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Abstract

Let X be a hyperkähler variety, and assume X has a non-symplectic automor-
phism σ of order > 1

2 dimX. Bloch’s conjecture predicts that the quotient X/<σ>
should have trivial Chow group of 0-cycles. We verify this for Fano varieties
of lines on certain special cubic fourfolds having an order 3 non-symplectic
automorphism.
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1 Introduction

Let X be a smooth projective variety over C, and let Ai(X) := CH i(X)
Q

denote the
Chow groups of X (i.e. the groups of codimension i algebraic cycles on X with
Q-coefficients, modulo rational equivalence). Let Ai

hom(X) denote the subgroup
of homologically trivial cycles. It does not seem an exaggeration to say that the
field of algebraic cycles is filled with open questions2. Among these open ques-
tions, a prominent position is occupied by Bloch’s conjecture, proudly and sturdily
overtowering the field like an unscalable mountain top.

1Institut de Recherche Mathématique Avancée, CNRS, Université de Strasbourg, 7 rue René
Descartes, 67084 Strasbourg Cedex, France

2Bloch, 1980, Lectures on algebraic cycles;
Jannsen, 1994, “Motivic sheaves and filtrations on Chow groups”;
Jannsen, 2007, “On finite–dimensional motives and Murre’s conjecture”;
Murre, Nagel, and Peters, 2013, Lectures on the theory of pure motives;
Voisin, 2014b, Chow rings, decomposition of the diagonal, and the topology of families.
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Algebraic cycles on certain HK fourfolds R. Laterveer

Conjecture 1 (Bloch 1980) – Let X be a smooth projective variety of dimension n. Let
Γ ∈ An(X ×X) be such that

Γ∗ = 0: H i(X,OX ) → H i(X,OX ) ∀i > 0 .

Then

Γ∗ = 0: An
hom(X) → An(X) .

A particular case of Conjecture 1 is the following:

Conjecture 2 (Bloch 1980) – Let X be a smooth projective variety of dimension n.
Assume that

H i(X,OX ) = 0 ∀i > 0 .

Then

An(X) �Q .

The “absolute version” (Conjecture 2) is obtained from the “relative version” (Con-
jecture 1) by taking Γ to be the diagonal. Conjecture 2 is famously open for surfaces
of general type (cf. Pedrini and Weibel 2015; Voisin 2014a for some recent progress).

Let us now suppose that X is a hyperkähler variety (i.e., a projective irreducible
holomorphic symplectic manifold3), say of dimension 2m. Suppose there exists a
non-symplectic automorphism σ ∈ Aut(X) of order k > m. This implies that(

σ + σ2 + . . .+ σ k
)
∗ = 0: H i(X,OX ) → H i(X,OX ) ∀i > 0 .

Conjecture 1 (applied to the correspondence Γ =
∑k

j=1 Γσ j ∈ A2m(X ×X), where
Γf denotes the graph of an automorphism f ∈ Aut(X)) then predicts the following:

Conjecture 3 – Let X be a hyperkähler variety of dimension 2m. Let σ ∈ Aut(X) be an
order k non-symplectic automorphism, and assume k > m. Then(

σ + σ2 + . . .+ σ k
)
∗ = 0: A2m

hom(X) → A2m(X) .

The main result of this note is that Conjecture 3 is true for a certain family of
hyperkähler fourfolds:

Theorem (= Theorem 6) – Let Y ⊂ P
5(C) be a smooth cubic fourfold defined by an

equation

f (X0,X1,X2,X3) + g(X4,X5) = 0 ,

3Beauville, 1983a, “Some remarks on Kähler manifolds with c1 = 0”;
Beauville, 1983b, “Variétés Kähleriennes dont la première classe de Chern est nulle”.
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1. Introduction

where f and g are homogeneous polynomials of degree 3. Let X = F(Y ) be the Fano
variety of lines in Y . Let σ ∈ Aut(X) be the order 3 automorphism induced by

P
5(C) → P

5(C) ,

[X0 : . . . : X5] 7→ [X0 : X1 : X2 : X3 : νX4 : νX5]

(where ν is a primitive 3rd root of unity).
Then

(id+σ + σ2)∗ A
4
hom(X) = 0 .

As an immediate consequence of Theorem 6, we find that Bloch’s Conjecture 2 is
verified for the quotient:

Corollary (= Corollary 2) – Let X and σ be as in Theorem 6, and let Z := X/<σ> be
the quotient. Then

A4(Z) �Q .

Another consequence (corollary 3) is that a certain instance of the generalized Hodge
conjecture is verified.

