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Abstract
We discuss comparison principles, the asymptotic behaviour, and the occur-

rence of blow up phenomena for nonlinear parabolic problems involving the
p-Laplacian operator of the form

∂tu = ∆pu + f (t,x,u) in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 in Ω,

where Ω is a bounded domain of RN with Lipschitz boundary, and where

∆pu := div
(
|∇u|p−2∇u

)
is the p-Laplacian operator for p > 1. As for the dynamical time lateral boundary
condition σ∂tu+ |∇u|p−2∂νu = 0 the coefficient σ is assumed to be a nonnegative
constant. In particular, the asymptotic behaviour in the large for the parameter
dependent nonlinearity f (·, ·,u) = λ|u|q−2u will be investigated by means of the
evolution of associated norms.

Keywords: Nonlinear degenerate parabolic problems, p-Laplacian, dynamical
boundary conditions, blow up, comparison principles.
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1 Introduction

This paper deals with the behaviour of solutions of nonlinear parabolic problems of
the form

(Pσ,f )

∂tu = ∆pu + f (t,x,u) in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,

1LMPA Joseph Liouville ULCO, Universités Lille Nord de France, 50, rue F. Buisson, CS 80699,
F-62228 Calais
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where Ω is a bounded domain of RN , N ≥ 1, with Lipschitz boundary, and where

∆pu := div
(
|∇u|p−2∇u

)
is the well known p-Laplacian operator defined in W 1,p(Ω) in a weak setting in the
usual way for any real number p > 1. Another distinctive feature in the present
context is the dynamical boundary condition imposed on the time lateral boundary
relating the outer normal derivative to the time derivative. For the sake of simplicity,
the dynamical coefficient σ is assumed to be a nonnegative constant.

Of particular interest will be the Cauchy problem

(Pσ,fλ,q ,u0
)


∂tu = ∆pu +λ|u|q−2u in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 in Ω,

where λ is a real parameter and q > 1.
The classical heat equation, i.e. p = 2, and reaction-diffusion equations under

dynamical boundary conditions have been intensively studied on Lq-spaces or
spaces of continuous functions, see e.g. Bandle, Below, and Reichel (2006), Below
and De Coster (2000), Below and Pincet Mailly (2003), Hintermann (1989), Pincet
(2001), and Vázquez and Vitillaro (2009) and the references therein. We refer also
to Escher (1993), where Escher proves that the heat equation generates a strongly
continuous analytic semigroup on Lq(Ω)×W 1−1/q,q(∂Ω) for q > N for more general
quasilinear equations.

Some special cases of (Pσ,f ) for p > 1 have been considered recently by Gal2,
Gal and Warma3 and Showalter4, where the generation of the corresponding C0-
semigroups is shown. In fact, generation of C0-semigroups in L2(Ω) of the p-
Laplacian heat equation under Dirichlet, Neumann and Robin boundary conditions
was already studied by J.L. Lions5. Boundedness and higher Hölder-regularity
have been extensively treated by DiBenedetto6 in the homogeneous case, i.e. f ≡ 0.
Recently, Cipriani and Grillo7 have shown generation of C0-semigroups for the
p-Laplacian under Dirichlet boundary conditions on Lq-spaces and have obtained
some ultracontractivity properties of the associated semigroups.

Beyond the approaches to local existence and higher regularity of weak solutions,
the existence or exclusion of global solutions, as well as the occurrence of blow up

2Gal, 2012, “On a class of degenerate parabolic equations with dynamic boundary conditions”.
3Gal and Warma, 2010, “Well posedness and the global attractor of some quasi-linear parabolic

equations with nonlinear dynamic boundary conditions”.
4Showalter, 1997, Monotone operators in Banach space and nonlinear partial differential equations.
5Lions, 1969, Quelques méthodes de résolution des problèmes aux limites non linéaires.
6DiBenedetto, 1993, Degenerate parabolic equations.
7Cipriani and Grillo, 2001, “Uniform bounds for solutions to quasilinear parabolic equations”.
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1. Introduction

phenomena for problem (Pσ,f ) are of particular interest. In the works8 the authors
dealt with the linear principal part, i.e. p = 2, and with different nonlinearities f .
A main aim in the present paper is to generalize some of the results from these
references to the p-Laplacian heat equation under dynamical boundary conditions.
We also prove some ultra conductivity bounds of the solutions for problem (Pσ,0)
that seem not to be available in the literature yet. Moreover, the absence of general
boundedness result for weak solutions of (Pσ,f ) is one of the major difficulties in
establishing the qualitative properties that we present in this work. Unfortunately,
the existing results as e.g. the aforementioned ones9 do not apply to the equations
considered here. More recent existence results by Li and You, see K. Li and You
(2013) and the references therein, can be applied to some of the problems (Pσ,f ).
However, as it stands, the aim of the present paper is not to deal with existence
results, but to detail qualitative properties of solutions.

The present paper is organized as follows. In Section 2 the notion of weak
solutions and of upper and lower weak solutions is made precise. Moreover, weak
comparison principles are shown under a generalized one-sided Lipschitz condition
imposed to f given in Definition 4 and involving a Lipschitz constant that can
depend on the solutions. In particular, it will be shown in Theorem 2 that a weak
lower solution u1 of (Pσ,f ,u1

0
) and a weak upper solution u2 of (Pσ,f ,u2

0
) whose initial

data satisfy u1
0 ≤ u

2
0 a.e. in Ω and on ∂Ω, maintain the same inequality for t > 0. We

also compare solutions under different boundary conditions, namely homogeneous
Dirichlet boundary conditions vs. dynamical ones, see e.g. Theorem 4.

Sections 3 and 4 are devoted to the evolution of associated norms and en-
ergy functionals. For time independent nonlinearities f under a specific Lip-
schitz condition (11), the energy of weak solutions u of (Pσ,f ,u0

), EF(u) = 1
p ∥∇u∥

p
p −∫

Ω

∫ u
0 f (·, z)dzdx will be shown to fulfil an identity of the form

− d
dt
EF(u(t, ·)) = ∥∂tu(t, ·)∥22 + σ∥∂tu|∂Ω(t, ·)∥22,∂Ω. (12)

For the special case f = fλ,q = λ|u|q−2u with λ < 0, the evolution of the L2-norms
in Ω and on ∂Ω, can be completely controlled leading to limt→∞ ∥u(t, ·)∥X 2 = 0. In
particular, for p < 2, the solutions vanish to 0 in finite time, see Theorem 2.

