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Abstract

We continue our study of solutions to linear parabolic partial differential
equations (PDEs) by means of an asymptotic method that is based on approxi-
mate Green functions. A substantial part of this method is devoted to construct-
ing the approximate Green function. In this paper, we approximate the Green
function (or heat kernel) by asymptotically developing it in a small parameter
other than time. While the method is general, in order to better illustrate it, we
concentrate on the λ-SABR partial differential equation (PDE for short), which
we study in detail. The λSABR PDE is a particular evolution PDE that arises
in applications to stochastic volatility models (Hagan, Kumar, Lesniewski, and
Woodward, Wilmott Magazine, 2002). Concretely, we study the generation and
approximation of several semi-groups associated to the SABR PDE, some of
which are non-standard because their generators are not uniformly elliptic and
have unbounded coefficients. These type of generators appear also in the study of
quasi-linear evolution equations. For some of the resulting semi-groups, we ob-
tain explicit formulas by using a general technique based on solvable Lie groups
that we develop in this paper. We thus obtain a simple, explicit approximation
for the solution of the λ-SABR PDE and we prove explicit error bounds. In view
of the potential applications, we have tried to make our paper as self-contained
as reasonably possible.
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Semi-groups and the SABR model S. Zhang et al.

1 Introduction

We continue our study begun in Constantinescu et al. (2010) of solutions to linear
parabolic partial differential equations (PDE for short) by means of an asymptotic
method that is based on approximate Green’s functions. We will refer to this
method, informally, as the “Green’s function method.” Among the first papers to
use this method, we mention Hagan, Kumar, et al. (2002) and Henry-Labordère
(n.d.), their motivation stemming from financial applications. In this paper, we
develop a variant of this method developed in Constantinescu et al. (2010). In
that paper, we developed a systematic method to derive asymptotic expansions
of the Green function (or heat kernel) using time as a small parameter exploiting
parabolic rescaling, thus obtaining an approximation of the Green function valid in
principle at any order. The approximation of the solution of the parabolic equation
is obtained by integrating the approximate Green function with respect to the initial
data. In this work, the asymptotic expansion is in a small parameter other than
time. From a theoretical point of view, this set up presents new challenges. To keep
our treatment self contained, we illustrate the method for the λSABR PDE, (1).

1.1 Formulation of the problem and main results

We use the Green method to study the λSABR PDE, that is, the parabolic partial
differential equation:

∂tu −κ(θ − σ )∂σu −
σ2

2

[
(∂2

xu −∂xu) + 2νρ∂x∂σu + ν2∂2
σu

]
= 0 . (1)

Here u = u(t,σ ,x), where t ≥ 0, x ∈ R, and σ > 0, while |ρ| < 1, κ, ν > 0 are a given
constant parameter. The equation is complemented with initial and boundary
conditions to be determined. We shall refer to this PDE as the λSABR PDE; it
has been first introduced in financial applications4. Originally, it was formulated
in terms of a variable S that had the meaning of the (forward) stock price. Our
formulation is obtained after the substitution S = ex. However, no closed-form
solution formula is known. Hence, our goal is to obtain an asymptotic expansion of
the solution operators in powers of ν considered as the small parameter.

Our theoretical results, exemplified by the case of the SABR PDE, are obtained
using the theory of semi-groups of operators. The main difficulty here is that
the principal term in the ν-expansion is a degenerate operator with unbounded
coefficient. Moreover, some of our semi-groups combine parabolic and hyperbolic
features. We reconcile these difficulties in our paper by considering solvable Lie
algebras.

4Hagan, Kumar, et al., 2002, “Managing smile risk”;
Hagan, Lesniewski, and Woodward, 2015, “Probability distribution in the SABR model of stochastic

volatility”.

118



1. Introduction

One of the main results in this paper, explained below, is an explicit approxima-
tion formula with a rigorous error bound for the solution of λSABR PDE. This result
is relevant because the λSABR PDE is interesting in itself and has been studied in
many other papers, including Cheng, Mazzucato, and Nistor (n.d.), Grishchenko,
Han, and Nistor (n.d.), Hagan, Kumar, et al. (2002), Henry-Labordère (n.d.), and
Lorig, Pagliarani, and Pascucci (2013). We stress, however, that the general frame-
work of the paper and several of the results we obtain apply to a more general
setting.

We shall denote the generator of Equation (1) by

L :=
σ2

2

[
(∂2

x −∂x) + 2νρ∂x∂σ + ν2∂2
σ

]
+κ(θ − σ )∂σ , (2)

a notation that would remain in place throughout the paper. We let

L0 :=
σ2

2
(∂2

x −∂x) +κ(θ − σ )∂σ , L1 := ρσ2∂x∂σ , and L2 :=
1
2
σ2∂2

σ , (3)

so that L = L0 + νL1 + ν2L2. This decomposition is the basis of our asymptotic
expansion in powers of ν for the solution operator et L to equation (1). In practical
applications, ν is approximately equal to 1, which is not immediately thought of as
a “small number.” However, the numerical tests performed by one of the authors5,
the approximation established in this work performs well even for values of the
parameter ν close to 1.

The point of departure for our approach is a careful study of the operator L0. To
this end, we further decompose L0 as L0 := A+ σ2

2 B, where:

A := κ(θ − σ )∂σ , B := ∂2
x −∂x. (4)

We study separately the semi-groups generated by A, B, and L0. We shall use the
standard notation for semi-groups. That is, throughout the paper, if P is a linear
operator whose closure generates a strongly continuous (or c0) semi-group, we shall
denote the semi-group it generates by etP , t ≥ 0, as usual. We recall that then the
(mild) solution to the abstract Initial Value Problem (IVP) ∂tu − P u = 0, u(0) = h, is
given by u = etP h. (See the Appendix for the various types of “solutions” considered
in this paper).

Our first main result is to show that L0 generates c0 semi-groups etL0 on various
weighted Sobolev spaces provided that we restrict the variable σ to a bounded
interval,

σ ∈ I := (α,β) , where 0 < α < θ < β <∞ . (5)

5Grishchenko, Han, and Nistor, n.d., “A Volatility-of-Volatility Expansion of the Option Prices in the
SABR Stochastic Volatility”.
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Semi-groups and the SABR model S. Zhang et al.

Moreover, we obtain an explicit formula for etL0 , which justifies trying to approx-
imate the solution u(t) with etL0u(0). We stress that the semi-group associated to
L0 := A+ σ2

2 B is neither parabolic nor hyperbolic, so it does not fit into the classical
frameworks that prove the generation of this type of semi-groups. In fact, we pro-
vide a general method to study semi-groups similar to those generated by L0, which
may have applications to quasi-linear evolution equations. While the semi-group
generated by L0 can also be studied by an elementary (but complicated) change of
variables, our more general approach provides some subtle mapping properties for
etL0 that seem difficult to obtain by a change of variables.

Unlike the time evolution associated to L0, the time evolution equations asso-
ciated to the operators A, B, and L have a definite type (the ones associated to L
and B are parabolic, while the one associated to A is hyperbolic). Let I := (α,β),
0 < α < β < ∞ as above and restrict to Ω := I ×R (from (0,∞) ×R). Although Ω

is unbounded, classical arguments can be adapted to give that the operators L, A,
and B generate c0 semi-groups on suitable spaces of functions on Ω and that, in
fact, the semi-groups generated by L and B are analytic6. We stress here that for
L it is essential that we restrict to I , as the behavior on the full domain seems to
be quite different (and to require significant additional insight). However, these
issues disappear if κ = 0 (that is, if there is no mean-reverting term). The fact that L
generates a c0 semi-group follows from the results of Mazzucato and Nistor if κ = 0.

Since the existence of the semi-group generated by L0 does not follows from
standard arguments alone, we employ a new, general strategy, which allows us to
establish that L0 (and many other similar operators) generates a c0 semi-group etL0

with an explicit kernel. The explicit formula for the distribution kernel of etL0 is
obtained from those of the semi-groups etB and etA. A key observation for us is that
the operators A and σ2

2 B generate a solvable, finite-dimensional Lie algebra.
We prove several mapping properties of the semi-groups generated by L and L0.

This allow us to estimate the difference etLh− etL0h, which is our second main result.
More specifically, we derive an error estimate of the form:

∥etLh− etL0h∥L2
λ
≤ Cν

(
∥h∥L2

λ
+ ν∥∂σh∥L2

λ

)
, (6)

for ν ∈ (0,1] and with a constant C, possibly dependent on L and κ, but not on h
and ν (see Theorem 6 on p. 144 for a complete statement). Above, L2

λ denotes an
exponentially weighted Lebesgue space (see Section 2.1 on p. 124). The method
of proof of this estimate is to combine the usual perturbative argument and our
mapping properties with the commutator method developed by two of the authors7.

6Amann, 1995, Linear and quasilinear parabolic problems. Vol. I;
Lunardi, 1995, Analytic semigroups and optimal regularity in parabolic problems;
Pazy, 1983, Semigroups of linear operators and applications to partial differential equations.

7Cheng, Costanzino, et al., 2011, “Closed-form asymptotics and numerical approximations of 1D
parabolic equations with applications to option pricing”;
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1. Introduction

We notice that in many applications h is independent of σ , so our estimate is better
in those cases.

To summarize, we interested in this paper both in closed form approximations
of the solution u and in theoretical properties of the λSABR PDE that will rigor-
ously justify numerical methods for the λSABR PDE. Thus we are interested in
proving that L and suitable operators associated to L generate strongly continuous
(or c0) semi-groups of operators and in the properties and approximations of these
semi-groups. The main difficulties that we encounter are that L (as well as other
auxiliary operators) is not uniformly elliptic, it has unbounded coefficients, acts on
an unbounded (spatial) domain, and the initial condition has exponential growth.

1.2 Background and previous results

The primary application of the λSABR PDE is in pricing of options in financial
mathematics. Indeed, the model takes its name from “Stochastic Alpha Beta Rho”8,
where α, β, and ρ refer to some parameters in the model, whereas the λ means that
it includes mean reversion9. Mean reversion makes the model more accurate, but
also more difficult to solve explicitly. The initial condition for this equation has then
typically exponential growth in x, which naturally lead us to consider exponentially
weighted Sobolev spaces.