The proof of Theorem 6 relies on the theory of finite-dimensional motives4,
combined with the Fourier decomposition of the Chow ring of X constructed by
Shen and Vial5.

Convention 1 – In this article, the word variety will refer to a reduced irreducible
scheme of finite type over C. A subvariety is a (possibly reducible) reduced sub-
scheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote by Aj(X)
the Chow group of j-dimensional cycles on X with Q-coefficients; for X smooth of
dimension n the notations Aj (X) and An−j (X) are used interchangeably.

The notations Aj
hom(X), Aj

AJ (X) will be used to indicate the subgroups of homo-
logically trivial, resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y , we
will write Γf ∈ A∗(X × Y ) for the graph of f . The contravariant category of Chow
motives (i.e., pure motives with respect to rational equivalence as in Murre, Nagel,
and Peters 2013; Scholl 1994) will be denotedMrat.

We will write H j (X) to indicate singular cohomology H j (X,Q).

4Kimura, 2005, “Chow groups are finite dimensional, in some sense”.
5Shen and Vial, 2016a, “The Fourier transform for certain hyperKähler fourfolds”.
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2 Preliminaries

2.1 Quotient varieties

Definition 1 – A projective quotient variety is a variety

Z = X/G ,

where X is a smooth projective variety and G ⊂ Aut(X) is a finite group.

Proposition 1 (Fulton 1998) – Let Z be a projective quotient variety of dimension n.
Let A∗(Z) denote the operational Chow cohomology ring. The natural map

Ai(Z) → An−i(Z)

is an isomorphism for all i.

Proof. This is Fulton (1998, Example 17.4.10). □

Remark 1 – It follows from Proposition 1 that the formalism of correspondences
goes through unchanged for projective quotient varieties (this is also noted in Fulton
1998, Example 16.1.13). We may thus consider motives (Z,p,0) ∈Mrat, where Z is a
projective quotient variety and p ∈ An(Z ×Z) is a projector. For a projective quotient
variety Z = X/G, one readily proves (using Manin’s identity principle) that there is
an isomorphism of motives

h(Z) � h(X)G := (X,∆G,0) inMrat ,

where ∆G denotes the idempotent 1
|G|

∑
g∈GΓg .

2.2 Finite-dimensional motives

We refer to Kimura (2005, Definition 3.7) for the definition of finite-dimensional
motive (cf. also André 2004; Ivorra 2011; Jannsen 2007 and Murre, Nagel, and
Peters 2013, Chapters 4 and 5 for further context and applications). The following
two results provide a lot of examples:

Theorem 1 (Kimura 2005) – Let X be a smooth projective variety, and assume X is
dominated by a product of curves. Then X has finite-dimensional motive.

Proof. A smooth projective curve has finite-dimensional motive6. Since finite-
dimensionality is stable under taking products of varieties7, a product of curves has
finite-dimensional motive. Applying Kimura (2005, Proposition 6.9), this implies
that X has finite-dimensional motive. □

6Kimura, 2005, “Chow groups are finite dimensional, in some sense”, Corollary 4.4.
7Ibid., Corollary 5.11.
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Theorem 2 – Let X be a smooth projective variety, and let X̃ be the blow-up of X with
smooth center Y ⊂ X. If X and Y have finite-dimensional motive, then also X̃ has
finite-dimensional motive.

Proof. This is well-known, and follows from the blow-up formula for Chow mo-
tives8. □

An essential property of varieties with finite-dimensional motive is embodied by
the nilpotence theorem:

Theorem 3 (Kimura 2005) – Let X be a smooth projective variety of dimension n with
finite-dimensional motive. Let Γ ∈ An(X ×X) be a correspondence which is numerically
trivial. Then there is N ∈N such that

Γ ◦N = 0 ∈ An(X ×X) .

Proof. This is Kimura (2005, Proposition 7.5). □

Actually, the nilpotence property (for all powers of X) could serve as an alternative
definition of finite-dimensional motive, as shown by Jannsen9.

Conjecturally, any variety has finite-dimensional motive10; we are still far from
knowing this.

2.3 MCK decomposition

Definition 2 (Murre 1993) – Let X be a projective quotient variety of dimension n.
We say that X has a CK decomposition if there exists a decomposition of the diagonal

∆X = π0 +π1 + · · ·+π2n in An(X ×X) ,

such that the πi are mutually orthogonal idempotents and (πi)∗H ∗(X) = H i(X).
(NB: “CK decomposition” is shorthand for “Chow–Künneth decomposition”.)

Remark 2 – The existence of a CK decomposition for any smooth projective variety
is part of Murre’s conjectures11.

