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Abstract

In this work, we numerically investigate how a defect can affect the behavior
of traveling explosive solutions of quintic NLS equation in the one-dimensional
case. Our numerical method is based on a Crank-Nicolson scheme in the time,
finite difference method in space including a Perfectly Matched Layer (PML)
treatment for the boundary conditions. It is observed that the defect splits
the incident wave in one reflected part and one transmitted part; hence the
dynamics of the solution may be changed and the blow-up may be prevented
depending on the values of the defect amplitude Z. Moreover, it is numerically
found that the defect can be considered as a barrier for large Z.

Keywords: Quintic NLS equation, delta-function, explosive traveling solution,
blow-up.
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1 Introduction

Nonlinear Schrödinger equation (NLS) plays an important role in the understand-
ing of many physical phenomena such as wave propagation in nonlinear media,
quantum mechanics or plasma physics. During the last decade, an intensive effort
has been paid on the study of the influence of a single defect on the behavior of the
solutions that can be physically interpreted as an impurity in the domain.
In this paper, we study the one-dimensional NLS equation with a quintic nonlinear-
ity and a defect represented by a delta-function:iut +uxx +Zuδ0 + |u|4u = 0, x ∈R, t > 0,

u(0,x) = u0(x), x ∈R,
(1)
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where ut = ∂u
∂t and uxx = ∂2u

∂x2 . Here, Z stands for the amplitude of the defect and
u = u(t,x) ∈ C. The exponent involved in the nonlinearity is known as the critical
exponent, for which blow-up may occur at finite time.

Schrödinger equations involving delta functions have been recently studied in
the literature. For example, in a serie of papers, Holmer, Marzuela and Zworski
analyzed the splitting of a soliton in presence of the defect, using the scattering
properties in the cubic one-dimensional integrable case (see Holmer, Marzuola,
and Zworski 2007a, Holmer, Marzuola, and Zworski 2007b) for which the Cauchy
problem is globally well-posed in H1(R). Asymptotic rates for the transmission
coefficients of solitons have been obtained and numerically illustrated. The stability
question of standing waves solutions for this perturbed model has been adressed
in Le Coz et al. 2008. In the defocusing case, the H1 asymptotic completeness for
the scattering operator has been proved in Banica and Visciglia 2016. The Gross-
Pitaevskii equation with non-zero boundary conditions at infinity has also been
investigated in Ianni, Le Coz, and Royer 2017.

The aim of this work is to study the influence of the defect on the behavior
of the well-known solutions in the absence of defect in the quintic critical case,
especially traveling standing wave solutions and blowing-up solutions that may be
encountered in this case. Since this equation is not integrable, the inverse scattering
method is not available which makes the numerical investigation crucial in order
to have a good qualitative understanding of the solution dynamics. The paper
is organized as follows: in Section 2, some theoretical results are given for the
mathematical analysis of equation (1). In Section 3, the numerical method that will
be used for simulations is presented. Finally, numerical results are discussed in
Section 4.

2 Main theorical results

In this section, we recall the characteristics and the theoretical results of the NLS
equation with a point defect. This ensures a good understanding of numerical
approaches used afterwards. The following theorem concerns the well-posedness of
equation (1) in H1(R) (see Theorem 3.7.1 in Cazenave 2003):

Theorem 1 – For any u0 ∈H1(R), there exists T > 0 and a unique u ∈ C([0,T ),H1(R))∩
C([0,T ),H−1(R)) solving (1) such that either T = +∞ or T < +∞ and ∥ux∥L2 →∞ as
t→ T . Moreover, u satisfies the conservation of mass M(u(t)) = M(u0) and conservation
of energy EZ(u(t)) = EZ(u0) for t ∈ [0,T ), where M and EZ are formally defined for a
given function v = v(x) as

M(v) = ∥v∥2L2 and EZ (v) = ∥vx∥2L2 −Z |v(0)|2 − 1
3
∥v∥6L6 .
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We now recall some elementary properties of the solutions of (1), proved in
Fukuizumi, Ohta, and Ozawa 2008 (and in the references therein) for smooth
solutions.

Proposition 1 – Assume that the initial data u0 is smooth (say C∞) and has compact
support in (−∞,0). Let u ∈ C([0,T ];H1(R)) solution of (1). Then for each t, we have
u(t) ∈H2(R∗)∩H1(R) and satisfies both iut +uxx + |u|4u = 0 for x ∈R∗, t > 0 as well as
the boundary condition

ux(t,0+)−ux(t,0−) = −Zu(t,0). (2)

This result comes from the initial formulation of (1) set in a distributional sense.
Indeed, the linear part acting on a test-function ϕ ∈ C∞0 writes

< uxx +Zδ0u,ϕ >= − < ux,ϕx > +Zu(t,0)ϕ(0).

