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Abstract

We summarize our findings in the analysis of adaptive finite element methods
for the efficient discretization of control constrained optimal control problems.
We particularly focus on convergence of the adaptive method, i.e. we show that
the sequence of adaptively generated discrete solutions converges to the true
solution. The result covers the variational discretization (Hinze) as well as con-
trol discretizations with piecewise discontinuous finite elements. Moreover, the
presented theory can be applied to a large class of state equations, to boundary
control and boundary observation.
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msc: Primary 49M25. Secondary 65N15, 65N30, 65N50.

1 Introduction

Convegence and optimality of Adaptive Finite Element Methods (AFEM) is a well
studied topic for linear partial differential equations. Without claiming to be
exhaustive we refer to Cascon et al. (2008), Diening, Kreuzer, and Stevenson (2016),
Dörfler (1996), Kreuzer and Siebert (2011), Morin, Nochetto, and Siebert (2000),
and Stevenson (2007) as well as the overview article Nochetto, Siebert, and Veeser
(2009) and the references therein.

In contrast, the situation changes, however, when it comes to linear-quadratic
optimal control problems with inequality constraints. Resorting to Dörflers mark-
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ing strategy4, the first linear convergence result5 for constrained optimal control
problems is based upon some non-degeneracy assumptions on the continuous and
the discrete problems and a smallness assumption on the maximal mesh-size of
G0. A smallness assumption on the coarse mesh was also used in the convergence
and optimality result of Gong and Yan6. However these conditions are practically
not verifiable since they typically involve asymptotic estimates with unknown
constants.

A new approach was proposed by Kohls, Rösch, and Siebert7 for optimal control
problems with distributed control and the variational discretization by Hinze8. It
utilizes recently developed reliable and efficient a posteriori error bounds9 as well
as the basic convergence results of adaptive finite elements for partial differential
equations in Morin, Siebert, and Veeser (2008) and Siebert (2011). We emphasize
that the theory does not require any smallness assumption or assumptions on the
boundary between active and inactive sets and applies to rather general marking
strategies. As a drawback, it does not guarantee convergence rates.

Independently, similar techniques have been used by Xu and Zou (2015b, 2017)
for particular optimal control problems without constraints and in Xu and Zou
(2015a) for a bilinear nonconvex optimization problem. The latter result provides
basic convergence of a subsequence of the adaptive approximations to a not neces-
sarily unique solution of the optimality conditions of the first kind and the used
a posteriori indicators are not designed with the objective of controlling the error,
but rather in order to guarantee convergence.

In this paper, we will further develop this new basic convergence approach
for a general framework which covers a large class of control discretizations, state
equations, error estimators, and marking strategies. The approach covers variational
discretizations and piecewise discontinuous polynomial controls as well as allows
us to deal with boundary controls or/and boundary observation. The restrictions
on the linear equation are very general and therefore the results presented in this
paper extend the known theory in a significant way.

The paper is structured as follows. In Section 2 we state the assumptions and the
main result. Section 3 is devoted to the framework of a posteriori error estimation.
Convergence of the discrete solutions to a solution of an auxiliary problem is shown

4Dörfler, 1996, “A convergent adaptive algorithm for Poisson’s equation”.
5Gaevskaya et al., 2007, “Convergence analysis of an adaptive finite element method for distributed

control problems with control constraints”.
6Gong and Yan, 2017, “Adaptive finite element method for elliptic optimal control problems:

convergence and optimality”.
7Kohls, Rösch, and Siebert, 2014b, “Convergence of adaptive finite elements for optimal control

problems with control constraints”.
8Hinze, 2005, “A variational discretization concept in control constrained optimization: the linear-

quadratic case”.
9Kohls, Rösch, and Siebert, 2014a, “A posteriori error analysis of optimal control problems with

control constraints”.
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2. Statement of the main result

in Section 4. Convergence of the discrete solutions to the solution of the original
optimal control problem and the convergence of the error estimator to zero is
contained in Section 5. Finally, in Section 6, we will present some illustrating
examples.

2 Statement of the main result

In this article we analyze adaptive finite element discretizations for control con-
strained optimal control problems of the form

min
(u,y)∈Uad×Y

J [u,y] = ψ(y) +
α
2
∥u∥2

U

subject to y ∈ Y : B[y, v] = ⟨f +u, v⟩
Y×Y ∗ ∀v ∈ Y ,

(1)

where f ∈ Y ∗ is a given functional. We have a particular interest in bilinear forms B,
that arise in the variational formulation of PDEs. Concrete examples of this type of
problem are provided in Section 6 below.

For a bounded domain Ω ⊂R
d with polyhedral boundary, let (Y ,⟨·, ·⟩

Y
) be some

Hilbert space of functions with Y ⊂ L2(Ω;Rm) for some m ∈N. The quantity α > 0
is some given cost parameter. We consider a Fréchet differentiable, quadratic and
convex functional ψ : Y → R and suppose that ψ′ is locally Lipschitz continuous
with constant L, i.e., ∥ψ′(y) −ψ′(ȳ)∥

Y
∗(ω) ≤ L∥y − ȳ∥Y(ω) for all y, ȳ ∈ Y and ω ⊂ Ω.

Hereafter, we assume that the norm ∥ · ∥
Y

= ∥ · ∥
Y(Ω) is sub-additive, i.e., for any

measurable subsets ω1,ω2 ⊂Ω with |ω1 ∩ω2| = 0, we have that

∥v∥2
Y(ω1) + ∥v∥2

Y(ω2) ≤ ∥v∥
2
Y(ω1∪ω2) (2a)

and

∥v∥2
Y(Bδ∩Ω)→ 0 as δ→ 0 (2b)

where Bδ denotes any ball in R
d with radius δ. Note that this condition is weaker

than absolute continuity of the norm and accommodates the fact that the relevant
balls will be inner or outer balls of shape regular elements or patches. We suppose
that the bilinear form B : Y×Y →R is continuous and satisfies the inf-sup conditions

inf
v∈Y\{0}

sup
w∈Y\{0}

B[v, w]
∥v∥

Y
∥w∥

Y

= inf
w∈Y\{0}

sup
v∈Y\{0}

B[v, w]
∥v∥

Y
∥w∥

Y

= β > 0. (3)

This is equivalent to the fact that the state equation admits a unique solution which
continuously depends on the data f + u ∈ Y

∗. The control space is assumed as
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U = L2(Γ ;Rm) for somem ∈N, where Γ maybe part of the domain Ω or its boundary
such that Y ↪→U = U

∗ ↪→ Y
∗. The set of admissible controls Uad is given by

U
ad = {u ∈U,u ∈ C a.e. in Γ } (4)

with a given closed convex set ∅ , C ⊂ R
m. We shall use the notation ∥u∥

U(ω) :=
∥u∥L2(Γ∩ω) for all measurable sets ω ⊂Ω. Technically there may be some inclusion
operators like traces involved, (compare e.g. with the application of the theory to a
diffusion-reaction problem with boundary control in section 6.1 below), however,
they are omitted for the sake of clarity of the presentation.

Turning to the discretization of (1), we assume that Ω is meshed exactly by some
conforming initial triangulation G0 and denote by G the class of all conforming
refinements of G0 that can be constructed using recursive or iterative refinement
by bisection10. For a given grid G ∈ G, we let Y(G) ⊂ Y be a conforming finite
element space of piecewise polynomials of fixed degree q ∈N, such that we have
the following uniform discrete inf-sup conditions

inf
v∈Y(G)\{0}

sup
w∈Y(G)\{0}

B[v, w]
∥v∥

Y
∥w∥

Y

= inf
w∈Y(G)\{0}

sup
v∈Y(G)\{0}

B[v, w]
∥v∥

Y
∥w∥

Y

= β(G) > γ > 0. (5)

In the case of the variational discretization of (1) by Hinze, we solve the dis-
cretized optimal control problem

min
(U,Y )∈Uad×Y(G)

J [U,Y ] = ψ(Y ) +
α
2
∥U∥2

U

subject to Y ∈ Y(G) : B[Y , V ] = ⟨f +U, V ⟩ ∀V ∈ Y(G).
(6)

For discrete controls, we additionally replace the control space U by a finite
element space of discontinuous piecewise polynomials of bounded degree over a
conforming, exact and shape-regular triangulation GΓ of Γ , which is subordinated
to some G ∈G in the sense that GΓ is either a subset of G or of its trace grid on the
boundary of Ω. Note that the existence of GΓ for all G ∈ G requires that Γ is the
union of elements in G0 or respectively of some of its boundary sides. With a little
abuse of notation, we denote the resulting discretization of U by U(G) and assume
that it contains the piecewise constant functions over GΓ . Note that this readily
implies that the set of discrete admissible controls

U
ad(G) := U

ad ∩U(G),

is nonempty. The discretized optimal control problem reads then as

min
(U,Y )∈Uad(G)×Y(G)

J [U,Y ] = ψ(Y ) +
α
2
∥U∥2

U

subject to Y ∈ Y(G) : B[Y , V ] = ⟨f +U, V ⟩ ∀V ∈ Y(G).
(7)

10Bänsch, 1991, “Local mesh refinement in 2 and 3 dimensions”;
Kossaczký, 1994, “A recursive approach to local mesh refinement in two and three dimensions”;
Schmidt and Siebert, 2005, Design of adaptive finite element software.
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2. Statement of the main result

It is well-known that (1) as well as (6) respective (7) admit unique solution pairs
(û, ŷ) and (ÛG , ŶG); compare with Lions (1971) and Tröltzsch (2010).

