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Abstract

The classical Hopf invariant is defined for a map f : Sr → X. Here we define
‘hcat’ which is some kind of Hopf invariant built with a construction in Ganea’s
style, valid for maps not only on spheres but more generally on a ‘relative
suspension’ f : ΣAW → X. We study the relation between this invariant and the
sectional category and the relative category of a map. In particular, for ιX : A→
X being the ‘restriction’ of f on A, we have relcat ιX ⩽ hcatf ⩽ relcat ιX + 1 and
relcatf ⩽ hcatf .
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msc: 55M30.

Our aim here is to make clearer the link between the Lusternik-Schnirelmann
category (cat), more generally the ‘relative category’ (relcat), closely related to
James’sectional category (secat), and the Hopf invariants. In order to do this, we
introduce a new integer, namely hcat, that combines the Iwaze’s version of Hopf
invariant2, based on the difference up to homotopy between two maps defined for a
given section of a Ganea fibration, and the framework of the sectional and relative
categories, searching for the least integer such that the Ganea fibration has a section,
possibly with additional conditions. To do this combination, we simply define our
invariant hcat, as the least integer such that the Ganea fibration has a section σ with
additional condition that the corresponding two maps (f ◦ σ and ωn in this paper)
are homotopic.

It appears that for f : Sr → X or even for f : ΣW → X, we obtain an integer that
can be either cat(X), or cat(X) + 1. More generally, for any f : ΣAW → X, we have
relcat (f ◦θ) ⩽ hcat(f ) ⩽ relcat (f ◦θ) + 1, where θ : A→ ΣAW is the map arising in
the construction of ΣAW .

In Section 2, we study the influence of hcat in a homotopy pushout. In Section 3,
we introduce the ‘strong’ version of our invariant, and we obtain another important
inequality: for any f : ΣAW → X, we have relcat(f ) ⩽ hcat(f ). In Section 4, we give
alternative equivalent conditions to get hcat. Applications and examples are given.

1Département de Mathématiques, UMR-CNRS 8524, Université de Lille, 59655 Villeneuve d’Ascq
Cedex, France

2Iwase, 1998, “Ganea’s conjecture on Lusternik-Schnirelmann category”.
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1 The Hopf category

We work in the category of pointed topological spaces. All constructions are made
up to homotopy. A ‘homotopy commutative diagram’ has to be understood in the
sense of Mather.

Recall the following construction:

Definition 1 – For any map ιX : A→ X, the Ganea construction of ιX is the following
sequence of homotopy commutative diagrams (i ⩾ 0):

A

Fi Gi+1 X

Gi

αi+1

ιX

βi

ηi

gi+1

γi

gi

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map gi+1 = (gi , ιX ) : Gi+1→ X is the whisker map induced by this
homotopy pushout. The iteration starts with g0 = ιX : A→ X. We set α0 = idA.

For any i ⩾ 0, there is a whisker map θi = (idA,αi) : A→ Fi induced by the homotopy
pullback. Thus we have the sequence of maps A Fi Aθi ηi and θi is a
homotopy section of ηi . Moreover we have γi ◦αi ≃ αi+1, thus also αi+1 ≃ γi ◦γi−1 ◦
· · · ◦γ0.

We denote by γi,j : Gi → Gj the composite γj−1 ◦ · · · ◦γi+1 ◦γi (for i < j) and set
γi,i = idGi

.
Of course, everything in the Ganea construction depends on ιX . We sometimes

denote Gi by Gi(ιX ) to avoid ambiguity.

Definition 2 – Let ιX : A→ X be any map.

1) The sectional category of ιX is the least integer n such that the map gn : Gn(ιX )→
X has a homotopy section, i.e. there exists a map σ : X → Gn(ιX) such that
gn ◦ σ ≃ idX .

2) The relative category of ιX is the least integer n such that the map gn : Gn(ιX )→
X has a homotopy section σ and σ ◦ ιX ≃ αn.