In Section 5 the behaviour in the large of weak solutions u of (Pσ,fλ,q ,u0
) with

λ ≤ 0 is investigated. For λ < 0 and p > 2, it turns out that an analogue to Berryman

8Bandle, Below, and Reichel, 2006, “Parabolic problems with dynamical boundary conditions:
eigenvalue expansions and blow up”;

Below and Pincet Mailly, 2003, “Blow up for reaction diffusion equations under dynamical boundary
conditions”;

Pincet, 2001, “EDP sous des conditions de bords dynamiques”.
9Escher, 1993, “Quasilinear parabolic systems with dynamical boundary conditions”;

Gal, 2012, “On a class of degenerate parabolic equations with dynamic boundary conditions”;
Gal and Warma, 2010, “Well posedness and the global attractor of some quasi-linear parabolic

equations with nonlinear dynamic boundary conditions”.
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and Holland’s asymptotic result for the porous media equation10 holds, i.e. there is
a sequence of time steps (tn)n∈N tending to∞ such that

lim
n→∞

∥(1 + (p − 2)tn)
2
p−2u(tn, ·)−w∥X 2 = 0, (Theorem 6)

where w ∈ W 1,p(Ω) is the solution of the elliptic equation −∆pw − λ|w|p−2w = w
under the Robin–Steklov boundary condition stemming from the dynamical one.
Another distinctive asymptotic result in this section deals with the solutions for the
homogeneous problem (Pσ,0,u0

) and says that

lim
t→∞

u(t, ·) =

∫
Ω
u0 dx+ σ

∮
∂Ω
u0 dρ

|Ω|+ σ |∂Ω|
(Theorem 7)

inW 1,p(Ω). Note that this asymptotic formula is exactly the same as for the classical
Laplacian11, i.e. p = 2, established via Fourier expansion of the initial data, that,
however, does not apply for p , 2. For initial data belonging to W 1,p(Ω) this holds
also with respect to the L∞-norm, see Theorem 8, and will be very useful in order
to guarantee strict positivity a.e. in finite time, e.g. when showing the exclusion
of global existence, see Theorem 10 without using a strong parabolic minimum
principle. It turns out that λ = 0 plays the same role under dynamical boundary
conditions as the first eigenvalue λ1 does for homogeneous Dirichlet boundary
conditions as it has been shown in Y. Li and Xie (2003). For short, for λ ≤ 0 the weak
solutions are bounded for each t > 0, while for λ > 0 blow up occurs for q = p > 2
and for q >max {2,p}. Closing this section, we deduce global existence close to an
equilibrium fulfilling f ′(B) < 0 in the general autonomous case ∂tu = ∆pu + f (u),
see Theorem 9.

Section 6 deals with the occurrence of blow up phenomena with respect to the
L∞-norm. First, we generalize the result on the non existence of global solutions
from Bandle, Below, and Reichel (2006) to the p-Laplacian with nonlinearities
f (t,x,u) =m(t,x)g(u) under the same assumptions as in Bandle, Below, and Reichel
(2006), see Theorem 10. As for Problem (Pσ,fλ,q ,u0

) with λ > 0 and q > 2, it remains
to determine the behaviour in the large. In fact, for p = q and for initial energy
1
p

∫
Ω

(|∇u0|p − |u0|p)dx < 0 it will be shown that solutions blow up in finite time,
see Theorem 11. For q > max {2,p} we first adopt a technique developed in Ball
(1977) and Below and Pincet Mailly (2003) in order to establish an upper bound
for the blow up time under homogeneous Dirichlet boundary conditions for initial
data 0 , u0 ∈ W

1,p
0 (Ω) ∩ L∞(Ω) with energy 1

p

∫
Ω
|∇u0|p dx − λ

q

∫
Ω
|u0|q dx ≤ 0, see

Theorem 12. Then the comparison techniques from Section 2 apply in order to

10Berryman and Holland, 1980, “Stability of the separable solution for fast diffusion”.
11Bandle, Below, and Reichel, 2006, “Parabolic problems with dynamical boundary conditions:

eigenvalue expansions and blow up”.
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establish the occurrence of blow up under dynamical boundary conditions too, see
Theorems 13 and Corollary 5 for nonlinearities satisfying f (·, ·, z) ≥ λ|z|q−2z. In the
latter one it will be shown that for initial data u0 ∈ W

1,p
0 (Ω)∩ L∞(Ω; [0,∞)) with

nonpositive energy the L2-norm of the weak solution of (Pσ,f ,u0
) blows up at the

latest at time T with

Tmax(u) ≤ T ≤
q

λ(q − 2)(q − p)
|Ω|

q−2
2

(∫
Ω

|u0|2 dx
) 2−q

2

, (Corollary 5)

where Tmax(u) is the maximal existence time with respect to the L∞-norm. Finally,
we present an optimal upper bound for the blow up time under the Neumann
boundary condition based on the evolution of the L1-norm.

We close this introduction with some notations. We shall denote by dρ the re-
striction to ∂Ω of the (N −1)-dimensional Hausdorff measure, which coincides with
the usual Lebesgue hyper-surface measure, since ∂Ω is supposed to be Lipschitz.
Moreover, we shall denote by ν = ν(x) its outer normal vector field at x ∈ ∂Ω defined
ρ-a.e. in ∂Ω.

The Lebesgue norm of Lq(Ω) will be denoted by ∥ · ∥q, and the Lebesgue norm of
Lq(∂Ω,ρ) by ∥ · ∥q,∂Ω, for q ∈ [1,∞]. The scalar product of L2(Ω) will be denoted by
⟨·, ·⟩ and the scalar product of L2(∂Ω,ρ) will be denoted by ⟨·, ·⟩0:

⟨u,v⟩ =
∫
Ω

uv dx, ⟨u,v⟩0 =
∮
∂Ω
uv dρ.

The conjugate of any r ∈ [1,∞] will be denoted by r ′. The critical Sobolev
exponent for the embedding W 1,p(Ω) ↪→ Lq(Ω) will be denoted by p∗ := pN

N−p if
1 < p < N , and by p∗ =∞ otherwise. It is worth noting that

W 1,p(Ω) ↪→ L2(Ω)⇐⇒ p ≥ p0 :=
2N
N + 2

.

The trace u|∂Ω of any function u ∈W 1,p(Ω) is well defined since ∂Ω is regular enough.
We recall that, if γ denotes the trace operator, then γ(W 1,p(Ω)) =W 1−1/p,p(∂Ω,ρ).

Moreover, the trace operator W 1,p(Ω) → Lq(∂Ω,ρ) is continuous if and only if
1 ≤ q ≤ p∗ if p , N and for 1 ≤ q <∞ if p = N . Recall that p∗ := p(N−1)

N−p if 1 < p < N ,
and that p∗ =∞ if p ≥N . Note that for q = 2, the trace operator is well-defined and
continuous under the following condition:

W 1,p(Ω)→ L2(∂Ω,ρ) ⇐⇒ p ≥ p1 :=
2N
N + 1

.