Numerically, the discrete solutions of (6) and (7) are computed by solving the
corresponding first order optimality systems; compare also with Tröltzsch (2010).
In other words, the control û in (1) is the orthogonal projection in U onto the set of
admissible controls Uad of the adjoint state

p̂ ∈ Y : B[v, p̂] = ⟨ψ′(ŷ), v⟩ ∀v ∈ Y . (8a)

In the discrete settings (6) and (7) we have analogously

P̂G ∈ Y(G) : B[V , P̂G] = ⟨ψ′(ŶG), V ⟩ ∀V ∈ Y(G) (8b)

and the discrete control is the orthogonal projection of ŶG onto either Uad (varia-
tional discretization of Hinze) or Uad(G) (control discretization). A more detailed
presentation is provided in Section 3.

We use the following adaptive algorithm for approximating the exact solution
of (1). Starting with the initial conforming triangulation G0 of Ω, we execute the
standard adaptive loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (9)

In practice, a stopping test is used after ESTIMATE for terminating the iteration;
here we shall ignore it for notational convenience.

Assumption 1 (Properties of modules) – For a given grid G ∈G the four used mod-
ules have the following properties.

1. The output (ÛG , ŶG , P̂G) := SOLVE
(
G
)
∈Uad ×Y(G)×Y(G) is the exact solution of

(6) or (7), respectively .

2. The output {Eocp(ÛG , ŶG , P̂G;E)}E∈G := ESTIMATE
(
(ÛG, ŶG, P̂G);G

)
is a reliable and

locally efficient estimator for the error in the norm ∥ · ∥
U×Y×Y . In Section 3 below

we will formulate the detailed requirement for the estimator.

3. The outputM = MARK
(
{Eocp(ÛG , ŶG , P̂G;E)}E∈G , G

)
is a subset of elements subject

to refinement. We shall allow any marking strategy such that M contains an
element holding an indicator, which is of the size of the maximal one, i.e. there
exists C > 0 independent of {Eocp((ÛG , ŶG , P̂G);E)}E∈G and G, such that

max{Eocp(ÛG , ŶG , P̂G;E) | E ∈ G} ≤ C max{Eocp(ÛG, ŶG, P̂G;E) | E ∈M}.

All practically relevant marking strategies do have this property; compare with
Morin, Siebert, and Veeser (2008) and Siebert (2011).
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4. The output G+ := REFINE
(
G,M

)
∈G is a conforming refinement of G such that all

elements inM are bisected at least once, i.e. G+ ∩M = ∅.

The main contribution of this paper is the following convergence result.

Theorem 1 (Main result) – Let (û, ŷ, p̂) ∈Uad×Y×Y be the exact solution of (1). Sup-
pose that {Ûk , Ŷk , P̂k}k≥0 ⊂U

ad ×Y ×Y is any sequence of discrete solutions generated by
the adaptive iteration (9), where the modules have the properties stated in Assumption 1.
Then we have

lim
k→∞
∥(Ûk , Ŷk , P̂k)− (û, ŷ, p̂)∥

U×Y×Y = 0 and lim
k→∞
Eocp(Ûk , Ŷk , P̂k ;Gk) = 0.

The proof of this theorem is based upon ideas from the convergence proofs of
Morin, Siebert, and Veeser (2008) and Siebert (2011). It is a two step procedure
presented in Section 4 and 5. In Section 4 we utilize basic stability properties of
the algorithm to show that the sequence of discrete solutions converges to some
triplet (û∞, ŷ∞, p̂∞). The second step in Section 5 then relies on the steering mecha-
nisms of (9), mainly encoded in properties of ESTIMATE and MARK, to finally prove
(û∞, ŷ∞, p̂∞) = (û, ŷ, p̂).

3 A posteriori error estimation

In this section we shortly summarize our findings from Kohls, Rösch, and
Siebert (2012, 2014a) providing a unified framework for the aposteriori error
analysis for control constrained optimal control problems. In what follows we
shall use a ≲ b for a ≤ Cb with a constant C that may only depend on data
of (1), the shape regularity of the grids in G, and properties of the discrete
spaces such as the polynomial degree, but is independent of the particular
triangulation G ∈G. We shall write a ≃ b whenever a ≲ b ≲ a.

First order optimality systems. The analysis in Kohls, Rösch, and Siebert (2014a) is
based on the characterization of the solutions by the first order optimality systems;
compare with (8). In order to concretize this concept let S,S∗ : Y ∗ → Y be the
solution operators of the state and the adjoint equations, i.e. for any g ∈ Y ∗, we have

Sg ∈ Y : B[Sg, v] = ⟨g, v⟩ ∀v ∈ Y (10)

and

S∗g ∈ Y : B[v, S∗g] = ⟨g, v⟩ ∀v ∈ Y . (11)

We denote by Π : (Y ↪→U)→U
ad the nonlinear projection operator such that Π(p)

is the best approximation of − 1
αp in U

ad, i.e.

Π(p) ∈Uad : ⟨αΠ(p) + p,Π(p)−u⟩ ≤ 0 ∀u ∈Uad. (12)
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3. A posteriori error estimation

Note that here we make use of the embedding Y ↪→U = U
∗, which e.g. in the case

of a boundary control involves a trace operator. Utilizing these operators, we have
that (û, ŷ) ∈ Uad × Y is a solution of (1) if and only if (û, ŷ, p̂) ∈ Uad × Y × Y is the
unique solution of the coupled nonlinear system

ŷ = S(û + f ), p̂ = S∗(ψ′(ŷ)), and û = Π(p̂); (13)

compare with Tröltzsch (2010).
For G ∈G we next define SG,S∗G : Y(G)∗→ Y(G) to be the discrete solution opera-

tors for (10) and (11), i.e. for any G ∈ Y(G)∗ we have

SGG ∈ Y(G) : B[SGG, V ] = ⟨G, V ⟩ ∀V ∈ Y(G), (14)

and

S∗GG ∈ Y(G) : B[V , S∗GG] = ⟨G, V ⟩ ∀V ∈ Y(G). (15)

As for the continuous case, we have then that (ÛG , ŶG) ∈Uad ×Y(G) solves (6) or (7)
iff (ÛG , ŶG , P̂G) ∈Uad ×Y(G)×Y(G) is the discrete solution of

ŶG = SG(ÛG + f ), P̂G = S∗G(ψ′(ŶG)), and

ÛG = Π(P̂G) or ÛG = ΠG(P̂G), respectively.
(16)

Here we used the obvious embedding f ∈ Y
∗ ↪→ Y(G)∗. The former variational

discretization of Hinze requires the evaluation of the continuous projection op-
erator Π for discrete functions P ∈ Y(G). In the latter control discrete case, we
have replaced the continuous projection Π : Y → U

ad by the discrete projection
ΠG : Y(G)→U

ad(G) defined by

⟨αΠG(PG) + PG ,ΠG(PG)−UG⟩ ≤ 0 ∀UG ∈Uad(G). (17)

Moreover, we define the residuals for Y ,P ∈ Y , u ∈U ↪→ Y
∗ and g ∈ Y ∗ by

⟨R(Y ;u), v⟩ := B[Y , v]− ⟨u + f , v⟩ = B[Y − S(u + f ), v], v ∈ Y

and

⟨R∗(P ;g), v⟩ := B[v, Y ]− ⟨g, v⟩ = B[v, Y − S∗g], v ∈ Y .

Thanks to the inf-sup stability and continuity of B, we have equivalence of error
and residual, i.e.,

β∥Y − S(u + f )∥
Y
≤ ∥R(Y ;u)∥

Y
∗ ≤ ∥B∥∥Y − S(u + f )∥

Y

and

β∥P − S∗g∥
Y
≤ ∥R∗(P ;g)∥

Y
∗ ≤ ∥B∥∥P − S∗g∥

Y
.
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Similar arguments yield

∥S∥ = ∥S∗∥ ≤ ∥B∥
β

and ∥SG∥ = ∥S∗G∥ ≤
∥B∥
β(G)

≤ ∥B∥
γ
.