Definition 3 (Shen and Vial 2016a) – Let X be a projective quotient variety of
dimension n. Let ∆sm

X ∈ A
2n(X ×X ×X) be the class of the small diagonal

∆sm
X :=

{
(x,x,x) | x ∈ X

}
⊂ X ×X ×X .

8Scholl, 1994, “Classical motives”, Theorem 2.8.
9Jannsen, 2007, “On finite–dimensional motives and Murre’s conjecture”, Corollary 3.9.

10Kimura, 2005, “Chow groups are finite dimensional, in some sense”, Conjecture 7.1.
11Jannsen, 1994, “Motivic sheaves and filtrations on Chow groups”;

Murre, 1993, “On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II”.
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An MCK decomposition is a CK decomposition {πX
i } of X that is multiplicative, i.e. it

satisfies

πX
k ◦∆

sm
X ◦ (πX

i ×π
X
j ) = 0 in A2n(X ×X ×X) for all i + j , k .

(NB: “MCK decomposition” is shorthand for “multiplicative Chow–Künneth decom-
position”.)

A weak MCK decomposition is a CK decomposition {πX
i } of X that satisfies(

πX
k ◦∆

sm
X ◦ (πX

i ×π
X
j )
)
∗(a× b) = 0 for all a,b ∈ A∗(X) .

Remark 3 – The small diagonal (seen as a correspondence from X×X to X) induces
the multiplication morphism

∆sm
X : h(X)⊗ h(X) → h(X) inMrat .

Suppose X has a CK decomposition

h(X) =
2n⊕
i=0

hi(X) inMrat .

By definition, this decomposition is multiplicative if for any i, j the composition

hi(X)⊗ hj (X) → h(X)⊗ h(X)
∆sm
X−−−→ h(X) inMrat

factors through hi+j (X).
If X has a weak MCK decomposition, then setting

Ai
(j)(X) := (πX

2i−j )∗A
i(X) ,

one obtains a bigraded ring structure on the Chow ring: that is, the intersection
product sends Ai

(j)(X)⊗Ai′

(j ′)(X) to Ai+i′
(j+j ′)(X).

It is expected (but not proven !) that for any X with a weak MCK decomposition,
one has

Ai
(j)(X) ??= 0 for j < 0 , Ai

(0)(X)∩Ai
hom(X) ??= 0 ;

this is related to Murre’s conjectures B and D, that have been formulated for any CK
decomposition12.

The property of having an MCK decomposition is severely restrictive, and
is closely related to Beauville’s “(weak) splitting property”13. For more ample
discussion, and examples of varieties with an MCK decomposition, we refer to Shen
and Vial (2016a, Section 8), as well as Fu, Tian, and Vial (2016), Shen and Vial
(2016b), and Vial (2017).

12Murre, 1993, “On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II”.
13Beauville, 2007, “On the splitting of the Bloch–Beilinson filtration”.

102



2. Preliminaries

2.4 The Fourier decomposition

In what follows, we will make use of the following:

Theorem 4 (Shen and Vial 2016a) – Let Y ⊂ P
5(C) be a smooth cubic fourfold, and

let X := F(Y ) be the Fano variety of lines in Y . There exists a self-dual CK decomposition
{ΠX

i } for X, and

(ΠX
2i−j )∗A

i(X) = Ai
(j)(X) ,

where the right-hand side denotes the splitting of the Chow groups defined in terms of the
Fourier transform as in Shen and Vial (2016a, Theorem 2). Moreover, we have

Ai
(j)(X) = 0 if j < 0 or j > i or j is odd .

In case Y is very general, the Fourier decomposition A∗(∗)(X) forms a bigraded ring,

and hence {πX
i } is a weak MCK decomposition.

Proof. (A matter of notation: what we denote Ai
(j)(X) is denoted CH i(X)j in Shen

and Vial 2016a.)
The existence of a self-dual CK decomposition {ΠX

i } is Shen and Vial (2016a,
Theorem 3.3). (More in detail: Shen and Vial 2016a, Theorem 3.3 applies to any
hyperkähler fourfold F of K3[2] type with a cycle class L ∈ A2(F ×F) that represents
the Beauville–Bogomolov pairing and satisfies Shen and Vial 2016a, equalities (6),
(7), (8), (9). For the Fano variety of lines of a cubic fourfold, the cycle L of Shen and
Vial 2016a, definition (107) has these properties, as shown in Shen and Vial 2016a,
Section 3.)