Quite recently, H. Amann has initiated a program of studying evolution equa-
tions on non-compact domains of the form used in this paper (manifolds with
boundary and bounded geometry), see Amann (2016, 2017) and the references
therein. This is relevant because the fact that our PDEs are defined on unbounded
domains is one of the main difficulties in studying them. Earlier related results
were obtained, for example, in Browder (1960/1961). See Ammann, Große, and
Nistor (n.d.) for a review of manifolds with boundary and bounded geometry. Two
of the auxiliary semi-groups used in this paper (etB and etA) fall into the scope of
the results of those papers, and we thus take advantage of that to slightly simplify
the presentation in certain places. However, the λSABR PDE (1) does not fall into
a standard framework, and this probably explains why so few rigorous, theoret-
ical results exist for this PDE. The related PDE ∂tu − L0u, used to approximate
the solution of the λSABR PDE (1) also does not fall into the scope of the results
mentioned above. In fact, L0 is a degenerate operator, in the sense that the diffusion
matrix associated to L0 is not of full rank. Moreover, the operator ∂t − L0 is not
hypoelliptic, in particular the distributional kernel of the fundamental solution of
∂t −L0 does not agree with a smooth function for t > 0. See also Ammann, Große,
and Nistor (n.d.), Christian, Omar, and Michal (n.d.), Disconzi, Shao, and Simonett

Cheng, Mazzucato, and Nistor, n.d., “Approximate solutions to second order parabolic equations II:
time-dependent coefficients”.

8Hagan, Kumar, et al., 2002, “Managing smile risk”.
9Henry-Labordère, 2009, Analysis, geometry, and modeling in finance.
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(n.d.), Große and Schneider (2013), Kordyukov (1988), and Mazzucato and Nistor
(2006) for more related results on PDEs on manifolds with bounded geometry.

In applications, the solution u of the λSABR PDE has the meaning of the option
price (after a suitable change of coordinates) and the initial condition u(0) = u(0,x,σ )
is the pay-off of the option. For instance, for European Calls, one has u(0,x,σ ) = |ex−
K |+ := max{ex −K,0}, where K is a parameter associated to the given option contract
(the “strike”). We thus notice that u(0) has an exponential growth in x, which is an
additional difficulty. However, ∂σu(0) = 0, which makes our approximation result
of Equation (6) especially convenient (for this particular class of initial conditions).
In practice, one is interested in very fast approximations of u. Of great importance
are, thus, the so called “closed form” approximations, where u is approximated by
an explicit formula, without using iterative methods. For κ = 0, the λSABR PDE
reduces to the classical Black-Scholes-Merton PDE, for which an explicit solution
(involving the normal distribution function

√
2πN (x) :=

∫ x
−∞ e−t

2/2dt) exists. The
approach used for the Black-Scholes-Merton PDE does not extend to the λSABR
PDE, however, since the distributional kernel of the solution operator for ∂t −L is
not known in explicit form.

Because of the lack of explicit solutions, new methods were devised. We would
like to first mention here the pioneering work of Lesniewski and his collaborators10

and the ground breaking work on Henry-Labordère on heat kernel asymptotics11.
Our method extends these results. A similar method was developed by Pagliarani
and Pascucci (2012) and the references therein. Heat kernel asymptotics were
employed in this context also by Gatheral, Hsu, et al. (2012) and Gatheral and
Wang (2012). See also Choulli, Kayser, and Ouhabaz (2015), Feehan and Pop (2015),
Hilber et al. (2013), Jacquier and Lorig (2015), Lejay, Lenôtre, and Pichot (2015),
and Nakagawa et al. (2014). See Hilber et al. (2013) for an introduction to the Finite
Element Method in Computational Finance.

Similar ideas are used in analysis on polyhedral domains (see Ammann, Ionescu,
and Nistor (2006), Bacuta, Nistor, and Zikatanov (2005), Costabel, Dauge, and
Nicaise (2012), and Costabel, Dauge, and Schwab (2005) for some relevant results
in this direction). In fact, the λSABR PDE is formally similar to the edge differential
operators, as encountered, for example, in Apel and Nicaise (1998), Costabel and
Dauge (1993), Dauge (1988), and Li (2009) whereas the Black-Scholes-Merton PDE
is similar to the cone differential operators12.

10Hagan, Kumar, et al., 2002, “Managing smile risk”;
Hagan, Lesniewski, and Woodward, 2015, “Probability distribution in the SABR model of stochastic

volatility”.
11Henry-Labordère, 2009, Analysis, geometry, and modeling in finance.
12Dauge, 1988, Elliptic boundary value problems on corner domains;

Kondrat′ev, 1967, “Boundary value problems for elliptic equations in domains with conical or
angular points”;

Kozlov, Maz′ya, and Rossmann, 2001, Spectral problems associated with corner singularities of solutions
to elliptic equations.
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1.3 Contents of the paper

The paper is organized as follows. Section 2 on the next page contains the result
that the operators L and B generate c0 semi-groups of operators when restricted
to suitable sets of the form Ω := I ×R, I ⊂ (0,∞). Our approach is based on the
Lumer-Phillips theorem, which works well in this situation since the operators L
and B are both strongly elliptic with bounded coefficients once restricted to Ω, so
we can use some standard techniques on evolution equation13 to study them. The
main difficulty encountered here in using the general theory is that we employ
exponentially weighted function spaces and that we work on certain non-compact
domains (with boundary). We thus treat in detail the mapping properties of the
semi-groups generated by L and B. These results are needed to prove in Section 3 on
p. 129 that L0 also generates a c0 semi-group in spite of the fact that it is not elliptic.
From the explicit formula of etA, we obtain also an explicit formula for etL0 , by
exploiting the commutator identities that A and f (σ )B satisfy. This method applies,
in fact, to a much larger class of operators, and we prove several results in this
direction in Section 3.2 on p. 135. The main technique here is to use the observation
that the operators A and σ2B generate a solvable Lie algebra of operators. (This is
true also for A and f (σ )B, for suitable functions f , as well as for other, more general
operators. The techniques developed in this paper will thus be useful for the study
of other PDEs as well.) The hyperbolic nature of the operator A and the local in
σ nature of the semi-group generated by operators of the form f (σ )B lead to well-
posedness results in many other types of function spaces. In particular, we obtain
the existence of classical solutions of ∂tu −L0u on R+ ×R, for some rather general
initial data. The last section, Section 4 on p. 140, contains the derivation of mapping
properties and norm estimates for the semi-groups generated by L0 and by the other
operators. These mapping properties are then used to prove the error estimate (6).
Lastly, in the Appendix, we review a few needed facts on evolution equations and
semi-groups of operators and we introduce the exponentially weighted spaces used
in this work.

13Amann, 1995, Linear and quasilinear parabolic problems. Vol. I;
Henry, 1981, Geometric theory of semilinear parabolic equations;
Lunardi, 1995, Analytic semigroups and optimal regularity in parabolic problems;
Martin, 1987, Nonlinear operators and differential equations in Banach spaces;
Pazy, 1983, Semigroups of linear operators and applications to partial differential equations.
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2 The semi-group generated by L and B

In this section, we give a short proof that the operators L and B, defined in (2) and
(3) respectively, generate analytic semi-group on exponentially weighted Sobolev
spaces, using the Lumer-Phillips theorem. The methods we use are standard in
classical Sobolev spaces, although the theory is somewhat less developed in expo-
nentially weighted spaces (see, however, Ammann, Ionescu, and Nistor 2006; Große
and Schneider 2013). The fact that L and B generate analytic semi-groups on the
given weighted Sobolev spaces can also be obtained from the result in Amann (2016,
2017) or Browder (1960/1961). Our approach is, however, more direct and more
elementary. We also provide additional mapping properties for the operators L and
B. For the reader’s sake, we include full details for the operator L.

2.1 Notation: function spaces and semi-groups

We introduce here the function spaces that we need in this paper and recall some of
their main properties. We also fix the notation for semi-groups. Let Ω ⊂R

d be an
open subset, as in the previous subsection, and let w ∈ L1

loc(Ω) satisfy w ≥ 0. If X is
any Banach space of functions on Ω with norm ∥ · ∥X , we define

wX := {wξ, ξ ∈ X} , (7)

with the norm ∥wξ∥wX := ∥ξ∥X . Thus, if p < ∞, if X = Lp(Ω,dµ), and if w > 0
almost everywhere with respect to µ, µ ≥ 0, then wX = Lp(Ω,w−1/pdµ). Of course,
for any linear operator T we have that T : wX → wX is bounded if, and only if
w−1Tw : X → X is bounded. In fact, these two operators are unitarily equivalent.
For example, let ⟨x⟩ :=

√
1 + x2 be the usual Japanese bracket. Let λ ∈R and m ∈Z+

and

Hm
λ (R) := eλ⟨x⟩Hm(R) =

{
f : R→C, e−λ⟨x⟩f ∈Hm(R)

}
=
{
f : R→C, e−λ⟨x⟩∂if ∈ L2(R), i ≤m

}
, (8)

where the last equality is valid due to the fact that the weight w(x) := eλ⟨x⟩ has the
property that w−1∂iw forms a bounded family as operators on Hm(R) (by writing
f = wg, with g ∈Hm(R)). We also let L2

λ = H0
λ .

Let I be a closed interval in R. We consider, similarly, the spaces

H
i,j
λ (I ×R)) := wH i(I ;H j (R)) =

{
u, ∂ασ∂

β
xu ∈ L2

λ(I ×R), α ≤ i,β ≤ j
}

=
{
u, ∂ασ∂

β
x (e−λ⟨x⟩u) ∈ L2(I ×R), α ≤ i,β ≤ j

}
= H i(I ;H j

λ(R)), (9)

where w := eλ⟨x⟩ is viewed as a function of x and σ , constant in σ .
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We study semi-groups as particular cases of the abstract problem

∂tu − P u = F , u(0) = h ∈ X , (10)

where P is a (usually unbounded) operator on a Banach space X with domain D(P ).
For the λSABR PDE, Equation (1), one takes P = L acting on L2

λ(Ω) := eλ⟨x⟩L2(Ω),
Ω = I ×R, F = 0, and h(σ,x) := |ex −K |+, for I = [α,β] ⊂ (0,∞).

2.2 Operators with totally bounded coefficients

Let Ω = R or Ω = I ×R, with I ⊂R an interval. Some of the results of this subsection
can be derived from those of Amann (2016, 2017), Ammann, Große, and Nistor
(n.d.), and Browder (1960/1961), with some slightly different arguments, so we
omit a couple of standard proofs.

Definition 1 – A function f : Ω→ C is totally bounded if it is smooth and bounded
and all its derivatives are also bounded.

We have the following simple lemmas by a direct calculation.

Lemma 1 – Let P be an order m differential operator on Ω with totally bounded coeffi-
cients. Then P defines continuous a map H s

λ(Ω)→H s−m
λ (Ω), for every s ≥m.

Lemma 2 – Let P :=
∑
|α|≤m aα∂

α be an order m differential operator on Ω with totally
bounded coefficients. If w(σ,x) = eλ⟨x⟩, as before, then w−1Pw also has totally bounded
coefficients and the same terms of order m as P .