3) The relative category of order k of ιX is the least integer n such that the map
gn : Gn(ιX )→ X has a homotopy section σ and σ ◦ gk ≃ γk,n.

We denote the sectional category by secat(ιX), the relative category by relcat(ιX),
and the relative category of order k by relcatk (ιX). If A = ∗, secat(ιX) = relcat(ιX)
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1. The Hopf category

and is denoted simply by cat(X); this is the ‘normalized’ version of the Lusternik-
Schnirelmann category.

Clearly, secat(ιX) ⩽ relcat(ιX). We have also relcat(ιX) ⩽ relcat1 (ιX), see Propo-
sition 1 below.

In the sequel, we will consider a given homotopy pushout:

W A

A ΣAW

η

β θ

θ

In other words, the map θ is a map such that Pushcatθ ≤ 1 in the sense of Doeraene
and El Haouari. We call this homotopy pushout a ‘relative suspension’ because in
some sense, A plays the role of the point in the ordinary suspension.

We also consider any map f : ΣAW → X, and set ιX = f ◦θ.
We don’t assume η ≃ β in general. This is true, however, if θ is a homotopy

monomorphism, and in this case we can ‘think’ of ιX as the ‘restriction’ of f on A.
For n⩾ 1, consider the following homotopy commutative diagram:

W A

A ΣAW ΣAW

Fn−1(ιX ) Gn−1(ιX )

A Gn(ιX ) X

β

η
θ

αn−1

θ

θ

f

γn−1

gn−1

αn gn

ωn
(†)

where the map W → Fn−1 is induced by the bottom outer homotopy pullback and
the map ωn : ΣAW → Gn is induced by the top inner homotopy pushout. We have
f ≃ gn◦ωn by the ‘Whisker maps inside a cube’ lemma (see Doeraene and El Haouari
2013, Lemma 49). Also notice that αn ≃ωn ◦θ ≃ γn−1 ◦αn−1; so ωn ≃ (αn,αn) is the
whisker map of two copies of αn induced by the homotopy pushout ΣAW . Finally,
for all k ⩾ 1, we can see that ωn ≃ γk,n ◦ωk .

Definition 3 – The Hopf category of f is the least integer n⩾ 1 such that gn : Gn(ιX )→
X has a homotopy section σ : X→ Gn(ιX ) such that σ ◦ f ≃ωn.

We denote this integer by hcat(f ).
Actually, speaking of ‘Hopf category of f ’ is a misuse of language. We should

speak of ‘Hopf category of the datas η, β and f ’.

Example 1 – Let X = ΣAW and f ≃ idX . Then, as might be expected, hcat(f ) = 1.
Indeed, in this case, as g1 ◦ω1 ≃ f ≃ idX , ω1 is a homotopy section of g1. Moreover,
ω1 ◦ f ≃ω1 ◦ idX ≃ω1, so hcat(f ) = 1.
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Example 2 – Let X ; ∗ and W = A∨A, β ≃ pr1 : A∨A→ A and η ≃ pr2 : A∨A→ A
the obvious maps. Then ΣAW ≃ ∗ and we have no choice for f that must be the
null map f : ∗ → X. In this case the condition σ ◦ f ≃ ωn is always satisfied, so
hcat(f ) = secat(ιX ) = cat(X).

Notice that relcat is a particular case of hcat: When W = A, η ≃ β ≃ idA, then ιX ≃ f ,
ωn ≃ αn and hcat(f ) = relcat(ιX). Also relcat1 is a particular case of hcat: When
W = F0, then ΣAW ≃ G1,

θ ≃ γ0 ≃ α1, and if, moreover, f ≃ g1, then ωn ≃ γ1,n and hcat(f ) = relcat1 (ιX ).
The following proposition shows that these particular cases are in fact lower and

upper bounds for hcat(f ).