Assuming that u belongs to H1, u is continuous at x = 0. Moreover, if the first
spatial derivative of u coincides with a C1 fonction in the two half-lines with a finite
jump at x = 0, this product reduces to

< uxx +Zδ0u,ϕ >=
∫ +∞

−∞
uxxϕdx+ [ux(t,0+)−ux(t,0−) +Zu(t,0)]ϕ(0)

using two distinct integrations by parts performed on (−∞,0) and (0,+∞). By
choosing ϕ adequately, we finally obtain (2) and the NLS equation for x , 0.

From the mathematical point of view, the solution belongs to C([0,+∞);D(A))
where A is the unbounded operator −∆ whose domain is D(A) = {u ∈H2(R∗)∩H1(R);
the condition (2) is valid}. The condition (2) can be seen as a jump condition at
the defect location. Note that for Z = 0, this reduces to the continuity of the first
derivative at zero. For a general nonlinearity |u|p−1u where p ∈ [1,+∞), Fukuizumi,
Ohta and Ozawa in Fukuizumi, Ohta, and Ozawa 2008 proved the existence and
uniqueness of a local solution in time with initial values u0 in H1(R). They also
showed that the Cauchy problem is globally well-posed in H1(R) for 1 < p < 5.

2.1 Global solutions

In the case Z = 0, Weinstein proved in Weinstein 1983 that the Cauchy problem
for the quintic NLS equation is globally well-posed in H1(R) for sufficiently small
initial-value u0. This reads as

Theorem 2 – Given Z = 0 and u0 ∈H1(R), a sufficient condition for global existence in
the initial-value problem (1) is

∥u0∥L2 < ∥R∥L2 , (3)

where R is the positive solution of the equation −φ+φxx +φ5 = 0, of minimal L2 norm,
often referred as the ground state.
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This result shows that ∥R∥L2 appears as the critical mass for the formation of
singularity for the solutions of NLS equation

iut +uxx + |u|4u = 0, x ∈R, t > 0. (4)

One may wonder if there exists a similar but different result for solutions of (1).
We know (see Le Coz et al. 2008) that for some values of Z, there exists ground states
that are different of the usual ground state without defect. Actually, the condition
(3) comes from a precise formulation of the Gagliardo-Nirenberg inequality that
reads (see Genoud, Malomed, and Weishauupl 2016)

∥u∥6L6
≤ 3

( ∥u∥L2

∥R∥L2

)4
∥ux∥2L2

. (5)

One may wonder for instance in the case Z < 0 what is the best constant in the
modified Gagliardo-Nirenberg inequality that reads

∥u∥6L6
≤ CZ∥u∥4L2

(∥ux∥2L2
−Z |u(0)|2), (6)

for any u in H1(R), where ∥ux∥2L2 −Z |u(0)|2 = (Au,u). We have straightforwardly
CZ ≤ C0 = 3

∥R∥4L2

.

Conversely, taking u(x) = R(x − µ) and letting µ → +∞, we have that in fact
CZ = C0. It transpires from this simple computations that of course the defect
does not play any role for solutions whose location is very far from 0. We will see
numerically in the sequel that the point defect does play a role for solutions that
encounter its location.

Actually, an analogous result of theorem 2 holds true if Z , 0.

Proposition 2 – A sufficient condition for global existence in the initial value problem
(1) for Z , 0 and u0 ∈H1(R) is

∥u0∥L2 < ∥R∥L2 .

Proof. We prove that under this smallness assumption, the L2 norm of the gradient
remains uniformly bounded. Due to the conservation of energy, we have that

Z |uZ (t,0)|2 = ∥uZ
x ∥2L2 −

1
3
∥uZ∥6L6 −EZ (u0) ≥ ∥uZ

x ∥2L2

(
1−

( ∥u∥L2

∥R∥L2

)4
)
−EZ (u0) (7)

due to Gagliardo-Nirenberg inequality (5). We now claim that for any ε > 0, we
have

|Z ||uZ (t,0)|2 ≤ |Z |∥uZ∥L2∥uZ
x ∥L2 ≤

Z2

2ε
∥uZ∥2L2 +

ε
2
∥uZ

x ∥2L2 . (8)
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using Agmon inequality and Young inequality. Combining (7) and (8), we then find
that

∥uZ
x ∥2L2

(
1−

(∥u0∥L2

∥R∥L2

)4
− ε

2

)
≤ EZ (u0) +

Z2

2ε
∥u0∥2L2

since the mass conservation holds. Choosing then ε sufficiently small such that
each term is strictly positive, which is possible since ∥u0∥L2 < ∥R∥L2 , we conclude
that ∥uZ

x ∥L2 is bounded which implies that the solution uZ is global in H1. This
concludes the proof. □

2.2 Blow-up solutions and the virial identity

For sufficiently large initial data, Glassey Glassey 1977 produced the necessary
conditions for blow-up for solutions of (4) introducing the momentum and virial of
a given function u as respectively

q(u) =
∫
R

x2|u|2 dx and V (u) =ℑm

(∫
R

xuxudx

)
.