According to Shen and Vial (2016a, Theorem 3.3), the given CK decomposition
agrees with the Fourier decomposition of the Chow groups. The “moreover” part is
because the {ΠX

i } are shown to satisfy Murre’s conjecture B14.
The statement for very general cubics is Shen and Vial (2016a, Theorem 3). □

Remark 4 – Unfortunately, it is not yet known that the Fourier decomposition of
Shen and Vial 2016a induces a bigraded ring structure on the Chow ring for all Fano
varieties X of smooth cubic fourfolds. For one thing, it has not yet been proven that

A2
(0)(X) ·A2

(0)(X)
??
⊂A4

(0)(X)

(cf. Shen and Vial 2016a, Section 22.3 for discussion).

14Shen and Vial, 2016a, “The Fourier transform for certain hyperKähler fourfolds”, Theorem 3.3.
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2.5 Refined CK decomposition

Theorem 5 – Let X be a smooth projective hyperkähler fourfold of K3[2]-type. Assume
that X has finite-dimensional motive. Then X has a CK decomposition {πX

i }. Moreover,
there exists a further splitting

πX
2 = πX

2,0 +πX
2,1 in A4(X ×X) ,

where πX
2,0 and πX

2,1 are orthogonal idempotents, and πX
2,1 is supported on C ×D ⊂ X ×X,

where C and D are a curve, resp. a divisor on X. The action on cohomology verifies

(πX
2,0)∗H

∗(X) = H2
tr (X) ,

where H2
tr (X) ⊂H2(X) is defined as the orthogonal complement of NS(X) with respect to

the Beauville–Bogomolov form. The action on Chow groups verifies

(πX
2,0)∗A

2(X) = (πX
2 )∗A

2(X) .

Proof. It is known15 that X verifies the Lefschetz standard conjecture B(X). Com-
bined with finite-dimensionality, this implies the existence of a CK decomposition16.

For the “moreover” statement, one observes that X verifies conditions (*) and
(**) of Vial’s17, and so Vial (2013, Theorems 1 and 2) apply. This gives the existence
of refined CK projectors πX

i,j , which act on cohomology as projectors on gradeds for

the “niveau filtration” Ñ ∗ of loc. cit. In particular, πX
2,1 acts as projector on NS(X),

and πX
2,0 acts as projector on H2

tr (X). The projector πX
2,1, being supported on C ×D,

acts trivially on A2(X) for dimension reasons; this proves the last equality. □

3 Main result

Theorem 6 – Let Y ⊂ P
5(C) be a smooth cubic fourfold defined by an equation

f (X0,X1,X2,X3) + g(X4,X5) = 0 ,

where f and g are homogeneous polynomials of degree 3. Let X = F(Y ) be the Fano
variety of lines in Y . Let σ ∈ Aut(X) be the order 3 non-symplectic automorphism
induced by

σ
P

: P5(C) → P
5(C) ,

[X0 : . . . : X5] 7→ [X0 : X1 : X2 : X3 : νX4 : νX5] ,

where ν is a primitive 3rd root of unity.

15Charles and Markman, 2013, “The standard conjectures for holomorphic symplectic varieties
deformation equivalent to Hilbert schemes of K3 surfaces”.

16Jannsen, 1994, “Motivic sheaves and filtrations on Chow groups”, Lemma 5.4.
17Vial, 2013, “Niveau and coniveau filtrations on cohomology groups and Chow groups”.
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Then

(id+σ + σ2)∗ A
i
(j)(X) = 0 for (i, j) ∈ {(2,2), (4,2), (4,4)} .

In particular,

(id+σ + σ2)∗ A
4
hom(X) = 0 .

Proof. (NB: the family of Fano varieties of Theorem 6 is described in Boissière,
Camere, and Sarti 2016, Example 6.5, from which I learned that the automorphism
σ is non-symplectic.)

The last phrase of the theorem follows from the one-but-last phrase, since18

A4
hom(X) = A4

(2)(X)⊕A4
(4)(X) .

In a first step of the proof, let us show that the automorphism σ respects (most
of) the Fourier decomposition of the Chow ring:

Proposition 2 – Let X and σ be as in Theorem 6. Let A∗(∗)(X) be the Fourier decomposi-
tion (Theorem 4). Then

σ∗A
i
(j)(X) ⊂ Ai

(j)(X) ∀(i, j) , (2,0) .

Proof. Here, the alternative description of the Fourier decomposition A∗(∗)(X) in
terms of a certain rational map φ : Xd X comes in handy.

Let Y ⊂ P
5(C) be any smooth cubic fourfold (not necessarily with automor-

phisms), and let X = F(Y ) be the Fano variety of lines in Y . There exists a degree 16
rational map1920

φ : X d X .