Proposition 1 – Whatever can be f (and ιX = f ◦θ), we have

secat(f ) ⩽ relcat(ιX ) ⩽ hcat(f ) ⩽ relcat1 (ιX ) ⩽ relcat(ιX ) + 1.

Proof. Consider the following homotopy commutative diagram (n⩾ 1):

Gn

A ΣAW

X

gn
θ

αn

ιX
f

ωn

We see that if there is a map σ : X→ Gn such that ωn ≃ σ ◦ f then αn ≃ σ ◦ ιX and
this proves the second inequality.

Now consider the following homotopy commutative diagram (n⩾ 1):

Gn

ΣAW G1

X

gn
ω1

ωn

f
g1

γ1,n

We see that if there is a map σ : X→ Gn such that γ1,n ≃ σ ◦ g1 then ωn ≃ σ ◦ f and
this proves the third inequality.

The first inequality comes from secat(f ) ⩽ secat(ιX) ⩽ relcat(ιX), the first of
these two inequalities comes from Doeraene and El Haouari (2013, Proposition 29).

Finally, the fourth inequality is proved in Doeraene (2016). □
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2. Hopf invariant and homotopy pushout

So hcat(f ) establishes a ‘dichotomy’ between maps f : ΣAW → X:

• Either hcat(f ) = relcat(ιX) and we have a σ such that f ◦ σ ≃ ωn already for
n = secat(ιX );

• either hcat(f ) = relcat(ιX) + 1 and we have a σ such that f ◦ σ ≃ ωn only for
n > secat(ιX )

Our last example of the section shows that the inequalities of Proposition 1 can
be strict, and even that two may be strict at the same time:

Example 3 – Let X = ∗, A ; ∗ and consider ι∗ : A→ ∗. We have Gi(ι∗) ≃ A ▷◁ . . . ▷◁ A,
the join of i + 1 copies of A. For any k, γk,k ≃ id, so it cannot factorize through ∗;
but γk,k+1 is homotopic to the null map, so relcatk (ι∗) = k + 1. Now consider f ≃
g1(ι∗) : A ▷◁ A→ ∗. As said before, in this case we have hcat(f ) = relcat1 (ιX). So we
get secat(f ) = 0 < relcat(ι∗) = 1 < hcat(f ) = relcat1 (ι∗) = 2.

2 Hopf invariant and homotopy pushout

Let us consider any homotopy commutative square:

ΣAW B

X Y

ρ

f κY

χ

(‡)

Proposition 2 – The homotopy commutative square above can be splitted into the fol-
lowing homotopy commutative diagram:

ΣAW G1(ιX ) Gn(ιX ) X

B G1(κY ) Gn(κY ) Y

ρ

f

χ

κY

Proof. Set φ = ρ ◦θ. Since θ ◦ η ≃ θ ◦ β, also φ ◦ η ≃ φ ◦ β. First notice that we can
insert the original homotopy square inside the following homotopy commutative
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diagram:

W A

A ΣAW X

B B

B B Y

η

β

φ

ιX

φ

f

χ

κY

ρ

By induction on n⩾ 1, starting from the outside cube of the above diagram and
φ0 = φ, we can build a homotopy diagram:

W Fn−1(ιX ) A

Gn−1(ιX ) Gn(ιX ) X

B Fn−1(κY ) B

Gn−1(κY ) Gn(κY ) Y

φ

ιX

χ

κY

φn−1

gn

φn

where the dashed and dotted maps are induced by the homotopy pullback Fn−1(κY )
and the homotopy pushout Gn(ιX ) respectively.

So we obtain a homotopy commutative diagram:

W A

A Gn(ιX ) X

B B

B Gn(κY ) Y

ιX

gn

χ

gn

190



2. Hopf invariant and homotopy pushout

Finally take the homotopy pushout inside the upper and lower lefter squares to
get the homotopy commutative diagram:

ΣAW Gn(ιX ) X

B Gn(κY ) Y

ρ

ωn

χ

and this gives the required splitting of the original square. □

Proposition 3 – If the square ‡ is a homotopy pushout, then

relcat(κY ) ⩽ hcat(f ).