Finally, for a reflexive Banach space (V ,∥ · ∥V ) and r ∈ [1,∞), the classical Bochner
space Lr ((0,T );V ) will be endowed with the norm

∥u∥Lr ((0,T );V ) :=
(∫ T

0
∥u∥rV dt

)1/r

.
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2 Weak solutions, comparison principles
and uniqueness results

Throughout this paper, unless otherwise stated, we shall assume that p > p1 and
p , 2. The case 1 < p < p1 is a bit more involved, as one has to work with functions
belonging to W 1,p(Ω)∩L2(Ω) having L2(∂Ω,ρ)-trace instead of W 1,p(Ω). The case
p = p1 should also be treated separately, as the Sobolev embedding W 1,p(Ω) →
Lp∗(∂Ω,ρ) is not compact bearing in mind that here p∗ = 2.

Set X q = Lq(Ω)×Lq(∂Ω,ρ), for 1 ≤ q ≤∞, and

U = (u,ϕ) ∈ X q, ∥U∥X q :=
(
∥u∥qq + σ∥ϕ∥qq,∂Ω

)1/q
,

and for q = 2 and U = (u,ϕ),V = (v,ψ) ∈ X 2

⟨U,V ⟩X 2 := ⟨u,v⟩+ σ⟨ϕ,ψ⟩0.

Identifying each element u ∈ W 1,p(Ω) with the vector U = (u,u|∂Ω ), the space
W 1,p(Ω) can be regarded as a subspace of X s for any 1 ≤ s < p∗. Moreover, X s
and Ls(Ω,dτ) can be identified in a natural way for s ≥ 1, where the measure
dτ = dx|Ω ⊕ dρ|∂Ω is defined for any measurable set A ⊂Ω by τ(A) = |A|+ ρ(A∩∂Ω).
We will agree that A is measurable if A∩Ω is Lebesgue measurable and A∩∂Ω is
measurable with respect to the (N − 1)-Hausdorff measure ρ.

For any T > 0, let us denote ΩT = (0,T )×Ω. Let us recall the definition of a local
weak solution of the evolution problem (Pσ,f ). Let f : ΩT ×R→R be a Carathéodory
function.

Definition 1 – A function u : ΩT →R is called a weak solution of problem (Pσ,f ) if

(i) u ∈ Lp((0,T );W 1,p(Ω))∩C([0,T ];X 2),

(ii) ∂tu ∈ L2((0,T );L2(Ω)); ∂tu |∂Ω ∈ L
2((0,T );L2(∂Ω,ρ)),

(iii) f̃ := f (·, ·,u(·, ·)) ∈ L2((0,T );L2(Ω)),

(iv) for any ϕ ∈W 1,p(Ω) and for almost all t ∈ [0,T ] it holds

⟨∂tu,ϕ⟩+ ⟨|∇u|p−2∇u,∇ϕ⟩ − ⟨f (t,x,u),ϕ⟩+ σ⟨∂tu|∂Ω ,ϕ⟩0 = 0.

Clearly, in (ii) the notation ∂tu (resp. ∂tu |∂Ω ) stands for the weak temporal derivative
of u(resp. of u |∂Ω ).

By writing u ∈ X q we mean that u : Ω→ R is such that u|Ω ∈ L
q(Ω) and also

u|∂Ω ∈ L
q(∂Ω,ρ).
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2. Weak solutions, comparison principles and uniqueness results

Definition 2 – For given u0 ∈ X 2 a function u : ΩT → R is called a weak solution
of the Cauchy problem (Pσ,f ,u0

)

(Pσ,f ,u0
)


∂tu = ∆pu + f (t,x,u) in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 in Ω,

if u is a weak solution of (Pσ,f ) in the sense of Definition 1 and if, in addition,

u(0, ·) = u0 τ-a.e. in Ω.

Let us also recall the definition of upper and lower solution for our evolution
problem. Writing (u,ϕ) ≤ (v,ψ) for functions belonging to X s means that u ≤ v a.e.
in Ω and that ϕ ≤ ψ ρ-a.e. on ∂Ω.

Definition 3 – For given u0 ∈ X 2, a function u : ΩT → R satisfying (i)-(iii) from
Definition 1 is called a weak lower solution of (Pσ,f ,u0

) if for all ϕ ∈ W 1,p(Ω) with
ϕ ≥ 0, and for almost all t ∈ [0,T ]⟨∂tu,ϕ⟩+ ⟨|∇u|p−2∇u,∇ϕ⟩ − ⟨f (t,x,u),ϕ⟩+ σ⟨∂tu,ϕ⟩0 ≤ 0,

u(0, ·) ≤ u0 τ-a.e. in Ω,

in its interval of existence. Similarly, a weak upper solution is defined by reversing
the last two inequalities.

In order to compare two different solutions of the evolution equations, it is necessary
to require some Lipschitz condition on f with respect to the variable u and with
respect to the pair (u1,u2) ∈ L2(ΩT )2. This is the motivation of the following
definition.

Definition 4 – A function f is said to satisfy the following one-sided Lipschitz
condition for the pair (u1,u2) ∈ L2(ΩT )2 if

∃l ∈ L1 ((0,T ); [0,∞)) such that for a.a. (t,x) ∈ΩT ,

[f (t,x,u1(t,x))− f (t,x,u2(t,x))− l(t)(u1(t,x)−u2(t,x))]
(
u1(t,x)−u2(t,x)

)+
≤ 0.

(1)

Observe that no order between u1 and u2 is assumed here and that (1) is in fact
a condition for the set of (t,x) ∈ΩT for which u1(t,x) ≥ u2(t,x). At the end of this
section, we shall give some special cases where (1) is satisfied, c.f. Remark 3. Let us
prove the following comparison result.

Theorem 1 – Let u1
0 , u

2
0 ∈ X 2 be given, let u1 be a weak lower solution of (Pσ,f ,u1

0
) and

let u2 be a weak upper solution of (Pσ,f ,u2
0
). Assume that the pair (u1,u2) satisfies (1) and

let us denote v := u1 −u2, v0 := u1
0 −u

2
0 . Then
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(i) ∥v+(t, ·)∥2X 2 ≤ e2L(t)∥v+
0 ∥

2
X 2 for all t ∈ [0,T ], with L(t) :=

∫ t
0 l(s)ds.

(ii) Moreover, there exists a constant C = C(p,N,T ,∥l∥1) > 0 such that

∥∇v+∥pLp(ΩT ) ≤

C∥v
+
0 ∥

2
X 2 if p ≥ 2,

C∥v+
0 ∥
p
X 2

(
∥∇u1∥Lp(ΩT ) + ∥∇u2∥Lp(ΩT )

)p(1− p2 )
if p < 2.

