y|≤1

µ(dy) <∞, when d = 1; (14)

lim
ε↓0

sup
x∈R2

∫
|x−y|≤ε

ln
1∣∣∣x − y∣∣∣µ(dy) = 0, when d = 2; (15)

lim
ε↓0

sup
x∈Rd

∫
|x−y|≤ε

∣∣∣x − y∣∣∣2−dµ(dy) = 0, when d ≥ 3. (16)

13Kuwae and Takahashi, 2007, “Kato class measures of symmetric Markov processes under heat
kernel estimates”, Cf.
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Consider now a measure ν of the form ν(ds,dx) = µ(s,dx)ds. Similarly to Equa-
tions (14) to (16) on the previous page one can show that if for each T > 0, µ satisfies
the condition

sup
t∈[0,∞)

sup
x∈R

∫
|x−y|≤1

µ(t,dy) <∞, when d = 1, (17)

lim
ε↓0

sup
t∈[0,∞)

sup
x∈R2

∫
|x−y|≤ε

ln
1∣∣∣x − y∣∣∣µ(t,dy) = 0, when d = 2, (18)

lim
ε↓0

sup
t∈[0,∞)

sup
x∈Rd

∫
|x−y|≤ε

∣∣∣x − y∣∣∣2−dµ(t,dy) = 0, when d ≥ 3, (19)

then ν ∈K.

Remark 5 – Suppose that the measure ν(ds,dx) = µ(s,dx)ds satisfies one of the
conditions Equations (17) to (19). Then it can be verified15 that for each T > 0, r > 0,
there exists K = K(r,T ) > 0 such that for all x ∈Rd , t ∈ [0,T ],

µ(t,B(x,r)) < K,

where B(x,r) is the ball centered at x and with radius r.

In the sequel we use the following modification of Khas’minskii’s lemma16.

Lemma 1 – Let At be a W-functional with the characteristic ft satisfying condition
Equation (9) on p. 7. Then for all p > 0, t ≥ 0, there exists a constant C > 0 depending on
p, t, and the rate of convergence in Equation (9) on p. 7 such that

sup
t0∈[0,∞),x0∈Rd

Et0,x0
exp{pAt} < C.

Example 2 – Let ν(dt,dx) = h(t,x)dtdx, where h is a non-negative bounded measur-
able function. Then the measure ν is of the class K. The functional

At :=
∫ t

0
h(ηs)ds

is a W-functional of the process (ηt)t≥0 with characteristic defined by Equation (8)
on p. 7, and

At(ϕ(x)) =
∫ t

0
h(s,ϕs(x))ds.

14E.g. in Chen, 2002, “Gaugeability and Conditional Gaugeability”, Theorem 2.1.
15Cf. Dynkin, 1965, Markov Processes, Lemma 8.3.
16See Khasminskii, 1959, “On Positive Solutions of the Equation AU +Vu = 0”;

or Sznitman, 1998, Brownian Motion, Obstacles and Random Media. Ch. 1, Lemma 2.1.

10



1. Preliminaries: continuous additive functionals

Example 3 – Local time. Let d = 1. It is well known that for any x,y ∈R there exists
a local time of the process (ϕt(x))t≥0 at the point y, which is defined as

L
y
t (ϕ(x)) = l.i.m.

ε↓0

1
2ε

∫ t

0
1[y−ε,y+ε](ϕs(x))ds.

It can be checked that Lyt (ϕ(x)) is a W-functional of (ϕt(x))t≥0 corresponding
to the measure ν(ds,dx) = dsδy(dx), where δy is the delta measure at the point y.
Indeed, for fixed y ∈R and each ε > 0, put

hε,y(t,x) = hε,y(x) =
1
2ε
1[y−ε,y+ε](x), t ≥ 0,x ∈R,

and νε,y(dt,dx) = hε,y(t,x)dtdx. The function hε,y is bounded and measurable. Then
(see Example 2 on the preceding page) there exists a W-functional of the process
(ηt)t≥0 corresponding to the measure νε,y . This functional is defined by the formula

A
ε,y
t := Aν

ε,y

t =
∫ t

0
hε,y(ηs)ds =

1
2ε

∫ t

0
1[y−ε,y+ε](η

2
s )ds

and its characteristic is equal to

f
ε,y
t (t0,x0) = Et0,x0

A
ε,y
t (η) =

∫ t0+t

t0

ds
∫
R
d
G(t0,x0, s,v)hε,y(s,v)dv.

One can see that f ε,yt (t0,x0) tends to

f
y
t (t0,x0) =

∫ t0+t

t0

G(t0,x0, s,y)ds =
∫ t0+t

t0

ds
∫
R
d
G(t0,x0, s,v)δy(dv)

as ε→ 0 uniformly in t ∈ [0,T ], t0 ∈ [0,∞], x0 ∈R. Then by Theorem 1 on p. 5 there
exists a functional

A
y
t = l.i.m.

ε↓0
A
ε,y
t = l.i.m.

ε↓0

∫ t

0
hε,y(ηs)ds.

In particular,

A
y
t (ϕt(x)) = Lyt (ϕ(x)).

Note that if d ≥ 2, the measure δy is not of the class K. This agrees with the
well-known fact that the local time for a multidimensional Wiener process does not
exist.

The following lemma deals with the convergence of W-functionals of, generally
speaking, different random functions.

11
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Lemma 2 – Let {(ξn,t)t≥0 : n ≥ 0} be a sequence of homogeneous Markov random func-
tions defined on a common probability space (Ω,F, P ) with the common phase space
(E,B), where E is a metric space, B is the Borel σ -algebra. For n ≥ 0, let An,t = An,t(ξn)
be a W-functional of the random function (ξn,t)t≥0 with the characteristic fn,t(z).

Assume that

(A1) for each t ≥ 0, f0,t(z) is continuous in z ∈ E;

(A2) for each t ≥ 0, ξn,t→ ξ0,t , n→∞, in probability P ;

(A3) for all n ≥ 0, lim
δ↓0

∥∥∥fn,δ∥∥∥E = 0, where

∥∥∥fn,δ∥∥∥E = sup
z∈E

∣∣∣fn,δ(z)
∣∣∣;

(A4) for each t > 0,
∥∥∥fn,t − f0,t∥∥∥E → 0, n→∞.

Then for each T > 0,

sup
t∈[0,T ]

∣∣∣An,t(ξn)−A0,t(ξ0)
∣∣∣→ 0, n→∞, in probability P .

Proof. Note that Aδn,t := 1
δ

∫ t
0 fn,δ(ξn,s)ds is a W-functional of the process (ξn,t)t≥0.

Denote its characteristic by f δn,t . Then by Dynkin (1965, Lemma 6.5), for all t ≥ 0,
z ∈ E,

Ez

(
An,t −

1
δ

∫ t

0
fn,δ(ξn,s)ds

)2

≤ 2
(
fn,t(z) + f δn,t(z)

)
sup

0≤u≤t

∥∥∥fn,u − f δn,u∥∥∥E .
Similarly to the proof of Dynkin (1965, Theorem 6.6), we get

∣∣∣f δn,t(z)− fn,t(z)∣∣∣ ≤ 1
δ

∫ t+δ

t

∣∣∣fn,u(z)− fn,t(z)
∣∣∣du +

1
δ

∫ δ

0
fn,u(z)du

≤ 1
δ

∫ t+δ

t

∥∥∥fn,u−t∥∥∥E du +
1
δ

∫ δ

0

∥∥∥fn,u∥∥∥E du ≤ 2
∥∥∥fn,δ∥∥∥E .

So for all t ≥ 0,

sup
0≤u≤t

∥∥∥f δn,u − fn,u∥∥∥E ≤ 2
∥∥∥fn,δ∥∥∥E . (20)

Using the calculations of the proof of Dynkin (1965, Theorem 6.6), once more we
obtain

fn,t(z) + f δn,t(z) = fn,t(z) +
1
δ

∫ t+δ

t
fn,u(z)du − 1

δ

∫ δ

0
fn,u(z)du(Cont. next page)
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1. Preliminaries: continuous additive functionals

≤
∥∥∥fn,t∥∥∥E +

∥∥∥fn,t+δ∥∥∥E
≤ 2

∥∥∥fn,t+δ∥∥∥E . (21)

The inequalities Equation (20) on the preceding page and Equation (21) give us the
estimate

Ez

(
An,t(ξn)− 1

δ

∫ t

0
fn,δ(ξn,s)ds

)2

≤ 8
∥∥∥fn,δ∥∥∥E∥∥∥fn,t+δ∥∥∥E . (22)

Further, we have

Ez(An,t(ξn)−A0,t(ξ0))2 ≤ 4

Ez (An,t(ξn)− 1
δ

∫ t

0
fn,δ(ξn,s)ds

)2

+Ez

(
1
δ

∫ t

0
fn,δ(ξn,s)ds − 1

δ

∫ t

0
f0,δ(ξn,s)ds

)2

+Ez

(
1
δ

∫ t

0
f0,δ(ξn,s)ds − 1

δ

∫ t

0
f0,δ(ξ0,s)ds

)2

+ Ez

(
1
δ

∫ t

0
f0,δ(ξ0,s)ds −A0,t(ξ0)

)2 = 4[I + II + III + IV ]. (23)

By assertion (A3) on the preceding page for any ε > 0 we can choose δ > 0 such
that

∥∥∥f0,δ∥∥∥E < ε. According to assertion (A4) there exists n0 > 0 such that for all
n > n0,∥∥∥fn,δ − f0,δ∥∥∥E < ε.
Then for all n > n0,∥∥∥fn,δ∥∥∥E ≤ ∥∥∥fn,δ − f0,δ∥∥∥E +

∥∥∥f0,δ∥∥∥E < 2ε.