Basic error equivalence. The main obstacle in the aposteriori error analysis en-
countered for instance in Hintermüller et al. (2008) and Liu and Yan (2001) can
be explained as follows. One would like to exploit Galerkin orthogonality in the
linear state equation (10) and the adjoint equation (11). However, we observe that
the triplet (ÛG, ŶG, P̂G) is the Galerkin approximation to the triplet (û, ŷ, p̂) but ŶG is
not the Galerkin approximation to the solution ŷ of the linear problem (10) since
we have ŷ = Sû but not ŷ = SÛG. The same argument applies to the adjoint states.
This observation shows that we cannot directly employ Galerkin orthogonality for
single components of (13) and the nonlinearity in (12) prevents us from making use
of Galerkin orthogonality for the system (13). The resort to this problem is given by
the following result from Kohls, Rösch, and Siebert (2014a, Theorem 2.2).

Proposition 1 (Basic error equivalence) – Let (û, p̂, ŷ) ∈W = U×Y ×Y be the solu-
tion of the optimality system (13). Then we have the basic error equivalence

∥(u,y,p)− (û, p̂, ŷ)∥
W
≃ ∥(u,y,p)− (Πp,S(u + f ),S∗(ψ′(y)))∥

W

for arbitrary (u,p,y) ∈W .

For the problem under consideration, the constants hidden in ≃ depend on the
inf-sup constant β−1. Employing this error equivalence with (u,p,y) = (ÛG , ŶG, P̂G),
it is sufficient to construct a reliable and efficient estimator for the right hand side
∥(ÛG , ŶG , P̂G)− (ū, ȳ, p̄)∥

W
where the functions ȳ and p̄ are the exact weak solutions to

the linear problems (10) and (11) with given source ÛG + f and ψ′(ŶG), respectively.
They play a similar role as the elliptic reconstruction used in the aposteriori error
analysis of parabolic problems; compare with Makridakis and Nochetto (2003).
Moreover, we have ū = ΠP̂G and therefore, the remaining error component ÛG −ΠP̂G
has a different structure. It is zero for the variational discretization and contains a
projection error in the case of a control discretization.

Aposteriori error estimation. We realize that ŶG is the Galerkin approximation
to ȳ and P̂G the one to p̄. We therefore can directly employ (existing) estimators
for the linear problems (10) and (11) and their sum then constitutes an estimator
for the optimal control problem; compare with Kohls, Rösch, and Siebert (2014a,
Theorem 3.2).

Let us now fix the requirements for estimators of the form

Ey(Y ,u;G) =

∑
E∈G
E2
y (Y ,u;E)


1/2

and Ep(Y ,v;G) =

∑
E∈G
E2
p (Y ,v;E)


1/2

162



3. A posteriori error estimation

for the linear problems (10) and (11). We denote by oscy and oscp the typical
oscillation terms appearing in a posteriori analysis of PDEs. For any subset G′ ⊂ G
we set

oscy(Y ,u;G′) =

∑
E∈G′

osc2
y(Y ,u;E)


1/2

and analogously for oscp. For E ∈ G, we letNG(E) := {E′ ∈ G|E′ ∩E , ∅} be the set of
direct neighbors and ΩG(E) :=

⋃
E′∈NG(E)E

′ be the corresponding patch and extend
this to sub-triangulations G′ ⊂ G via ΩG(G′) :=

⋃
E∈G′ΩG(E).

Remark 1 – In principle ΩG(E) can be replaced by more general neighborhoods
Ω̃G(E) of E if needed. In fact, it is only required that the Ω̃G(E) are a connected union
of elements including E and that only finitely many of the Ω̃G(E), E ∈ G, overlap.
This directly implies that the number of elements in Ω̃G(E) is uniformly bounded
and that the corresponding set of neighbors ÑG(E) := {E′ ∈ G : E ⊂ Ω̃G(E)} is quasi
uniform. In this context, one may think e.g. of the neighbors of a neighborhood of
an element E ∈ G, i.e. ÑG(E) =NG(ΩG(E)).

Assumption 2 (Estimators for the linear problems) – We suppose that Ey and Ep
have the following properties:

1. Reliability: The estimators Ey and Ep provide an upper bound for the true error,
i.e. for any u ∈U and y ∈ Y , we have

∥SG(u + f )− S(u + f )∥
Y
≲ Ey(SG(u + f ),u;G),

∥S∗Gψ
′(y)− S∗ψ′(y)∥

Y
≲ Ep(S∗Gψ

′(y),ψ′(y);G).

Typically, these bounds are a consequence of the equivalence of the residual and the
error, together with proper interpolation estimates.

2. Local Efficiency: The indicators Ey and Ep are local lower bounds for the true
error up to oscillations, i.e., for any Y ,P ∈ Y(G) and u ∈U and y ∈ Y , we have

Ey(Y ,u;E) ≲ ∥Y − S(u + f )∥
Y(ΩG(E)) + oscy(Y ,u;NG(E)),

Ep(P ,ψ′(y);E) ≲ ∥P − S∗ψ′(y)∥
Y(ΩG(E)) + oscp(P ,ψ′(y);NG(E)).

3. Lipschitz continuity of Indicators: The indicators Ey and Ep are Lipschitz
continuous with respect to their second arguments, i.e., for Y ,P ∈ Y(G), u1,u2 ∈U
and y1, y2 ∈ Y , we have for all E ∈ G that

|Ey(Y ,u1;E)−Ey(Y ,u2;E)| ≲ ∥u1 −u2∥U(Γ∩E),

|Ep(P ,ψ′(y1);E)−Ep(P ,ψ′(y2);E)| ≲ ∥y1 − y2∥Y(E).
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4. Regular test-functions: Testing the residual with more regular functions, we
expect additional powers of the mesh-size in the estimate. In particular, we assume
that there exists a dense subspace Ys ⊂ Y , s > 0, with subadditive norm, such that
for all v ∈ Ys, and u ∈U, y ∈ Y we have

⟨R(SG(u + f );u), v⟩ ≲
∑
E∈G

hsE Ey(SG(u + f ),u;E)∥v∥
Ys(ΩG(E)),

⟨R∗(S∗Gψ
′(y);ψ′(y)), v⟩ ≲

∑
E∈G

hsE Ep(S∗Gψ
′(y),ψ′(y);E)∥v∥

Ys(ΩG(E)).

5. Oscillation: The oscillation quantifies the gap between the error and the estimator.
We assume that for all ϵ > 0 there exists a continuous and nondecreasingmϵ : R+

0 →
R

+
0 with m(0) = 0, such that for Y ,P ∈ Y , u ∈U, and y ∈ Y , we have that

oscy(Y ,u;E) ≲ ϵ+mϵ(|E|)
(
∥Y ∥

Y(ΩG(E)) + ∥u∥
U(ΩG(E)) + ∥D∥

D(ΩG(E))

)
,

oscp(P ,ψ′(y);E) ≲ ϵ+mϵ(|E|)
(
∥P ∥

Y(ΩG(E)) + ∥y∥
Y(ΩG(E)) + ∥D∥

D(ΩG(E))

)
,

where D denotes another Hilbert space with a norm satisfying (2) and D ∈D is
given by the data of (1).

The estimator for the error of the control function is constructed from the indicators
Eu(U,p;E) = ∥U −Π(p)∥

U(Γ∩E) := ∥(U −Π(p))χE∥U. We set

∥U −Π(p)∥2
U

= E2
u (U,p;G) =

∑
E∈G
E2
u (U,p;E) (18)

and define the estimator of the optimal control problem by

Eocp(Û , Ŷ , P̂ ;E) := Eu(Û , P̂ ;E) + Ey(Ŷ , Û ;E) + Ep(P̂ ,ψ′(Ŷ );E), E ∈ G.

The following result can be found in Kohls, Rösch, and Siebert (2014a, Theorem 3.2).

Theorem 2 (Aposteriori error control) – Let (û, ŷ, p̂) be the exact solution of (1), let
(ÛG , ŶG , P̂G) be the true solution either of (16), and suppose Assumption 2. Then
Eocp(ÛG, ŶG , P̂G;G) is an estimator for the optimal control problem which is reliable,
i.e.,

∥(ÛG , ŶG , P̂G)− (û, ŷ, p̂)∥
U×Y×Y ≲ Eocp(ÛG , ŶG , P̂G;G) (19a)

and globally efficient, i.e.,

Eocp(ÛG , ŶG , P̂G;G) ≲ ∥(ÛG , ŶG , P̂G)− (û, ŷ, p̂)∥
U×Y×Y

+ oscy(ŶG , û;G) + oscp(P̂G ,ψ
′(ŷ);G).