As a particular case, when B ≃ ∗, Y is the homotopy cofibre of f , and relcat(κY ) =
cat(Y ). So the Proposition asserts that hcat(f ) ⩾ cat(Y ).

Proof. Let hcat(f ) ⩽ n, so we have a homotopy section σ of gn(ιX ) such that σ◦f ≃ωn.
First apply the ‘Whisker maps inside a cube’ lemma to the outer part of the following
homotopy commutative diagram:

ΣAW B

Gn(ιX ) S Gn(κY )

ΣAW B

X Y Y

ωn

a

αn

b

gn

c

where the inner horizontal squares are homotopy pushouts, and c and b are the
whisker maps induced by the homotopy pushout S. Next build the following
homotopy commutative diagram:

ΣAW B

X Y

ΣAW B

Gn(ιX ) S Gn(κY )

f κ

σ

ωn

a
αn

d

b

where d is the whisker map induced by the homotopy pushout Y . Let σ ′ = b ◦d. We
have gn ◦ σ ′ ≃ gn ◦ b ◦ d ≃ c ◦ d ≃ idC and σ ′ ◦κY ≃ b ◦ d ◦κY ≃ b ◦ a ≃ αn. □

191



Yet another Hopf invariant J.-P. Doeraene and M. El Haouari

Corollary 1 – In the diagram ‡,

if relcat(κY ) = relcat (ιX ) + 1, then hcat(f ) = relcat (ιX ) + 1.

Proof. By Proposition 3, the hypothesis implies that hcat(f ) ⩾ relcat (ιX ) + 1. But by
Proposition 1, we have hcat(f ) ⩽ relcat(ιX ) + 1. So we have the equality. □

It is now easy to exhibit examples of maps f with hcat(f ) = relcat(ιX) + 1. Indeed
there are plenty examples of homotopy pushouts where relcat(κY ) = relcat(ιX ) + 1:

Example 4 – Let A = B = ∗ and f : Sr → Sn be any of the Hopf maps S3 → S2,
S7 → S4 or S15 → S8. So here relcat(ιX) = cat(Sn) = 1. On the other hand it is
well known that those maps have a homotopy cofibre Sn/Sr of category 2, so here
relcat(κY ) = cat(Sn/Sr ) = 2. By Corollary 1, we have hcat(f ) = 2.

Example 5 – Let f be the map u in the homotopy cofibration

Z ▷◁ Z ΣZ ∨ΣZ ΣZ ×ΣZu t1

where Z ▷◁ Z ≃ Σ(Z ∧Z) is the join of two copies of Z and is also the suspension of
the smash product of two copies of Z. Let A = B = ∗, ΣZ ; ∗. We have relcat(ιX) =
cat(ΣZ ∨ΣZ) = 1 and relcat(κY ) = cat(ΣZ ×ΣZ) = 2, so by Corollary 1 again, we
have hcat(u) = 2.

Example 6 – For i ⩾ 1, let f be the map βi in the Ganea construction:

A Fi A

Gi Gi+1

θi

αi

ηi

βi αi+1

γi

Actually Fi is a join over A of i + 1 copies of F0, and also a relative suspen-
sion ΣAW where W is a relative smash product. For any i ⩽ relcat(ιX), we have
relcat (αi) = i, see Doeraene and El Haouari (2013, Proposition 23). So by Corollary 1
again, if i < relcat(ιX ), we have hcat(βi) = relcat (αi) + 1 = i + 1.