Set E(u) = E0(u) for the energy in the case Z = 0. We recall from Genoud,
Malomed, and Weishauupl 2016; Glassey 1977

Theorem 3 – Let u be a solution of (4) such that q(u0) < +∞. Assume that either
E(u0) < 0 or E(u0) = 0 and V (u0) < 0. Then there exists a finite blow-up time T ∗ such
that

lim
t→T ∗

∥ux∥L2 = +∞ and lim
t→T ∗

∥u∥L∞ = +∞.

The key argument in the proof is that q(u) cannot exist for any positive time
t. Actually, we may address the same strategy in the case Z , 0 and we have (see
Le Coz et al. 2008):

Theorem 4 – Let u0 ∈ H1(R) such that xu0 ∈ L2(R) and let u solves (1). Setting
q(t) := q(u(t)) and V (t) := V (u(t)), we have for t ∈ (0,T )

q′(t) = 4V (t) (9)

and

V ′(t) = 2EZ (u0) +Z |u(t,0)|2. (10)

The calculations we present in the following are formal. A rigorous proof of the
virial theorem is given in Le Coz et al. 2008.
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Proof. We first calculate q′(t). We formally have

q′(t) = 2ℜe

(∫
R

x2utudx

)
.

Recalling that ut = iuxx + i|u|4u and that ux(t,0+) − ux(t,0−) = −Zu(t,0) for each
t ∈ (0,T ), we deduce with integrations by parts performed on (−∞,0) and (0,+∞)
that

q′(t) = −2ℑm

(∫
R

x2uxxudx

)
= 2ℑm

(∫
R

ux(x2u)x dx
)
− 2ℑm

(
[x2uxu]0+

0−
)

= 4
∫
R

x uxudx = 4V (t).

We also have

V ′(t) = −2ℑm

(∫
R

x utux dx

)
+ℑm

(∫
R

x(utu)x dx
)
.

On one hand,

ℑm

(∫
R

x (utu)x dx
)

= −ℑm

(∫
R

utudx+ [x utu]0−
0+

)
= −ℑm

(∫
R

(iuxx+ i|u|4u) udx
)

= ∥ux∥2L2 − ∥u∥6L6 − [uxu]0−
0+ .

Using the transmission condition in zero, the first integral rewrites

ℑm

(∫
R

x(utu)x dx
)

= ∥ux∥2L2 − ∥u∥6L6 −Z |u(t,0)|2.

On the other hand,

2ℑm

(∫
R

x utux dx

)
= −2ℜe

(∫
R

x (uxx + |u|4u)ux dx

)
= −2ℜe

(∫
R

x uxxux dx

)
− 2ℜe

(∫
R

x |u|4uux dx

)
= ∥ux∥2L2 +

1
3
∥u∥6L6 .

It follows that V ′(t) = 2∥ux∥2L2 − Z |u(t,0)|2 − 2
3∥u∥

6
L6 which finally leads to

V ′(t) = 2EZ (u0) +Z |u(t,0)|2. □

A sufficient condition for blow-up is the following:
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Proposition 3 – Let Z < 0 and let u solves (1) with finite momentum. If EZ(u0) < 0,
then there exists a finite time T ∗ such that

lim
t→T ∗

∥ux∥L2 = +∞.

Proof. If Z < 0 and EZ(u0) < 0, the energy conservation and virial equality (10)
shows that V (t) is a decreasing function, that implies

0 ≤ q(t) ≤ q(0) + 4V (u0)t + 4EZ (u0)t2. (11)

Hence, the solution cannot last forever since t → +∞ leads to a contradiction if
EZ (u0) < 0. □

Once again, at a first glance, Z does not play a role for all blow-up solutions. We
will discuss numerically in the sequel that in fact it does.

2.3 The wall effect while |Z | → +∞
We now focus on the case |Z | → +∞. In this case, Z can be seen as a penalization
term in transmission condition (2). This means that when |Z | is large, this condition
formally reduces to Dirichlet condition u(t,0) = 0. We intend here to derive a
rigorous asymptotic.

We then give the following statement

Theorem 5 – Let the initial data u0 ∈H1(R) of the problem (1) be such that supp(u0) ⊂
(−∞,0) and that

∥u0∥2L2 < ∥R∥2L2 (12)

where ∥R∥2
L2 is related to the best constant involved in the one-dimensional Gagliardo-

Nirenberg inequality (5). Then, when Z converges to −∞, the solution u = uZ of the
problem (1) converges to u∞ solution of the limit problem

ivt + vxx + |v|4v = 0, x ∈ (−∞,0), t > 0,
v(0,x) = u0(x), x ∈ (−∞,0),
v(t,0) = 0, t > 0.

(13)

Proof. Using the energy conservation and since supp(u0) ⊂ (−∞,0) we obtain

∥uZ
x ∥2L2 −Z |uZ (t,0)|2 − 1

3
∥uZ∥6L6 = ∥(u0)x∥2L2 −

1
3
∥u0∥6L6 = E0(u0). (14)

Using assumption (12), the Gagliardo-Nirenberg inequality implies that E0(u0) is a
positive constant, since

∥(u0)x∥2L2 −
1
3
∥u0∥6L6 ≥ ∥(u0)x∥2L2

(
1−

(∥u0∥L2

∥R∥L2

)4
)
.
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Furthermore, in the case Z < 0, (14) implies

E0(u0) ≥ ∥uZ
x ∥2L2 −

1
3
∥uZ∥6L6 ≥ ∥uZ

x ∥2L2

(
1−

(∥u0∥L2

∥R∥L2

)4
)
.