(19b)
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4 Convergence 1: trusting stability

In this section, we start with the convergence analysis, where we first focus on
stability properties of the algorithm that do not depend on the particular decisions
taken in MARK. Hereafter, {Gk , (Ûk , Ŷk , P̂k)}k≥0 is the sequence of grids and discrete
solutions generated by (9). For the ease of notation we use for k ≥ 0 the short hands
Yk = Y(Gk), Ûk = ÛGk , Sk = SGk etc.

Approximation of an admissible control. We start with the limit of the piecewise
constant mesh-size function hk : Ω→ R of Gk defined by hk |E = |E|1/d , E ∈ Gk . The
behavior of the mesh-size function is directly related to the decomposition

G+
k :=

⋂
ℓ≥k
Gℓ = {E ∈ Gk | E ∈ Gℓ ∀ℓ ≥ k}, and G0

k := Gk \ G+
k .

The set G+
k contains all elements that are not refined after iteration k and we observe

that the sequence {G+
k }k≥0 is nested, i.e. G+

ℓ ⊂ G
+
k for all k ≥ ℓ. The set G0

k contains all
elements that are refined at least once more after iteration k; in particular, we have
for the marked elements thatMk ⊂ G0

k . It is proved in Morin, Siebert, and Veeser
(2008, Lemma 4.3) that hk → h∞ uniformly in L∞(Ω).

Moreover, decomposing Ω̄ = Ω+
k ∪Ω

0
k := Ω(G+

k )∪Ω(G0
k ), we have the following

relation to the behavior of the mesh-size function shown in Siebert (2011, Corol-
lary 3.3).

Lemma 1 (Convergence of the mesh-size functions) – The mesh-size functions hk
converge uniformly to 0 in Ω0

k in the following sense

lim
k→∞
∥hk χ0

k∥∞;Ω = lim
k→∞
∥hk∥∞;Ω0

k
= 0,

where χ0
k ∈ L∞(Ω) denotes the characteristic function of Ω0

k .

Using piecewise polynomials in combination with refinement by bisection implies
that the spaces Uk are nested, i.e. Uk ⊂Uk+1. This allows us to define the limiting
space

U∞ =
⋃
k≥0

Uk

∥·∥
U

as well as the limiting set of admissible control functions

U
ad
∞ = U

ad ∩U∞.

To handle the variational and the control discretization in the same setting, we set
Uk ≡U in the former case. In a first step, we will show that we can approximate an
arbitrary element of Uad

∞ in an appropriate way.
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Lemma 2 – Let u be an arbitrary element of Uad
∞ . Then there exists a sequence of

members uk ∈Uad ∩Uk converging to u in U with the property

uk = u on Γ ∩Ω+
k , k ∈N. (20)

Proof. For the variational discretization the assertion is trivial since we can choose
uk = u for every k.

Let us investigate spaces Uk of discontinuous functions. Here we set

uk =

u for x ∈ Γ ∩Ω+
k ,

Pku else,

where Pk denotes the L2-projection onto piecewise constant functions over GΓk , i.e.
Pk |T u = 1

|T |
∫
T
udΓ , T ∈ GΓk . Note that, thanks to the convexity of the set C, we have

that Pku ∈Uad. Thanks to Lemma 1, this implies

∥u −uk∥U = ∥u −uk∥U(Ω0
k )→ 0

as k→∞. □

Going to the limit. Using piecewise polynomials in combination with refinement
by bisection leads to nested spaces Yk , i.e. Yk ⊂ Yk+1. This allows us to define the
limiting space

Y∞ =
⋃
k≥0

Yk

∥·∥
Y

,

which is exactly the space that is approximated by the adaptive iteration. It is closed
in Y and therefore is a Hilbert space. Consequently, the limiting optimal control
problem

min
(u,y)∈Uad

∞ ×Y∞
J [u,y] = ψ(y) +

α
2
∥u∥2

U

subject to y ∈ Y∞ : B[y, v] = ⟨u + f , v⟩ ∀v ∈ Y∞
(21)
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admits a unique solution (û∞, ŷ∞) ∈Uad
∞ ×Y∞. Thanks to the uniform discrete inf-

sup stability (5), we have that there exists solution operators S∞,S∗∞ : U→ Y∞ of the
state respectively the adjoint state equations defined by (14) with Y(G) replaced by
Y∞, and we have ∥S∞∥,∥S∗∞∥ ≤

∥B∥
γ ; compare with Morin, Siebert, and Veeser (2008)

and Siebert (2011). The associated first order optimality system then reads as

ŷ∞ = S∞(û∞ + f ), p̂∞ = S∗∞(ψ′(ŷ∞)), and

û∞ = Π(p̂∞) or û∞ = Π∞(p̂∞), respectively.
(22)

The latter control discrete case employs the discrete projection Π∞ : Y∞ → U
ad
∞

defined by

⟨αΠ∞(p∞) + p∞,Π∞(p∞)−u∞⟩ ≤ 0 ∀u∞ ∈Uad
∞ . (23)

We shall show that (21) is in fact the limiting problem of the adaptive iteration
(9) in that (Ûk , Ŷk , P̂k)→ (û∞, ŷ∞, p̂∞). An important ingredient for proving this is
the following crucial property of the adaptive algorithm shown in Babuška and
Vogelius (1984, Lemma 6.1) and Morin, Siebert, and Veeser (2008, Lemma 4.2).

Proposition 2 (Convergence of solution operators) – For any u,g ∈ U, we have
Sku→ S∞u and S∗kg→ S∗∞g in Y as k→∞.

Proposition 3 (Boundedness of solution) – The sequence (Ûk , Ŷk , P̂k) is bounded
in W .

Proof. Take the optimal control Û0 from the coarsest grid. Thanks to Proposition 2
we have that the the sequence {Sk(Û0+f )}∞k=0 is bounded in Y . Since Û0 is feasible for
the optimal control problem for all grids, we obtain the boundedness of the optimal
objective values {J [Ûk , Ŷk]}∞k=0. The structure of the objective readily implies the
boundedness of the sequence {Ûk}∞k=0 in U. The boundedness of {Ŷk}∞k=0 and {P̂k}∞k=0
is a direct implication of Proposition 2. □

We next show convergence of the control functions. In this step we have to deal
with the nonlinearity of the constrained optimal control problem.

Lemma 3 (Convergence of the controls) – The sequence {Ûk}k≥0 of discrete controls
converges strongly to û∞, i.e.

lim
k→∞
∥Ûk − û∞∥U = 0.
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Proof. Due to Lemma 2, û∞ ∈ U
ad
∞ is the limit of a sequence {uk}k∈N with uk ⊂

U
ad ∩Uk and uk = û∞ on Γ ∩Ω+

k . Using the optimality of û∞ and Ûk , we find

α∥Ûk − û∞∥2U = ⟨αû∞ + p̂∞, û∞ − Ûk⟩ + ⟨αÛk + P̂k , Ûk −uk⟩
+ ⟨αÛk + P̂k , uk − û∞⟩ + ⟨P̂k − p̂∞, û∞ − Ûk⟩
≤ ⟨αÛk + P̂k , uk − û∞⟩ + ⟨P̂k − p̂∞, û∞ − Ûk⟩
= ⟨αÛk + P̂k , uk − û∞⟩ + ⟨S∗k(ψ

′(ŷ∞))− p̂∞, û∞ − Ûk⟩
+ ⟨P̂k − S∗k(ψ

′(ŷ∞)), û∞ − Ûk⟩.

We estimate the three terms on the right-hand side separately. Using Proposition 3
and Lemma 2, the first term tends to zero.

For the second term, we immediately obtain from p̂∞ = S∗∞(ψ′(ŷ∞)) by the
embedding Y ↪→U and Young’s inequality, that

⟨S∗k(ψ
′(ŷ∞))− p̂∞, û∞ − Ûk⟩ = ⟨(S∗k − S

∗
∞)(ψ′(ŷ∞)), û∞ − Ûk⟩

≤ α
2
∥û∞ − Ûk∥2U +

1
2α
∥(S∗k − S

∗
∞)(ψ′(ŷ∞))∥2

U

≤ α
2
∥û∞ − Ûk∥2U + c∥(S∗k − S

∗
∞)(ψ′(ŷ∞))∥2

Y
.