We formulate the following result in slightly greater generality than needed for
the proof of the existence of the semi-group generated by L, for further possible
applications. We recall the definition of a second order uniformly strongly elliptic
differential operator on Ω = R or Ω = I ×R, with real coefficients, in the form that
we use in this paper.

Definition 2 – Let P = axx(σ,x)∂2
x+2aσx(σ,x)∂σ∂x+aσσ (σ,x)∂2

σ+b(σ,x)∂x+c(σ,x)∂σ+
d(σ,x) be a differential operator with real coefficients on I ×R. We say that P is
uniformly strongly elliptic if it has bounded coefficients and if there exists ϵ > 0 such
that axx ≥ ϵ and axxaσσ − a2

σx ≥ ϵ.

If Ω = R, we simply set aσσ = aσx = c = 0. We have the following standard regularity
results, where we continue to assume that Ω = I ×R or Ω = R.

Theorem 1 – Let P be second order, uniformly strongly elliptic differential operator with
totally bounded coefficients on Ω. Assume u ∈H1

λ(Ω) is such that P u ∈Hm−1
λ (Ω). If Ω =

I×R, we also assume that u vanishes at the endpoints of I . Then u ∈Hm+1
λ (Ω). Moreover,

there exists C > 0, independent of u, such that ∥u∥Hm+1
λ (Ω) ≤ C

(
∥P u∥Hm−1

λ (Ω) + ∥u∥H1
λ(Ω)

)
.
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This result was proved in the greater generality of Lie manifolds in Ammann,
Ionescu, and Nistor (2006, Theorem 0.1). A direct proof of can also be obtained by
first reducing to the case λ = 0, that is, w = 1, using Lemma 2 on the previous page
and then either by using a dyadic partition of unity (see also Ariche, Coster, and
Nicaise n.d. and the references therein).

Corollary 1 – Let P be second order, uniformly strongly elliptic differential operator
with totally bounded coefficients on R. Then ∥u∥L2

λ
+ ∥P ku∥L2

λ
defines an equivalent norm

on H2k
λ (R).

Definition 3 – Let P denote the set of second-order differential operators

T := axx(σ,x)∂2
x + 2aσx(σ,x)∂σ∂x + aσσ (σ,x)∂2

σ + b(σ,x)∂x + c(σ,x)∂σ + d(σ,x)

with real, totally bounded coefficients on I ×R, satisfying

axx, aσσ , axxaσσ − a2
σx ≥ 0 .

To an operator T ∈ P , we associate the matrix of highest-order coefficients

MT :=
[
axx aσx
aσx aσx

]
. (11)

Then, ξtMT ξ, ξ ∈ R
2, is the principal symbol of T . Let K0 := H2

λ(I ×R) ∩ {u =
0 on ∂I ×R}.

Proposition 1 – If w(σ,x) = eλ⟨x⟩ and T ∈ P , then w−1Tw ∈ P . Let MT be as in
Equation (11), then there exists C > 0 such that

(T u,u)L2
λ(I×R) ≤ −

∫
I×R

(MT∇u,∇u)e−2λ⟨x⟩ dσdx+C∥u∥2
L2
λ(I×R)

, u ∈ K0 ,

and hence, T with domain K0 := H2
λ(I ×R)∩ {u = 0 on ∂I ×R} is quasi dissipative on

L2
λ(I ×R).

Under the hypotheses of Proposition 1, it follows immediately that there exists
a constant C > 0 such that

|(T u,u)| ≤ C∥u∥H1
λ(I×R). (12)

This result follows by using again Lemma 2 on the previous page and the total
boundedness of the coefficients.

Under the condition of strong, uniform ellipticity on T , we have the standard
Garding’s inequality (stated for negative-definite operators). For the next three
results, T ∈ P , as in the statement of Proposition 1.
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Lemma 3 – Let T ∈ P . Assume that there exists ϵ > 0 such that axxaσσ − a2
σx ≥ ϵ. Then

there exist C1 > 0 and C2 such that

ℜ(T u,u) ≤ −C1∥u∥2H1
λ(I×R)

+C2∥u∥2L2
λ(I×R)

.

Also, if u ∈ H1
λ(I × R) ∩ {u|∂I×R = 0} satisfies T u ∈ L2

λ(I × R), then u ∈ H2
λ(I × R).

Consequently, T −µ0 : K0→ L2
λ(I ×R) is invertible for µ0 > C2.

We obtain as a consequence the following theorem.

Theorem 2 – Let T ∈ P . The operator T generates an analytic semi-group etL on
L2
λ(I ×R). In particular, if I = (α,β) is a bounded interval with 0 < α ≤ β <∞, then L

as given in (1) satisfies the hypothesis of Lemma 3, and hence it generates an analytic
semi-group on L2

λ(I ×R).

Corollary 2 – Let T ∈ P . Then, u(t) := etT h is the unique strong solution of ∂tu −T u =
0, u(0) = h. It is also a classical solution on (0, τ], for all τ > 0. Moreover, u(t) does not
depend on λ.

Proof. We have that T generates an analytic semi-group S(t) = etT . Moreover, elliptic
regularity gives D(T k) ⊂H2k(I ×R), for all k ∈Z+. The Sobolev embedding theorem
and standard results (see, for instance, Lunardi 1995, Section 4.3, Chapter 5) prove
the first part of the result. The details are contained in Lemma 21 on p. 149 and
Proposition 5 on p. 150 of the Appendix.

The independence of u on λ follows from the fact that the map L2
λ′ (I ×R)→

L2
λ′′ (I ×R) is injective and continuous for all λ′ < λ′′ and from the uniqueness of

strong solutions. □

Remark 1 – The assumption that I be a bounded interval in the second half of
Theorem 2, is essential for our method to apply. Our method does not apply, for
instance, if I = (0,∞). The problem lies in the fact that, at σ = 0, we lose uniform
ellipticity and, at σ = ∞, the coefficient θ − σ becomes unbounded. However, if
κ = 0, we do obtain that L generates an analytic semi-group using the results in
Amann (2017) or Mazzucato and Nistor (2006). The degeneracy at σ = 0 and σ =∞
could be addressed by introducing appropriate weights in σ . For the applications
of interest in this work, it is enough to consider σ in a bounded interval, bounded
away from zero.

We now consider the operator B := ∂2
x − ∂x (recall Equation (3) on p. 119). The

analysis of B is a special case of the analysis of the operator L. We collect and state
the result on the semi-group generated by B for clarity. It is also a consequence of
Amann (2016, 2017), Browder (1960/1961), and Mazzucato and Nistor (2006).

Theorem 3 – Let T = a∂2
x +b∂x + c be a uniformly strongly elliptic operator with totally

bounded coefficients. Then, T generates an analytic semi-group on L2
λ(R). In particular,

B generates an analytic semi-group on L2
λ(R).
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Since D(Bk) = H2k
λ (R), we also have the following corollary.

Corollary 3 – The operator B generates an analytic semi-group on H
j
λ(R), for all j.

Remark 2 – As for L, h ∈ L2
λ(R), u(t) := etT h is a strong solution of ∂tu − T u = 0,

u(0) = h, a classical solution on any interval (0, τ], τ > 0, and u(t) does not depend
on λ. In view of the independence of λ, the semi-group etB on L2

λ is given by the
usual explicit formula

etBh(x) =
1
√

4πt

∫
e−
|x−y−t|2

4t h(y)dy . (13)

2.3 Families

To treat the IVP associated to the λSABR PDE formulated in Equation (1), we will
need to consider families of operators. In particular, we will show that the operator
P = σ2

2 B that appears in the λSABR PDE, also generates an analytic semi-group.

We begin by defining P = σ2

2 B more precisely as a family of unbounded operators
depending on a parameter, σ . If p : I → [0,∞) is a bounded and continuous function,
we shall write pB for the operator (pBv)(σ ) = p(σ )Bv(σ ) ∈ L2

λ(R), with domain
D(pB) := {f ∈ L2(I ;L2

λ(R)| pBf ∈ L2(I ;L2
λ(R)}. Then epB acting on L2(I ;L2

λ(R) is given,
in a standard way, by:

(epBv)(σ ) := ep(σ )Bv(σ ) ∈ L2
λ(R) . (14)

We can thus regard both pB and epB as a family of operators parameterized by σ ∈ I
and acting on L2

λ(R)-valued measurable functions defined on I .
We will need the following standard results.

Lemma 4 – Let ξ ∈ C([0,1];X) and [0,1] ∋ t → V (t) ∈ L(X) be strongly continuous.
Then the map [0,1] ∋ t→ V (t)ξ(t) ∈ X is continuous

We can then prove the following.

Proposition 2 – Let T be a differential operator as in Theorem 3 on the previous page.
Let I ⊂ R be an interval and p : I → [0,∞) be a bounded, continuous function. Then
etpT , defined by (etpT h)(σ ) := etp(σ )T h(σ ) ∈ L2

λ(R), σ ∈ I , defines a c0 semi-group on
L2
λ(I ×R) with generator pT .

Proof. Since T generates a c0 semi-group, etp(σ )T h(s) depends continuously on σ ∈ I
whenever h ∈ L2

λ(I ×R) is continuous in σ . Since ∥etT ∥ is uniformly bounded for t
in a bounded interval, we obtain that the family of operators et p(σ )T thus defines
a bounded operator on L2

λ(I ×R). □
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To deal with higher regularity, we need the following extension of Lemma 4 on the
preceding page.

Lemma 5 – Let J := (0,1) and assume that ξ ∈ C1(J ;X), that T is the generator of c0
semi-group V (t) on X, and that one of the following two conditions is satisfied:

(i) ξ(t) ∈D(T ) and the map J ∋ t→ T ξ(t) ∈ X is continuous;

(ii) the semi-group V (t) generated by T is an analytic semi-group.

Then V (t)ξ(t) ∈ C1(J ;X) with differential T V (t)ξ(t) +V (t)ξ ′(t).

We shall need the following well known fact14

Remark 3 – We recall that, if T is the generator of an analytic semi-group etT on
a Banach space X, then T netT extends to a bounded operator on X and there exists
C > 0 such that

∥T netT ∥ ≤ Ct−n , for all t ∈ (0,1] . (15)

Corollary 4 – Let f : [α,β] = I → [ϵ,∞), ϵ > 0. Assume that f , f ′ , and f ′′ are (defined
and) continuous. LetK1 := H2

λ(I ×R). Then ef B mapsK1 to itself. Moreover, etf B defines
a c0 semi-group on K1, generated by f B as an operator with domain

{ξ ∈ K1, Bξ ∈ K1} ⊃H2,4
λ (I ×R) := H2(I ;H4

λ(R)) .