Proof. (i) Fixing t ∈ [0,T ] and taking ϕ = v+(t, ·) as a test function in the differential
inequalities satisfied by u1 and u2, subtracting them and integrating over Ω yield

⟨∂tv,v+⟩+ σ⟨∂tv,v+⟩0 ≤
−⟨|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇(u1 −u2)+⟩+ ⟨f (t,x,u1)− f (t,x,u2),v+⟩.

(2)

Here Conditions (i)-(iv) from Definition 1 assure that all the above integrals are
finite. By convexity of the function z 7→ |z|p in R

N the first term of the r.h.s. is
negative, while the second term is bounded from above by l(t)⟨v(t, ·),v+(t, ·)⟩ using
(1). Moreover, we deduce for almost all t that

⟨∂tv,v+⟩ =
1
2
d
dt
∥v+∥22,

⟨∂tv,v+⟩0 =
1
2
d
dt
∥v+∥22,∂Ω.

These identities and the existence of the derivatives on the r.h.s. are justified, see
e.g. Showalter (1997, Chapter III, Proposition 1.2). It follows that

d
dt
∥v+∥22 + σ

d
dt
∥v+∥22,∂Ω ≤ 2l(t)∥v+∥22,

and therefore, by the Bellman–Gronwall Inequality12

∥v+(t, ·)∥2X 2 ≤ e2L(t)∥v+
0 ∥

2
X 2

for all t ∈ [0,T ].
(ii) We apply the following inequality from Simon (1978): ∃C = C(p,N ) >

0∀z1, z2 ∈RN :⟨|z1|p−2z1 − |z2|p−2z2, z1 − z2⟩RN ≥ C|z1 − z2|
p
R
N , if p ≥ 2,

⟨|z1|p−2z1 − |z2|p−2z2, z1 − z2⟩RN ≥ C(|z1|RN + |z2|RN )p−2|z1 − z2|2
R
N , if 1 < p ≤ 2

In order to bound from above the first term of the r.h.s. of (2) by C∥∇v+(t, ·)∥pp if
p ≥ 2 or by C

∫
Ω

(|∇u1(t,x)|+|∇u2(t,x)|)p−2|∇v+(t,x)|2 dx if p < 2. Therefore we deduce
for almost all t that

1
2
d
dt
∥v+(t, ·)∥2X 2 +Ca(t) ≤ l(t)∥v+(t, ·)∥2X 2 ,
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2. Weak solutions, comparison principles and uniqueness results

where we abbreviate

a(t) =

∥∇v+(t, ·)∥pp, if p ≥ 2,∫
Ω

(|∇u1(t, ·)|+ |∇u2(t, ·)|)p−2|∇v+(t, ·)|2 dx, if 1 < p ≤ 2.

Integrating over [0,T ] and using the estimate (i) we obtain

1
2

(∥v+(T , ·)∥2X 2 − ∥v+(0, ·)∥2X 2 ) +C
∫ T

0
a(t)dt ≤ ∥l∥1e2L(T )∥v+

0 ∥
2
X 2

i.e. ∫ T

0
a(t)dt ≤ 1

C

(
∥l∥1e2L(T ) +

1
2

)
∥v+

0 ∥
2
X 2 .

If p ≥ 2, then the statement (ii) is clear. Consider p < 2. First, Hölder’s inequality
leads to

∥∇v+∥pp ≤ a(t)
p
2

(∫
Ω

(|∇u1|+ |∇u2|)p dx
)1− p2

≤ 2(p−1)(1− p2 )a(t)p/2
(
∥∇u1∥

p
p + ∥∇u2∥

p
p

)1− p2 ,

since 1 < p < 2. Then, we use Hölder’s inequality with respect to the dependence on
t and obtain

∥∇v+∥pLp(ΩT ) ≤ 2(p−1)(1− p2 )
(∫ T

0
a(t)dt

)p/2 (
∥∇u1∥

p
Lp(ΩT ) + ∥∇u2∥

p
Lp(ΩT )

)1− p2

≤ 2(p−1)(1− p2 )
(∫ T

0
a(t)dt

)p/2 (
∥∇u1∥Lp(ΩT ) + ∥∇u2∥Lp(ΩT )

)p(1− p2 )
. □

Immediate consequences of the previous theorem are given by the following corol-
laries.

Corollary 1 – Let f1, f2 : ΩT → R be two measurable functions such that f1 ≤ f2 a.a.
(t,x) ∈ΩT . Let u1

0 , u
2
0 ∈ X 2 be given, let u1 be a weak lower solution of (Pσ,f1,u1

0
) and

let u2 be a weak upper solution of (Pσ,f2,u2
0
). Then the conclusions (i) and (ii) hold with

l ≡ 0.

12Bellman, 1953, Stability theory of differential equations.
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Corollary 2 – Let u0 ∈ X 2 be given. Let u1 and u2 be two weak solutions of (Pσ,f ,u0
).

Assume that the pair (u1,u2) satisfies the Lipschitz condition:

∃l ∈ L1(0,T ), l ≥ 0, such that for a.a. (t,x) ∈ΩT ,

[f (t,x,u1(t,x))− f (t,x,u2(t,x))− l(t)(u1(t,x)−u2(t,x))]
(
u1(t,x)−u2(t,x)

)
≤ 0.

(3)

Then for all t ∈ [0,T ], u1(t, ·) = u2(t, ·) a.e. in Ω.

Note that (3) implies (1) for both (u1 − u2)+ and (u1 − u2)−, which means that
uniqueness is plain. For the Lipschitz case we can state the following

Corollary 3 – Assume that f satisfies the following Lipschitz condition (4) with respect
to the variable u:

∃l ∈ L1(0,T ), l ≥ 0, such that for a.a. (t,x) ∈ΩT , for all (u1,u2) ∈R2,

[f (t,x,u1)− f (t,x,u2)− l(t)(u1 −u2)]
(
u1 −u2

)
≤ 0. (4)

Let u0 ∈ X 2. Let
(
u0
n

)
n∈N

be a sequence in X 2 such that limn→∞ ∥u0
n −u0∥X 2 = 0. Let un

be a weak solution of (Pσ,f ,u0
n
) and u a weak solution of (Pσ,f ,u0

). Then un(t, ·)→ u(t, ·)
in X 2 and un→ u in Lp((0,T );W 1,p(Ω)).

Proof. The convergence in X 2 follows readily from (i) of Theorem 1. From (ii), if
p > 2, we have directly that there exists a constant C = C(p,N,T ,∥l∥1) > 0 such that

∥∇un −∇u∥
p
Lp(ΩT ) ≤ C∥u

0
n −u0∥2X 2 .

If p < 2 we have

∥∇un −∇u∥
p
Lp(ΩT ) ≤ C∥u

0
n −u0∥

p
X 2

(
∥∇un∥Lp(ΩT ) + ∥∇u∥Lp((ΩT )

)p(1− p2 )
.