Note that for each n ≥ 0, k ≥ 1, we have
∥∥∥fn,kδ∥∥∥E ≤ k∥∥∥fn,δ∥∥∥E . This implies that for any

t ≥ 0, Mt := supn≥0

∥∥∥fn,t∥∥∥E <∞. Taking into account Equation (22), we obtain that
for all n > n0,

I ≤ 16Mt+δε,

and the same estimate holds for IV .
By the Hölder inequality,

II ≤ t

δ2Ez

∫ t

0

(
fn,δ(ξn,s)− f0,δ(ξn,s)

)2 ds ≤ t
2

δ2Ez sup
z∈E

(
fn,δ(z)− f0,δ(z)

)2

The assertion (A4) on the preceding page yields the estimate II ≤ ε valid for all
n ≥ n1 = n1(ε,δ).

13
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Similarly,

III ≤ t

δ2Ez

∫ t

0

(
f0,δ(ξn,s)− f0,δ(ξ0,s)

)2 ds.

The continuity of the function f0,t(·) and assertion (A2) provide the convergence
f0,δ(ξn,s) to f0,δ(ξ0,s) in probability as n tends to∞. This convergence together with
assertion (A3) allow us to use the dominated convergence theorem and prove that
III → 0 as n→∞. Then the right-hand side of Equation (23) on the previous page
tends to 0 as n tends to∞. The uniform convergence follows from Proposition 1 on
p. 5, which completes the proof. �

2 The main result

In the following theorem we formulate the main result of this paper.

Theorem 4 – Suppose that a = (a1, . . . , ad) : [0,∞)×Rd →R
d is a bounded measurable

function such that for each t ≥ 0 and all 1 ≤ i ≤ d, ai(t, ·) is a function of bounded
variation on R

d , i.e., for each 1 ≤ j ≤ d, the generalized derivative µij (t,dy) = ∂ai

∂yj
(t,dy) is

a signed measure on R
d . Assume that the signed measures νij (dt,dy) := µij (t,dy)dt, 1 ≤

i, j ≤ d, are of the class K.
Let σ : [0,∞)×Rd → R

d ×Rm be a bounded continuous function satisfying condi-
tions (C1) to (C3) on p. 2 and the following condition

(C4) There exists ρ > 0 such that for all 1 ≤ k ≤m, 1 ≤ i, j ≤ d, the function
∣∣∣∣∣∂σ ik∂yj

(s,y)
∣∣∣∣∣2+ρ

is of the class K.

Then there exists the derivative Yt(x) = ∇ϕt(x) in Lp-sense: for all p > 0, x ∈ Rd ,
v ∈Rd , t ≥ 0,

E

∣∣∣∣∣ϕt(x+ εv)−ϕt(x)
ε

−Yt(x)v
∣∣∣∣∣p→ 0, ε→ 0. (24)

This derivative is a unique solution of the integral equation

Yt(x) = E +
∫ t

0
dAνs (ϕ(x))Ys(x) +

m∑
k=1

∫ t

0
∇σk(s,ϕs(x))Ys(x)dwk(s), (25)

where E is the d × d-identity matrix, ∇σk(s,y) =
(
∂σ ik
∂yj

(s,y)
)

1≤i,j≤d
; the first integral in

the right-hand side of Equation (25) is the Lebesgue-Stieltjes integral with respect to the
continuous function of bounded variation t→ Aνt (ϕ(x)).

14



3. The proof of Theorem 4 on the preceding page

Moreover,

P
{
∀t ≥ 0 : ϕt(·) ∈W 1

p,loc(R
d ,Rd),∇ϕt(x) = Yt(x) for λ-a.a. x

}
= 1, (26)

where λ is the Lebesgue measure on R
d .

Remark 6 – The W-functional Aνt =
(
Aν

ij

t

)
1≤i,j≤d

is well defined because the signed

measure ν is of the class K.

Remark 7 – Recall that for all 1 ≤ i, j ≤ d, the mappings Aν
ij,±
t , which we will denote

by Aij,±t , are continuous and monotonic in t. So for each T > 0, the function t→ A
ij
t

is a continuous function of bounded variation on [0,T ] almost surely.

3 The proof of Theorem 4 on the preceding page

The existence and uniqueness of the solution to Equation (25) on the preceding
page follows from Protter (2004, Ch. V, Theorem 7). Indeed, condition (C4) on
the preceding page provides that for all 1 ≤ k ≤m,

∫ t
0 |∇σk(s,ϕs(x))|2 ds <∞ almost

surely and consequently∫ t

0
dAνs (ϕ(x)) +

m∑
k=1

∫ t

0
∇σk(s,ϕs(x))dwk(s), t ≥ 0,

is a semimartingale.
It is well known that the statement of the theorem is true in the case of smooth

coefficients, and the derivative satisfies Equation (2) on p. 2. To prove the theorem
in the general case, we approximate the initial equation by equations with smooth
coefficients.

The proof is divided into two steps.

3.1 First step

In the first step, we assume that there exists R > 0 such that for all t ≥ 0, x ∈ Rd ,
|x| ≥ R, a(t,x) = 0, σ (t,x) = σ̃ = const, σ̃ σ̃ ∗ > 0.

For n ≥ 1, let ωn ∈ C∞0 (Rd) be a non-negative function such that
∫
R
d ωn(z)dz = 1,

and ωn(x) = 0, |x| ≥ 1/n. For all t ≥ 0, x ∈Rd , n ≥ 1, and 1 ≤ k ≤m, put

an(t,x) = (ωn ∗ a)(t,x) =
∫
R
d
ωn(x − y)a(t,y)dy, (27)

σn,k(t,x) = (ωn ∗ σk)(t,x) =
∫
R
d
ωn(x − y)σk(t,y)dy. (28)

15
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Note that for each T > 0,

sup
n≥1
‖an‖T ,∞ ≤ ‖a‖T ,∞, (29)

sup
n≥1

∥∥∥σn,k∥∥∥T ,∞ ≤ ‖σk‖T ,∞, 1 ≤ k ≤m, (30)

where

‖a‖T ,∞ = sup
t∈[0,T ]

sup
x∈Rd
|a(t,x)|.

Besides, for all n ≥ 1, σn satisfies condition (C2) on p. 2, and the ellipticity constant
can be chosen uniformly in n.

Remark 8 – For all n ≥ 1 the transition probability density of the process (ϕn,t(x))t≥0
satisfies the inequality Equation (10) on p. 8. It follows from Equation (29) and con-
dition (C2) on p. 2, which holds uniformly in n, that the constants in Equation (10)
on p. 8 can be chosen uniformly in n ≥ 1.

For each T > 0, we have an→ a, n→∞, in L1([0,T ]×Rd). Choosing subsequences,
without loss of generality we can assume that an(t,x)→ a(t,x), n→∞, for almost all
t ≥ 0 and almost all x w.r.t. the Lebesgue measure. Then for all n ≥ 1, t ≥ 0, x ∈Rd
such that |x| ≥ R+ 1,

an(t,x) = 0, σn(t,x) = σ̃ .

Without loss of generality we can assume that this is true for all x such that |x| > R.
Moreover, from condition (C3) on p. 2 we derive that for each T > 0, σn→ σ , n→∞,
uniformly in (t,x) ∈ [0,T ]×Rd .

Consider the sde:dϕn,t(x) = an(t,ϕn,t(x))dt +
m∑
k=1

σn,k(t,ϕn,t(x))dwk(t),
ϕn,0(x) = x, x ∈Rd .

(31)

For each n ≥ 1 there exists a unique strong solution of Equation (31).