Proof. The first part is an immediate consequence of Lemma 5(ii) and of Remark 3.
The second part follows using also Corollary 3 on the preceding page. □

3 The semi-group generated by L0

In this section, we discuss the derivation of an explicit formula for the distributional
kernel of the operator etL0 using Lie algebra techniques. Besides being of indepen-
dent interest, in this work we utilize the explicit formula for etL0 to approximate etL,
for which no closed form are available. This is achieved by means of a perturbative
expansion in the parameter ν, the so-called “volvol” or “volatility of the volatility.”
We recall that L0 = A+ σ2

2 B and L = L0 + νL1 + ν2L2, with Li independent of ν (see
Equations (2) and (3)).

14Amann, 1995, Linear and quasilinear parabolic problems. Vol. I;
Henry, 1981, Geometric theory of semilinear parabolic equations;
Lunardi, 1995, Analytic semigroups and optimal regularity in parabolic problems;
Martin, 1987, Nonlinear operators and differential equations in Banach spaces;
Pazy, 1983, Semigroups of linear operators and applications to partial differential equations.
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There is an added difficulty in our problem, namely, the fact that L0 is not
strongly elliptic, and ∂t − L0 is not hypoelliptic in the sense of Hörmander15 (al-
though L0 is). As a matter of fact, this expansion is only valid under additional
regularity assumptions on the initial data h, which will be discussed in Section 4 on
p. 140.

The explicit formula for etL0 is derived from the corresponding formulas for etA

and e
tσ2

2 B, where the later is defined using Proposition 2 on p. 128. The existence of
the group etA, t ∈R, follows directly from the transport character of the operator
A = (θ − σ )∂σ , as recalled below.

We thus assume that I = (α,β) satisfies 0 < α < θ < β <∞, as in Proposition 2 on
p. 128. We will make the further assumption that κ > 0.

This last assumption implies that the characteristics of the operator A are in-
coming at σ = α and σ = β, as long as α < θ < β and κ > 0. Therefore, no boundary
conditions need to be imposed at σ = α and σ = β (cf. the seminal work of Feller16

and the references therein). The case κ < 0 is similar provided one imposes suitable
boundary conditions. However, this case will not be needed for our purposes.

We next briefly discuss etA and its properties. These will be used in deriving an
explicit formula for etL0 .

3.1 The generation property for L0

Let I = (α,β) ⊂R and A := κ(θ − σ )∂σ , as before.

The transport equation generated by A

We consider first the transport equation

∂tv −Av = 0 , (16)

where v depends on σ and, possibly, on some parameters. As is well known, this
equation is solved explicitly by the method of characteristics. The behavior of this
equation is somewhat different according to the sign of κ. Thus, for κ < 0 we need to
impose boundary conditions, whereas for κ > 0, we do not. The techniques to treat
the two cases are very similar, but in this paper we will concentrate, for simplicity,
on the case κ > 0, because this is the case of greatest interest in applications (it
expresses the “mean reversion” of the volatility). For t,σ ∈R, let

δt(σ ) := θ(1− e−κt) + σe−κt , (17)

15Hörmander, 2007, The analysis of linear partial differential operators. III.
16Feller, 1952, “The parabolic differential equations and the associated semi-groups of transforma-

tions”.
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be the characteristic line starting at σ , that is, δ(t,σ ) = δt(σ ), t ∈ R, σ ∈ R, is the
flow map generated by A. Then, δt ◦ δs = δt+s. In addition, by the assumptions on I ,
δt(I) ⊂ I for t ≥ 0.

By property of the flow, for any h ∈ L1
loc(I), there is a unique weak solution of

(16), which is a classical solution if if h ∈ C1(I), and given by the formula:

v(t,σ ) := h(δt(σ )) . (18)

Properties of the flow also immediately give that the family of operators T (t), t ∈R,
defined by T (t)h = v(t) form a group on any Lp(R), 1 ≤ p ≤∞, and a semi-group if
we restrict to I .

In what follows, we consider A as operator acting of functions of σ with values in
a Hilbert spaceH. For the application at hand,H will be an exponentially weighted
Sobolev space. We record the generation of the semi-group in this case and present
a brief proof for clarity.

Proposition 3 – Let H be a Hilbert space and h ∈ L2(I ;H). Then, ∥T (t)h∥ ≤ eκt/2∥h∥,
where ∥ · ∥ denotes the Hilbert space norm on L2(I ;H). Moreover, T (t) =: etA is a c0
semi-group whose generator coincides with A on C1(I ;H).

Proof. The relation ∥T (t)h∥ ≤ eκt/2∥h∥ follows by a change of variables (note also
that, for I = R, we have equality). The identity T (t1)T (t2)h = T (t1 +t2)h again follows
from the flow properties. If h ∈ C1(I ;H), then (18) gives t−1(T (t)h− h)→ Ah. Since
∥T (t)∥ is uniformly bounded for t ≤ 1, this gives that T (t)h→ h as t→ 0 for all h. □

In particular, v is a strong solution of Equation (16) for h ∈ C1(I ;L2
λ(R)). If h ∈

C1(I ;H1
λ(R)), it is also a classical solution. We recall thatK1 := H2

λ(I×R). The explicit
formula (18) for v(t) and the fact that K1 ⊂ C1(I ;L2

λ(R)), by Sobolev embedding,
implies also the following result needed later in the paper.

Corollary 5 – For h ∈ K1, v is a strong solution of Equation (16), etA(K1) ⊂ K1, and
etA defines a c0 semi-group on K1.

The generation property for L0

We now turn to the study of the operator L0. It seems difficult to apply directly the
Lumer-Philips Theorem to a degenerate operator like L0. We will therefore adopt
a different strategy and directly prove that the solution operator of ∂t −L0, which
we still denote by etL0 , is a semi-group generated by L0, justifying the notation. This
strategy is accomplished by an implicit operator splitting of L0 into multiples of A
and B, using that A and B almost commute.

Recall that δt(σ ) = θ(1− e−κt) + σe−κt .

Lemma 6 – Let g : I → [0,∞) be a continuous function. Assume that either g is bounded
or that the parameter λ = 0 in the definition of the weight w(x) = eλ⟨x⟩. Then etAegB =
e(g◦δt)BetA.
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Proof. The result follows from e(g◦δt)Bξ ◦ δt = (egBξ) ◦ δt = etAegBξ. □

The formula for the solution operator of ∂t − L0 will be conveniently expressed
through the use of the following auxiliary function:

D(t) = D(t,σ ) :=
(θ − σ )2

4κ
(1− e−2κt)− θ(θ − σ )

κ
(1− e−κt) +

θ2t
2

. (19)

Proposition 4 – The function D(t,σ ) of (19) is analytic in (κ,t,σ ) ∈ R3 and satisfies
D(0,σ ) = 0 and D(t,σ ) > 0 for any t > 0 and any σ ∈R.

Proof. The function D(t,σ ) is analytic on R
3 since the singularity at κ = 0 is remov-

able. We shall regard D(t,σ ) as a second order polynomial in θ − σ with coefficients
that are functions of the parameters t and κ. We have that the leading coefficient
1

4κ (1− e−2κt) is always positive as t > 0 (for all κ ∈R), so we only need to show that
the discriminant of D(t,σ ) is < 0 for t > 0. We let f (t) be the discriminant of D(t,σ )
(regarded as a second-order polynomial in σ , as mentioned above), so that

f (t) =
θ2

2κ2

[
(2 +κt)e−2κt − 4e−κt + 2−κt

]
. (20)

We then have:

f ′(t) = −θ
2

2κ

[
(3 + 2κt)e−2κt − 4e−κt + 1

]
and

f ′′(t) = 2θ2e−2κt
[
1 +κt − e+κt

]
< 0 for t , 0 .

It follows that f ′(t) is decreasing, and hence f ′(t) < f ′(0) = 0 for t > 0. Consequently,
f (t) is also decreasing, which gives f (t) < f (0) = 0 for positive t. □

This lemma allows us to define eD(t)B, with D as in Equation (19), if I is bounded or
if λ = 0. We let then

S(t) := eD(t)BetA . (21)

Then S(t) is a bounded operator, since it is the composition of bounded operators.
We will establish that S(t) is a c0 semi-group generated by L0 by splitting the proof
in a few lemmas, for convenience. Recall that K1 = H2

λ(I ×R).
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Lemma 7 – For all t, s ≥ 0, the family of operators S(t), defined in Equation (21),
satisfies:

1. S(t)S(s) = S(t + s);

2. S(t)K1 ⊂ K1.

Proof. We first notice that D(t) +D(s)◦δt = D(t + s), which is easy to check by direct
calculation. By definition, using also Lemma 6 on p. 131, we have

S(t)S(s) = eD(t)BetAeD(s)BesA = eD(t)Be(D(s)◦δt)BetAesA

= e(D(t)+D(s)◦δt)Be(t+s)A = eD(t+s)Be(t+s)A = S(t + s). (22)

This calculation completes the proof of the first part. The last part follows from
Corollary 5 on p. 131 and Corollary 4 on p. 129. □

We recall that we assume σ is in a bounded interval I ⊂ (0,∞).

Lemma 8 – We have that for all j ≥ 0,

∥∂jσD(t)/t − σ2/2∥L∞(I)→ 0 as t→ 0 , t > 0 .

Proof. We observe that the function ∂
j
σD(t)/t, defined on I × (0,1], extends to a con-

tinuous function on I × [0,1]. Since I is a bounded interval, this fact is enough to
provide the result. □

Lemma 9 – The following limits in L2
λ hold for the operators S(t) introduced in Equation

(21):

(i) limt↘0S(t)ξ = ξ for all ξ ∈ L2
λ and, similarly,

(ii) limt↘0 t
−1(S(t)ξ − ξ) = L0ξ for all ξ ∈ K1.

Proof. By the semi-group property, the operators etB and etA are uniformly bounded
if 0 ≤ t ≤ ϵ, for any fixed ϵ > 0. Since I is a bounded interval, the functions D(t) are
uniformly bounded for t ≤ ϵ. Moreover, ∥D(t)∥L∞(I)→ 0 as t↘ 0. By the definition
of S(t), the first part of the lemma follows.

The second part of the lemma is proved in a similar fashion. Indeed, the relations
S(t)K1 ⊂ K1 (see Lemma 7), D′(0) = σ2/2 (see Lemma 8), the fact that etA is a c0
semi-group that leaves K1 invariant (Corollary 5 on p. 131), and Lemma 4 on p. 128
give that

∂t
(
S(t)ξ

)
|t=0 = ∂t

(
eD(t)BetAξ

)
|t=0 = lim

t→0
t−1

(
eD(t)BetAξ − ξ

)
= lim

t→0
t−1

(
eD(t)BetAξ − etAξ

)
+ lim

t→0
t−1

(
etAξ − ξ

)
=
∂D
∂t

(0)Bξ +Aξ = L0ξ ,

whenever ξ ∈ K1. □
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We have the following similar result for K1, using also Corollary 4 on p. 129.