Since ∥u0
n −u0∥X 2 → 0, the latter inequality yields that the sequence ∥∇un∥Lp(ΩT ) is

bounded and therefore ∥∇un −∇u∥
p
Lp(ΩT )→ 0. □

Another consequence of Theorem 1 is the following standard comparison principle.

Theorem 2 (Weak comparison principle with dynamical boundary condition) –
Let u1

0 ,u
2
0 ∈ X 2 satisfy u1

0 ≤ u
2
0 τ-a.e. in Ω. Let u1 be a weak lower solution of (Pσ,f ,u1

0
)

and let u2 be a weak upper solution of (Pσ,f ,u2
0
). Assume that the pair (u1,u2) satisfies

(1). Then

u1(t, ·) ≤ u2(t, ·) τ-a.e. in Ω.
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Proof. By hypothesis

∥(u1(0, ·)−u2(0, ·))+∥2 = ∥(u1
0 −u

2
0 )+∥2 = 0

and

∥(u1(0, ·)−u2(0, ·))+∥22,∂Ω = ∥(u1
0 −u

2
0 )+∥2,∂Ω = 0.

Hence, from Theorem 1 (i) it follows that (u1(t, ·) − u2(t, ·))+ = 0 a.e. in Ω, which
permits to conclude. □

In Section 5 we need to compare a weak solution of a parabolic problem with
dynamical boundary condition with a solution of the analogous parabolic problem
under homogeneous Dirichlet boundary condition for the forcing term

f (t,x,u) = fλ,q(u) := λ|u|q−2u

with λ > 0 and q >max{2,p}. Let us consider here a more general parabolic problem
for the p-Laplacian under Dirichlet boundary condition

∂tv = ∆pv + f (t,x,v) in Ω for t > 0,
v = 0 on ∂Ω for t > 0,
v(0, ·) = v0 in Ω,

(5)

for an initial value v0 ∈ L2(Ω). A function v : [0,T ]×Ω→R is called a weak solution
of (5) if v ∈ Lp((0,T );W 1,p

0 (Ω))∩C([0,T ];L2(Ω)), ∂tv ∈ L2(ΩT ), v(0, ·) = v0 a.e. in Ω

and for any test function ϕ ∈W 1,p
0 (Ω) we have

⟨∂tv,ϕ⟩+ ⟨|∇v|p−2∇v,∇ϕ⟩ − ⟨f (t,x,v),ϕ⟩ = 0

for a.a. t ∈ (0,T ). Correspondingly, we define upper and lower solutions for Problem
(5). For the sake of completeness let us state the following Weak Comparison
Principle for Problem (5), though the result is partially known, namely for the
special case f ≡ 0, c.f. DiBenedetto (1993).

Theorem 3 (Weak Comparison Principle with Dirichlet boundary condition) –
Let v1 be a lower weak solution of (5) with initial data v1

0 ∈ L2(Ω) and let v2 be an
upper weak solution of (5) with initial data v2

0 ∈ L2(Ω), satisfying v1
0 ≤ v

2
0 a.e. in Ω.

Assume further that the pair (v1,v2) satisfies the one-sided Lipschitz condition (1). Then
v1(t, ·) ≤ v2(t, ·) a.e. in Ω, for all t ∈ [0,T ].
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Proof. Fix t ∈ [0,T ]. The choice of ϕ ≡ (v1(t, ·)− v2(t, ·))+ leads to

⟨∂t(v1 − v2), (v1 − v2)+⟩ = −
∫
Ω

(|∇v1|p−2∇v1 − |∇v2|p−2∇v2) · ∇(v1 − v2)+ dx

+
∫
Ω

(f (t,x,v1)− f (t,x,v2))(v1 − v2)+ dx.

Thus, by convexity of the function z ∈RN 7→ |z|p and by Condition (1),

⟨∂t(v1 − v2), (v1 − v2)+⟩ ≤ l(t)∥(v1 − v2)+∥22 .

As in the proof of the Theorem 2 we can conclude

2
∫ s

0
l(t)∥(v1(t, ·)− v2(t, ·))+∥22 dt ≥

∫ s

0

d
dt
∥(v1(t, ·)− v2(t, ·))+∥22 dt

= ∥(v1(s, ·)− v2(s, ·))+∥22 − ∥(v1(0, ·)− v2(0, ·))+∥22.

By the Bellman–Gronwall Inequality and that (v1(0, ·) − v2(0, ·))+ = (v1
0 − v

2
0 )+ = 0

a.e. in Ω, it follows that ∥(v1(s, ·)− v2(s, ·))+∥22 ≤ e2L(s)∥(v1(0, ·)− v2(0, ·))+∥22 = 0 for all
s ∈ [0,T ], which permits to conclude. □

As a consequence of the previous theorem we have

Proposition 1 (Weak Maximum Principle with Dirichlet boundary condition) –
Let v be a weak upper solution of (5) with initial data v0 ∈ L2(Ω) satisfying v0 ≥ 0 a.e.
in Ω. Assume further that f (·, ·,0) ≥ 0 and that the pair (0,v) satisfies the one-sided
Lipschitz condition (1). Then v satisfies v(t, ·) ≥ 0 a.e. in Ω, for all t ∈ [0,T ].

Finally, we compare solutions of parabolic problems under dynamical boundary con-
ditions and nonnegative solutions of parabolic problems under Dirichlet boundary
conditions. For that purpose, the solution v of (5) is required to fulfil v(t, ·) ∈ C1(Ω),
since we shall need some estimates of the gradient of the solution v(t, ·) on ∂Ω. See
also the Remark 1 below about the regularity of weak solutions of Problem (5).

Theorem 4 – Assume that ∂Ω is of class C2. Let u be a weak lower solution of Problem
(Pσ,f ,u0

) with initial data u0 ∈ X 2. Let v be the weak solution of Problem (5) with initial
data v0 ∈ L2(Ω), satisfying v0 ≥ 0 a.e. in Ω. Assume that

(i) f (·, ·,0) ≥ 0,

(ii) the pair (0,v) satisfies the one-sided Lipschitz condition (1),

(iii) the pair (v,u) satisfies the one-sided Lipschitz condition (1),

(iv) for all t ∈ (0,T ), v(t, ·) ∈ C1(Ω).
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If, in addition,

u0 ≥ v0 ≥ 0 a.e. in Ω, u0 ≥ 0 ρ-a.e. in ∂Ω, (6)

then u(t, ·) ≥ v(t, ·) a.e. in Ω, for all t ∈ [0,T ].