The map φ is defined as follows: Let x ∈ X be a point, and let ℓ ⊂ Y be the line
corresponding to x. For a general point x ∈ X, there is a unique plane H ⊂ P

5 that is
tangent to Y along ℓ. Then φ(x) ∈ X is defined as the point corresponding to ℓ′ ⊂ Y ,
where

H ∩Y = 2ℓ + ℓ′ .

As in Shen and Vial (2016a, Definition 21.8), for any λ ∈Q let us consider the
eigenspaces

V i
λ :=

{
c ∈ Ai(X) | φ∗(c) = λ · c

}
.

These eigenspaces are related to the Fourier decomposition of the Chow ring:
indeed, Shen–Vial show21 that there is a decomposition

Ai
(j)(X) = V i

λ1
⊕ · · · ⊕V i

λr
∀(i, j) , (2,0) . (1)
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Let us now return to X and σ as in Theorem 6, and let us prove Proposition 2.
In view of the decomposition (1), we see that to prove Proposition 2, it suffices to
prove the following:

Claim 1 – Let X and σ be as in theorem 6. Then

φ∗σ ∗ = σ ∗φ∗ : Ai(X) → Ai(X) .

In order to prove the claim, we first establish a little lemma:

Lemma 1 – Set-up as above. There is an equality of rational maps

φ ◦ σ = σ ◦φ : X d X .

Proof. Let x ∈ X be a point outside of the indeterminacy locus of φ, and let H ⊂ P
5

be the plane tangent to Y along the line ℓ corresponding to x. By definition, φ(x) ∈ X
is the point corresponding to ℓ′ ⊂ Y , where

H ∩Y = 2ℓ + ℓ′ .

Let σ
P

: P5→ P
5 denote the linear transformation inducing the automorphism σ .

The plane σ
P

(H) is tangent to Y along σ
P

(ℓ), and

σ
P

(H)∩Y = 2σ
P

(ℓ) + σ
P

(ℓ′) .

It follows that φ(σ (x)) = σ (φ(x)). □

Lemma 1 furnishes a commutative diagram

X
φ
d X

↓ σ ↓ σ

X
φ
d X .

This can be “resolved” by a commutative diagram

X
p′

← Z ′
q′

→ X
↓ σ ↓ σZ ↓ σ

X
p
← Z

q
→ X ,

where horizontal arrows are birational morphisms such that φ◦p′ = q′ and φ◦p = q
(and so φ∗ = p∗q

∗ = (p′)∗(q′)∗ : Ai(X)→ Ai(X).).
Let us now prove Claim 1. We have equalities

φ∗σ ∗ = (p′)∗(q
′)∗σ ∗

= (p′)∗(σZ )∗q∗

= σ ∗p∗q
∗

= σ ∗φ∗ : Ai(X) → Ai(X) .

Here, in the third equality we have used the following:
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Sublemma 1 – Set-up as above. There is equality

(p′)∗(σZ )∗ = σ ∗p∗ : A
i(Z) → Ai(X) .

Proof. Since σZ is a birational morphism, there is equality

σ∗(p
′)∗(σZ )∗ = p∗(σZ )∗(σZ )∗ = p∗ : A

i(Z) → Ai(X) .

Composing on the left with σ ∗, this implies

σ ∗σ∗(p
′)∗(σZ )∗ = σ ∗p∗ : A

i(Z) → Ai(X) . □

But σ ∗ = (σ2)∗ and so the left-hand side simplifies to (p′)∗(σZ )∗, proving the sub-
lemma. □

For later use, we recast Proposition 2 as follows:

Corollary 1 – Set-up as above. Let {ΠX
j } be a CK decomposition as in Theorem 4. Then

σ∗(Π
X
j )∗ = (ΠX

j )∗σ∗(Π
X
j )∗ : A

i(X) → Ai(X) ∀(i, j) , (2,4) .

Proof. This is just a translation of Proposition 2, using the fact that ΠX
j acts on Ai(X)

as projector on Ai
(2i−j)(X). □

The second step of the proof is to ascertain that X has finite-dimensional motive:

Proposition 3 – Let Y ⊂ P
5(C) and X = F(Y ) be as in Theorem 6. Then Y and X have

finite-dimensional motive.

Proof. To establish finite-dimensionality of Y is an easy exercice in using what
is known as the “Shioda inductive structure”22. Indeed, applying Katsura and
S. Shioda (1979, Remark 1.10), we find there exists a dominant rational map

φ : Y1 ×Y2 d Y ,

where Y1 ⊂ P
3(C) is the smooth cubic threefold defined as

f (X0,X1,X2,X3) +V 3 = 0 ,

and Y2 ⊂ P
2(C) is the smooth cubic curve defined as

g(X0,X1) +W 3 = 0 .