Lemma 10 – The following limits in K1 hold:

(i) limt↘0S(t)ξ = ξ for all ξ ∈ K1 and, similarly,

(ii) limt↘0 t
−1(S(t)ξ − ξ) = L0ξ for all ξ ∈ K1 such that L0ξ ∈ K1.

In particular, the second limit is valid if ξ ∈H4(I ×R).

Lemma 7 on the previous page, Lemma 9 on the previous page, and Lemma 10,
finally imply the generation of the semi-group S(t) on both L2

λ and K1.

Theorem 4 – Let κ > 0 and I = (α,β), with 0 < α < θ < β < ∞, as before. Then,
S(t) := eD(t)BetA defines a c0 semi-group etL0 on L2

λ, the generator of which coincides
with L0 on K1. Moreover, S(t) defines a c0 semi-group on K1.

Proof. The first part is an immediate consequence of Lemma 7 on the previous page
and Lemma 9 on the previous page. The second part uses Lemma 10 instead. □

We are now in the position to obtain an explicit formula for the kernel of the
semi-group S(t) using formula (21). Obtaining explicit formulas is important in
practice because it allows for very fast methods. This is one of the reasons Heston’s
method17 is so popular. Explicit formulas lead also to faster methods in solving
the inverse problem of determining the implied volatility from option prices (see
Bellassoued et al. 2013, for instance), and generally in model calibration using
inference methods.

Corollary 6 – Under the assumptions of Theorem 4, let h = h(σ,x) ∈ L2
λ(I × R) =

eλ⟨x⟩L2(I ×R) and set u(t) := S(t)h. Then, for almost all σ ∈ I :

u(t,σ ,x) =
1√

4πD(t)

∫
e
− |x−y−D(t)|2

4D(t) h(δt(σ ), y)dy (23)

and u is a mild solution of the Initial Value Problem:

∂tv −L0v = 0, v(0) = h.

If h ∈ K1, then u is a strong solution, and a classical solution provided that h ∈ C1,2(I ×
R)∩L2

λ(I ×R).

17Heston, 1993, “A Closed-Form Solution for Options with Stochastic Volatility, with Applications to
Bond and Currency Options”.
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Remark 4 – The operators etA amounts to a change of coordinates. By another
change of coordinates, on can write eD(t)B in terms of the standard one-dimensional
heat equation. By following through, one can see that the explicit formula of
Corollary 6 on the preceding page can also be obtained by reducing the equation
∂t −L0 to the heat equation. This seems difficult to check directly, though, and even
more difficult to guess. Moreover, the change of variables yields a non-standard
(non-cylindrical) domain and it does not provide the several mapping properties
that we have proved and which will be used below.

Remark 5 – Corollary 3 on p. 128, the local nature in σ of the semi-group generated
by σ2B, and the hyperbolic nature (in σ ) of A, as well as the explicit formula
(21) show that L0 defines a c0 semi-group on the spaces H

i,j
λ (Ω) introduced in

Equation (9). In the same way, we obtain that the operators S(t) act continuously on
C∞(R+;H j

λ(R)), for any t > 0. This action depends continuously on t in the strong
topology. We thus obtain the existence of solutions for ∂tu − L0u = 0 with some
rather general, globally defined initial data.

3.2 Lie algebra identities and semi-groups

In the previous subsection we used implicitly commutator estimates between the
operators A and B. Lie algebra ideas can be exploited to derive another formula
for the distributional kernel of etL0 , which in turn will prove useful in Section 4 on
p. 140. We collect in this subsection results pertaining to a general class of operators
with properties similar to the operators A and B, which, with abuse of notation, we
continue to denote by A and B.

Remark 6 – Let V be a finite dimensional real vector space of (possibly unbounded)
operators acting on some Banach space X and let A be a closed operator on X with
domain D(A). We make the following assumptions

(i) All operators in V have the same domain K, which is endowed with a Banach
space norm such that, for any B ∈ V , B : K→ X is continuous.

(ii) The operator A generates a c0 semi-group etA, t ≥ 0, of operators on X that
leaves K invariant and induces a c0 semi-group on K.

(iii) The space

W := {ξ ∈ K∩D(A)∩D(ABetA) , (∀)B ∈ V ,t ≥ 0 and Aξ ∈ K}

is dense in K in its Banach space norm.

(iv) If B ∈ V , the operator [A,B] with domain W is the restriction to W of an
operator in V , unique by Item (iii), and denoted adA(B).
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Then, denoting by et adA : V → V the exponential of the endomorphism adA : V → V
of the finite dimensional space V , we obtain the following Hadamard type formula

etABξ = et adA(B)etAξ , (∀)B ∈ V , ξ ∈ K , t ≥ 0. (24)

This relation can be proved by considering the function F : [0,∞)→ X

F(t) := etABξ − et adA(B)etAξ , B ∈ V and ξ ∈W .

Our assumptions imply that F(t) ∈D(A) for all t, that F(t) is differentiable, and that
F′(t) = AF(t). By the uniqueness of strong solutions to this evolution equation18,
it follows that F(t) = 0 for all t ≥ 0, since F(0) = 0. This fact proves Formula (24)
for ξ ∈ W . Since F(t) ∈ X depends continuously on ξ ∈ K, Formula (24) for ξ ∈ K
follows from the density ofW in K. By replacing B with e−t adA(B) in Formula (24),
we obtain

etAe−t adA(B)ξ = BetAξ , (∀)B ∈ V , ξ ∈ K , t ≥ 0. (25)

Let us assume that (the closures of) B ∈ V and B1 := et adA(B) generate c0 semi-groups
of operators on X denoted esB and esB1 , respectively. The, we also obtain the formula

etAesB = esB1etA , where B1 := et adA(B) ∈ V , t, s ≥ 0 , (26)

as bounded operators on X. Indeed, for ξ ∈ K, the equality etAesBξ = esB1etAξ is
obtained by differentiating F(s) := etAesBξ − esB1etAξ with respect to s (see Equation
(26)) and using Equation (24) (which takes care also that all the terms be defined)
to obtain that F(s) ∈ D(B) and that F′(s) = BF(s). Since F(0) = 0, we obtain, by the
uniqueness of solutions of u′ = Bu, u(s) ∈ D(B), that F(s) = 0. By density, we then
obtain the result for ξ ∈ X.

We shall use the above remark in the following setting.

Remark 7 – We keep the notation of Remark 6 on the previous page. Let X :=
L2
λ(I ×R), V = R∂σ with ∂σ acting on the first variable, and with domain K := K1,

where, we recall, K1 := H2
λ(I ×R). As before, we let A := κ(θ −σ )∂σ and consider the

adjoint action of A on V . We have that etA maps H3
λ(I ×R) to itself and H3

λ(I ×R) is
contained in the domains of A and AB. Hence H3

λ(I ×R) ⊂W , by the definition of
W , and hence

A∂σ −∂σA = [A,∂σ ] = [κ(θ − σ )∂σ ,∂σ ] = [κ(θ − σ )∂σ ,∂σ ] = κ∂σ ∈ V

onW . It follows that etA∂σ = eκt∂σ e
tA.

18Amann, 1995, Linear and quasilinear parabolic problems. Vol. I;
Pazy, 1983, Semigroups of linear operators and applications to partial differential equations.
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In the same spirit, we have the following remark.

Remark 8 – We keep the same notation and assumptions as in Remark 6 on p. 135,
in particular, the spaceW has the same meaning. We now present a situation for
which we can compute et(A+B) in terms of A and B and the semi-groups that they
generate, using the ideas of Remark 6 on p. 135. I addition to the four assumptions
of Remark 6 on p. 135, we consider the following conditions:

(v) There exists a closed cone C+ ⊂ V that is invariant with respect to et adA , for
all t ∈R, such that the closure of every B ∈ C+ generates a c0 semi-group;

(vi) etB1esB2 = esB2etB1 for all B1,B2 ∈ C+ and s, t ≥ 0.

(vii) The function C+ ∋ B→ eBξ ∈ X is continuous on C+ for all ξ ∈ X.

Let B ∈ C+ ⊂ V . We will show that if the four conditions above are satisfied (in
addition to the four assumptions of Remark 6 on p. 135), then

et(A+B) = etAeb(t) , (27)

where b : [0,∞)→ C+ is a suitable differentiable function with b(0) = 0. The proof
of this result will be completed in the proof of Theorem 5 on the next page.We first
comment briefly on the assumptions above. Let Bi ∈ C+. It is known, for instance,
that etB1esB2 = etB1+sB2 , which is an instance of the Trotter’s product formula19. More-
over, by results of Hille20, B1 and B2 commute in an obvious sense. We also have
that for ξ ∈ K, the function C+ ∋ B→ eBξ ∈ X is differentiable. More precisely, if
B(t) ∈ C+ depends differentiably on t, then (eB(t)ξ)′ = eB(t)B′(t)ξ = B′(t)eB(t)ξ. This
follows from Trotter’s product formula already mentioned. See Hille and Phillips
(1957) for a comprehensive introduction to the subject. See also Bobrowski and
Bogucki (2008) for related results.

We turn now to Equation (27). By differentiating the right hand side with respect
to t and evaluating at ξ ∈ X, we formally obtain:(

etAeb(t)ξ
)′

= AetAeb(t)ξ + etAb′(t)eb(t)ξ =
[
A+ et adA(b′(t))

]
etAeb(t)ξ .

Motivated by Equation (27), we then set (etAeb(t)ξ
)′

= (A+B)etAeb(t)ξ, which gives

b′(t) = e−t adA(B) ∈ C+. This condition can be verified, at least formally, by integrating
this last formula to first see that b(t) ∈ C+ for all t, since C+ is closed and convex.
Explicitly, let E(s) := (es − 1)/s, which is an entire function on C. Then E(−t adA)
is defined by holomorphic functional calculus and b(t) = tE(−t adA)(B), which is,
as yet, just a formal result. Here E(−t adA) is simply the power series: E(−t adA) =∑
cn(−t adA)n, where cn(n+ 1)! = 1 are the Taylor coefficients of E(s) := (es − 1)/s =∑
n cns

n.
Of course, this procedure has to be justified independently or one has to make

sense of all the steps in its derivation. In the previous subsections, we have chosen
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to verify independently Formula (21) for X = L2
λ(I ×R), V the space {pB}, with p

a polynomial of order ≤ 2, K = L2(I ;H2
λ(R)), and C+ the set of polynomials that are

≥ 0 on R.