Lemma 3 – For each p ≥ 1,

1. for all t ≥ 0 and any compact set U ∈Rd ,

sup
x∈U, n≥1

(
E(

∣∣∣ϕn,t(x)
∣∣∣p + |ϕt(x)|p)

)
<∞;

2. for all x ∈Rd , T ≥ 0,

E

(
sup

0≤t≤T

∣∣∣ϕn,t(x)−ϕt(x)
∣∣∣p)→ 0 as n→∞.
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3. The proof of Theorem 4 on p. 14

Proof. The first statements follows from the uniform boundedness of the coefficients,
the second is the consequence of Luo (2011, Theorem 3.4). �

For n ≥ 1, put

∇an =
(
∂ain
∂xj

)
1≤i,j≤d

, ∇σn,k =

∂σ in,k∂xj


1≤i,j≤d

.

Denote by Yn,t(x) the matrix of derivatives of ϕn,t(x) in x, i.e., Y ijn,t(x) =
∂ϕin,t(x)
∂xj

,

1 ≤ i, j ≤ d. Then Yn,t(x) satisfies the equation

Yn,t(x) = E+
∫ t

0
∇an(s,ϕn,s(x))Yn,s(x)ds+

m∑
k=1

∫ t

0
∇σn,k(s,ϕn,s(x))Yn,s(x)dwk(s), (32)

where E is the d-dimensional identity matrix.
By the properties of convolution of a generalized function17,

∇an = ∇a ∗ωn = a ∗ ∇ωn, n ≥ 1. (33)

Note that for all n ≥ 1, 1 ≤ i, j ≤ d, ∇aijn is a bounded measurable function on
[0,∞)×Rd . Then (see Example 1 on p. 6) there exists a continuous homogeneous
additive functional

A
ij
n,t(ϕn(x)) =

∫ t

0

∂ain
∂yj

(s,ϕn,s(x))ds

corresponding to the signed measure ∇aijn (s,y)dsdy.

Denote µijn (t,y)dy = ∂ain
∂yj

(t,y)dy. For each n ≥ 1, 1 ≤ i, j ≤ d, put µij,±n = µij,± ∗ωn

(recall that µij(t,dy) = ∂ai

∂yj
(t,dy)). Then µijn = µij,+n −µij,−n . It can be easily seen that

the measures νij,±n (dt,dy) = µij,±n (t,dy)dt, n ≥ 1, are of the class K. By Remark 8 on

the preceding page, for each x ∈Rd there exist W-functionals Aν
ij,±
n
t (ϕn,·(x)), which

we denote by Aij,±t (ϕn(x)). Generally speaking, µij,±n , (µij ∗ωn)± but, by Remark 3
on p. 9,

A
ij
n,t(ϕn(x)) = Aν

ij
n
t (ϕn,·(x)) = Aij,+t (ϕn(x))−Aij,−t (ϕn(x)).

Denote ϕ0,t(x) = ϕt(x), Y0,t(x) = Yt(x), a0 = a, σ0 = σ , A0,t = At .

Lemma 4 – For all t ≥ 0, p > 0, 1 ≤ i, j ≤ d, there exists a constant C such that

sup
n≥0

sup
x∈Rd

Eexp
{
pA

ij,±
n,t (ϕn(x))

}
< C. (34)

17See Vladimirov, 1967, The Equation of Mathematical Physics, Ch. 2, §7.
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Proof. The statement of lemma follows from Lemma 1 on p. 10 and Remark 8 on
p. 16. �

Lemma 5 – For all T ≥ 0, x ∈Rd , p > 0,

sup
n≥0

E sup
0≤t≤T

∣∣∣Yn,t(x)
∣∣∣p <∞.

Proof. For all t > 0, n ≥ 0, define the variation of Aijn,· on [0, t] by

VarAijn,t(ϕ(x)) := Aij,+n,t (ϕ(x)) +Aij,−n,t (ϕ(x)),

and denote

VarAn,t(ϕ(x)) := Σ1≤i,j≤d VarAijn,t(ϕ(x)).

Set

τNn = inf

t ≥ 0 :
∫ t

0

m∑
k=1

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2 ds+ VarAn,s(ϕ(x)) +

∣∣∣Yn,s(x)
∣∣∣2 ≥N.

For the sake of brevity, denote

hn(t,C, l) = −2lVarAn,t(ϕ(x))−C
m∑
k=1

∫ t

0
|∇σk(s,ϕs(x))|2 ds.

By Ito’s formula, for all n ≥ 0, l ∈N,

ehn(t∧τNn ,C,l)
∣∣∣Yn,t∧τNn (x)

∣∣∣2l =
∣∣∣Yn,0(x)

∣∣∣2l +M(t ∧ τNn ) + I + II + III + IV ,

where

M(t ∧ τNn ) = 2l
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2l−2

×
d∑

i,j=1

Y
ij
n,s(x)

m∑
k=1

d∑
r=1

∇σ irn,k(s,ϕn,s(x))Y rjn,s(x)dwk(s),

I = −2l
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2ldVarAn,s(ϕ(x)),

II = −C
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2l m∑

k=1

∣∣∣∇σn,k(s,ϕs(x))
∣∣∣2 ds,

III = 2l
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2l−2

d∑
i,j=1

Y
ij
n,s(x)

d∑
r=1

dAirn,s(ϕ(x))Y rjn,s(x),

18
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IV = 2l
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2l−4

×
( d∑
i,j=1

d∑
v,q=1

(
2(l − 1)Y ijn,s(x)Y vqn,s (x) +

∣∣∣Yn,s(x)
∣∣∣2δviδqj)

×
m∑
k=1

d∑
r=1

∇σvrn,k(s,ϕn,s(x))Y rqn,s(x)
d∑
e=1

∇σ ien,k(s,ϕn,s(x))Y ejn,s(x)
)

ds,

where |·| is the Hilbert-Schmidt norm.
Note that I + III ≤ 0. Besides, there exists a constant C̃ = C̃(d) > 0 such that

IV ≤ 2lC̃
∫ t∧τNn

0
ehn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣2l m∑

k=1

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2 ds.

Then we can choose C > 0 so large that IV + II ≤ 0. We obtain

ehn(t∧τNn ,C,l)
∣∣∣Yn,t∧τNn (x)

∣∣∣2l ≤ ∣∣∣Yn,0(x)
∣∣∣2l +M(t ∧ τNn ), (35)

where M(t ∧ τNn ), t ≥ 0, is a square integrable martingale. Then, for all t ≥ 0,

Eehn(t∧τNn ,C,l)
∣∣∣Yn,t∧τNn (x)

∣∣∣2l ≤ K,
where K =

∣∣∣Yn,0(x)
∣∣∣2l = |E|2l = dl . Passing to the limit as N →∞, we get that for all

T > 0 there exists C = C(l,d) such that

sup
n≥0

sup
t∈[0,T ]

Eehn(t,C,l)
∣∣∣Yn,t(x)

∣∣∣2l ≤ K. (36)

By Equation (35), for all T > 0,

E sup
t∈[0,T ]

e2hn(t,C,l)
∣∣∣Yn,t(x)

∣∣∣4l ≤ 2E sup
t∈[0,T ]

(∣∣∣Yn,0(x)
∣∣∣4l +M2(t)

)
≤ K ′

1 +
m∑
k=1

E

∫ T

0
e2hn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣4l ∣∣∣∇σn,k(s,ϕn,s(x))

∣∣∣2 ds

 .
Using the Hölder inequality with p = 1 + ρ

2 , we get

E sup
t∈[0,T ]

e2hn(t,C,l)
∣∣∣Yn,t(x)

∣∣∣4l ≤ K ′
1 +

E∫ T

0

(
e2hn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣4l) 2+ρ

ρ
ds


ρ

2+ρ

(Cont. next page)
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×
m∑
k=1

(
E

∫ T

0

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2+ρ

ds
) 2

2+ρ
 . (37)

Since for all 1 ≤ k ≤ m, 1 ≤ i, j ≤ d, the function
∣∣∣∣∣∂σ ik∂yj

(s,y)
∣∣∣∣∣2+ρ

is of the class K,

the functions
∣∣∣∣∣∂σ in,k∂yj

(s,y)
∣∣∣∣∣2+ρ

, n ≥ 1, are of the class K too. It follows from Lemma 4

on p. 17 that for each T > 0,

sup
n≥1

Eexp
{∫ T

0

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2+ρ

}
ds < C(T ), (38)

where C(T ) is a constant which depends on T . Consequently,

sup
n≥0

E

∫ T

0

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2+ρ

ds <∞. (39)

By Equation (36) on the previous page we have

sup
n≥0

E

∫ T

0

(
e2hn(s,C,l)

∣∣∣Yn,s(x)
∣∣∣4l) 2+ρ

ρ
ds <∞. (40)