The indeterminacy locus of φ is resolved by blowing up the locus S × P ⊂ Y1 × Y2,
where S ⊂ Y1 is a cubic surface, and P ⊂ Y2 is a set of points. Let us call this blow-
up Ŷ . Using Theorems 1 and 2 and an induction on the dimension, we find that Ŷ
has finite-dimensional motive. Since Ŷ dominates Y , it follows from Kimura (2005,
Proposition 6.9) that the cubic Y has finite-dimensional motive.

Finally, Laterveer (2017, Theorem 4) states that for any cubic Y with finite-
dimensional motive, the Fano variety X = F(Y ) also has finite-dimensional motive.□
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The third step of the proof is to show the desired statement for A2
(2)(X), i.e. we now

prove that

(id+σ + σ2)∗ A
2
(2)(X) = 0 . (2)

In order to do so, let us abbreviate

∆G :=
1
3

(
∆X + Γσ + Γσ◦σ

)
∈ A4(X ×X) .

Since the action of σ is non-symplectic23, we have that

(∆G)∗ = 0: H2(X,OX ) → H2(X,OX ) .

Using the Lefschetz (1,1)-theorem, we see that

∆G ◦ΠX
2 = γ in H8(X ×X) ,

where γ is some cycle supported on D ×D ⊂ X ×X, for some divisor D ⊂ X. In other
words, the correspondence

Γ := ∆G ◦ΠX
2 −γ ∈ A

4(X ×X)

is homologically trivial. But then (since X has finite-dimensional motive) there
exists N ∈N such that

Γ ◦N = 0 in A4(X ×X) .

Upon developing this expression, one finds an equality

Γ ◦N = (∆G ◦ΠX
2 )◦N +γ ′ = 0 in A4(X ×X) ,

where γ ′ is supported on D ×D ⊂ X ×X. In particular, γ ′ acts trivially on A2
(2)(X) ⊂

A2
AJ (X), and so(

(∆G ◦ΠX
2 )◦N

)
∗ = 0: A2

(2)(X) → A2(X) .

Corollary 1 (combined with the fact that ∆G and ΠX
2 are idempotents) implies that(

(∆G ◦ΠX
2 )◦N

)
∗ = (∆G ◦ΠX

2 )∗ : A
i(X) → Ai(X) ,

and so we find that(
∆G ◦ΠX

2

)
∗ = (∆G)∗ = 0: A2

(2)(X) → A2(X) .

This proves equality (2).
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The argument for A4
(2)(X) is similar: the correspondence Γ being homologically

trivial, its transpose

tΓ = ΠX
6 ◦∆G −γ ′′ ∈ A4(X ×X)

is also homologically trivial (where γ ′′ is supported on D ×D). Using nilpotence
and Lemma 1, this implies (just as above) that

(ΠX
6 ◦∆G)∗ =

(
∆G ◦ΠX

6

)
∗ = (∆G)∗ = 0: A4

(2)(X) → A4(X) .

In the final step of the proof, it remains to consider the action on A4
(4)(X). Ideally,

one would like to use Vial’s projector πX
4,0 of Vial (2013) (mentioned in the proof of

Theorem 5). Unfortunately, this approach runs into problems (cf. Remark 5). We
therefore proceed somewhat differently: to establish the statement for A4

(4)(X), we
use the following proposition:

Proposition 4 – Notation as above. One has

∆G ◦ΠX
4 −R = 0 in H8(X ×X) ,

where R ∈ A4(X ×X) is a correspondence with the property that

R∗ = 0: A4(X) → A4(X) .

Obviously, this proposition clinches the proof: using the nilpotence theorem, one
sees that there exists N ∈N such that(

∆G ◦ΠX
4 +R

)
◦N = 0 in A4(X ×X) .

Developing, and applying the result to A4(X), one finds that(
(∆G ◦ΠX

4 )◦N
)
∗ = 0: A4(X) → A4(X) .

Corollary 1 (combined with the fact that ∆G and ΠX
4 are idempotents) implies that(

(∆G ◦ΠX
4 )◦N

)
∗ = (∆G ◦ΠX

4 )∗ : A
i(X) → Ai(X) ∀i , 2 .

Therefore, we conclude that(
∆G ◦ΠX

4

)
∗ = (∆G)∗ = 0: A4

(4)(X) → A4(X) .