We next turn to the third term. Employing the definition of the solution opera-
tors Sk and S∗k in (14) and (15), we use P̂k = S∗k(ψ

′(Ŷk)) ∈ Yk and ŷ∞ = S∞û∞ ∈ Y∞ to
obtain

⟨P̂k − S∗k(ψ
′(ŷ∞)), û∞ − Ûk⟩ = ⟨û∞ − Ûk , S∗k(ψ

′(Ŷk)−ψ′(ŷ∞))⟩
= B[Sk(û∞ − Ûk), S∗k(ψ

′(Ŷk)−ψ′(ŷ∞))]

= ⟨ψ′(Ŷk)−ψ′(ŷ∞), Sk(û∞ − Ûk)⟩
= ⟨ψ′(Ŷk)−ψ′(ŷ∞), ŷ∞ − Ŷk⟩ + ⟨ψ′(Ŷk)−ψ′(ŷ∞), (Sk − S∞)(û∞ + f )⟩
≤ 0 + ∥ψ′(Ŷk)−ψ′(ŷ∞)∥

Y
∗∥(Sk − S∞)(û∞ + f )∥

Y

≲ ∥Ŷk − ŷ∞∥Y ∥(Sk − S∞)(û∞ + f )∥
Y

≲ ∥(Sk − S∞)(û∞ + f )∥
Y
,

where we used Proposition 3 in the last line. Combining above estimates we obtain
with Proposition 2 that

∥Ûk − û∞∥2U ≲ ∥uk − û∞∥U + ∥(S∗k − S
∗
∞)(ψ′(ŷ∞))∥2

Y
+ ∥(Sk − S∞)(û∞ + f )∥

Y

→ 0

as k→∞. This finishes the proof. □

Convergence (Ûk , Ŷk , P̂k)→ (û∞, ŷ∞, p̂∞) is now a direct consequence of the linear
theory in Proposition 2.
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Proposition 4 (Convergence of discrete solutions) – The Galerkin approximations
{(Ûk , Ŷk , P̂k)}k≥0 converge strongly to the solution (û∞, ŷ∞, p̂∞) of (21), i.e.

lim
k→∞
∥(Ûk , Ŷk , P̂k)− (û∞, ŷ∞, p̂∞)∥

U×Y×Y = 0.

Proof. We already know that ∥Ûk − û∞∥U→ 0 from Lemma 3. In combination with
Proposition 2, this yields for the discrete states that

∥Ŷk − ŷ∞∥Y = ∥Sk(Ûk + f )− S∞(û∞ + f )∥
Y

≤ ∥Sk(Ûk − û∞)∥
Y

+ ∥(Sk − S∞)(û∞ + f )∥
Y

≤ ∥Sk∥∥Ûk − û∞∥U + ∥(Sk − S∞)(û∞ + f )∥
Y
→ 0,

since ∥Sk∥ ≤ CF . Writing P̂k − p̂∞ = S∗k(ψ′(Ŷk)−ψ′(ŷ∞)) + (S∗k − S∞)(ψ′(ŷ∞)) we finally
deduce ∥P̂k − p̂∞∥Y → 0 with the same arguments. □

The convergence of the discrete solutions readily yields an uniform bound on the
estimators.

Corollary 1 (Uniform estimator bound) – For all k ≥ 0, we have

Eocp((Ûk , Ŷk , P̂k);Gk) ≲ 1.

Proof. Starting with the global efficiency (19b), the assertion follows from Proposi-
tion 3 together with the properties of the oscillations in Assumption 2. □

Corollary 2 (Indicators of marked elements) – All indicators of marked elements
vanish in the limit, this is,

lim
k→∞

max{Eocp((Ûk , Ŷk , P̂k);E) | E ∈Mk} = 0.

Proof. For k ≥ 0 pick up Ek ∈ argmax{Eocp((Ûk , Ŷk , P̂k);E) | E ∈ Mk} , ∅. We follow
Siebert (2011, Lemma 3.4) and show Eocp((Ûk , Ŷk , P̂k);Ek)→ 0.

We have with the local efficiency of the estimators (see Assumption 2) that

Ey(Ŷk , Ûk ;Ek) ≲ ∥Ŷk − S(Ûk + f )∥
Y(Ωk(Ek )) + oscy(Ŷk , Ûk ;Nk(Ek))

≤ ∥Ŷk − ŷ∞∥Y(Ωk(Ek )) + ∥ŷ∞∥Y(Ωk(Ek )) + ∥Sû∞ − SÛk∥Y(Ωk(Ek ))

+ ∥S(û∞ + f )∥
Y(Ωk(Ek )) + oscy(Ŷk , Ûk ;Nk(Ek))

→ 0

as k →∞ for the following reasons: By Assumption 1 4. all elements inMk are
refined in Gk+1, which implies Ek ∈ G0

k . Local quasi-uniformity of Gk in combination
with Lemma 1 therefore yields |Ω(Nk(Ek))| ≲ |Ek | ≤ ∥hk∥d∞;Ω0

k
→ 0. Consequently, the
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terms ∥ŷ∞∥Y(Ωk(E)) and ∥S(û∞ + f )∥
Y(Ωk(E)) vanish thanks to assumption (2b). Simi-

larly, we conclude for ϵ > 0 from the properties of the oscillation in Assumption 2 5.,
as well as the boundedness of

∥∥∥Ŷk∥∥∥
Y(Ωk(Ek ))

and
∥∥∥Ûk∥∥∥

Y(Ωk(Ek ))
(see Proposition 3) that

oscy(Ŷk , Ûk ;Nk(E)) ≲ ϵ+mϵ(|E|)
(∥∥∥Ûk∥∥∥

Y(Ωk(Ek ))
+
∥∥∥Ŷk∥∥∥

Y(Ωk(Ek ))
+ ∥D∥

D(Ωk(Ek ))

)
→ ϵ.

Since ϵ > 0 is arbitrary, this proves oscy(Ŷk , Ûk ;Nk(E))→ 0.
Finally, Proposition 4 implies that also the terms ∥Ŷk − ŷ∞∥Y(Ωk(E)) and ∥Sû∞ −

SÛk∥Y(Ωk(E)) vanish. The same arguments apply to the indicator contribution of the
adjoint equation.

For the control indicator, we have

Eu(Ûk , P̂k ;Ek) = ∥Ûk −Π(P̂k)∥U(Γ∩Ek )

≤ ∥Ûk − û∞∥U(Γ∩Ek ) + ∥û∞∥U(Γ∩Ek )

+ ∥Π(p̂∞)−Π(P̂k)∥U(Γ∩Ek ) + ∥Π(p̂∞)∥
U(Γ∩Ek ).

Similar arguments as before can be used to prove that all but the penultimate term
on the right-hand side vanish. It thus follows that Eu(Ûk , P̂k ;Ek) → 0 as k → ∞,
observing that

α∥Π(p̂∞)−Π(P̂k)∥2U = ⟨αΠ(p̂∞) + p̂∞,Π(p̂∞)−Π(P̂k)⟩
+ ⟨αΠ(P̂k) + P̂k ,Π(P̂k)−Π(p̂∞)⟩
+ ⟨p̂∞ − P̂k ,Π(p̂∞)−Π(P̂k)⟩
≤ ∥p̂∞ − P̂k∥U

∥∥∥Π(p̂∞)−Π(P̂k)
∥∥∥
U
→ 0

thanks to Proposition (4). Concluding, we have proved Eocp((Ûk , Ŷk , P̂k);Ek)→ 0 as
k→∞. □

5 Convergence 2: making the right decisions

In this section we verify the main result, Theorem 1, by showing (Ûk , Ŷk , P̂k) →
(û, ŷ, p̂) and Eocp(Ûk , Ŷk , P̂k ;Gk)→ 0. Error convergence requires appropriate deci-
sions in the adaptive iteration, which we have summarized in Assumption 1. Esti-
mator convergence is then a consequence of local efficiency as stated in Theorem 2.

Convergence of the indicators. We first show that the maximal indicator of all
elements vanishes in the limit.
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Lemma 4 (Convergence of the indicators) – The maximal indicator vanishes in the
limit, this is,

lim
k→∞

max{Eocp(Ûk , Ŷk , P̂k ;E) | E ∈ Gk} = 0.

Proof. Combining the assumption on marking in Assumption 1 3. with the behavior
of the indicators on marked elements, which we have analyzed in Corollary 2, we
find

max{Eocp(Ûk , Ŷk , P̂k ;E) | E ∈ Gk} ≤ C max{Eocp(Ûk , Ŷk , P̂k ;E) | E ∈Mk} → 0

as k→∞. □

Convergence of the residuals. We next show that the residuals of the state and the
adjoint equation of the limiting first order optimality system (22) vanish. The proof
adapts the techniques from Siebert (2011, Proposition 3.1) to the situation at hand.

Proposition 5 (Convergence of the residual) – For the residuals R of (10) and R∗
of (11), we have

R(ŷ∞; û∞) =R∗(p̂∞;ψ′(ŷ∞)) = 0 in Y
∗.