Proof. By Theorem 3 and hypotheses (i) and (ii), the solution v is nonnegative in
[0,T ]×Ω. Since v(t, ·) ∈W 1,p

0 (Ω)∩C(Ω), and since ∂Ω is of class C1, the solution v
has to vanish on ∂Ω for all t ∈ (0,T ). Thus, ∂νv(t, ·) ≤ 0 on ∂Ω for all t ∈ (0,T ), and
multiplying the differential equation of Problem (5) by any nonnegative function
ϕ ∈W 1,p(Ω) and integrating over Ω yield

⟨∂tv,ϕ⟩ = −⟨|∇v|p−2∇v,∇ϕ⟩+ ⟨|∇v|p−2∂νv,ϕ⟩0 + ⟨f (t,x,v),ϕ⟩
≤ −⟨|∇v|p−2∇v,∇ϕ⟩+ ⟨f (t,x,v),ϕ⟩ . (7)

Although the test function ϕ used in the weak formulation of Problem (5) must
belong to W 1,p

0 (Ω), the above integration by parts is justified e.g. by Cuesta and
Takáč (2000, Lemma A.1). Hence, ∂tv(t, ·) ≡ 0 on ∂Ω, (7), and the weak formulation
of Problem (Pσ,f ,u0

) with the test function w(t, ·) = (v(t, ·)−u(t, ·))+ yield that∫ s

ϵ
(⟨∂tw,w⟩+ σ⟨∂tw,w⟩0) dt ≤

∫ s

ϵ
⟨|∇v|p−2∇v − |∇u|p−2∇u,∇w⟩dt

+
∫ s

ϵ
⟨f (t,x,v)− f (t,x,u),w⟩dt.

for any 0 < ϵ < s < T . By convexity of the function z 7→ |z|p in R
N , the first integral

on the r.h.s. is seen to be positive, which implies in turn that

1
2

∫ s

ϵ

d
dt
∥w(t, ·)∥2X 2 dt ≤

∫ s

ϵ
⟨f (t,x,v)− f (t,x,u),w⟩dt

and

∥w(s, ·)∥2X 2 − ∥w(ϵ, ·)∥2X 2 ≤ 2
∫ s

ϵ

(∫
Ω

|f (t,x,v)− f (t,x,u)|wdx
)
dt

≤ 2
∫ s

ϵ
l(t)∥w(t, ·)∥22 dt. (8)

As w(ϵ, ·) = u−(ϵ, ·) ρ-a.e. in ∂Ω,

lim
ϵ→0
∥w(ϵ, ·)∥2X 2 = ∥w(0, ·)∥22 + σ∥u−0 ∥

2
2,∂Ω = 0

by (6). Thus (8) reduces to

∥w(s, ·)∥22 ≤ 2
∫ s

0
l(t)∥w(t, ·)∥22 dt.
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As the function l(t) is integrable and nonnegative, the Bellman–Gronwall Inequality
yields

∀s ∈ [0,T ] : ∥w(s, ·)∥22 = 0.

Thus, we can conclude that v(s, ·) ≤ u(s, ·) a.e. in Ω for all s ∈ [0,T ]. □

Remark 1 – Standard regularity results (c.f. Lieberman 1993, Theorem 01) imply
that a weak solution v of Problem (5) satisfies v ∈ C1((0,T ] ×Ω) provided that
v ∈ L∞((ϵ,T )×Ω) for all ϵ ∈ (0,T ) and that ∂Ω is of class C1,α for some 0 < α < 1.

Remark 2 – In order to assure the global boundedness in the large of any weak
solution v of Problem (5), that is, v ∈ L∞((ϵ,T )×Ω), one should impose to f a growth
condition with respect to the u-variable, say e.g.

|f (t,x,v)| ≤ A|v|q−1 for a.a. (t,x) ∈ (ϵ,T )×Ω,∀v ∈R,

with q < pN+2
N (c.f. DiBenedetto 1993, Theorem 3.2 Chapter V).

Remark 3 – In the special case f (t,x,u) = fλ,q(u), with q > 1

(i) Conditions (1) and (3) are trivially satisfied for any pair of functions (u1,u2) if
λ ≤ 0.

(ii) If λ > 0 and q > 2, the one-sided Lipschitz condition (1) is satisfied for any
pair and (u1,u2) ∈ L1((0,T );L∞(Ω))2 because∣∣∣fλ,q(u1(t, ·))− fλ,q(u2(t, ·))

∣∣∣ ≤ l(t)|u1(t, ·)−u2(t, ·)|

with l(t) := (q − 1)λmax{∥u1(t, ·)∥∞,∥u2(t, ·)∥∞}q−2.

(iii) Clearly, for q < 2 Condition (1) does not hold, and Theorem 2 does not apply.
In general, the solutions of (Pσ,fλ,q ,u0

) are even not unique. Take e.g. σ = 0 and
q = 3

2 , then the continuum of nonnegative solutions of ż = λz
1
2 under z(0) = 0

furnishes also non unique solutions of (P0,f
λ, 32

,0).

3 An energy identity

In this section we show an energy estimate for solutions of Problem (Pσ,f ,u0
) for

time independent nonlinearities:

∀(t,x,u) ∈ΩT ×R : f (t,x,u) = f (x,u). (9)

For any weak solution u of Problem (Pσ,f ,u0
) we introduce the energy EF by

EF(u(t, ·)) =
1
p
∥∇u(t, ·)∥pp −

∫
Ω

F(x,u(t,x))dx (10)
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with

F(x,s) :=
∫ s

0
f (x,z)dz.

The following energy identity for weak solutions of (Pσ,f ,u0
) will be shown as in the

case f ≡ 0, where the classical theory of maximal monotone operators13 has been
applied.

Theorem 5 – Let u : ΩT → R be a weak solution of Problem (Pσ,f ,u0
) with u0 ∈ X 2.

Assume that f satisfies (9) and that there exists a constant l ≥ 0 such that

[f (x,u(t,x))− f (x,u(s,x))− l(u(t,x)−u(s,x))] (u(t,x)−u(s,x)) ≤ 0 (11)

for a.a. t, s ∈ (0,T ] and for a.a. x ∈ Ω. Then for a.a. t ∈ (0,T ], the time derivative of
EF(u(t, ·)) exists and satisfies the identity

− d
dt
EF(u(t, ·)) = ∥∂tu(t, ·)∥22 + σ∥∂tu|∂Ω(t, ·)∥22,∂Ω. (12)

For simplicity we shall abbreviate

⟨∂tu(t, ·),ϕ⟩X 2 := ⟨∂tu(t, ·),ϕ⟩+ σ⟨∂tu|∂Ω(t, ·),ϕ⟩0,

for any ϕ ∈W 1,p(Ω), and

∥∂tu∥2X 2 := ∥∂tu(t, ·)∥22 + σ∥∂tu|∂Ω(t, ·)∥22,∂Ω.