Consequently the H1 norm of the solution is uniformly bounded in time: indeed,
we have

∥uZ∥2H1 = ∥uZ∥2L2 + ∥uZ
x ∥2L2 = ∥u0∥2L2 + ∥uZ

x ∥2L2 ≤ ∥u0∥2L2 +
E0(u0)

1−
(
∥u0∥2
∥R∥2

)4 .

From this, we conclude that the solution uZ is global in H1(R). The estimate (14)
also leads us to

−Z |uZ (t,0)|2 ≤ E0(u0)

and passing to the limit Z→−∞, we finally have

lim
Z→−∞

|uZ (t,0)| = 0.

Hence, we can extract a subsequence that converge weakly-star in L∞(0,T ;H1(R))
towards u∞. We denote by uZ this subsequence. We have u∞(t,0) = 0 if it makes
sense.

We know that uZ is bounded in L∞(0,T ;H1(R)). Now, we show that uZ
t is

bounded in an appropriate space. We have

uZ
t = i(uZ

xx + |uZ |4uZ +ZuZδ0).

It is easy to see that the map uZ 7−→ uZ
xx + uZδ0 is continuous from H1(R) into

H−1(R). Therefore uZ
t remains in a bounded set of L∞(0,T ;H−1(R)). We now use

the following theorem (see Temam 1997)

Theorem 6 – Consider V ⊂H a compact embedding between two Hilbert space. Con-
sider H ∼ H ′ and then H ′ ⊂ V ′. Consider T > 0 and a sequence vn that is bounded in
L2(0,T ;V ) and such that vnt is bounded in L2(0,T ;V ′). Then there exists a subsequence
vn
′

that converge strongly in L2(0,T ;H).

Here uZ is bounded in L2(0,T ;H1(I)) for any compact interval I = [−L,L] of R
and its time derivative is bounded in L2(0,T ;H−1(I)). Then for any In = [−n,n] we
may extract a subsequence uZ

n that converges strongly in L2(0,T ;L2(In)). Using the
Cantor diagonal process we may extract a subsequence still denoted by uZ such that
uZ converges strongly towards u in L2(0,T ;L2(I)), for any I . We set L2(0,T ;L2(Rloc))
for this convergence. Interpolating, we also have that this convergence holds in
L2(0,T ;C(I)) for any I .
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We may now pass to the limit. Consider a test function ϕ ∈ C∞0 (I) for a given I .
We have that

< uZ
t − i(uZ

xx +ZuZδ0),ϕ >H−1,H1=< i|uZ |4uZ ,ϕ >H−1,H1 , (15)

where < ·, · >H−1,H1 denotes the dual product. On the one hand, due to the weak
convergence results stated above the left hand side of (15) pass to the limit. On the
other hand, interpolating between L∞(0,T ;H1(I)) and L2(0,T ;L2(I)) we now that
uZ converges strongly towards u in L6(0,T ;L6(I)), and then we may pass to the limit
in the right hand side of (15). Since the limit equation is valid for any I and any
test function supported in I , then u is solution to the limit problem set in R. We
observe that since u belongs to L2(0,T ;H1(R)) and since its time derivative belongs
to its dual space, then u is a continuous function in time with value in L2(R) (and
by interpolation in C(R)). Then the wall condition u(t,0) = 0 is valid and the initial
condition u(0,x) = u0(x) holds true. This completes the proof of the theorem. □

In the following Sections, we investigate the ability for the defect to stop or slow
down the blow-up mechanism.

3 The numerical method

3.1 Numerical method without defect

We start with the numerical method in the case Z = 0. Our discretization is based on
a finite differences semi-implicit Crank-Nicolson scheme in time and space, that is
well-known to be unconditionnally stable in L2 and second-order both in time and
space. In order to perform simulations in a bounded domain, one has to implement
well-adapted boundary condition in order to avoid reflections due to the boundary.
Among all possible choices known in the literature, we have chosen to use Perfectly
Matched Layer approach (PML) Zheng 2007. This consists in solving a Schrödinger-
like problem on a domain including absorbing layers that surround the numerical
domain, where outgoing waves will be forced to vanish without propagation accross
the domain under study. Let Ω = (xL,xR) be the computational domain and L be the
width of PML band.

xLP xL xRPxR

Figure 1 – Domain with PML.