3 The Strong Hopf category

In Doeraene and El Haouari (2013), we introduced the strong version of relcat ,
namely Relcat . In this section, we introduce the strong version of hcat, namely Hcat.
This gives an alternative way, sometimes usefull, to see if a map has a Hopf category
less or equal to n. Also this will lead to a new inequality: hcat(f ) ⩾ relcat(f ).
Consequently, if relcat(f ) > relcat(ιX ), then hcat(f ) = relcat (ιX ) + 1.
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3. The Strong Hopf category

Definition 4 – The strong Hopf category of a map f : ΣAW → X is the least integer
n⩾ 1 such that:

• there are maps ι0 : A→ X0 and a homotopy inverse λ : X0→ A, i.e. ι0◦λ ≃ idX0
and λ ◦ ι0 ≃ idA;

• for each i, 0 ⩽ i < n, there is a homotopy commutative cube:

W A

A ΣAW

Zi Xi

A Xi+1

β

η

ιi

zi

χiιi+1

ζi+1
(♮)

where the bottom square is a homotopy pushout.

• Xn = X and ζn ≃ f .

We denote this integer by Hcat(f ).
Notice that ιi+1 ≃ ζi+1 ◦θ ≃ χi ◦ ιi . In particular, this means that Pushcat(ιi) ⩽ i

in the sense of Doeraene and El Haouari (2013, Definition 3).
For 0 ⩽ i ⩽ n, define the sequence of maps ξi : Xi → X with the relation ξi =

ξi+1 ◦ χi (when i < n), starting with ξn = idX . We have ξn ◦ ιn ≃ ιX and ξi ◦ ιi =
ξi+1 ◦χi ◦ ιi ≃ ξi+1 ◦ ιi+1 ≃ ιX by decreasing induction. Also ιX ◦λ ≃ ξ0 ◦ ι0 ◦λ ≃ ξ0.
Moreover, for 0 < i ⩽ n we have we have ξi ◦ ζi ≃ f by the ‘Whisker maps inside a
cube lemma’. So we have the following homotopy diagram:

W A

A ΣAW ΣAW

Zi A

Xi Xi+1 X

η

β θ

ιi f

ιi+1

ιX

χi

ζi+1

ξi+1

We say that a map g : B→ Y is ‘relatively dominated’ by a map f : B→ X if
there is a map ϕ : X → Y with a homotopy section σ : Y → X such that ϕ ◦ f ≃ g
and σ ◦ g ≃ f .
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Proposition 4 – A map g : ΣAW → Y has hcat(g) ⩽ n iff g est relatively dominated by
a map f : ΣAW → X with Hcat(f ) ⩽ n.

Proof. Consider the map ωn : ΣAW → Gn(ιY ) as in diagram † and notice that
Hcat(ωn) ⩽ n. If hcat(f ) ⩽ n, then f is relatively dominated by ωn.

For the reverse direction, by hypothesis, we have a map ϕ and a homotopy
section σ such that ϕ ◦ f ≃ g and σ ◦ g ≃ f ; composing with θ, we have also
ϕ ◦ ιX ≃ ιY and σ ◦ ιY ≃ ιX . From the hypothesis Hcat(f ) ⩽ n, we get a sequence of
homotopy commutative diagrams, for 0 ⩽ i < n, which gives the top part of the
following diagram.

We show by induction that the map ϕ◦ξi : Xi → Y factors through gi : Gi(ιY )→ Y
up to homotopy. This is true for i = 0 since we have ξ0 ≃ ιX ◦ λ, so ϕ ◦ ξ0 ≃
ϕ ◦ ιX ◦λ ≃ ιY ◦λ = g0 ◦λ. Suppose now that we have a map λi : Xi → Gi(ιY ) such
that gi ◦λi ≃ ϕ ◦ ξi . Then we construct a homotopy commutative diagram

Zi A

Xi Xi+1 X

Fi A

Gi(ιY ) Gi+1(ιY ) Y

zi ιi+1

λi

ξi+1

ϕ

αi+1

gi+1

λi+1

where Zi → Fi is the whisker map induced by the bottom homotopy pullback and
λi+1 : Xi+1 → Gi+1(ιY ) is the whisker map induced by the top homotopy pushout.
The composite gi+1 ◦ λi+1 is homotopic to ϕ ◦ ξi+1. Hence the inductive step is
proven.