Note that we do not state here that ∂tu|∂Ω(t, ·) is the trace of ∂tu(t, ·), since this
function is assumed only to belong to L2(Ω)!

Proof. Recall the following basic convexity inequality, valid for any p > 1 and any
x,y ∈RN :

p|x|p−2x · (y − x) ≤ |y|p − |x|p. (13)

Fix t ∈ (0,T ) and h > 0 small and choose ϕ = u(t+h, ·)−u(t, ·) in the weak formulation
of (Pσ,f ,u0

) at time t. Then, using (13)

⟨∂tu(t, ·),u(t + h, ·)−u(t, ·)⟩X 2

= −⟨|∇u(t, ·)|p−2∇u(t, ·),∇u(t + h, ·)−∇u(t, ·)⟩+ ⟨f (·,u(t, ·)),u(t + h, ·)−u(t, ·)⟩

≥ −1
p

(∥∇u(t + h, ·)∥pp − ∥∇u(t, ·)∥pp) + ⟨f (·,u(t, ·)),u(t + h, ·)−u(t, ·)⟩. (14)

13Brézis, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert, Theorem 3.2.

73



Qualitative results for parabolic p-Laplacian equations J. von Below et al.

Now take the test function ϕ again in the weak formulation of (Pσ,f ,u0
) at t + h and

get

⟨∂tu(t + h, ·),u(t + h, ·)−u(t, ·)⟩X 2

= −⟨|∇u(t + h, ·)|p−2∇u(t + h, ·),∇u(t + h, ·)−∇u(t, ·)⟩
+ ⟨f (·,u(t + h, ·)),u(t + h, ·)−u(t, ·)⟩

≤ 1
p

(∥∇u(t, ·)∥pp − ∥∇u(t + h, ·)∥pp) + ⟨f (·,u(t + h, ·)),u(t + h, ·)−u(t, ·)⟩. (15)

For s > 0, let us denote for the sake of simplicity

g(s) = ⟨∂tu(t, ·),u(t + s, ·)−u(t, ·)⟩X 2 ,

e(s) =
1
p

(∥∇u(t + s, ·)∥pp − ∥∇u(t, ·)∥pp),

k(s) = ⟨f (·,u(t, ·)),u(t + s, ·)−u(t, ·)⟩,
d(s) = ⟨∂tu(t + s, ·)−∂tu(t, ·),u(t + s, ·)−u(t, ·)⟩X 2

− ⟨f (·,u(t + s, ·))− f (·,u(t, ·)),u(t + s, ·)−u(t, ·)⟩.

Combining (14) and (15) yields

−g(h) + k(h) ≤ e(h) ≤ −g(h) + k(h)− d(h). (16)

The assertion of the proposition will follow from dividing (16) by h and passing to
the limit as h→ 0. Let us study the existence of those limits. Inequality (16) implies
in particular that d(h) ≤ 0, which in turn in combination with (11) leads to

1
2
d
dt

(
∥u(t + h, ·)−u(t, ·)∥2X 2

)
− l∥u(t + h, ·)−u(t, ·)∥22 ≤ d(h) ≤ 0,

and, after integrating over any interval [s1, s2] ⊂ (0,T ],

e−2ls2∥u(s2 + h, ·)−u(s2, ·)∥2X 2 − e−2ls1∥u(s1 + h, ·)−u(s1, ·)∥2X 2 ≤ 0.

Dividing by h2 and letting h→ 0 we have then

e−2ls2∥∂tu(s2, ·)∥2X 2 − e−2ls1∥∂tu(s1, ·)∥2X 2 ≤ 0.

Thus, we can conclude that there exists a constant M > 0 depending on u and t such
that

βn := ∥∂tu(t + hn, ·)∥2X 2 ≤M,

where (hn)n∈N is any sequence of real numbers tending to 0. Since (βn)n∈N is
bounded, there exists some (ξ1,ξ2) ∈ X 2 such that, up to a subsequence,
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(∂tu(t+hn, ·),∂tu|∂Ω(t+hn, ·))⇀ (ξ1,ξ2) in X 2.Hence, by (16) and by u ∈ C([0,T ];X 2),
g(s) and the r.h.s. of (16) are bounded, as well as (u(t + hn, ·))n∈N in W 1,p(Ω). There-
fore there exists some z ∈W 1,p(Ω) such that, up to a subsequence, u(t + hn, ·)⇀ z in
W 1,p(Ω), strongly in X 2 and simply a.e. in Ω. By continuity of t 7→ u(t, ·) in X 2 we
must have z = u(t, ·).

Finally, we conclude that (ξ1,ξ2) = (∂tu(t, ·),∂tu|∂Ω(t, ·)) by the following argu-
ment. In the weak formulation of (Pσ,f ,u0

) at time t + hn we find, passing to the
limit

⟨ξ1,ϕ⟩+ σ⟨ξ2,ϕ⟩0 = −⟨|∇u(t, ·)|p−2∇u(t, ·),∇ϕ⟩+ ⟨f (·,u(t, ·)),ϕ⟩
= ⟨∂tu(t, ·),ϕ⟩X 2

for any ϕ ∈W 1,p(Ω). The special choice of ϕ ∈W 1,p
0 (Ω) implies that ξ1 = ∂tu(t, ·)

and consequently ξ2 = ∂tu|∂Ω(t, ·). Hence,

lim
h→0

g(h)
h

= ∥∂tu(t, ·)∥2X 2 and lim
h→0

k(h)
h

= ⟨f (·,u(t, ·)),∂tu(t, ·)⟩.

This completes the proof. □

Remark 4 – One can readily see that the same arguments apply for the evolution
equation under Dirichlet boundary conditions, i.e. for Problem (5) with f satisfying
(11), obtaining similarly for a.a. t ∈ (0,T ]

− d
dt
EF(u(t, ·)) = ∥∂tu(t, ·)∥22. (17)

Now, let us consider the particular case f = fλ,p, i.e.
∂tu = ∆pu +λ|u|p−2u in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 in Ω.

(18)

Throughout we shall denote

Eλ(u) =
1
p

∫
Ω

(|∇u|p −λ|u|p)dx.

We can use the energy identity to prove the following result on the Rayleigh quotient

Eλ[u](t) :=

∫
Ω

(|∇u(t, ·)|p −λ|u(t, ·)|p)dx

∥u∥pX 2

. (19)

Here, we followed Savaré and Vespri (1994) where a similar result was proved under
Dirichlet boundary conditions.
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Lemma 1 – Let λ ∈ R and u . 0 be a solution of (Pσ,fλ,p ,u0
) with u0 ∈ X 2. In the case

λ > 0 assume further that u ∈ L∞(ΩT ). Then

(i) the function Eλ[u](t) defined in (19) is non increasing with respect to t ∈ (0,T ],

(ii) and the mapping t→ ∥u(t, ·)∥2−pX 2 is concave if p > 2 and convex if p < 2.