The PML equation, defined in an enlarged interval (xLP ,xRP ) = (xL − L,xR + L), is
written

iut +
1

(1 +Rσ )2uxx −
Rσ ′

(1 +Rσ )3ux + |u|4u = 0, x ∈ (xLP ,xRP ), t > 0,
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where R ∈C and σ is the so-called absorption function

σ =


σ0(x − xL)2, xLP < x < xL,

0, xL < x < xR,

σ0(x − xR)2, xR < x < xRP ,

with σ0 > 0. A specific choice of parameters R, σ0 and L (namely R = eiπ/4, σ0 = 1 and
L = 2) minimizes reflected waves at the boundary: indeed, the outgoing waves are
anihilated when travelling inside the absorbing layer. At the two boundary points
{xLP ,xRP } a zero Dirichlet boundary conditions is imposed. The strong formulation
of the problem in the absence of defect is then given by

iut +
1

(1 +Rσ )2uxx −
Rσ ′

(1 +Rσ )3ux + |u|4u = 0, x ∈ (xLP ,xRP ), t > 0,

u(0,x) = u0(x), x ∈ (xLP ,xRP ),
u(t,xLP ) = u(t,xLR) = 0, t > 0.

(16)

Following a finite difference strategy, we intend to compute the approximate value,
say un

j , of the solution of (16) at time tn = n∆t and at spatial point xj = xLP + j∆x.
Using Taylor expansions that enable us to compute approximations of the partial
derivative operators, we get for each (j,n)

i
un+1
j −un

j

∆t
+

1
(1 +Rσj )2

un+1/2
j+1 − 2un+1/2

j +un+1/2
j−1

∆x2

−
Rσ ′j

(1 +Rσj )3

un+1/2
j+1 −un+1/2

j−1

2∆x
+

1
2

(
|un+1

j |4un+1
j + |un

j |
4un

j

)
= 0, (17)

where un+1/2
j = (un

j + un+1
j )/2. This nonlinear system is solved using a fixed point

method at each time step. It means that successive linear equations are solved until
the nonlinear error that quantifies the size of two consecutive iterations becomes
small enough.

3.2 The delta-function approximation

We now focus on the discretization of the defect term at x = 0. As in the work of Le
Coz and al. Le Coz et al. 2008, J. Holmer et C. Liu Holmer and Liu 2020 and also in
Genoud, Malomed, and Weishauupl 2016, we do not consider the initial form of
the problem but choose to take into account the transmission condition in zero. We
thus consider the problemiut +

1
(1 +Rσ )2uxx −

Rσ ′

(1 +Rσ )3ux + |u|4u = 0, x , 0, t > 0,

ux(t,0+)−ux(t,0−) = −Zu(t,0), t > 0.
(18)
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Discretization of the transmission condition is performed with a O(∆x2) accuracy
for the sake of consistency with the second order accuracy in space of the scheme.
Starting from the approximation

ux(t,0+) =
1
∆x

(
−u(t,2∆x) + 4u(t,∆x)− 3u(t,0)

)
+O(∆x2)

and the similar expression for ux(t,0−), we get a second-order approximation of the
transmission condition as

−un
D+2 + 4un

D+1 + 2(Z∆x − 3)un
D + 4un

D−1 −u
n
D−2 = 0

where integer D stands for the defect index (such that xRL +D∆x = 0). This extra
relation is added to the discretization (17) expressed for j ,D.

3.3 Numerical evidence of blow-up

It is reported that for Z = 0 there are three ways of checking blow-up occurrence.
Indeed, finite time blow-up can manifest itself as the divergence of the norms ∥u∥L∞
and ∥ux∥L2 . Using Gagliardo-Nirenberg inequality (5), it leads us to the divergence
of ∥u∥L6 . When dealing with numerical computations, one naturally wonders how
blow-up can be numerically detected. In this condition, one can compute the three
discrete norms and check the corresponding orders of magnitude.

Computing the L∞ norm may seem the most intuitive way for the blow-up
detection, because it is the most natural way of investigating how "big" the solution
is. However, for conservative schemes for which the discrete l2 norm ∥un∥l2 is
conserved, the maximal amplitude is attained at some index j0 and it can be written
that

∥un∥2l∞ = |un
j0
|2 ≤ ∥un∥2l2 =

∑
j

|un
j |

2 =
∑
j

|u0
j |

2 ≈ 1
∆x
∥u0∥2L2 .

It means that the computed solution cannot go higher in amplitude than C√
∆x

. Conse-
quently, for a prescribed spatial mesh, the maximal amplitude is uniformly bounded
and numerical detection of blow-up in terms of maximal amplitude requires to deal
with well-adapted grid: approximate solutions of maximal magnitude M can only
be computed for spatial mesh with size ≈ 1/

√
M which may be inappropriate if M

is large.
Other way is to investigate the time evolution of the discrete versions of ∥u∥6

L6

and ∥ux∥2L2 . Indeed, these two norms are involved in the energy; checking these
quantities gives us information about the energetic divergence whereas the maxi-
mum amplitude depicts the punctual one.

In order to illustrate this, we plot in Figure 2 the temporal plot of these three
discrete norms as well as the singular profile when computing a blowing-up solution

65



Numerical study of quintic NLS equation with defect L. DiMenza et al.