It only remains to prove Proposition 4. Here, we use the fact that X is of K3[2]-
type and so there is an isomorphism24

H4(X) = Sym2H2(X) .
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Using the truth of the standard conjectures for X25, and the semi-simplicity of
motives for numerical equivalence26, this means that the map

∆sm : h2(X)⊗ h2(X) → h4(X) inMhom

admits a right-inverse, where ∆sm ∈ A8((X ×X)×X) is as before the “small diagonal”
(cf. definition 3). Let Ψ ∈ A4(X × (X ×X)) denote this right-inverse.

Using the splitting πX
2 = πX

2,0 + πX
2,1 in A4(X ×X) of Theorem 5, one obtains a

splitting modulo homological equivalence of ΠX
4 in 4 components

ΠX
4 = ΠX

4 ◦∆
sm ◦ (πX

2 ×π
X
2 ) ◦Ψ ◦ΠX

4

= ΠX
4 ◦∆

sm ◦
(
(πX

2,0 +πX
2,1)× (πX

2,0 +πX
2,1)

)
◦Ψ ◦ΠX

4

=
∑

k,ℓ∈{0,1}
ΠX

4 ◦∆
sm ◦ (πX

2,k ×π
X
2,ℓ) ◦Ψ ◦Π

X
4

=:
∑

k,ℓ∈{0,1}
ΠX

4,k,ℓ in H8(X ×X) .

We note that (by construction) ΠX
4,0,0 acts as a projector on

Sym2H2
tr (X) ⊂ Sym2H2(X) = H4(X) .

Also, we recall that πX
2,1 is supported on C ×D ⊂ X ×X (Theorem 5), which implies

that ΠX
4,k,ℓ ∈ A

4(X ×X) is supported on X ×D for (k,ℓ) , (0,0).
It will be convenient to consider the transpose decomposition

ΠX
4 = tΠX

4 = tΠX
4,0,0 + tΠX

4,1,0 + tΠX
4,0,1 + tΠX

4,1,1 in H8(X ×X)

(where we have used that ΠX
4 is transpose-invariant, cf. Theorem 4).

This decomposition induces in particular a decomposition

∆G ◦ΠX
4 = ∆G ◦ tΠX

4,0,0 +∆G ◦ tΠX
4,1,0 + t∆G ◦ΠX

4,0,1 + t∆G ◦ΠX
4,1,1 in H8(X×X) .

The last 3 summands in this decomposition act trivially on A4(X) (indeed, the
correspondence tΠX

4,k,ℓ is supported on D ×X ⊂ X ×X for (k,ℓ) , (0,0), and hence
acts trivially on A4(X)). These last 3 summands will form the correspondence called
R in Proposition 4. To prove Proposition 4, it remains to establish that

∆G ◦ tΠX
4,0,0 = 0 in H8(X ×X) . (3)

Taking transpose, one sees this is equivalent to proving that

ΠX
4,0,0 ◦∆G = 0 in H8(X ×X) ,
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which in turn (since applying σ ∗ and projecting to Sym2H2
tr (X) commute) is equiva-

lent to proving that

∆G ◦ΠX
4,0,0 = 0 in H8(X ×X) .

Invoking Manin’s identity principle, it suffices to prove that

σ ∗(c1 ∪ c2) + (σ2)∗(c1 ∪ c2) + c1 ∪ c2 = 0 in H4(X) ∀c1, c2 ∈H2
tr (X) .

Thanks to the equality

c1 ∪ c2 =
1
2

(
(c1 + c2)∪ (c1 + c2)− c1 ∪ c1 − c2 ∪ c2

)
,

it suffices to prove that

σ ∗(c∪ c) + (σ2)∗(c∪ c) + c∪ c = 0 in H4(X) ∀c ∈H2
tr (X) . (4)

We now make the following claim:

Claim 2 – Set-up as above. Let c ∈H2
tr (X). Then

(σ ∗)(c)∪ (σ2)∗(c) = c∪ c in H4(X).

It is readily checked that Claim 2 implies equality (4) (and hence equality (3)
and hence also Proposition 4): We have

σ ∗(c∪ c) + (σ2)∗(c∪ c) + c∪ c =
(
σ ∗(c) + (σ2)∗(c)

)∪2
− 2σ ∗(c)∪ (σ2)∗(c) + c∪ c

= 2c∪ c − 2σ ∗(c)∪ (σ2)∗(c)

= 0 in H4(X) ,

proving equality (4). (Here, the second equality is because σ ∗(c) + (σ2)∗(c) = −c, and
the third equality is the claim.)