It is convenient to first prove the following Lemma.

Lemma 11 – Assume that conditions (i-vii) in Remark 6 on p. 135 and Remark 8 on the
previous page are satisfied. Let B ∈ C+, then B1 := tE(−t adA)(B) and B2 := tE(t adA)(B)
are in C+ and etAeB1 = eB2etA.

Proof. We have already seen that B1 ∈ C+, since B1 =
∫ t

0 e
−sadA(B) and C+ is a closed,

convex cone invariant for e−sadA . Similarly B2 =
∫ t

0 e
sadA(B) ∈ C+ In view of formula

(26), it is enough to prove that et adA(B1) = B2. Indeed, in view of the properties of
the functional calculus, it is enough to check that etzt(e−tz−1)(−tz)−1 = t(etz−1)(tz)−1,
which is obviously true. □

We summarize the above discussion in a formal result. Recall the function E(x) :=
(ex − 1)/x.

Theorem 5 – Assume the notation and the assumptions of Remark 6 on p. 135 and
Remark 7 on p. 136. If B ∈ C+, then et(A+B) = etAeb(t), for b(t) := tE(−t adA)(B).

Proof. We have that b(t) ∈ C+ by Lemma 11. Let S(t) := etAeb(t). Then

S(t)S(s) = etAeb(t)esAeb(s) = etAesAeb1(t)eb(s) = e(t+s)Aeb1(t)+b(s)

where b1(t) = e−sadA(b(t)), by formula (26) and by Trotter’s product formula. We
then compute

b1(t) + b(s) = e−sadA
(
tE(−t adA)(B)

)
+ sE(−sadA)(B)

= (t + s)E
(
− (t + s)adA

)
(B) = b(s+ t) ,

by the properties of the functional calculus, since

e−sztE(−tz) + sE(−sz) = e−szt(e−tz − 1)(−tz)−1 + s(e−sz − 1)(−sz)−1

= (−z)−1
[
e−sz(e−tz − 1) + e−sz − 1

]
= (s+ t)

(
e−(s+t)z − 1

)(
− (s+ t)z

)−1

= (s+ t)E
(
− (s+ t)z)

)
.

19Trotter, 1959, “On the product of semi-groups of operators”.
20Hille, 1950, “Lie theory of semi-groups of linear transformations”.
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Therefore S(t)S(s) = S(t+s), for all t, s ≥ 0. To prove that S(t) = et(A+B), it is enough to
check that S(t)ξ is differentiable for ξ ∈W (see Item (iii) on p. 135 for the definition
of W ) and that (S(t)ξ)′ = S(t)(A + B)ξ, since S(t) is a semi-group consisting of
uniformly bounded operators on compact subsets. Indeed, the relation (S(t)ξ)′ =
S(t)(A+B)ξ would prove that S(t)ξ is continuous for ξ ∈W (and hence everywhere,
since S(t) consists of uniformly bounded operators on compact subsets andW is
dense in X) and that the generator of S(t) is A+B, by setting t = 0. Now, for ξ ∈W ,
using the notation of Lemma 11 on the preceding page, we have(

S(t)ξ
)′

=
(
eb1(t)etAξ

)′
= eb1(t)etAAξ + eb1(t)b′1(t)etAξ

= S(t)
[
A+ e−t adA

(
b′1(t)

)]
ξ = S(t)

[
A+ e−t adA

(
et adA(B)

)]
ξ .

This completes the proof. □

Remark 9 – We use the notation of Theorem 5 on the preceding page and assume
that V =

∑
a∈I Va (for some finite index I ⊂R), where

[A,Ba] := ABa −BaA = aBa , for any Ba ∈ Va, a ∈ I .
We can simplify the formula et(A+B) = etAeb(t), b(t) = tE(−t adA)(B), even further,
as follows. Let us write B =

∑
a∈RBa, with Ba ∈ Va. (Of course, Va = 0, except

for finitely many values a ∈ R, since V is assumed finite dimensional, so the sum∑
a∈RBa is actually a finite sum). Then b(t) = tE(−t adA)(B) =

∑
a fa(t)Ba, where

fa(t) = (1− e−at)/a = tE(−at). Hence, this procedure gives the result

et(A+B) = etAe
∑

a tE(−at)Ba = e
∑

a tE(at)BaetA . (28)

We close by using the results just proved to derive an equivalent formula for S(T ),
which, by the smoothing properties of etB, t > 0, in x, can also be used to show
that u(t) = S(t)ξ defines a classical solution of ∂tu − L0u = 0 for t > 0, when ξ ∈
C1(I ;L2

λ(R)). For this purpose, we introduce the function:

C(t) := C(t,σ ) :=
(θ − σ )2

4κ
(e2κt − 1)− θ(θ − σ )

κ
(eκt − 1) +

1
2
θ2t. (29)

We notice that C(t) is obtained from D(t) (where D is introduced in Equation (19)) by
replacing κ with −κ, therefore it retains its positivity (see Proposition 4 on p. 132 or
Lemma 11 on the preceding page). Applying the reasoning in the previous remark,
we obtain the following alternative expression for S(t):

S(t) := eD(t)BetA = etAeC(t)B . (30)

Indeed, we check that Conditions (i)–(vii) are satisfied in Remarks Remark 6
on p. 135 and Remark 8 on p. 137. For (i), we take V := {pB} with p a second
order polynomial in σ , K = K1 := H2

λ(I ×R), and A = κ(θ − σ )∂σ , κ > 0. We have
H3

λ(I × R) ⊂ W as above and then conditions (i)–(iv) follow easily. The rest of
the conditions are also satisfied immediately if on takes C+ to correspond to the
polynomials that are > 0 on I .
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4 Mapping properties, asymptotic expansion,
and error estimates

In this section, we prove mapping properties between weighted spaces for the
semi-groups we constructed. We then use these results to compare the semi-groups
etL0 and etL. We continue to assume that I = (α,β), 0 < α < θ < β <∞, and that κ > 0.

4.1 Mapping properties

We shall need certain mapping properties for the semi-groups etL and etL0 . Most of
these results are consequences of the properties of analytic semi-groups. We begin
with a preliminary lemma.

Lemma 12 – Assume that I := (α,β) is bounded and that α > 0. Then there exists ϵ > 0
such that D(t,σ ) ≥ ϵt for σ ∈ I and t ∈ [0,1].

Proof. We consider the function h(t,σ ) := D(t,σ )/t for σ ∈ [α,β] and t ∈ (0,1]. By
Proposition 4 on p. 132, h extends to a continuous function on [α,β]× [0,1]. By the
assumption that α > 0 and by Proposition 4 on p. 132 again, we have that h > 0 on
[α,β]× [0,1]. Therefore ϵ := infh > 0. □

We recall also the following general fact.

Remark 10 – If T generates a c0 semi-group etT on a Banach space X, then (etT )∗

will also be a semi-group (but the strong continuity property may fail). However, if
X is reflexive, then (etT )∗ is strongly continuous and, in fact, (etT )∗ is a c0 semi-group
with generator T ∗ (see Pazy 1983, Corollary 1.10.6). In other words, (etT )∗ = etT

∗
, if

X is reflexive. Moreover, if etT is an analytic semi-group, then (etT )∗ is also analytic
since the function (ezT )∗ is holomorphic in a sector ∆δ, δ > 0.

We first discuss mapping properties of etL0 . From (30) and the analyticity of etB,
one expect etL0 to be smoothing in x. The spaces H

i,j
λ (I ×R) := H i(I,H j

λ(R)), used
below, are discussed in more detail in (9).

Lemma 13 – Let s ≥ 0. There exists Cs > 0 such that, for all h ∈ L2
λ(I ×R),

∥eD(t)Bh∥H0,s
λ (I×R) ≤ Cst

−s/2∥h∥L2
λ(I×R) , for t ∈ (0,1] .

Consequently, ∥∂kxetL0∥ ≤ Ct−k/2, where t ∈ (0,1] and C is independent of t. Moreover,
∂kxe

tL0ξ is continuous in t.

Whenever not explicitly noted, all the norms ∥ ∥ below refer to the norm of vectors in
L2
λ(I ×R) or of bounded operators on that space.
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Proof. Let us assume first s = 2n, for some positive integer n. The norm ∥g∥H0,2n
λ (I×R)

is equivalent to the norm ∥g∥ + ∥Bng∥ ( Corollary 1 on p. 126). It is therefore enough
to show that there exists C′s such that

∥eD(t)Bh∥+ ∥BneD(t)Bh∥ ≤ C′st
−n∥h∥ . (31)

since then the desired relation follows with Cs = CC′s. Lemma 12 on the preceding
page gives

∥eD(t)Bh∥+ ∥BneD(t)Bh∥ = ∥eD(t)Bh∥+ ∥e(D(t)−ϵt)BBneϵtBh∥

≤ C
(
∥h∥+ ∥BneϵtBh∥

)
≤ C(ϵt)−n∥h∥ ,

since egB is bounded on L2
λ(I ×R), if g ≥ 0 is bounded measurable, and tnBnetB is

also bounded on the same space (by Equation (15) for T = B). Here, we have used
the assumption that I is bounded. This argument establishes the result for s = 2n.
For general s ≥ 0, the result follows by complex interpolation.

To prove the last part, we write

∂2k
x etL0 = ∂2k

x (µ0 −B)−k(µ0 −B)keD(t)BetA ,

where µ0 is large. We have that ∂2k
x (µ0 − B)−k is bounded (Theorem 1 on p. 125).

Remark 3 on p. 129, Lemma 4 on p. 128 and Lemma 12 on the preceding page show
that (µ0 −B)keD(t)B depends smoothly on t. Then, ∂kxe

tL0 depends continuously on
t, as etA does. Remark 3 on p. 129 also gives that ∥(µ0 − B)keD(t)B∥ ≤ Ct−k . This
implies that ∥∂2k

x etL0∥ ≤ Ct−k , and the desired estimate for all k > 0 follows by
interpolation. □

In the same way, we obtain the following result.

Lemma 14 – If h ∈ L2
λ(I ×R), then

∥etLh∥H s
λ(I×R) ≤ Ct−s/2∥h∥L2

λ(I×R) .

If P is a differential operator of order k with totally bounded coefficients on I ×R, then
P etL and etLP extend to bounded operators on L2

λ(I ×R) of norm ≤ Ct−k/2 that depend
smoothly on t > 0.