In particular, we have ŷ∞ = S(û∞ + f ) and p̂∞ = S∗(ψ′(ŷ∞)).

Proof. We prove the claim for R. The assertion for R∗ follows along the same lines.
Using a density argument it suffices to show ⟨R(ŷ∞; û∞), v⟩ = 0 for all v ∈ Ys for
some s > 0; compare Assumption 2 4.

Suppose any pair k ≥ ℓ. Then we have the inclusion G+
ℓ ⊂ G

+
k ⊂ Gk and the sub-

triangulation Gk\G+
ℓ covers the sub-domain Ω0

ℓ = Ω(G0
ℓ ), i.e. we have Ω0

ℓ = Ω(Gk\G+
ℓ ).

Moreover, ∥hk∥∞;Ω+
ℓ
≲ 1 and ∥hk∥∞;Ω0

ℓ
≤ ∥hℓ∥∞;Ω0

ℓ
.

Let v ∈ Ys with ∥v∥
Ys

= 1. We next utilize the improved bound in Assumption 2 4.,
decompose Gk = G+

ℓ ∪ (Gk \ G+
ℓ ), and recall Corollary 1 to bound

⟨R(Ŷk ;Ûk), v⟩2 ≲
∑
E∈G+

ℓ

h2s
E E

2
y (Ŷk , Ûk ;E) +

∑
E∈Gk\G+

ℓ

h2s
E E

2
y (Ŷk , Ûk ;E)

≲ E2
ocp(Ûk , Ŷk , P̂k ;G+

ℓ ) + ∥hℓ∥2s∞;Ω0
ℓ
E2

ocp(Ûk , Ŷk , P̂k ;Gk \ G+
ℓ )

≲ E2
ocp(Ûk , Ŷk , P̂k ;G+

ℓ ) + ∥hℓ∥2s∞;Ω0
ℓ

!
≤ 2ε

for any ε > 0. The last inequality can be seen as follows: By Lemma 1, we may first
choose ℓ large such that ∥hℓ∥2s∞;Ω0

ℓ
≤ ε. After fixing ℓ, the “pointwise” convergence

of the indicators in Lemma 4 and #G+
ℓ <∞ implies then E2

ocp((Ûk , Ŷk , P̂k);G+
ℓ ) ≤ ε for

sufficiently large k ≥ ℓ. This yields for any fixed v ∈ Ys that

⟨R(ŷ∞; û∞), v⟩ = lim
k→∞
⟨R(Ŷk ;Ûk), v⟩ = 0,
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observing that R is continuous with respect to its arguments and recalling the
convergence (Ûk , Ŷk)→ (û∞, ŷ∞) shown in Proposition 4. It follows from the density
of Ys in Y , that R(ŷ∞; û∞) = 0 in Y

∗. This in turn implies ŷ∞ = Sû∞ and finishes the
proof. □

Convergence of error and estimator. We are now in the position to prove the main
result, where we again use the abbreviation W = U×Y ×Y .

Proof (Proof of Theorem 1). Combining Propositions 1 and 4, we have

lim
k→∞
∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥

W

≃ lim
k→∞
∥(Ûk , Ŷk , P̂k)− (Π(P̂k),S(Ûk + f ),S∗(ψ′(Ŷk)))∥W

= ∥(û∞, ŷ∞, p̂∞)− (Π(p̂∞),S(û∞ + f ),S∗(ψ′(ŷ∞))∥
W
.

Thanks to Proposition 5, in order to prove limk→∞ ∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥
W

= 0, it
suffices to verify that û∞ = Π(p̂∞). This is trivially satisfied for the variational
discretization of Hinze and we can thus concentrate on the control discrete case.

Let k ∈N, and for arbitrary u ∈Uad let

uk :=

û∞ on Γ ∩Ω+
k

u otherwise,
and vk := Pkuk =

û∞ on Γ ∩Ω+
k

Pku otherwise,

where Pk denotes the L2-projection onto the piecewise constant functions over GΓk .
Obviously, uk ∈Uad and vk ∈Uad

∞ and we have that ∥uk −vk∥U = ∥(u−vk)χΩ0
k
∥
U
→ 0

as k→∞; compare also with the proof of Lemma 2. Therefore, we have

⟨p̂∞ +αû∞, u − û∞⟩ = ⟨p̂∞ +αû∞, vk − û∞⟩ + ⟨p̂∞ +αû∞, u − vk⟩
≥ ⟨p̂∞ +αû∞, u − vk⟩
= ⟨p̂∞ +αû∞, uk − vk⟩ + ⟨p̂∞ +αû∞, u −uk⟩.

(24)

From Corollary 2 and Proposition 4, we conclude that

0 = lim
k→∞
Eu(Ûk , P̂k ;E) = lim

k→∞
∥Ûk −Π(P̂k)∥U(Γ∩E) = ∥û∞ −Π(p̂∞)∥

U(Γ∩E)

for all E ∈ G+
k , i.e. û∞ = Π(p̂∞) on Ω+

k ∩ Γ and therefore

⟨p̂∞ +αû∞, u −uk⟩ = ⟨p̂∞ +αû∞, (u − û∞)χΩ+
k∩Γ ⟩ ≥ 0.

We thus conclude from (24) that

⟨p̂∞ +αû∞, u − û∞⟩ ≥ ⟨p̂∞ +αû∞, uk − vk⟩ → 0 as k→∞.
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Since u ∈Uad was arbitrary, this implies û∞ = Πp̂∞, which concludes the desired
result limk→∞ ∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥

W
= 0.

In order to prove convergence of the estimator, we decompose Eocp for k ≥ ℓ, as
in the proof to Proposition 5, i.e.

E2
ocp(Ûk , Ŷk , P̂k ;Gk) = E2

ocp(Ûk , Ŷk , P̂k ;G+
ℓ ) + E2

ocp(Ûk , Ŷk , P̂k ;Gk \ G+
ℓ ).

We first estimate the second term on the right hand side. The local efficiency in
Assumption 2 2. in combination with the finite overlap of the patches Nk(E), (2),
and the basic error equivalence (Proposition 1), allows us to bound

E2
ocp(Ûk , Ŷk , P̂k ;Gk \ G+

ℓ )

≲ ∥(Ûk , Ŷk , P̂k)− (Π(Ûk),S(Ûk + f ),S∗(ψ′(Ŷk)))∥2
W(ΩG(Gk\G+

ℓ ))

+
∑

E∈Gk\G+
ℓ

osc2
y(Ŷk , Ûk ;Nk(E)) + osc2

p(P̂k ,ψ
′(Ŷk);Nk(E))

≲ ∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥2
W

+
∑

E∈Gk\G+
ℓ

osc2
y(Ŷk , Ûk ;Nk(E)) + osc2

p(P̂k ,ψ
′(Ŷk);Nk(E))

≲ ∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥2
W

+ ϵ2 +mϵ(∥hℓ∥d∞;Ω0
ℓ
)2
(
∥Ŷk∥2Y + ∥Ûk∥2U + ∥P̂k∥2Y + ∥D∥2

D

)
,

using Assumption 2 5. for arbitrary but fixed ϵ > 0, as well as the fact that, thanks to
shape regularity, we have ∥hk∥∞;ΩG(Gk\G+

l ) ≲ ∥hℓ∥∞;Ω0
ℓ
. Since ∥Ŷk∥2Y +∥Ûk∥2U+∥P̂k∥2Y ≲ 1

(Proposition 3), we find

E2
ocp(Ûk , Ŷk , P̂k ;Gk)

≲ E2
ocp(Ûk , Ŷk , P̂k ;G+

ℓ ) + ∥(Ûk , Ŷk , P̂k)− (û, p̂, ŷ)∥2
W

+ ϵ2 +mϵ(∥hℓ∥d∞;Ω0
ℓ
)2.

By Lemma 1 and Assumption 2 5., the last term mϵ(∥hℓ∥d∞;Ω0
ℓ
) can be made small

by choosing ℓ large. After fixing ℓ, we may choose k ≥ ℓ (as in the proof to Proposi-
tion 5) such that E2

ocp(Ûk , Ŷk , P̂k ;G+
ℓ ) is small. Moreover, the above established error

convergence implies that the term ∥(Ûk , Ŷk , P̂k) − (û, p̂, ŷ)∥2
W

is also small possibly
after a further increase of k. In summary, we find that

Eocp(Ûk , Ŷk , P̂k ;Gk) ≲ ε

for sufficiently large k. Since ϵ > 0 was arbitrary, this yields Eocp(Ûk , Ŷk , P̂k ;Gk)→ 0
as k→∞ and finishes the proof. □
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6 Applications

In this section, we shall demonstrate how the general framework from the previous
sections can be used to obtain convergence for specific optimal control problems.
To this end, we shall verify Assumption 2 for residual based estimators in the
particular cases of a reaction diffusion problem with boundary control and for the
Stokes problem with distributed control, and provide a framework, which allows to
easily generalise the results to multiple other kinds of estimators. For numerical
computations, we refer the reader to Kohla (2013) and Kohls, Rösch, and Siebert
(2014a).