Figure 2 – Discrete versions of ∥ux∥2L2 , ∥u∥6
L6 and ∥u∥L∞ versus time (left) and spatial

singularity formation at t = 0.9557 (right).

that is initialized with initial data calculated from the self-similar solution that will
be given in Section 4. It can be logically noticed that the orders of magnitude of
∥u∥6

L6 and ∥ux∥2L2 are much larger than the one found for ∥u∥L∞ . This suggests us to
detect the blow-up occurrence in terms of "energetic" norms instead of the maximal
amplitude of the solution.

In all that follows, we will compute the discrete approximation of the quantity
∥ux∥L2 to state the occurrence of blow-up.

4 Numerical results

In this Section, we investigate the influence of the defect on the dynamics of solu-
tions of the ideal case Z = 0. Several kinds of Cauchy data will be considered. We
begin by travelling states.

4.1 Travelling solutions

We first perform simulations when considering travelling solutions built from the
ground state C. Sulem and P. Sulem 1999, that explicitly express as

u(t,x) = R(x − vt − x0) exp
(
i
v
2
x
)

exp
(
i
(
1− v2

4

)
t
)
, (19)

with R(x) = 31/4/(cosh(2x))
1
2 . This wave is located at x0 that will be chosen far away

for the defection location in order to be initially consistent with the transmission
condition. As preliminary test, we numerically check the conservation of mass and
energy with a defect of amplitude Z = 10. We have chosen discretization parameters
∆x = 5×10−3 and ∆t = 2.5×10−5 for a simulation performed until final time T = 0.7,
starting for the initial standing wave centered at x0 = −5 considered with v = 30. Let
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Mn and En respectively stand for the discrete mass and energy at t = tn. In Figures
3, we represent the order of magnitude of the relative errors made for Mn and En
versus time. It is observed that the numerical scheme mimics the right preservation

Figure 3 – Plot of ln Mn+1−Mn

Mn (left) and ln En+1−En

En (right) versus time.

of the invariants of the NLS equation at a discrete level, claiming that the relative
error for these quantities is found smaller than 10−6.

We now investigate the influence of the defect on the propagation of the trav-
elling wave solution for Z = 10, starting from an initial state that is located at the
left-side of the defect (see Figure 4), inside the numerical domain Ω = (−20,20).
Following a phase of interaction with the defect that is observed in Figure 4, we see
that the solution splits into two parts: a transmitted wave ut and a reflected one ur.
We note tZ the interaction time such that for t > tZ , we have u = ut + ur where ut
turns to be the restriction of u on (0,xR), while ur is the restriction of u on (xL,0).
In Figure 5, we point out that ut travels to the right whereas the reflected wave ur
propagates to the left side of the domain.

Figure 4 – Initial profile and solution profile when interacting with the defect for
Z = 10 at t = 0.174.

In the following test, we calculate the transmitted mass for the same previous
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initial data and for different values of Z: Z = 2 and Z = 10. The plots viewed in
Figure 5 show that large defect amplitude enhances the reflection of the incoming
wave.

Figure 5 – Left: Solution profile after defect interaction for two values of Z (con-
tinuous line: Z = 2, dot-dashed line : Z = 10) at t = 0.3846. Right: plot of the

transmitted mass ratio
M∞Z
∥u0∥2L2

as a function of Z.

To evaluate the transmitted mass, we compute Mt
Z as the portion of the mass

located between the defect interface and the right boundary. We then set

Mt
Z =

∫ xL

0.5
|uZ (t,x)|2 dx

for different Z. Our simulations have shown that as t is large enough, Mt
Z converges

to a limit value M∞Z that depends on Z. We have found in particular M∞2 = 2.7091,
M∞5 = 2.649 and M∞100 = 0.2261. It is noticed that the bigger Z is, the smaller the
transmitted part is. We also decide to plot the transmitted mass ratio M∞Z /∥u0∥2L2

as a function of Z. The plot displayed in Figure 5 shows us that this ratio logically
turns out to be a decreasing function of Z and tends to zero when Z tends to infinity.
For large Z, no more mass is transmitted at the defect location and the point x = 0
behaves as a boundary point for which Dirichlet would have been prescribed. Thus,
for large enough Z, the solution is totally reflected and the defect plays the role of a
barrier. In Figure 6, we present the result obtained for Z = −10000 from a travelling
data centered at x0 = −15, that is far enough from the defect in order to avoid initial
interactions. It can be clearly seen that the transmitted solution is nothing but the
initial one that has been reflected by the defect.

In Figure 7, it is numerically checked that |uZ (t,0)| tends to zero when Z tends
to −∞, which is in good agreement with the theoretical results. Our simulations
have shown that −Z |uZ(t,0)|2 is always bounded by EZ(u0) = 612.567 for all time,
as shown in Section 2.

The question that now arises is what happens in the symmetric case Z > 0. In
Figure 7, the convergence of |uZ (t,0)| to zero is observed when Z tends to +∞. When
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Figure 6 – Solution profile for Z = −10000 at different times.

Figure 7 – Evolution of |u(t,0)| versus time for Z < 0 (left) and Z > 0 (right).