At the end of the induction, we have gn ◦λn ≃ ϕ ◦ ξn = ϕ ◦ idX = ϕ. As we have
a homotopy section σ : Y → Xn = X of ϕ, we get a homotopy section λn ◦ σ of gn.
Moreover, we have (λn ◦ σ ) ◦ g ≃ λn ◦ f ≃ λn ◦ ζn ≃ωn. □

Example 7 – If we consider any relative suspension ΣAf : ΣAW → ΣAZ (and in par-
ticular, of course, when A = ∗, any suspension Σf : ΣW → ΣZ), we have
Hcat(ΣAf ) = 1. And so, any map g that is relatively dominated by a (relative)
suspension has hcat(g) = 1.

In fact, by definition, a map g has Hcat(g) = 1 if and only if g is a (relative) sus-
pension. There are maps for which the strong Hopf category is greater than the
Hopf category: For instance, consider the null map f : ∗ → X of Example 2; if X is a
space with cat(X) = 1 that is not a suspension, then f cannot be a suspension, so
Hcat(f ) > hcat(f ) = 1.
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3. The Strong Hopf category

Proposition 5 – In the diagram ♮, we have

Relcat(ζi) ⩽ i

As ωi is a particular case of ζi , this implies Relcat(ωi) ⩽ i.

Proof. For i > 0, let build the following homotopy diagram where the three squares
are homotopy pushouts:

W Zi−1 Aθ

A Ci−1 ΣAW

Xi−1 Xi

β

η

ιi

ιi−1

ci−1 ζi

zi−1

and where the map ci−1 = (ιi−1, zi−1) is the whisker map induced by the homotopy
pushout.

We have secat(ιi−1) ⩽ Pushcat(ιi−1) ⩽ i − 1 by Doeraene and El Haouari (2013,
Theorem 18). So secat(ci−1) ⩽ i − 1 by Doeraene and El Haouari (2013, Propo-
sition 29). So Relcat(ci−1) ⩽ (i − 1) + 1 = i by Doeraene and El Haouari (2013,
Theorem 18). And this implies Relcat(ζi) ⩽ i by Doeraene and El Haouari (2013,
Lemma 11). □

Theorem 1 – For any f : ΣAW → X, we have

Relcat(f ) ⩽ Hcat(f ) and relcat(f ) ⩽ hcat(f )

Proof. If Hcat(f ) = n, then we have f ≃ ζn in ♮. So Relcat(f ) = Relcat(ζn) ⩽ n by
Proposition 5.

If hcat(f ) = n, then f is relatively dominated by ωn. As Relcat(ωn) ⩽ n, we have
relcat(f ) ⩽ n by Doeraene and El Haouari (2013, Proposition 10). □

As a corollary, we get an indirect proof of Proposition 3 because relcat(κY ) ⩽
relcat(f ) by Doeraene and El Haouari (2013, Lemma 11), that asserts that a homo-
topy pushout doesn’t increase the relative category.

It is not difficult to find an example where these inequalities are strict:

Example 8 – Let f be the map t1 in the homotopy cofibration

Z ▷◁ Z ΣZ ∨ΣZ ΣZ ×ΣZu t1

Let A = ∗, ΣZ ; ∗. As t1 is a homotopy cofibre, we have relcat(t1) ⩽ Relcat(t1) ⩽ 1,
see Doeraene and El Haouari (2013, Proposition 9). On the other hand, we have
Hcat(t1) ⩾ hcat(t1) ⩾ relcat(ιX ) = cat(ΣZ ×ΣZ) = 2 by Proposition 1.
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4 Equivalent conditions to get the Hopf category