Let us now prove Claim 2. The point is that the subgroup

H :=
{
c ∈H2(X) | (σ ∗)(c)∪ (σ2)∗(c) = c∪ c in H4(X)

}
⊂ H2(X) ,

together with its complexification H
C

, defines a sub-Hodge structure of H2(X). Let
ω ∈ H2,0(X) be a generator. Then ω is in H

C
(since σ ∗ω = ν ·ω, with ν3 = 1, ν

primitive). But H2
tr(X) ⊂H2(X) is the smallest sub-Hodge structure containing ω,

and so we must have

H2
tr (X) ⊂H ,

which proves Claim 2. □
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Remark 5 – To prove the statement for A4
(4)(X) in the final step of the above proof,

it would be natural to try and use Vial’s projector πX
4,0 of Vial (2013, Theorems 1

and 2) (mentioned in the proof of Theorem 5). However, this approach is difficult to
put into practice: the problem is that it seems impossible to prove that

∆G ◦πX
4,0 = 0 in H8(X ×X) ,

short of knowing that (1) H4(X) ∩ F1 = N1H4(X), and (2) N1H4(X) = Ñ1H4(X),
where N ∗ is the usual coniveau filtration and Ñ ∗ is Vial’s niveau filtration. Both (1)
and (2) seem difficult.

4 Some corollaries

Corollary 2 – Let X and σ be as in Theorem 6. Let Z := X/<σ> be the quotient. Then

A4(Z) �Q .

Proof. We have a natural isomorphism A4(Z) � A4(X)σ . But Theorem 6 (combined
with the fact that σ ∗A4

(j)(X) ⊂ A4
(j)(X) for all j, cf. proposition 2) implies that

A4(X)σ ⊂ A4
(0)(X) .

Since there exists a σ -invariant ample divisor L ∈ A1(X), and L4 generates the
1-dimensional Q-vector space A4

(0)(X), there is equality

A4(X)σ = A4
(0)(X) . □

Corollary 3 – Let X and σ be as in Theorem 6. Then the invariant part of cohomology

H4(X)σ ⊂H4(X)

is supported on a divisor.

18Shen and Vial, 2016a, “The Fourier transform for certain hyperKähler fourfolds”, Theorem 4.
19Voisin, 2004, “Intrinsic pseudo–volume forms and K–correspondences”.
20Shen and Vial, 2016a, “The Fourier transform for certain hyperKähler fourfolds”, Section 18.
21Ibid., Theorem 21.9 and Proposition 21.10.
22Katsura and S. Shioda, 1979, “On Fermat varieties”;

T. Shioda, 1979, “The Hodge conjecture for Fermat varieties”.
23Boissière, Camere, and Sarti, 2016, “Classification of automorphisms on a deformation family of

hyperkähler fourfolds by p–elementary lattices”, Example 6.5 and Lemma 6.2.
24Beauville and Donagi, 1985, “La variété des droites d’une hypersurface cubique de dimension 4”,

Proposition 3.
25Charles and Markman, 2013, “The standard conjectures for holomorphic symplectic varieties

deformation equivalent to Hilbert schemes of K3 surfaces”, Theorem 1.1.
26Jannsen, 1992, “Motives, numerical equivalence, and semi-simplicity”, Theorem 1.
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Proof. This follows from Theorem 6 by applying the Bloch–Srinivas “decomposition
of the diagonal” argument27. For the benefit of readers not familiar with Bloch and
Srinivas (1983), we briefly resume this argument.

Let k ⊂C be a subfield such that X and ∆G are defined over k, and such that k is
finitely generated over Q. Let k(X) denote the function field of Xk . Since there is an
embedding k(X) ⊂C, there is a natural homomorphism

A∗(Xk(X)) → A∗(X
C

)

that is injective28. In particular, there is an injective homomorphism

A4(Xk(X))
σ ↪→ A4(X

C
)σ .

As the right-hand side has dimension 1 (Theorem 6), it follows that also

dimA4(Xk(X))
σ = 1 .

We now consider the image of ∆G ∈ A4(Xk ×Xk)σ×σ under the restriction homomor-
phism

A4(Xk ×Xk)σ×σ → lim−−→A4(Xk ×U )σ � A4(Xk(X))
σ = Q

(here the limit is over Zariski opens U ⊂ Xk , and the isomorphism follows from
Bloch 1980, Appendix to Lecture 1). This gives a decomposition

∆G = x ×X +γ in A4(Xk ×Xk) ,

where γ is supported on X ×D for some divisor D ⊂ X. Considering this decompo-
sition for X = X

C
, and looking at the action of correspondences on cohomology, we

find that

H4(X)σ = (∆G)∗H
4(X) = γ∗H

4(X) ,

and thus H4(X)σ is supported on the divisor D. □
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