From Equations (39) and (40) we get

sup
n≥0

E sup
t∈[0,T ]

e2hn(t,C,l)
∣∣∣Yn,t(x)

∣∣∣4l <∞. (41)

Finally, for any T > 0, by the Hölder inequality,

sup
n≥0

E sup
t∈[0,T ]

∣∣∣Yn,s(x)
∣∣∣2l = sup

n≥0
E sup
t∈[0,T ]

[(
ehn(t,C,l)

∣∣∣Yn,s(x)
∣∣∣2l)e−hn(t,C,l)

]
≤ sup
n≥0


E sup

t∈[0,T ]
e2hn(t,C,l)

∣∣∣Yn,t(x)
∣∣∣4l1/2

×

Eexp

4lVarAn,T (ϕn(x))

+ 2C
m∑
k=1

∫ T

0

∣∣∣∇σn,k(s,ϕn,s(x))
∣∣∣2 ds




1/2 .
Now the assertion of the lemma follows from Equation (39), Equation (41), and
the fact that for each T > 0, supn≥0 VarAn,T (ϕn(x)) <∞, which is a consequence of
Lemma 4 on p. 17. �
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3. The proof of Theorem 4 on p. 14

Lemma 6 – For each T > 0, x ∈Rd , 1 ≤ i, j ≤ d,

sup
0≤t≤T

∣∣∣∣Aij,±n,t (ϕn(x))−Aij,±t (ϕ(x))
∣∣∣∣→ 0, n→∞, in probability P.

Proof. To prove the lemma we use Lemma 2 on p. 12 in which we put ξn,t = ηn,t ,
An,t = An,t(ηn), ξ0,t = ηt , and A0,t = At(η), n ≥ 1, t ≥ 0. Here (ηn,t)t≥0 is a solution to
the system of the form Equation (7) on p. 7 with coefficients an,σn,k . Then

f0,t(t0,x0) =
∫ t+t0

t0

ds
∫
R
d
G(t0,x, s,y)µ(dy),

where G(s,x, t,y), 0 ≤ s ≤ t, x,y ∈ Rd , is the transition probability density of the
process (η2

t )t≥0. For each T > 0, the functionG(s,x, t,y) is continuous on 0 ≤ s < t ≤ T ,
x,y ∈Rd18. Taking into account the inequality Equation (10) on p. 8, which holds
locally uniformly in x, we obtain assertion (A1) of Lemma 2 on p. 12 from the
dominated convergence theorem. Assertion (A2) is a consequence of Lemma 3 on
p. 16. Assertion (A3) is obvious. Assertion (A4) follows from Lemma 9 on p. 34,
which is proved in Section 4 on p. 29. �

Lemma 7 – For all T ≥ 0, x ∈Rd ,

sup
0≤t≤T

∣∣∣Yn,t(x)−Yt(x)
∣∣∣→ 0, n→∞, in probability P.

To prove the lemma we need three auxiliary propositions. The first one is a version
of the Gronwall inequality and can be obtained by a standard argument.

Proposition 2 – Let x(t), C(t) be non-negative continuous functions on [0,+∞), K(t)
be a non-negative, non-decreasing function, and K(0) = 0. If for all 0 ≤ t ≤ T ,

x(t) ≤ C(t) +
∫ t

0
x(s)dK(s),

then

x(T ) ≤
(

sup
0≤t≤T

C(t)
)

exp{K(T )}.

The following simple proposition is technical.

Proposition 3 – Let {hn : n ≥ 1} be a sequence of continuous monotonic functions on
[0,T ], and f ∈ C([0,T ]). Suppose that t ∈ [0,T ], hn(t)→ h0(t), as n→∞, t ∈ [0,T ].
Then

sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t

0
f (s)dhn(s)−

∫ t

0
f (s)dh0(s)

∣∣∣∣∣∣→ 0, n→∞.

18See N. I. Portenko, 1990, Generalized Diffusion Processes, Ch. 2, §2.
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Proof. By Helly’s theorem
∫ t

0 f (s)dhn(s)→
∫ t

0 f (s)dh0(s),n→∞, t ∈ [0,T ], pointwise.
If f is non-negative, then the uniform convergence follows from Dini’s theorem.
In the general case we can consider a decomposition f = f+ − f−, where f± are
continuous non-negative functions, and apply the above argument to f±. �

Proposition 4 – Let X,Y be complete separable metric spaces, (Ω,F,P) be a probability
space. Let measurable mappings ξn : Ω→ X, hn : X→ Y , n ≥ 0, be such that

1. ξn→ ξ0, n→∞, in probability P;

2. hn→ h0, n→∞, in measure ν, where ν is a probability measure on X;

3. for all n ≥ 1 the distribution Pξn of ξn is absolutely continuous w.r.t. the measure ν;

4. the family of densities {dPξndν : n ≥ 1} is uniformly integrable w.r.t. the measure ν.

Then hn(ξn)→ h0(ξ0), n→∞, in probability.

The proof can be found, for example, in Bogachev (2007, Corollary 9.9.11), or Kulik
and Pilipenko (2000, Lemma 2).

Proof (of Lemma 7 on the previous page). Let Zn(t), n ≥ 0, be a solution to the equa-
tion {

dZn(t) = −Zn(t)dAn,t(ϕn(x)), t ∈ [0,T ],

Zn(0) = E.

where E is the d-dimensional identity matrix, T > 0. For each t ∈ [0,T ], n ≥ 0 the
matrix Zn(t) is invertible, anddZ−1

n (t) = dAn,t(ϕn(x))Z−1
n (t), t ∈ [0,T ],

Z−1
n (0) = E,

We get

|Zn(t)| ≤ |E|+
∫ t

0
|Zn(s)|dVarAn,s(ϕn(x)).

It follows from Proposition 2 on the previous page that

sup
t∈[0,T ]

|Zn(t)| ≤ d1/2 exp
{
VarAn,T (ϕn(x))

}
. (42)

Here we use that |E| = d1/2. Similarly,

sup
t∈[0,T ]

∣∣∣Z−1
n (t)

∣∣∣ ≤ d1/2 exp
{
VarAn,T (ϕn(x))

}
. (43)
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3. The proof of Theorem 4 on p. 14

Let us prove that

sup
t∈[0,T ]

|Zn(t)−Z0(t)|+ sup
t∈[0,T ]

∣∣∣Z−1
n (t)−Z−1

0 (t)
∣∣∣→ 0, n→∞, in probability P. (44)

We have

|Zn(t)−Z0(t)| ≤
∣∣∣∣∣∣
∫ t

0
(Z0(s)−Zn(s))dAn,s(ϕn(x))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

0
Z0(s)

(
dA0,s(ϕ0(x))− dAn,s(ϕn(x))

)∣∣∣∣∣∣
≤

∫ t

0
|Z0(s)−Zn(s)|dVarAn,s(ϕn(x))

+

∣∣∣∣∣∣
∫ t

0
Z0(s)

(
dA0,s(ϕ0(x))−dAn,s(ϕn(x))

)∣∣∣∣∣∣.
By Proposition 2 on p. 21,

|Zn(t)−Z0(t)| ≤ sup
0≤u≤t

∣∣∣∣∣∫ u

0
Z0(s)

(
dA0,s(ϕ0(x))−dAn,s(ϕn(x))

)∣∣∣∣∣
× exp{VarAn,t(ϕn(x))}

≤ sup
0≤u≤t

(∣∣∣∣∣∫ u

0
Z0(s)

(
dA+

0,s(ϕ0(x))−dA+
n,s(ϕn(x))

)∣∣∣∣∣
+ sup

0≤u≤t

∣∣∣∣∣∫ u

0
Z0(s)

(
dA−0,s(ϕ0(x))−dA−n,s(ϕn(x))

)∣∣∣∣∣)
× exp{VarAn,t(ϕn(x))}. (45)

Let us apply Proposition 3 on p. 21. Put hn(s) = A+
n,s(ϕn(x)), n ≥ 0, f (s) = Z0(s).

Taking into account Lemma 4 on p. 17 we get that the first summand in the right-
hand side of Equation (45) tends to 0 as n → ∞ in probability P uniformly in
t ∈ [0,T ]. The second summand can be treated analogously. Thus we have proved:

sup
t∈[0,T ]

|Zn(t)−Z0(t)| → 0, n→∞, in probability P.

The same convergence can be obtained for Z−1
n .