Z→ +∞, the defect behaves as a Dirichlet boundary condition (DBC) at x = 0. In
Figure 8, we plot at the same final time t = 0.777 the solutions computed with
Z = −10000 and Z = 10000 compared with the solution v calculated with DBC at
x = 0. The superposition of the three curves is clearly observed. We then conclude
that the defect always plays the role of a barrier when |Z | →∞. Note that the case
Z→ +∞ is not covered by Theorem 13 given in Section 2.

4.2 Blowing-up travelling solutions

We now study the influence of Z on the behavior of explosive solutions. We address
here the question of blow-up prevention by the defect. It is well-know that a
negative initial energy is a sufficient condition for blow-up occurrence. In this
critical case, it is possible to compute explicit blowing-up solution with use of the
pseudo-conformal invariance. We here consider the self-similar solution

ũ(t,x) =
1

√
T − t

exp
(
−ix2

4(T − t)

)
u
( 1
T − t

,
x

T − t

)
,

where u is given by (19). What is remarkable with this solution is that it blows-up
at prescribed time T . The simulation performed in the case Z = 0 (see Figure 2 in
Section 3) has shown the formation of the singularity at x ≃ 4.3, that is at the right
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Figure 8 – Comparison between solution profile of NLS equation with DBC and the
solutions obtained for Z = −10000 and Z = 10000 at t = 0.777.

side of the defect. This provides us to reference solution in order to investigate the
defect influence on the explosive dynamics.

We first perform a simulation in the case Z = 5. We have considered the following
parameters: T = 1, v = 5, x0 = −15, ∆x = 2.5× 10−3 and ∆t/∆x2 = 1. Due to the shift
term v/(T − t) involved in the self-similar solution, the initial data is centered at
x∗ = −10. In this simulation, parameters have be chosen in such a way that the exact
solution of the problem without defect blows-up at x∗ = 5. As for the travelling
stationary state, we now compute the mass of the transmitted wave as well as the
norm ∥ux∥2L2 versus time after the defect interaction.

Figure 9 – Numerical solution after the defect interaction, Z = 5 (left) and evolution
of ∥ux∥2L2 versus time for Z = 5 (right).

In Figure 9 (left) is shown the temporal profile of the solution after it has crossed
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the defect. Once again, it consists in two parts and it can be observed that both
the transmitted and reflected part have a mass that become strictly smaller than
the initial one ∥u0∥L2 = ∥R∥L2 . Note that the L2 norm of ux plotted in Figure 9
(right) is bounded, even if early stage mimics a divergent profile before the defect is
reached by the solution. Consequently, this suggests that each of them gives a global
solution: the splitting effect of the defect thus prevents blow-up. Of course, this is
not rigorous since equation (1) is nonlinear. Nevertheless, if the support of the two
waves are well-separated (meaning that utur ≃ 0 on the whole spatial domain), then
|ut +ur|4(ut +ur) ≃ |ut|4ut + |ur|4ur and the total solution u can be approximated by
the sum u ≃ ut +ur, each of them solving (1). In our test case, we numerically have

∥ur∥2L2 < ∥ut∥2L2 ≃ 2.441 < ∥R∥2L2 = 2.7207.

We have also performed simulations when considering the initial Gaussian data

u0(x) = q exp(ikx) exp(−(x − x0)2). (20)

Here, the global existence or finite time blow-up of the corresponding solution
strongly depends on the choice of parameters q and k. First, the solution is global if
∥u0∥2 < ∥R∥2, which implies q < ( 3π

2 )
1
4 := q∗1, this upper bound being independent of

k. On the other hand, recalling that a sufficient condition of blow-up of the solution
is E(u0) < 0, we explicitly have

E(u) = E(u0) =
q2

2

√
π
2

(
(1 + k2)− 1

3
3
2
q4

)
.

Hence, E(u0) < 0, if q > 3
3
8 (1 + k2)

1
4 := q∗2(k). Consequently, for a prescribed k,

the solution blows up for q > q∗2(k). Note that in this case, blow-up occurrence
is very strong, which let the numerical investigation of the defect influence quite
delicate since the solution cannot propagate on a long distance before blowing-up.
Furthermore, one has to notice that the blow-up time is not explicitly know as
opposed to the self-similar solution. Simulations made with q ∈ (q∗1,q

∗
2(k)) leading to

blowing up solutions in the unperturbed case have shown that blow-up is prevented
in presence of the defect. As an example, the values k = 10, q = 1.55 and x0 = −5 for
the Gaussian data (20) have given a global solution for the defect amplitude Z = 20.
We conjecture that there exists a critical Z∗ = Z∗(q) for which the solution becomes
global for |Z | ≥ Z∗(q).