Let be given any map f : ΣAW → X with secat(ιX) ⩽ n and any homotopy section
σ : X→ Gn of gn : Gn→ X. Consider the following homotopy pullbacks:

Q ΣAW

ΣAW Hn ΣAW

X Gn X

π′

π

θW
n

σ̄

f

ηWn

fn f

σ gn

where θW
n = (ωn, idΣAX) is the whisker map induced by the homotopy pullback

Hn. By the ‘Prism lemma’ (see Doeraene and El Haouari 2013, Lemma 46, for
instance), we know that the homotopy pullback of σ and fn is indeed ΣAW , and that
ηWn ◦ σ̄ ≃ idΣAW . Also notice that π ≃ π′ since π ≃ ηWn ◦θW

n ◦π ≃ ηWn ◦ σ̄ ◦π′ ≃ π′ .

Proposition 6 – Let be given any map f : ΣAW → X with secat(ιX) ⩽ n and any
homotopy section σ : X → Gn(ιX) of gn : Gn(ιX)→ X. With the same definitions and
notations as above, the following conditions are equivalent:

(i) σ ◦ f ≃ωn.

(ii) π has a homotopy section.

(iii) π is a homotopy epimorphism.

(iv) θW
n ≃ σ̄ .

Proof. We have the following sequence of implications:

(i) =⇒ (ii): Since σ ◦ f ≃ ωn ≃ fn ◦ θW
n ◦ idΣAW , we have a whisker map

(f , idΣAW ) : ΣAW →Q induced by the homotopy pullback Q which is a homo-
topy section of π.

(ii) =⇒ (iii): Obvious.

(iii) =⇒ (iv): We have θW
n ◦π ≃ σ̄ ◦π since π ≃ π′ . Thus θW

n ≃ σ̄ since π is a homo-
topy epimorphism.

(iv) =⇒ (i): We have σ ◦ f ≃ fn ◦ σ̄ ≃ fn ◦θW
n ≃ωn. □

Theorem 2 – Let be a (q − 1)-connected map ιX : A→ X with secat ιX ⩽ n. If ΣAW is
a CW-complex with dimΣAW < (n+ 1)q−1 then σ ◦ f ≃ωn for any homotopy section σ
of gn.
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Proof. Recall that gi is the (i+1)-fold join of ιX . Thus by Mather (1976, Theorem 47),
we obtain that, for each i ⩾ 0, gi : Gi → X is (i + 1)q − 1-connected. As gi and ηWi
have the same homotopy fibre, the Five lemma implies that ηWi : Hi → ΣAW is
(i + 1)q − 1-connected, too. By Whitehead (1978, Theorem IV.7.16), this means
that for every CW-complex K with dimK < (i + 1)q − 1, ηWi induces a one-to-one
correspondence [K,Hi]→ [K,ΣAW ]. Apply this to K = ΣAW and i = n: Since θW

n
and σ̄ are both homotopy sections of ηWn , we obtain θW

n ≃ σ̄ , and Proposition 6
implies the desired result. □

Example 9 – Let A = ∗ and W = Sr−1, so ΣAW = Sr , and X = Sm. In this case
secat ιX = catSm = 1. Hence Theorem 2 means that if r < 2m− 1, we have σ ◦ f ≃ω1,
whatever can be f and σ : X → G1(ιX), so hcatf = 1 and we get by Proposition 3
that the homotopy cofibre C of f has catC ⩽ 1. (Notice that if r < m then f is
a nullhomotopic, so C is simply Sm ∨ Sr+1.)

Example 10 – Let A = ∗, ΣW ≃ Σ(Sr−1 ∨ Sr−1) ≃ Sr ∨ Sr , X ≃ Sr × Sr and consider
t1 : Sr ∨ Sr → Sr × Sr . Here secat(ιX) = cat(Sr × Sr ) = 2. For any r ⩾ 1, we have
dim(Sr ∨ Sr ) = r < (2 + 1)r − 1, so hcat(t1) = 2.
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