Using Ito’s formula we get

Zn(t)Yn,t(x)−Z0(t)Y0,t(x)

=
m∑
k=1

∫ t

0

(
Zn(s)∇σn,k(s,ϕn,s(x))Yn,s(x)−Z0(s)∇σ0,k(s,ϕ0,s(x))Y0,s(x)

)
dwk(s).
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Applying Ito’s formula again, we get for any K > 0,

∣∣∣Zn(t)Yn,t(x)−Z0(t)Y0,t(x)
∣∣∣2 exp

−K
∫ t

0

m∑
k=1

∣∣∣∇σ0,k(s,ϕ0,s(x))
∣∣∣2 ds


=

∫ t

0
exp

−K m∑
k=1

∫ s

0

∣∣∣∇σ0,k(u,ϕ0,u(x))
∣∣∣2 du

×
m∑
k=1

(∣∣∣Zn(s)∇σn,k(s,ϕn,s(x))Yn,s(x)−Z0(s)∇σ0,k(s,ϕ0,s(x))Y0,s(x)
∣∣∣2 −

K
∣∣∣∇σ0,k(s,ϕ0,s(x))

∣∣∣2∣∣∣Zn(s)Yn,s(x)−Z0(s)Y0,s(x)
∣∣∣2)ds+

2
∫ t

0
exp

−K
∫ t

0

m∑
k=1

∣∣∣∇σ0,k(s,ϕ0,s(x))
∣∣∣2 ds

(
Zn(s)Yn,s(x)−Z0(s)Y0,s(x)

)
×

m∑
k=1

(
Zn(s)∇σn,k(s,ϕn,s(x))Yn,s(x)−Z0(s)∇σ0,k(s,ϕ0,s(x))Y0,s(x)

)
dwk(s).

Taking into account the inequalities Equations (38) and (42) and Lemma 5 on p. 18,
on p. 20 and on p. 22, one can see that the last summand in the right-hand side of
the previous equation is a square integrable martingale. The same estimates allow
us to write

E

∣∣∣Zn(t)Yn,t(x)−Z0(t)Y0,t(x)
∣∣∣2 exp

−K
∫ t

0

m∑
k=1

∣∣∣∇σ0,k(s,ϕ0,s(x))
∣∣∣2 ds

 ≤ I + II, (46)

where

I = E

∫ t

0
exp

−K m∑
k=1

∫ s

0

∣∣∣∇σ0,k(u,ϕ0,u(x))
∣∣∣2 du


×

m∑
k=1

∣∣∣Zn(s)∇σn,k(s,ϕn,s(x))Z−1
n (s)−Z0(s)∇σ0,k(s,ϕ0,s(x))Z−1

0 (s)
∣∣∣2∣∣∣Zn(s)Yn,s(x)

∣∣∣2 ds,

II = E

∫ t

0
exp

−K m∑
k=1

∫ s

0

∣∣∣∇σ0,k(u,ϕ0,u(x))
∣∣∣2 du


×

m∑
k=1

[(∣∣∣Z0(s)∇σ0,k(s,ϕ0,s(x))Z−1
0 (s)

∣∣∣2 −K ∣∣∣∇σ0,k(s,ϕ0,s(x))
∣∣∣2)

×
∣∣∣Zn(s)Yn,s(x)−Z0(s)Y0,s(x)

∣∣∣2]ds. (47)

It follows from the estimates Equations (42) and (43) on p. 22 that for large
enough K , II ≤ 0.
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3. The proof of Theorem 4 on p. 14

Consider I . First using Proposition 4 on p. 22 let us show that for 1 ≤ k ≤ m,
s ≥ 0, and x ∈ R

d , ∇σn,k(s,ϕn,s(x)) → ∇σ0,k(s,ϕ0,s(x)), n → ∞, in probability. Fix
s ≥ 0, x ∈Rd , and 1 ≤ k ≤m. We apply Proposition 4 on p. 22 to ξn = ϕn,s(x), n ≥ 0.
The convergence ξn→ ξ0, n→∞, in probability, follows from Lemma 3 on p. 16.
Put X = R

d , Y = R
d ×Rd , ν(dx) = C dx

1+|x|d+1 , where C is a constant such that ν is a

probability measure on R
d . For fixed s,x, and k put hn = ∇σn,k(s, ·), h0 = ∇σ0,k(s, ·).

Since for each s ∈ [0,T ], ∇σn,k(s, ·)→ ∇σ0,k(s, ·), n→∞, in L2(Rd) we can assume
without lost of generality that ∇σn,k(s,y)→ ∇σ0,k(s,y), n→∞, for each 1 ≤ k ≤ m
and almost all s ∈ [0,T ], y ∈ Rd , with respect to the Lebesgue measure. Then for
almost all s ∈ [0,T ], hn → h0, n → ∞, in ν. Note that the processes (ϕn,t(x))t≥0,
n ≥ 0, possess transition probability densities. Thus the distributions Pξn , n ≥ 0, are
absolutely continuous w.r.t. the Lebesgue measure on R

d and, consequently, w.r.t.
the measure ν. Using Equation (10) on p. 8 it is easy to see that the sequence of

densities
{
dPξn
dν : n ≥ 1

}
is uniformly integrable w.r.t. the measure ν. Therefore, all

the assumptions of Proposition 4 on p. 22 are fulfilled, and for almost all s ∈ [0,T ],
and all x ∈Rd ,

∇σn,k(s,ϕn,s(x))→∇σ0,k(s,ϕ0,s(x)), n→∞, in probability P. (48)

Let us return to I . We have∣∣∣Zn(s)∇σn,k(s,ϕn,s(x))Z−1
n (s)−Z0(s)∇σ0,k(s,ϕ0,s(x))Z−1

0 (s)
∣∣∣

≤
∣∣∣Zn(s)∇σn,k(s,ϕn,s(x))

∣∣∣∣∣∣Z−1
n (s)−Z−1

0 (s)
∣∣∣

+ |Zn(s)|
∣∣∣∇σn,k(s,ϕn,s(x))−∇σ0,k(s,ϕ0,s(x))

∣∣∣∣∣∣Z−1
0 (s)

∣∣∣
+ |Zn(s)−Z0(s)|

∣∣∣∇σ0,k(s,ϕ0,s(x))Z−1
0 (s)

∣∣∣.
Using the Hölder inequality as it was done in Equation (37) on p. 20 and taking
into account the estimates Equation (42) on p. 22, Equation (43) on p. 22, and the
relations Equation (44) on p. 23 and Equation (48), we get that the first expectation
in the right-hand side of Equation (46) on the preceding page tends to 0 as n→∞.
Thus we obtained that

sup
t∈[0,T ]

∣∣∣Zn(t)Yn,t(x)−Z0(t)Y0,t(x)
∣∣∣→ 0, n→∞, in probability P.

Now the assertion of the lemma can be deduce from the inequality∣∣∣Yn,t(x)−Y0,t(x)
∣∣∣ ≤ ∣∣∣Z−1

n (t)
∣∣∣∣∣∣Zn(t)Yn,t(x)−Z0(t)Y0(t)

∣∣∣+
∣∣∣Z−1
n (t)−Z−1

0 (t)
∣∣∣|Z0(t)Y0(t)|

using standard arguments for the proof of uniform convergence, which completes
the proof of Lemma 7 on p. 21. �
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Making use of Lemma 3 on p. 16 and the dominated convergence theorem, for each
T > 0, p ≥ 1, we get the relation

E sup
0≤t≤T

∫
U

∣∣∣ϕn,t(x)−ϕt(x)
∣∣∣pdx→ 0, n→∞,

valid for any bounded domain U ⊂R
d . Then there exists a subsequence {nk : k ≥ 1}

such that

sup
0≤t≤T

∫
U

∣∣∣ϕnk ,t(x)−ϕt(x)
∣∣∣pdx→ 0 a.s. as k→∞.

Without loss of generality we can assume that

sup
0≤t≤T

∫
U

∣∣∣ϕn,t(x)−ϕt(x)
∣∣∣pdx→ 0 a.s. as n→∞. (49)

It follows from Lemma 7 on p. 21 in the similar way that for each T > 0, p ≥ 0,

sup
0≤t≤T

∫
U

∣∣∣Yn,t(x)−Yt(x)
∣∣∣pdx→ 0, n→∞, a.s. (50)

Since the Sobolev space is a Banach space, the relations Equations (49) and (50)
mean that Yt(x) is the matrix of the Sobolev derivatives of the solution to Equa-
tions (1) and (26) on p. 1 and on p. 15 holds.