Proof. The first part of the Lemma follows from (15), using that (L−µ0)−n : L2
λ(I ×

R)→H2n
λ (I ×R) continuously for µ0 large enough, using interpolation, and using

the analyticity of etL.
Let P now be as in the statement of the lemma. Then P : Hk

λ(I ×R)→ L2
λ(I ×R) is

bounded. This implies the result for P etL. The result for etLP is obtained by taking
adjoints, since L∗ is uniformly strongly elliptic with totally bounded coefficients
and generates an analytic semi-group. □
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In what follows, we will need the following result. All norms of operators are on
L2
λ(I ×R).

Lemma 15 – The operator F(s) := e(t−s)L∂σ e
sL extends, for each s ∈ [0, t], to a bounded

operator on L2
λ(I ×R), and the resulting function is continuous in s ∈ [0, t] and differen-

tiable for s ∈ (0, t). Its derivative is the function

F′(s) = e(t−s)L[∂σ ,L]esL ,

which satisfies ∥F′(s)∥ ≤ Ct−1, with C independent of 0 < s < t ≤ 1.

Proof. Lemma 14 on the previous page gives that both functions e(t−s)L and ∂σ e
sL are

continuous on (0,T ] and infinitely many times differentiable on (0, t) as functions
with values in the space of bounded operators; therefore, F(s) is continuous on [0, t).
The formula for the derivative follow from the standard formula (esL)′ = LesL, which
we note to be valid in norm, since L generates an analytic semi-group and s > 0. The
continuity on [0, t) follows in the same way by considering e(t−s)L∂σ and esL.

If s ≤ t/2, since [∂σ ,L] is a second order differential operator, Lemma 14 on the
previous page implies that e(t−s)L[∂σ ,L] is bounded with norm ≤ C(t − s)−1 ≤ 2Ct−1.
Hence, ∥F′(s)∥ ≤ Ct−1. The case s ≥ t/2 is completely analogous using the bounds
for [∂σ ,L]esL provided by Lemma 14 on the previous page. □

4.2 A comparison of etL and etL0

In this last section, we compare the semi-groups etL0 and etL, by regarding L as
a perturbation of L0 for ν sufficiently small. The motivation for this approach is
that, while etL is better behaved as a semi-group, we lack an explicit formula for its
distributional kernel.

We recall that we set L = L0 +V , where V = νL1 +ν2L2 = νρσ2∂x∂σ + ν2σ2

2 ∂2
σ We

also recall that K1 = H2
λ(I ×R) and K0 = H2

λ(I ×R)∩ {u(α,x) = u(β,x) = 0}, where
I = (α,β) is a fixed bounded interval containing θ.

Lemma 16 – Let ξ ∈ K1. Then F(s) := e(t−s)LesL0ξ is continuous on [0, t] and differen-
tiable on (0, t) with values in L2

λ(I ×R)), with F′(s) = −e(t−s)LV esL0ξ.

Proof. Since ξ is in the domain of L0 (which contains K1, by Theorem 4 on p. 134),
the function ζ(s) := esL0ξ is differentiable for s ≥ 0. But etL is a c0 semi-group,
therefore Lemma 4 on p. 128 gives that F(s) = e(t−s)Lζ(s) is continuous on [0, t]. Since
etL is an analytic semi-group, it follows in addition that F(s) is differentiable for
s ∈ (0, t), by Lemma 5 on p. 129, and its derivative is F′(s) = −e(t−s)LV esL0ξ. □

We continue to assume that ∥ · ∥ refers to the norm in L2
λ(I ×R) or the operator norm

of bounded operators on this space.
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Lemma 17 – Let ξ ∈ K1, then e(t−s)LL1e
sL0ξ depends continuously on s and

(ρν)−1∥e(t−s)LL1e
sL0ξ∥ = ∥e(t−s)Lσ2∂σ∂xe

sL0ξ∥ ≤ C(t − s)−1/2s−1/2∥ξ∥ .

Consequently,
∥∥∥∥∫ t0 e(t−s)LL1e

sL0 ds
∥∥∥∥ ≤ Cρν.

Proof. Lemma 13 on p. 140 and Lemma 14 on p. 141 show that e(t−s)Lσ2∂σ and
∂xe

s(L0−κ)ξ satisfy the assumptions of Lemma 4 on p. 128, so e(t−s)Lσ2∂σ∂xe
s(L0−κ)ξ

is continuous in s. Similarly, Lemma 13 on p. 140 and Lemma 14 on p. 141 give

∥e(t−s)Lσ2∂σ∂xe
s(L0−κ)ξ∥ ≤ ∥e(t−s)Lσ2∂σ ∥∥∂xes(L0−κ)ξ∥ ≤ C(t − s)−1/2s−1/2∥ξ∥.

The integral can be estimated by splitting the interval [0, t] in two halves. □

To estimate the terms involving L2, we exploit the next result.

Lemma 18 – Let ξ ∈ K1, then ∂σ e
tL0ξ = et(L0−κ)∂σξ + ∂D(t,σ )

∂σ BetL0ξ.

Proof. The main calculation is contained in Remark 7 on p. 136. More precisely,
this is a direct calculation using Equation (21), together with Lemma 5 on p. 129,
with Hadamard’s theorem (see Remark 6 on p. 135 and Remark 7 on p. 136), and
with the fact that adL0

(∂σ )adA(∂σ ) = κ∂σ . □

However, the error terms containing L2 present some additional challenges, since
L0 is not elliptic.

Lemma 19 – Let ξ ∈ K1, then e(t−s)LL2e
sL0ξ depends continuously on s and the follow-

ing estimate holds:

2
ν2 ∥e

(t−s)LL2e
sL0ξ∥ = ∥e(t−s)Lσ2∂2

σ e
sL0ξ∥ ≤ C(t − s)−1/2(

∥∥∥∂σξ∥+ ∥ξ∥
)
.

Consequently,
∥∥∥∥∫ t0 e(t−s)LL2e

sL0ξ ds
∥∥∥∥ ≤ Cν2

√
t
(
∥∂σξ∥+ ∥ξ∥

)
.

Proof. Lemma 18 gives

e(t−s)Lσ2∂2
σ e

sL0ξ = e(t−s)Lσ2∂σ

(
es(L0−κ)∂σξ +

∂D(s,σ )
∂σ

BesL0ξ
)
. (32)

As in the proof of Lemma 17, Lemma 14 on p. 141 and Lemma 13 on p. 140
give that both e(t−s)Lσ2∂σ e

sL0 and e(t−s)Lσ2∂σ
∂D
∂σ BesL0 define bounded operators

that depend continuously on s ∈ (0, t) in the strong operator topology. We estimate
separately the norm of each of them. Again from Lemma 14 on p. 141, we obtain

∥e(t−s)Lσ2∂σ e
s(L0−κ)∥ ≤ ∥e(t−s)Lσ2∂σ ∥∥es(L0−κ)∥ ≤ C(t − s)−1/2 .
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For the estimate of the second term, we first notice that ∥∂D(t,σ )
∂σ ∥L∞(I) ≤ Ct, since the

function ∂D(t,σ )
t∂σ extends to a continuous function on I×[0,1]. Hence, ∥∂D(s,σ )

∂σ BesL0∥ ≤
∥sBesL0∥ ≤ C by Lemma 13 on p. 140, and∥∥∥∥e(t−s)Lσ2∂σ

∂D(s,σ )
∂σ

BesL0

∥∥∥∥ ≤ ∥e(t−s)Lσ2∂σ ∥
∥∥∥∥∂D(s,σ )

∂σ
BesL0

∥∥∥∥ ≤ C(t − s)−1/2 .

The last two displayed equations and Equation (32) then combine to give the
first part of the statement. The last relation in the statement follows directly by
integrating the first one. □

Combining the previous two lemmas we obtain the following corollary.

Corollary 7 – The family G(s) := e(t−s)LV esL0 consists of bounded operators on L2
λ.

Moreover, for any ξ ∈ K1, G(s)ξ is continuous and integrable in s ∈ (0, t) and we have:∥∥∥∥∫ t

0
G(s)ξ ds

∥∥∥∥ :=
∥∥∥∥∫ t

0
e(t−s)LV esL0ξ ds

∥∥∥∥ ≤ C
(
ρν∥ξ∥+ ν2

√
t
(
∥∂σξ∥+ ∥ξ∥

))
.

Lemma 16 on p. 142 and Corollary 7 then give:

etLξ − etL0ξ = F(0)−F(t) =
∫ t

0
e(t−s)LV esL0ξ ds .

The final estimate is for ξ ∈H1(I,L2
λ(R)) := {ζ ∈ L2

λ(I ×R), ∂σζ ∈ L2
λ(I ×R)}.

Theorem 6 – There is C > 0 such that

∥etLξ − etL0ξ∥ ≤ Cν
(
∥ξ∥+ ν∥∂σξ∥

)
,

for ξ ∈H1(I,L2
λ(R)) and 0 ≤ t ≤ T . The bound C depends on T , but not on ξ.

Proof. The statement was proved for ξ ∈ K1. For general ξ, it follows from the
density of K1 := H2

λ(I ×R) in H1(I,L2
λ(R)) and the continuity on H1(I,L2

λ(R)) of all
the operators appearing on the left and right sides of the inequality. □

The approach presented in this subsection can be iterated to derive higher-order ap-
proximate solutions in the parameter ν by applying Duhamel’s formula repeatedly,
provided the data is sufficiently smooth. Numerical and real data tests21 show that
approximations of the form Theorem 6 work well even for ν in the range that arises
in applications, that is ν ∈ [0,2] and σ ≤ .5, but for second order approximations in
ν. This and further research are part of an article in preparation, where we will

21Grishchenko, Han, and Nistor, n.d., “A Volatility-of-Volatility Expansion of the Option Prices in the
SABR Stochastic Volatility”.
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prove a higher order version of the approximation in Theorem 6 on the preceding
page with computable coefficients. We close by observing that similar commutator
estimates were obtained in Cheng, Costanzino, et al. (2011), Cheng, Mazzucato, and
Nistor (n.d.), Constantinescu et al. (2010), and Grishchenko, Han, and Nistor (n.d.).
The main difficulty addressed in this work is that L0 is not an elliptic operator.

A Semi-groups and solutions of evolution equations

This section is devoted to briefly review known facts about abstract evolution equa-
tions and semi-groups of operators needed for the analysis. We also review needed
facts about the function spaces we employ, in particular exponentially weighted
Sobolev spaces. As remarked in the Introduction, these spaces are needed to handle
initial conditions of the form h(σ,x) := |ex −K |+, (σ,x) ∈ (0,∞) ×R, which arise in
applications. We follow primarily Amann (1995), Lunardi (1995), and Pazy (1983).