6.1 A reaction diffusion problem with boundary control

We consider the following problem:

−∆y + y = f2 in Ω, ∇y ·n =

u + f1 on Γ ,

0, on ∂Ω \ Γ ,

where Γ ⊂ ∂Ω has positive d − 1 dimensional Hausdorff measure, and f1 ∈ L2(Γ ) and
f2 ∈ L2(Ω) are given data.

For the state space, we choose Y =H1(Ω) with ∥·∥
Y

= ∥·∥H1(Ω) and for the control
space we let U = L2(Γ ) and ∥·∥

U
= ∥·∥L2(Γ ). Under the additional assumption that ∂Ω

is Lipschitz, the embedding Y ↪→U ↪→ Y
∗ is naturally given by the trace operator.

The bilinear form

B[y, v] =
∫
Ω

∇v · ∇y + vydx

of the weak formulation is continuous and coercive with ∥B∥ = β = 1 and setting
⟨f , v⟩ := ⟨f1, v⟩L2(Ω) + ⟨f2, v⟩L2(Γ ), we have f ∈ Y ∗ = (H1(Ω))∗. Finally, for given g ∈U
and desired state yd ∈ L2(Ω), we define the objective

J [u,y] := ψ(y) +
α
2
∥u∥2

U
:=

1
2

∥∥∥y − yd∥∥∥2
L2(Ω)

+ ⟨g, y⟩L2(Γ ) +
α
2
∥u∥2

U
.

Consequently, the Fréchet derivative of ψ is given by ψ′(y) = ⟨y − yd , ·⟩L2(Ω) +
⟨g, ·⟩L2(Γ ) ∈ Y ∗, which is Lipschitz continuous with constant L = 1.

Discretization. We concentrate on the case of discretized controls. Let the initial
triangulation G0 ∈G of Ω be such that

GΓ0 := {E ∩ Γ : E ∩ Γ is a (d − 1) sub-simplex, E ∈ G0}
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meshes Γ exactly. For G ∈G, we use piecewise polynomials of degrees ℓy , ℓu > 0 for
the state and control discretization, i.e.

Y(G) := {V ∈ C0(Ω) : V|E ∈ Pℓy (E),E ∈ G}

and

U(G) := {V ∈ L2(Γ ) : V|T ∈ Pℓu ,T ∈ G
Γ }.

The control indicators are then given by Eu(U,P ;E) := ∥U −Π(P )∥L2(E∩Γ ), E ∈ G;
compare with Section 2. In order to obtain a posteriori estimators for the optimal
control problem, we have to complement Eu with estimators for the state and adjoint
state.

Residual based estimators. For G ∈ G, the standard residual based a posteriori
estimator for the state and the adjoint state are given by

Ey(Y ,u;E) = hE∥−∆Y +Y − f2∥L2(E)

+ h1/2
E ∥[[∇Y ]]∥L2(∂E\Γ ) + h1/2

E ∥[[∇Y ]]− (U + f1)∥L2(∂E∩Γ ),

Ep(P ,ψ′(Y );E) = hE
∥∥∥−∆P + P − (Y − yd)

∥∥∥
L2(E)

+ h1/2
E ∥[[∇P ]]∥L2(∂E\Γ ) + h1/2

E ∥[[∇P ]]− g∥L2(∂E∩Γ ).

The estimators Ey and Ep are reliable and locally efficient with oscillations

oscy(Y ,u;E) = hE inf
cE2 ∈P2ℓy−2

∥∥∥Y − f2 − cE2 ∥∥∥L2(E)

+ h1/2
E

∑
S∈GΓ ,S⊂E

inf
cS1∈P2ℓy−1

∥∥∥U + f1 − cS1
∥∥∥
L2(S)

,

oscp(P ,ψ′(Y );E) = hE inf
cEd ∈P2ℓy−2

∥∥∥P − (Y − yd)− cEd
∥∥∥
L2(E)

+ h1/2
E

∑
S∈GΓ ,S⊂E

inf
gS∈P2ℓy−1

∥∥∥g − gS∥∥∥
L2(S)

;

compare e.g. with Cascon et al. (2008), Kohls, Rösch, and Siebert (2014a), and
Verfürth (2013). Moreover, Ey and Ep are obviously Lipschitz continuous. Conclud-
ing, we have that they satisfy Assumptions 2 1.–3. Assumption 2 5. follows with
(f2, f1), (yd , g) ∈D = L2(Ω)×L2(Γ ) andmϵ(|E|) = |E|1/2d independent of ϵ > 0. In order
to verify Assumption 2 4., we shortly recall the derivation of the upper bound. Since
the estimators for the state and the adjoint state have exactly the same structure, we
shall restrict our considerations to the former case. Recalling the definition of the
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residual and using Galerkin orthogonality as well as integration by parts, we obtain
with u ∈U and Y = SG(u + f ) ∈ Y(G), that

⟨R(Y ;u), v⟩ = ⟨R(Y ;u), v −V ⟩

≤
∑
E∈G
∥−∆Y +Y − f2∥L2(E)∥v −V ∥L2(E)

+ ∥[[∇Y ]]∥L2(∂E\Γ )∥v −V ∥L2(∂E\Γ )

+ ∥[[∇Y ]]− (U + f1)∥L2(∂E∩Γ )∥v −V ∥L2(∂E∩Γ )

for all V ∈ Y(G). Using scaled trace and inverse inequalities and choosing V to be a
suitable interpolant of v (see e.g. Clément 1975), yields

⟨R(Y ;u), v⟩ ≲
∑
E∈G

hsEEy(Y ,u;E)∥v∥H1+s(ΩG(E))

for all v ∈H1+s(Ω), s ∈ [0,1]. Therefore, Assumption 2 4. follows with Ys =H1+s(Ω).

6.2 The Stokes problem with distributed control

As an example of a non coercive problem, we shall next consider the following
Stokes equations with distributed control:

−∆y +∇q = f +u in Ω, divy = 0 in Ω, and y = 0 on∂Ω,

where f ∈ L2(Ω;Rd) is some given data. The state y = (y,q) is the velocity and the
pressure of the fluid and consequently we have for the state space Y =H1

0 (Ω;Rd)×
L2

0(Ω) = H1
0 (Ω;Rd) × {q ∈ L2(Ω) : ⟨q, 1⟩L2(Ω) = 0}, which is a Hilbert space with

norm
∥∥∥y∥∥∥2

Y
=

∥∥∥∇y∥∥∥2
L2(Ω)

+ ∥q∥2L2(Ω) thanks to the Friedrichs inequality
∥∥∥y∥∥∥

L2(Ω)
≤

CF
∥∥∥∇y∥∥∥

L2(Ω)
. The control space is U = L2(Ω;Rd) with norm ∥·∥

U
= ∥·∥L2(Ω) and the

embedding Y ↪→ U ↪→ Y
∗ is given by H1

0 (Ω;Rd) ↪→ L2(Ω;Rd), i.e. y = (y,q) ∈ Y

implies y ∈ L2(Ω;Rd) or equivalently ⟨q, y⟩ = ⟨q, y⟩L2(Ω) for q ∈ L2(Ω;Rd). The
resulting bilinear form

B[y, p] = B[(y,q), (p, r)] :=
∫
Ω

∇y : ∇p− q divp+ r divydx,

is continuous and inf-sup stable; compare with Galdi (1994). We choose box-
constraints for the control i.e.

U
ad = {u ∈U : u ∈ C a.e. in Ω} with C = {v ∈Rd : a ≤ v ≤ b},
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where a,b ∈ Rd with a ≤ b and the inequalities are understood componentwise.
This implies

Π(p)(x) = max
{
a,min{b, 1

αp(x)}
}
, p = (p,q) ∈ Y .

We define the objective by

J [u, y] :=
1
2

∥∥∥y∥∥∥2
Y

+
α
2
∥u∥2

U
.

In other words ψ(y) = 1
2

∥∥∥y∥∥∥2
Y

, which is obviously Fréchet differentiable and its
derivative ψ′ is locally Lipschitz continuous with constant L = 1.