3.2 Second step

Now we treat the general case using localization. Let the coefficients of Equation (1)
on p. 1 satisfy the assumptions of Theorem 4 on p. 14. Let the functions β,γ ∈ C1(Rd)
be such that

∣∣∣β(x)
∣∣∣ ≤ 1; β(x) = 1, if |x| ≤ 2; β(x) = 0, if |x| > 3;

∣∣∣γ(x)
∣∣∣ ≤ 1; γ(x) = 0, if

|x| ≤ 1; γ(x) = 1, if |x| > 3/2. For R > 1, put βR(x) = β(x/R), γR(x) = γ(x/R). Consider
the sde

dϕR,t(x) = a(t,ϕR,t(x))βR(ϕR,t(x))dt

+
m∑
k=1

σk(t,ϕR,t(x))βR(ϕR,t(x))dwk(t)

+
m∑
j=1

σ̃jγR(ϕR,t(x))dw̃j (t),

ϕR,0(x) = x,

(51)

where σ̃ is a d ×m constant matrix such that σ̃ σ̃ ∗ > 0; (w̃(t))t≥0 = (w̃1(t), . . . , w̃m(t))t≥0
is an m-dimensional Wiener process independent of (w(t))t≥0.
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Similarly to Lemma 3 on p. 16, for each x ∈Rd , we get

sup
R>1

E

(∣∣∣ϕR,t(x)
∣∣∣p + |ϕt(x)|p

)
<∞.

Note that ϕR,t(x) coincides with ϕt(x) for t ≤ τR, where τR = inf{s ≥ 0 : ϕs(x) ≥ R}.
Then from the boundedness of the coefficients of Equation (1) on p. 1 we obtain
that for all x ∈Rd ,

P

{
sup

0≤t≤T

∣∣∣ϕR,t(x)−ϕt(x)
∣∣∣ > ε} ≤ P

{
sup

0≤t≤T
|ϕt(x)| > R

}
→ 0, R→∞.

It is not difficult, by analogy to Equation (49) on the preceding page, to arrive at the
relation

sup
0≤t≤T

∫
U

∣∣∣ϕRk ,t(x)−ϕt(x)
∣∣∣pdx→ 0, k→∞, a.s., (52)

valid for all x ∈Rd , p ≥ 1, and a sequence {Rk : k ≥ 1} such that Rk →∞, k→∞. It
follows from Lemma 5 on p. 18 that for all x ∈Rd ,

sup
R>1

E

(
sup

0≤t≤T
(
∣∣∣YR,t(x)

∣∣∣p + |Yt(x)|p)
)
<∞. (53)

According to Section 3.1 on p. 15, for each k ≥ 1 there exists the derivative ∇ϕRk ,t(x)
which, for almost all x ∈Rd , is equal to the solution of the equation

YRk ,t(x) = E +
∫ t

0
βRk (ϕRk ,s(x))dARk ,s(ϕRk (x))YRk ,s(x)

+
∫ t

0
∇βRk (ϕRk ,s(x))a(s,ϕRk ,s(x))YRk ,s(x)ds

+
m∑
k=1

∫ t

0
∇σk(s,ϕRk ,s(x))βRk (ϕRk ,s(x))YRk ,s(x)dwk(s)

+
m∑
k=1

∫ t

0
σk(s,ϕRk ,s(x))∇βRk (ϕRk ,s(x))YRk ,s(x)dwk(s)

+
m∑
j=1

∫ t

0
σ̃j∇γRk (ϕRk ,s(x))dw̃j (s). (54)

Note that ARk ,t(ϕRk (x)) = At(ϕ(x)), for t ≤ τRk , where τRk = inf{t : ϕt(x) ≥ Rk}. There-
fore, for t ≤ τRk , k ≥ 1, Equation (54) coincides with Equation (25) on p. 14. As
τRk →∞, k→∞, we deduce that

sup
0≤t≤T

∫
U

∣∣∣YRk ,t(x)−Yt(x)
∣∣∣pdx→ 0, k→∞, almost surely, (55)
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for T > 0, any bounded domain U ⊂ R
d , and a sequence {Rk : k ≥ 1} such that

Rk →∞ as k→∞. From Equations (52) and (55) on the previous page we get that
Yt(x) = ∇ϕt(x), t ≥ 0, for λ-a.a. x ∈Rd , almost surely.

Let us verify Equation (24) on p. 14. Given R > 1, the coefficients of Equation (51)
on p. 26 satisfy all the localizing conditions imposed on the coefficients of Equa-
tion (1) on p. 1 in Section 3.1 on p. 15. Denote by ϕRn,t , n ≥ 1, a solution to equation
of the form Equation (51) on p. 26 with smooth coefficients such that for p ≥ 1,
T > 0, and x ∈Rd ,

E

(
sup

0≤t≤T

∣∣∣ϕRn,t(x)−ϕR,t(x)
∣∣∣p)→ 0, n→∞, (56)

E

(
sup

0≤t≤T

∣∣∣Y Rn,t(x)−YR,t(x)
∣∣∣p)→ 0, n→∞. (57)

Then for all x,h ∈Rd , v ∈R,

ϕRn,t(x+ vh) = ϕRn,t(x) + h
∫ v

0
Y Rn,t(x+uh)du.

This equation, Equations (56) and (57), and Lemma 5 on p. 18 imply that for all
x,h ∈Rd , v ∈R, and R > 1,

ϕR,t(x+ vh) = ϕR,t(x) + h
∫ v

0
YR,t(x+uh)du.

By Equations (52), (53) and (55) on the previous page we get the equality

ϕt(x+ vh) = ϕt(x) + h
∫ v

0
Yt(x+uh)du (58)

valid for all x,h ∈Rd ,v ∈R, and R > 1, To obtain Equation (24) on p. 14 it remains
to prove the Lp-continuity of Yt(x) w.r.t. x. Note that Lemma 6 on p. 21 implies the
convergence

At(ϕ(x))→ At(ϕ(x0)), x→ x0, in probability.

Then

Yt(x)→ Yt(x0), x→ x0, in probability. (59)

This together with Lemma 5 on p. 18 entails convergence in Lp, p > 0. Now Equa-
tion (24) on p. 14 follows from Equations (58) and (59). This completes the proof of
Theorem 4 on p. 14.
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4 Appendix. Convergence of transition probability
densities

In this section we prove the convergence of the transition probability densities of
the processes (ϕn,t)t≥0, n ≥ 1, to that of the process (ϕt)t≥0 (Lemma 8 on the next
page), which entails the convergence of characteristics of W-functionals (Lemma 9
on p. 34). The latter result is the basis of the proof of Lemma 6 on p. 21. We use the
parametrix method, the transition probability densities of the processes with an ≡ 0,
n ≥ 1, being considered as the initial ones.

Suppose that σ satisfies the conditions of Theorem 4 on p. 14 and σ (t,x) =
σ̃ = const for t ≥ 0, x ∈ Rd such that |x| ≥ R, σ̃ σ̃ ∗ > 0. Let σn,n ≥ 1, be defined by
Equation (28) on p. 15. Then σn→ σ,n→∞, uniformly in (t,x) ∈ [0,T ]×Rd . Recall
that we can assume that σn(t,x) = σ̃ for all n ≥ 1, t ≥ 0, and x ∈Rd such that |x| ≥ R.

Denote σ0 = σ , ϕ0 = ϕ, and for n ≥ 0 put

bn = σnσ
∗
n.

Then bn→ b0, n→∞, uniformly in (t,x) ∈ [0,T ]×Rd , T > 0.
Consider the parabolic equation

∂un(s,x)
∂s

+
1
2

d∑
i,j=1

b
ij
n (s,x)

∂2un(s,x)
∂xi∂xj

= 0, n ≥ 0.

It is well known that the Hölder continuity and uniform ellipticity of bn provide the
existence of a fundamental solution19, which we denote by gn(s,x, t,y) (recall that
now an ≡ 0). The function gn(s,x, t,y), 0 ≤ s < t ≤ T , x ∈Rd , y ∈Rd , is the transition
probability density of the diffusion process which is a solution of the sde

xn(t) = xn(s) +
m∑
k=1

∫ t

s
σn,k(u,xn(u))dwk(u).

By M. Portenko (1995, Ch. II, Lemma 3),

gn(s,x, t,y)→ g0(s,x, t,y), n→∞, (60)

∂gn(s,x, t,y)
∂xi

→
∂g0(s,x, t,y)

∂xi
, 1 ≤ i ≤ d, n→∞, (61)

uniformly in every domain

DT
δ = {(s,x, t,y) : 0 ≤ s < t ≤ T ,x ∈Rd , y ∈Rd , t − s+

∣∣∣x − y∣∣∣ ≥ δ},
19E.g. Ladyženskaja, Solonnikov, and Ural’ceva, 1967, Linear and Quasi-Linear Equations of Parabolic

Type, Ch. IV, § 11.
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for any fixed δ > 0, T > 0.
Furthermore, for 0 ≤ s < t ≤ T , x ∈Rd , y ∈Rd , the estimates

∣∣∣∇lxgn(s,x, t,y)
∣∣∣ ≤ C(t − s)−

d+l
2 exp

−c
∣∣∣y − x∣∣∣2
t − s

 (62)

hold true. Here n ≥ 0, l = 0,1,2, C,c are positive constants which depend only on d,
T and ‖b0‖T ,∞.