A.1 Unbounded operators and c0 semi-groups

We begin by recalling the notion of a semi-group generated by a linear operator.
Throughout, L(X) will denote the space of bounded linear operators on a Banach space
X, which is a Banach algebra using the operator norm.

Definition 4 – Let X be a Banach space. A strongly continuous or c0 semi-group of
operators on X is a family of bounded operators S(t) : X→ X, t ≥ 0, satisfying:

(i) S(t1 + t2) = S(t1)S(t2), for all ti ≥ 0,

(ii) S(0) = I , where I represent the identity operator on X,

(iii) limt→0S(t)x = x, for all x ∈ X, where the limit is taken with respect to the
topology of X.

It follows from Item (iii) that S(t) is strongly continuous in t, that is, the map
S(·)x : [0,∞)→ X is continuous for every ξ ∈ X, hence the name.

We will need also the notion of analytic semi-groups. To this end, for a given
δ > 0, we let ∆δ denote the sector:

∆δ := {z = reıθ , −δ < θ < δ, r > 0} . (33)

Also, for any Banach space X, let L(X) denote the Banach algebra of bounded
operators on X.
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Definition 5 – Let X be a Banach space. An analytic semi-group of operators on X is
a function S : ∆δ ∪ {0} → L(X), δ > 0, with the properties

(i) S is analytic in ∆δ;

(ii) S(z1 + z2) = S(z1)S(z2), if zi ∈ ∆δ ∪ {0};

(iii) S(0) = I , the identity operator on X;

(iv) limz→0S(z)x = x, for all x ∈ X.

The limit limz→0S(z)x is computed for z ∈ ∆δ. An analytic semi-group is, in partic-
ular, a c0 semi-group.

Definition 6 – The generator T of a c0 semi-group S(t) on X is the unbounded
operator T defined by:

T ξ := lim
t↘0

t−1
(
S(t)ξ − ξ,

)
for every ξ ∈ X for which the limit exists. The collection of such vectors forms the
domain of the operator.

It is known that the generator of a c0 semi-group is closed and densely defined.
We next review criteria for an unbounded operator T to generate a c0 semi-group
S(t). When this is the case, then u(t) := S(t)h is a (suitable) solution of u′ − T u = 0,
u(0) = h. A useful criterion for T to generate a c0 semi-group is provided by the
Lumer-Phillips theorem, which we discuss next. Since two c0 semi-groups with the
same generator coincide (see e.g. Amann 1995; Pazy 1983), we shall write S(t) = etT

for the semi-group generated by T , if such a semi-group exists.

A.2 Dissipativity

In the following,ℜ(z) =ℜz will denote the real part of z ∈ C. Let X be a Banach
space and let X∗ denote its dual. If x ∈ X, the Hahn-Banach theorem implies, in
particular, that the set

F (x) := {f ∈ X∗, f (x) = ∥x∥2 = ∥f ∥2}

is not empty.

Definition 7 – A (possibly unbounded) operator T on a Banach space X is called
quasi-dissipative if there exists µ ≥ 0 such that, for every x ∈ D(T ), there exists an
f ∈ F (x) ⊂ X∗ with the property that andℜ

(
f (T x −µx)

)
≤ 0.
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This definition is simply saying that for some µ > 0, the operator T x−µx is dissipative.
The numerical range of T , denoted N(T ), is the set

N(T ) := {f (T x), ∥x∥ = 1, f ∈ F (x)} . (34)

A quasi-dissipative operator T is thus one that has the property that

N(T ) ⊂ {z ∈C, ℜ(z) ≤ µ} = µ+∆c
π/2 (35)

with ∆δ defined in Equation (33) and ∆c
δ := C∖∆δ its complement.

Quasi-dissipativity, together with some mild conditions on the operator T stated
below, is sufficient for the generation of a c0 semi-group, by the celebrated Lumer-
Phillips theorem, which we now recall, in the form that we are going to use, for the
benefit of the reader22.

Theorem 7 (Lumer-Phillips) – Let X be a Banach space and let T be a densely defined,
quasi-dissipative operator on X such that T −λ is invertible for λ large. Then T generates
a c0 semi-group on X.

By strengthening condition (35), we obtain the following similar theorem that yields
generators of analytic semi-groups. The proof of this theorem is contained in the
proof of Pazy (1983, Theorem 7.2.7).

Theorem 8 – Let X be a Banach space and let T be a densely defined operator on X
such that N(T ) ⊂ µ+∆c

ϑ for some µ ∈ R and some ϑ > π/2. Assume also that T −λ is
invertible for λ large. Then T generates an analytic semi-group.

We note that the assumption that T − λ be invertible in Theorem 7 and Theo-
rem 8 implies that T is closed. The theorem above is especially useful when T is
a uniformly strongly elliptic operator (see Definition 2 on p. 125) in view of the
following Lemma, the proof of which is again contained in the proof of Pazy (1983,
Theorem 7.2.7). See also Lions (1961).

Lemma 20 – Let P be an order 2m differential operator on some domain Ω ⊂ R
n,

regarded as an unbounded operator on L2(Ω) with domain D(P ) ⊂H2m(Ω). We assume
that there exists C > 0 such that

ℜ(P v,v) ≤ −C−1∥v∥Hm(Ω) and |(P v,v)| ≤ C∥v∥Hm(Ω) , (∀)v ∈D(P ) .

Then N(P ) ⊂ ∆c
ϑ for some ϑ > π/2.

From Theorem 8 and Lemma 20, we get the following corollary.

Corollary 8 – Let P be as in Lemma 20 and assume that D(P ) is dense in L2(Ω) and
that P −λ is invertible for λ large. Then P generates an analytic semi-group on X.

22Amann, 1995, Linear and quasilinear parabolic problems. Vol. I;
Pazy, 1983, Semigroups of linear operators and applications to partial differential equations.
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A.3 Classical and other types of solutions

We consider the initial-value problem for abstract parabolic equations of the form
(10) (that is ∂tu − P u = F, u(0) = h ∈ X) where P is a (usually unbounded) operator
on a Banach space X and with domain D(P ). In our applications, X will be a space
of functions on Ω, but it is convenient to consider this equation also abstractly, from
the point of view of semi-groups of operators.

Definition 8 – A function u : [0,T ] → X is a strong solution of the initial value
problem (10) for F ∈ C([0,T ];X) if

(i) u is continuous for the norm topology on X and u(0) = h;

(ii) ∂tu = u′ is defined and continuous as a function (0,T ]→ X;

(iii) u(t) ∈D(P ) for t ∈ (0,T ]; and

(iv) u satisfies the equation ∂tu(t)− P u(t) = F(t) ∈ X, for t ∈ (0,T ].

We shall also need the following weaker form of a solution.

Definition 9 – A function u : [0,T ]→ X is called a mild solution of the initial-value
problem (10) if h ∈ X, F ∈ L1([0,T ],X), and

u(t) = etP h+
∫ t

0
e(t−τ)P F(τ)dτ,

with equality as elements of X pointwise in time t ∈ (0,T ).

The following remark recalls the connection between semi-groups and the various
types of solutions of the Initial Value Problem (10).

Remark 11 – For the applications of interest in this work, we can reduce to homo-
geneous equations, that is F(0) = 0, as we assume now. We also assume that the
operator P generates a c0 semi-group etP on X. Then u(t) := etP h is a mild solution
for any h ∈ X. If, moreover, h ∈D(P ) or if P generates an analytic semi-group, then
u(t) := etP h is also a strong solution of Equation (10) (see Amann 1995; Lunardi
1995; Pazy 1983, for instance).

We specialize to the case when P is a m-th order partial differential operator defined
on a domain Ω ⊂R

d :

P :=
∑
|α|≤m

aα∂
α , (36)

with coefficients aα ∈ C∞(Ω), and assume that X is a space of functions on Ω, that
is, X ⊂ L1

loc(Ω). We also assume that the domain of P contains the space of smooth
functions with compact support in Ω, and hence the same is satisfied by its adjoint.
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We next recall the notion of classical and weak solutions. We use the convenient
notation:

u(t)(q) := u(t,q) , t ≥ 0 and q ∈Ω ,

which is in agreement with (10).

Definition 10 – A function u : [0,T ] ×Ω → C is a classical solution of the initial
value problem (10) if

(i) u is continuous on [0,T ]×Ω and u(0,q) = h(q), for all q ∈Ω;

(ii) ∂tu = u′ and ∂αu, |α| ≤m, are defined and continuous on (0,T ]×Ω; and

(iii) u satisfies the equation ∂tu − P u = F pointwise in (0,T ]×Ω.

If boundary conditions for u on ∂Ω are given, we require them to be satisfied as
equalities of continuous functions.

We note that in the abstract setting, strong solutions are often referred to as classical
or strict solutions (see e.g. Lunardi 1995; Pazy 1983. The following lemma follows
from known results (see Lunardi 1995, Section 4.3, Chapter 5).

Lemma 21 – Assume that there exists n ≥ 0 such that D(P n) ∋ f → ∂αf ∈ C(Ω) is
continuous for all |α| ≤ m. In addition, assume that P generates a c0 semi-group on
X and that F = 0. Then u(t) := etP h is a classical solution of Equation (10) for all
h ∈D(P n+1).

We denote by

P tv :=
∑
|α|≤m

(−1)|α|∂α(aαv) (37)

be the transpose of P (so that
∫
Ω

(P u)vdx =
∫
Ω
u(P tv)dx whenever u and v are com-

pactly supported in Ω).

Definition 11 – A function u : [0,T )×Ω→C is a weak solution of the initial value
problem (10) if u,F ∈ L1

loc([0,T )×Ω) and, for all φ ∈ C∞c ([0,T )×Ω),∫
Ω

[
φ(0,x)h(x) +

∫ T

0

(
∂tφ+ P tφ

)
udt +

∫ T

0
φFdt

]
dx = 0 . (38)

If, moreover, u is also a classical solution on [δ,T ] for all δ > 0, [T < R, we shall say
that v is a classical solution on (0,R).

Again, the following lemma is well-known (see e.g. Lunardi 1995; Pazy 1983).
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Lemma 22 – Assume that P generates a c0 semi-group on X. Then u(t) := etP h is a weak
solution of the homogeneous Initial-Value Problem (10) with F = 0 for all h ∈ X.

Combining the two lemmas above we obtain.

Proposition 5 – Assume that D(P n) ∋ f → ∂αf ∈ C(Ω) is continuous for all |α| ≤ m,
for some n ≥ 0. Assume in addition that P generates an analytic semi-group on X and
that F = 0. Then, for all h ∈ X, u(t) := etP h is a classical solution on (0,∞) of the IVP
(10).

After this paper was first circulated, a related interesting preprint23 also appeared.
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