Discretization. Since we are dealing with a saddle point problem, we need to resort
to an inf-sup stable discretization of Y . For G ∈ G, a possible choice is e.g. the
common Taylor-Hood element of degree ℓy ≥ 2 where Y(G) = V (G)×Q(G) with

V (G) = {V ∈ C0(Ω;Rd) : V |E ∈ Pℓy (E)d ,E ∈ G},

Q(G) = {Q ∈ C0(Ω) : Q|E ∈ Pℓy−1(E),E ∈ G and ⟨Q, 1⟩L2(Ω) = 0}.

We choose to discretize the control with discontinuous polynomials of degree ℓu ≥ 0,
i.e.

U(G) = {U ∈ L2(Ω;Rd) : U |E ∈ Pℓu (E)d ,E ∈ G}.

Consequently, we have that

U
ad(G) = U(G)∩Uad = {U ∈U(G) : a ≤ U ≤ b a.e. in Ω}.

Thanks to the use of box constraints, we have that the restrictions decouple compo-
nent wise and thus we have e.g. for ℓu = 0 and x ∈ E ∈ G, that

ΠG(P )(x) = max
{
a,min

{
b,

1
α

1
|E|

∫
E
P dx

}}
, P = (P ,Q) ∈ Y(G),

where the maximum and the minimum is taken componentwise.

Residual based estimators. We are now concerned with complementing the control
indicator Eu(U , P ;E) = ∥U −Π(P )∥L2(E) by residual based estimators for the state and
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the adjoint state satisfying Assumption 2. For E ∈ G, G ∈G, Y = (Y ,Q), P = (P ,R) ∈
Y(G), and u ∈U let

Ey(Y ,u;E) = hE∥−∆Y +∇Q − f −u∥L2(E)

+ h1/2
E ∥[[∇Y ]]∥L2(∂E) + ∥divY ∥L2(E)

and

Ep(P ,ψ′(Y );E) = hE∥−∆(P −Y ) +∇R∥L2(E)

+ h1/2
E ∥[[∇P −∇Y ]]∥L2(∂E) + ∥divP −Q∥L2(E).

It is well known11, that these estimators satisfy Assumptions 2 1.–2. with oscilla-
tions

oscy(Y ,u;E) = hE inf
cE∈Pdℓy−2

∥f −u− cE∥L2(E) and oscp(P ,ψ′(Y );E) = 0.

Assumptions 2 3.–5. follow then similarly as in Section 6.1 for the diffusion reaction
problem; compare also with Kohls, Rösch, and Siebert (2014a).

6.3 Other types of estimators

We summarize, that the convergence of an AFEM for an optimal control problem (1)
essentially hinges on the properties of estimators for the state and adjoint state
equations. Nowadays, for each of countless PDEs, there is a large zoo of estimators
available. Of course Assumption 2 could be checked for each estimator separately.
However, for many of these estimators it is well known that they are locally equiva-
lent to the corresponding residual based ones. We illustrate this principle with the
help of the hierarchical estimator in Example 1 below. Local equivalence for e.g.
estimators based on local problems, on the equilibration of fluxes, or on gradient
recovery as well as robust estimators for singularly perturbed reaction diffusion
problems can be found in Kreuzer and Siebert (2011); compare also with Verfürth
(2013). We shall now show convergence of an AFEM using error estimators Êy , Êp,
which are locally equivalent to error estimators Ey ,Ep satisfying Assumption 2.

To this end, suppose that the estimators Êy and Êp are organized by some index
set I = I (G), G ∈G, which can be either the elements G or the nodes or the sides of
G. Additionally, we assume that we have for G′ ⊂ G and I ′ ⊂ I the following local
equivalence

Ey
(
ŶG , ÛG;G′

)
≲ Êy

(
ŶG , ÛG;I (G′)

)
(Cont. next page)

11Verfürth, 1989, “A posteriori error estimators for the Stokes equations”;
Verfürth, 2013, A posteriori error estimation techniques for finite element methods.
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and

Êy
(
ŶG, ÛG;I ′

)
≲ Ey

(
ŶG , ÛG;G(I ′)

)
and corresponding relations for Ep. Here G(I ′) ⊂ I and I (G′) ⊂ G, such that

G′ ⊂ G(I (G′)) ⊂NG(G′), #G(I ′) ≲ #I ′ , and #I (G′) ≲ #G′ , (25)

and only finite many of the G(I), I ∈ I overlap. Similarly as before, we use the
convention Êy(ŶG , ÛG;I ′)2 =

∑
I∈I ′ Ey(ŶG , ÛG; I)2. Obviously, this implies

Êy(P̂G ,ψ
′(ŶG);I ) ≂ Ey(P̂G,ψ

′(ŶG);G)

and we have for E ∈ G with #I (E) ≲ 1, that

Ey
(
ŶG, ÛG;E

)2
≲ Êy

(
ŶG , ÛG;I (E)

)2
≲max

{
Êy

(
ŶG , ÛG; I

)2
: I ∈ I (E)

}
.

We shall now consider an AFEM’ of the form (9) with Eocp(Û , ŶG , ÛG;E) replaced by

Êocp(ÛG , ŶG , ÛG; I) := Eu(ÛG , P̂G; I) + Êy(ŶG , ÛG; I) + Êp(P̂G ,ψ
′(ŶG); I)

and assume that the marking strategy

M = G(IM) = MARK({Êocp(ÛG , ŶG , ÛG; I)}I∈I ,I ) ⊂ G

satisfies

(3’) max{Êocp(ÛG , ŶG , ÛG; I) | I ∈ I} ≤ Cmax{Êocp(ÛG, ŶG, ÛG; I) | I ∈ IM};

instead of Assumption 1 3. Then we have

max
{
Eocp(ÛG , ŶG , ÛG;E) : E ∈ G

}
≲max

{
Êocp(ÛG, ŶG, ÛG; I) : I ∈ I

}
≲max

{
Êocp(ÛG, ŶG, ÛG; I) : E ∈ IM

}
≲max

{
Eocp(ÛG , ŶG, ÛG;E) : E ∈M

}
.

In other words,M satisfies Assumption 1 3. for Eocp and thus Theorem 1 implies
that the AFEM’ converges to the exact solution.

Example 1 (Hierarchical estimators) – We reconsider the problem of Section 6.1
and restrict ourselves to ℓy = 1. The idea of hierarchical estimators is based upon
evaluating the residual on a sufficiently enriched discrete space Y(G)′ ⊋ Y(G). Suit-
able enrichments contain e.g. element and side bubble functions of higher order or
on a finer mesh; compare e.g. with Veeser (2002) and Verfürth (2013). For given
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(y,u + f ) and (p,y), the residuals of the primal and dual problem from Section 6.1
are given by

⟨R(y,u + f ), v⟩ = B[y, v]− ⟨f1 +u, v⟩L2(Γ ) − ⟨f2, v⟩L2(Ω)

and

⟨R∗(p,ψ′(y)), v⟩ = B[v, p]− ⟨y − yd , v⟩L2(Γ ) − ⟨g, v⟩L2(Ω).

As index-set for the hierarchical estimators, we use the set S of all sides of G and
define

S(G′) := {S ∈ S : S ⊂ E for some E ∈ G′}

and

G(S ′) := {E ∈ G : S ⊂ E for some S ∈ S ′}.

Obviously this choice satisfies (25). For a fixed S ∈ S , we let zS be the barycenter of
S and consider an enrichment Y(G)′ of Y(G) that provides for any S ∈ S a function
ΦS ∈ Y(G)′ \Y(G) with

ΨS (zS ) > 0, supp(ΦS ) ⊂ωS , and ∥ΦS∥H1(Ω) = 1,

where ωS = Ω(G(S)). The side oriented hierarchical indicators on S ∈ S are then
given by

Êy(ŶG , ÛG;S) :=
∣∣∣⟨R(ŶG , ÛG + f ), ΦS⟩

∣∣∣
+ hS

∥∥∥ŶG − f2∥∥∥L2(ωS )
+ h1/2

S inf
cS1∈R

∥∥∥ÛG + f1 − cS1
∥∥∥
L2(S∩∂Ω)

and

Êp(P̂G ,ψ
′(ŶG);S) :=

∣∣∣⟨R∗(P̂G ,ψ′(ŶG)), ΦS⟩
∣∣∣

+ hS
∥∥∥P̂G − (ŶG − yd)

∥∥∥
L2(ωS )

+ h1/2
S inf

gS∈R

∥∥∥g − gS∥∥∥
L2(S∩∂Ω)

.

Similarly as in Kreuzer and Siebert (2011), it can be shown that the indicators are
locally equivalent, i.e. we have

Ey(ŶG , ÛG;E) ≲ Êy(ŶG , ÛG;S(E)) and Êy(ŶG , ÛG;S) ≲ Ey(ŶG , ÛG;G(S)),

and corresponding relations for the indicators of the adjoint state.
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