Now let a satisfy the condition of Theorem 4 on p. 14, and a(t,x) = 0 for t ≥
0, |x| > R. Put a0 = a, and ϕ0,t(x) = ϕt(x), t ≥ 0,x ∈ Rd , where ϕt(x) is the solution
to Equation (1) on p. 1. Let for n ≥ 1, an be defined by Equation (27) on p. 15,
and ϕn,t(x) be a solution of Equation (31) on p. 16. Denote by Gn(s,x, t,y), n ≥ 0,
the transition probability density of the process (ϕn,t)t≥0. Then Gn(s,x, t,y) can be
constructed by the perturbation method20 as a solution of the integral equation:

Gn(s,x, t,y) = gn(s,x, t,y)+
∫ t

s
dτ

∫
R
d
gn(s,x,τ,z) (∇zGn(τ,z, t,y), an(τ,z))dz, (63)

which satisfies the estimate

∣∣∣∇lxGn(s,x, t,y)
∣∣∣ ≤ C′(t − s)− d+l

2 exp

−c′
∣∣∣y − x∣∣∣2
t − s

 (64)

in any domain 0 ≤ s < t ≤ T , x ∈ Rd , y ∈ Rd , for n ≥ 0, l = 0,1. The constants C′, c′

can be chosen uniformly in n.
It follows from N. I. Portenko (1990, Theorem 2.1), that for n ≥ 1, the function

Gn(s,x, t,y) is a fundamental solution of the parabolic equation

∂un(s,x)
∂s

+
1
2

d∑
i,j=1

b
ij
n (s,x)

∂2un(s,x)
∂xi∂xj

+
d∑
i=1

ain(s,x)
∂un(s,x)
∂xi

= 0.

Remark 9 – Following the construction of G0(s,x, t,y) in N. I. Portenko (1990) one
can observe that G0(s,x, t,y) is uniformly continuous in y uniformly on |t − s| > δ,
x ∈Rd , δ > 0.

Lemma 8 – Gn(s,x, t,y) → G0(s,x, t,y), n → ∞, uniformly on DT
δ for any fixed δ >

0,T > 0.

Proof. We use the idea of the proof from N. I. Portenko (1990, lemma 2.6). Denote

Un(s,x, t,y) = ∇xGn(s,x, t,y)−∇xG0(s,x, t,y). (65)

20See N. I. Portenko, 1990, Generalized Diffusion Processes, Ch. 2.
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From Equation (63) on the preceding page we get

Un(s,x, t,y) = ∇xgn(s,x, t,y)−∇xg0(s,x, t,y)

+
∫ t

s
dτ

∫
R
d
∇xgn(s,x,τ,z) (∇zGn(τ,z, t,y), an(τ,z))dz

−
∫ t

s
dτ

∫
R
d
∇xg0(s,x,τ,z) (∇zG0(τ,z, t,y), a0(τ,z))dz

= ∇xgn(s,x, t,y)−∇xg0(s,x, t,y)

+
∫ t

s
dτ

∫
R
d
∇xg0(s,x,τ,z) (Un(τ,z, t,y), an(τ,z))dz

+
∫ t

s
dτ

∫
R
d
(∇xgn(s,x,τ,z)−∇xg0(s,x,τ,z))

× (∇zGn(τ,z, t,y), an(τ,z))dz

+
∫ t

s
dτ

∫
R
d
∇xg0(s,x,τ,z) (∇zG0(τ,z, t,y), an(τ,z)− a0(τ,z))dz.

Therefore,

Un(s,x, t,y) = AnUn(s,x, t,y) + rn(s,x, t,y), (66)

where

AnUn(s,x, t,y) =
∫ t

s
dτ

∫
R
d
∇xg0(s,x,τ,z) (Un(τ,z, t,y), an(τ,z))dz,

rn(s,x, t,y) =
3∑
k=1

Ikn (s,x, t,y),

I1
n (s,x, t,y) = ∇xgn(s,x, t,y)−∇xg0(s,x, t,y),

I2
n (s,x, t,y) =

∫ t

s
dτ

∫
R
d
(∇xgn(s,x,τ,z)−∇xg0(s,x,τ,z))

× (∇zGn(τ,z, t,y), an(τ,z))dz,

I3
n (s,x, t,y) =

∫ t

s
dτ

∫
R
d
∇xg0(s,x,τ,z) (∇zG0(τ,z, t,y), an(τ,z)− a0(τ,z))dz.

Recall that an(t,x), n ≥ 0, are bounded measurable and they have compact supports
in x. So an ∈ Lp([0,T ]×Rd) for all T > 0,p > 0,n ≥ 0. Fix p > d + 2. Making use of the
Hölder inequality and the estimate Equation (64) on the preceding page we have

I2
n (s,x, t,y) ≤

∫ t

s
dτ

∫
R
d
|∇xgn(s,x,τ,z)−∇xg0(s,x,τ,z)|

∣∣∣∇zGn(τ,z, t,y)
∣∣∣|an(τ,z)|dz(Cont. next page)
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≤ K
(∫ t

s
dτ

∫
R
d
|∇xgn(s,x,τ,z)−∇xg0(s,x,τ,z)|q (67)

× (t − τ)−
d+1

2 q exp
{
−cq

∣∣∣y − z∣∣∣2
t − τ

}
dz

)1/q
(∫ t

s
dτ

∫
R
d
|an(τ,z)|pdz

)1/p

,

where K,c are positive constants, 1/p+1/q = 1. It follows from Equation (61) on p. 29
and M. Portenko (1995, Ch. II, Lemma 2), that I2

n (s,x, t,y)→ 0, n→∞, uniformly on
DT
δ for any δ > 0, T > 0. The Equation (61) on p. 29 gives also that I1

n (s,x, t,y)→ 0,
n→∞, uniformly on DT

δ . Consider I3
n (s,x, t,y). We have

I3
n (s,x, t,y) ≤

∫ t

s
dτ

∫
R
d
|∇xg0(s,x,τ,z)|

∣∣∣∇zG0(τ,z, t,y)
∣∣∣|an(τ,z)− a0(τ,z)|dz

≤ K
(∫ t

s
dτ

∫
R
d
|an(τ,z)− a0(τ,z)|pdz

)1/p

×
(∫ t

s
dτ

∫
R
d
(τ − s)−

d+1
2 q exp

{
−cq |z − x|

2

τ − s

}

× (t − τ)−
d+1

2 q exp

−cq
∣∣∣y − z∣∣∣2
t − τ

dz


1/q

= K ′‖an − a0‖p,T (t − s)−
d+1

2 +γ exp

−c
∣∣∣y − x∣∣∣2
t − s

 , (68)

where K ′ is a constant, γ = p−d−2
2p , p > d + 2, ‖a‖p,T = ‖a‖Lp([0,T ]×Rd ). For the proof of

the last equality in Equation (68)21. Then I3
n (s,x, t,y)→ 0, n→∞, uniformly on DT

δ .
Thus we conclude that

rn(s,x, t,y)→ 0, n→∞, uniformly on DT
δ for any δ > 0, T > 0.

Moreover, from Equations (62), (67) and (68) on p. 30 and on the current page we
obtain the following estimate

∣∣∣rn(s,x, t,y)
∣∣∣ ≤H(t − s)−

d+1
2 exp

−c
∣∣∣y − x∣∣∣2
t − s

 (69)

valid in every domain of the form 0 ≤ s < t ≤ T , x,y ∈ Rd . Here H is a positive
constant. We obtain the above inequality for I2

n in the way similar to that for I3
n .

By Equations (64) and (65) on p. 30 for all 0 ≤ s < t ≤ T , x,y ∈Rd ,

∣∣∣Un(s,x, t,y)
∣∣∣ ≤H ′(t − s)− d+1

2 exp

−c
∣∣∣y − x∣∣∣2
t − s

 , (70)
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where H ′ is a positive constant. Denote by Ak
n is the k-th power of the operator An.

Repeating the argument of Equation (68) on the preceding page, we get

∣∣∣Ak
nUn(s,x, t,y)

∣∣∣ ≤ Ck‖a‖kp,T (t − s)−
d+1

2 +kγ exp

−c
∣∣∣y − x∣∣∣2
t − s

 ,
where

Ck =H ′Ck
(
π
cq

) kd
2q

(
Γ (β)

Γ ((k + 1)β)

)1/q

, q =
p

p − 1
, γ =

p − d − 2
2p

, β = qγ.