4.3 The case of two defects

We finally study the influence of two defects with respective amplitudes Z1 and Z2
located at x1 and x2 on the explosive behavior of solutions. We have considered the
discretization parameters ∆x = 2.5× 10−3 and ∆t/∆x2 = 1, starting from the initial
data

u0(x) = 2.18 exp(60ix) exp(−(x+ 3)2).
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leading us to an explosive travelling solution. We first chose Z1 = 80 and Z2 = 0
(which means that only the first defect is present). In Figure 10 is shown the first
splitting of the Gaussian data leading to blow-up. After crossing the first defect
located at x1 = 0, the solution divides itself into a reflected part and a transmitted
one. After the interaction time tZ1

, we thus have

u = uZ1
t +uZ1

r ,

where uZ1
t is the transmitted wave which is in our case the restriction of u on (0,20),

while uZ1
r stands for the reflected wave that can be seen as the restriction of u

on (−20,0). We observe that uZ1
r is a global solution, which can be numerically

Figure 10 – Numerical solution after the first defect interaction (Z1 = 80 and Z2 = 0),
t = 0.0442 (left) and plot of the norm ∥(uZ1

t )x∥2L2 (right).

confirmed since ∥uZ1
r ∥2L2 = 1.822 < ∥R∥22. However, the transmitted part uZ1

t is an
explosive solution: it can be explained by the fact that the defect did not extract a
sufficient amount of mass to prevent blow-up. It implies that ∥uZ1

t ∥2L2 > ∥R∥22 and

a singularity will develop for this transmitted part. The evolution of ∥(uZ1
t )x∥2L2

plotted with respect to time in Figure 10 confirms this tendency.
We now introduce a second defect of amplitude Z2 = 120 at x = 5, in order to in-

vestigate if the blow-up occurring after the first defect interaction can be prevented.
The solution uZ1

t splits into two parts due to the second defect. Consequently, we
write

uZ1
t = uZ2

t +uZ2
r ,

where each part is now global since the computations show that ∥uZ2
t ∥2L2 = 2.1003 <

∥R∥2
L2 and ∥uZ2

r ∥2L2 = 2.0768 < ∥R∥2
L2 .

We also note that the reflected solution encounters the first default and wave
splitting phenomenon is repeated over time. Thus, the presence of two defects
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Figure 11 – Numerical solution after the second defect interaction, t = 0.0873 (left)
and t = 0.1371 (right).

stopped the explosion. Of course, taking a larger amplitude for the initial data may
change the qualitative property of the solution. Indeed, the blow-up may still occur
for a larger total mass.

From these computations, it can be conjectured that a travelling blowing-up
solution may become global in presence of a defect lattice formed with a family
(Zk ,xk)k≥0 that could successively extract mass and generate interaction waves at
each defect location.

5 Conclusion

In this work, we have theoretically and numerically investigated the influence
of a defect on the dynamics of solutions of the quintic NLS equation in the one-
dimensional case.

First, we showed that it is possible to obtain sufficient conditions for global
well-posedness. Surprisingly, this condition is the same as in the absence of defect,
involving the ground state of the NLS equation. Similarly, finite time blow-up is
proved by means of virial identity for negative energy initial data. The asymptotics
Z → −∞ has been studied, showing when |Z | is large, the solution mimics on
the negative half-line the one of the boundary NLS problem with homogeneous
Dirichlet conditions set at x = 0. It means that large defect amplitude drives the
point x = 0 to behave as a barrier. This can be interpreted as a consequence of the
fact that Z acts as a penalty parameter in the transmission condition, meaning that
if the jump of the spatial derivative of the solution at the origin is seeked bounded
through time, then ZuZ (t,0) is bounded and the solution tends to zero when |Z | is
large.

We then performed numerical simulations in order to observe the defect influ-
ence on two well-known classes of solutions: travelling standing waves and blowing-
up self-similar solutions that can be explicitly computed in this one-dimensional
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critical case. The discretization of the transmission condition is performed and
added to the classical Crank-Nicolson scheme. It is generally detected in our com-
putations that the defect splits the incident wave in two parts: one reflected part
and one transmitted one. The mass of each part depends on the value of Z and the
mass transfer becomes more relevant as the defect amplitude is large.

What is remarkable is that even if a initial data localized far away from x = 0
may lead to blowing-up solution for Z = 0, the defect can prevent blow-up if each
separate part has a remaining mass smaller than the one of the ground state. It
means that at large distances, the time dynamics of each part is driven by the
classical NLS without defect, as if both of them solved a separate NLS equation on
each half-line. Of course, for a given initial mass, |Z | has to be large enough in order
to extract for the initial wave emitted and reflected parts that are "well-balanced" in
such away that each mass is smaller than the critical one.

From all these computations, it turns out that the defect can be considered as
a perturbation of the ideal NLS equation, meaning that for small Z, the classical
travelling and blowing-up behaviors are recovered, with little influence of the
singular contribution. However, large defect amplitude leads us to a breaking
effect that drastically affects the well-known dynamics: in particular, blowing-up
solutions in the case Z = 0 may become global after crossing the original. This could
be somehow referred as a stabilization effect.

The same considerations could logically be addressed in higher spatial dimen-
sion, where the defect is located on a line or a curve. This should deserve a forth-
coming paper.
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