Here k = 0,1,2, . . ., 0 ≤ s < t ≤ T , x,y ∈ Rd , C is the constant from the inequality of
Equation (62) on p. 30. It follows from these estimates that

lim
k→∞

sup
n

sup
0≤s<t≤T , x,y∈Rd

∣∣∣Ak
nUn(s,x, t,y)

∣∣∣ = 0. (71)

Using estimate Equation (69) on the preceding page and arguing similarly we get
for k = 0,1,2, . . ., that

∣∣∣Ak
nrn(s,x, t,y)

∣∣∣ ≤ C′k‖a‖kp,T (t − s)−
d+1

2 +kγ exp

−c
∣∣∣y − x∣∣∣2
t − s

 , (72)

where

C′k =H ′Ck
(
π
cq

) kd
2q

(
Γ (β)

Γ ((k + 1)β)

)1/q

.

Iterating the relation Equation (66) on p. 31 and taking into account Equation (71)
we deduce that

Un(s,x, t,y) =
∞∑
k=0

Ak
nrn(s,x, t,y). (73)

The estimates Equation (72) provide the convergence of the series in the right-hand
side of Equation (73) uniformly in n on DT

δ . To prove that

lim
n→∞

Un(s,x, t,y) = 0 (74)

on DT
δ it is enough to show that Ak

nrn(s,x, t,y) → 0, n → ∞, for every fixed k =
0,1,2, . . .. This can be easily obtained by induction.

For the difference Gn −G0 from Equation (63) on p. 30 we have

Gn(s,x, t,y)−G0(s,x, t,y) =
4∑
k=1

Hk
n (s,x, t,y),
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where

H1
n (s,x, t,y) = gn(s,x, t,y)− g0(s,x, t,y),

H2
n (s,x, t,y) =

∫ t

s
dτ

∫
R
d
(gn(s,x,τ,z)− g0(s,x,τ,z)) (∇Gn(τ,z, t,y), an(τ,z))dz,

H3
n (s,x, t,y) =

∫ t

s
dτ

∫
R
d
g0(s,x,τ,z) (∇Gn(τ,z, t,y)−∇G0(τ,z, t,y), an(τ,z))dz,

H4
n (s,x, t,y) =

∫ t

s
dτ

∫
R
d
g0(s,x,τ,z)∇G0(τ,z, t,y)(an(τ,z)− a0(τ,z))dz.

By Equation (60) on p. 29 we have H1
n (s,x, t,y)→ 0,n→∞, uniformly on DT

δ for any
δ > 0,T > 0. It follows from Equations (60) and (74) on p. 29 and on the previous
page, and the dominated convergence theorem that H2

n (s,x, t,y)→ 0,n→∞, and
H3
n (s,x, t,y)→ 0,n→∞, uniformly on DT

δ . Finally, H4
n satisfies the inequality

∣∣∣H4
n (s,x, t,y)

∣∣∣ ≤ K‖an − a‖p,T (t − s)−
d
2 +γ exp

−c
∣∣∣y − x∣∣∣2
t − s

 .
This implies that H4

n (s,x, t,y)→ 0 as n→∞ uniformly on DT
δ . �

Lemma 9 – Let ν̃(dt,dy) = ν(t,dy)dt be a measure of the class K such that supp(ν̃) ⊂
[0,T ]×U for some T > 0 and compact set U ∈Rd . Then∫ t0+t

t0

ds
∫
R
d
Gn(t0,x, s,y)(ν ∗ωn)(s,dy)→

∫ t0+t

t0

ds
∫
R
d
G0(t0,x, s,y)ν(s,dy), n→∞,

uniformly on 0 ≤ t0 < t0 + t ≤ T ,x ∈Rd .

Proof. We can write∣∣∣∣∣∣
∫ t0+t

t0

ds
∫
R
d
Gn(t0,x, s,y)(ν ∗ωn)(s,dy)−

∫ t0+t

t0

ds
∫
R
d
G0(t0,x, s,y)ν(s,dy)

∣∣∣∣∣∣
≤ I1

n (t0, t,x) + I2
n (t0, t,x),

where

I1
n (t0, t,x) =

∣∣∣∣∣∣
∫ t0+t

t0

ds
∫
R
d

((
Gn(t0,x, s, ·) ∗ωn

)
(y)−

(
G0(t0,x, s, ·) ∗ωn

)
(y)

)
ν(s,dy)

∣∣∣∣∣∣,
I2
n (t0, t,x) =

∣∣∣∣∣∣
∫ t0+t

t0

ds
∫
R
d

((
G0(t0,x, s, ·) ∗ωn

)
(y)−G0(t0,x, s, ·)(y)

)
ν(s,dy)

∣∣∣∣∣∣.
21See, e.g., Friedman, 1964, Partial differential equations of parabolic type, Ch. 1, § 4, Lemma 3.
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For any δ > 0 we have

I1
n (t0, t,x) ≤

∫ t0+δ

t0

ds
∫
R
d

(
Gn(t0,x, s, ·) ∗ωn

)
(y)ν(s,dy)

+
∫ t0+δ

t0

ds
∫
R
d

(
G0(t0,x, s, ·) ∗ωn

)
(y)ν(s,dy)

+
∫ t0+t

t0+δ
ds

∫
R
d

∣∣∣Gn(t0,x, s,y)−G0(t0,x, s,y)
∣∣∣ν(s,dy). (75)

From Equation (10) on p. 8 we get∫ t0+δ

t0

ds
∫
R
d

(
Gn(t0,x, s, ·) ∗ωn

)
(y)ν(s,dy)

≤
∫ t0+δ

t0

ds
∫
R
d
ν(s,dy)

∫
R
d
Gn(t0,x, s,y − z)ωn(z)dz

≤ C
∫ t0+δ

t0

ds
∫
R
d
ν(s,dy)

∫
R
d

exp

−c
∣∣∣y − (z+ x)

∣∣∣2
s − t0

ωn(z)dz

≤ C sup
x̃∈Rd

∫ t0+δ

t0

ds
∫
R
d

exp

−c
∣∣∣y − x̃∣∣∣2
s − t0

ν(s,dy). (76)

Because of the condition Equation (12) on p. 9, for each ε > 0, we can choose δ
so small that for all t0 ∈ [0,T − δ] the right-hand side of Equation (76) does not
exceed ε/2. The same estimate for the second summand in the right-hand side of
Equation (75) can be obtained similarly.

To prove the convergence of the last item in the right-hand side of Equation (75)
to zero we note that for each T > 0 and compact set U ⊂R

d there exists C > 0 such
that

sup
t0∈[0,∞)

∫ t0+T

t0+δ
ds

∫
U
ν(s,dy) < C. (77)

Indeed, let R > 0 be such that U ⊂ B(0,R). We have that for all s ∈ [t0 + δ, t0 + T ],
x ∈Rd , and y ∈Rd such that

∣∣∣y∣∣∣ ≤ R,

p0(t0,x, s,y) ≥ 1
(2πδ)d/2

exp
{
− (R+ |x|)2

2δ

}
:=

1
Kδ
,

where p0(t,x, s,y), 0 ≤ t ≤ s, x ∈ Rd , y ∈ Rd , is a transition probability density of a
d-dimensional Wiener process. For each x ∈Rd ,

sup
t0∈[0,∞)

∫ t0+T

t0+δ
ds

∫
U
ν(s,dy) ≤ Kδ sup

t0∈[0,∞)

∫ t0+T

t0+δ
ds

∫
|y|≤R

p0(t0,x, s,y)ν(s,dy)(Cont. next page)
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≤ Kδ sup
t0∈[0,∞)

sup
x̃∈Rd

∫ t0+T

t0

ds
∫
R
d
p0(t0, x̃, s,y)ν(s,dy).

Fixed C0 > 0, by the relation Equation (12) on p. 9 there exists T0 > 0 such that

sup
t0∈[0,∞)

sup
x̃∈Rd

∫ t0+T0

t0

ds
∫
R
d
p0(t0, x̃, s,y)ν(s,dy) < C0.

Then Remark 2 on p. 5 implies that there exists C1 > 0 such that

sup
t0∈[0,∞)

sup
x̃∈Rd

∫ t0+T

t0

ds
∫
R
d
p0(t0, x̃, s,y)ν(s,dy) < C1,

which entails Equation (77) on the previous page. Now by Lemma 8 on p. 30 and
Equation (77) the last summand in the right-hand side of Equation (75) on the
previous page tends to zero uniformly on 0 ≤ t0 < t0 + t ≤ T , x ∈Rd .

Thus we obtained that

sup
0≤t0<t0+t≤T

sup
x∈Rd

I1
n (t0, t,x)→ 0, n→∞.

Using the similar argument we get

sup
0≤t0<t0+t≤T

sup
x∈Rd

I2
n (t0, t,x)→ 0, n→∞.

This ends the proof. �
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