Remark 5 – Since Eλ[u](t) is only defined a.e. in (0,T ), one should understand the
result of (i) as follows: “there is an integrable function g with g = 0 a.e. such that
Eλ[u] + g is non increasing with respect to t”.

Proof. (i) We apply the energy identity 12 to f . Note that Condition (11) is always
satisfied for any function u if λ ≤ 0, whereas for λ > 0 it holds for u ∈ L∞(ΩT ).

On the one hand, multiplying the differential equation of (Pσ,fλ,p ,u0
) by u and

integrating over Ω yield

pEλ(u(t, ·)) = −
∫
Ω

u∂tudx − σ
∮
∂Ω
u∂tu|∂Ω dρ = −1

2
d
dt
∥u(t, ·)∥2X 2 (20)

and using Hölder’s inequality in (20),

p2Eλ(u(t, ·))2 ≤ ∥∂tu(t, ·)∥2X 2∥u(t, ·)∥2X 2 . (21)

On the other hand, by Theorem 5

d
dt
Eλ(u(t, ·)) = −∥∂tu(t, ·)∥2X 2 ≤ 0 (22)

a.e. in (0,T ). Combining (21) et (22) we have

d
dt
Eλ(u(t, ·)) ≤ −p2Eλ(u(t, ·))2

∥u(t, ·)∥2X 2

=
p

2
Eλ(u(t, ·))

d
dt ∥u(t, ·)∥2X 2

∥u(t, ·)∥2X 2

,

Hence, if Eλ(u) > 0,

d
dt

(
ln(Eλ(u(t, ·))− ln∥u(t, ·)∥pX 2

)
≤ 0

and t 7→ lnEλ(u(t, ·)) − ln∥u(t, ·)∥pX 2 is a non increasing function of t > 0 and the
conclusion follows. If Eλ(u) < 0, t 7→ ln |Eλ(u(t, ·))| − ln∥u(t, ·)∥pX 2 is a non decreasing
function, which leads to the same conclusion. If Eλ(u(t, ·)) = 0, then, by (22),
Eλ(u(s, ·)) ≤ 0 for s > t and therefore, Eλ[u](s) ≤ 0 = Eλ[u](t).

(ii) Note that by (20), Eλ[u] = −1
2
dH
dt H

− p2 , where we have set H(t) = ∥u(t, ·)∥2X 2 for
simplicity. It readily follows that

dEλ[u]
dt

≤ 0⇔
(
dH
dt

)2

≤ 2
p
H
d2H

dt2
⇔ sign

(
1−

p

2

)
· d

2H1− p2

dt2
≥ 0,

which shows (ii). □
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4 Estimates of the X 2−norm

In this section we present some estimates of the X 2−norm of the solutions of
Problem (Pσ,fλ,q ,u0

) for various cases of q and λ.

Proposition 2 – Assume λ < 0 and let u be a weak solution of Problem (Pσ,fλ,p ,u0
) with

initial data u0 ∈ X 2.

(i) Assume p > 2. Then there exists a positive constant K depending only on p,Ω,λ,
and σ such that for all t ≥ 0,

∥u(t, ·)∥X 2 ≤
(
∥u0∥

2−p
X 2 +K(p − 2)t

) 1
2−p . (23)

In particular, limt→∞ ∥u(t, ·)∥X 2 = 0.

(ii) In the case p < 2, the estimate (23) holds for 0 ≤ t ≤ T ∗ :=
∥u0∥

2−p
X2

K(2−p) and ∥u(t, ·)∥X 2 = 0
for all t ≥ T ∗.

Proof. Consider any t ≥ 0 in the maximal interval of existence containing 0. Multi-
plying the differential equation by u yields

1
2p

d
dt
∥u(t, ·)∥2X 2 = −Eλ(u(t, ·)).

By Sobolev’s classical embedding theorem there exists a constant K > 0 depending
only on p,Ω,λ, and σ such that for any u ∈W 1,p(Ω),

Eλ(u) ≥ K∥u∥pX 2 .

Combining these two results leads to

d
dt
∥u(t, ·)∥2X 2 ≤ −K∥u(t, ·)∥pX 2

and therefore,

1
2− p

(∥u(t, ·)∥2−pX 2 − ∥u0∥
2−p
X 2 ) ≤ −Kt. (24)

For p > 2 it follows that the solution exists for all t ≥ 0 and

∥u(t, ·)∥2−pX 2 ≥ −K(2− p)t + ∥u0∥
2−p
X 2

and

∥u(t, ·)∥2X 2 ≤
(
K(p − 2)t + ∥u0∥

2−p
X 2

) 2
2−p . (25)

In the case p < 2, the inequalities (24) and (25) hold only for 0 ≤ t ≤ T ∗. But, as the
r.h.s. in (25) vanishes at T ∗, we conclude that ∥u(t, ·)∥X 2 = 0 for t = T ∗, and, thereby,
∥u(t, ·)∥X 2 = 0 for all t ≥ T ∗. □
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Remark 6 – For Problem (5) with fλ,q ≡ 0, DiBenedetto14 proved that positive
solutions extinct in finite time, i.e. there exists T∗ > 0 such that u(t, ·) = 0 for t ≥ T∗
for 1 < p < 2. Here we proved that the same result holds for the solutions of Problem
(Pσ,fλ,p ,u0

) if λ < 0 and p1 < p < 2.

Next, we give a point-wise one-sided estimate of the solution u(t, ·) in the case of a
bounded initial data with definite sign:

Proposition 3 – Suppose λ < 0 and u0 ∈ X∞∩W 1,p(Ω). Then the unique solution u of
(Pσ,fλ,p ,u0

) is globally bounded. Moreover, if p > 2 and sup
Ω
u0 < 0, then

u(t,x) ≤ η(t) := −
(
(−sup

Ω

u0)2−p + (2− p)λt
) 1

2−p
.

Correspondingly, if p > 2 and inf
Ω
u0 > 0, then

u(t,x) ≥ η̃(t) =
(

inf
Ω

u
2−p
0 + (2− p)λt

) 1
2−p

for all t ≥ 0 and a.e. in Ω.

Proof. The boundedness follows straightforwardly from Remark 3 and Theorem 2
applied to u and the constant ±∥u0∥∞X . Now suppose that u0 ≤ 0 τ− a.e. in Ω. As
λ < 0 and 2 < p, η(t) < 0 for t ≥ 0, and η clearly satisfies the ODE

η′ = λ|η|p−2η.

Moreover, observe that u0(x) ≤ η(0) τ-a.e. in Ω, and ση′(t) ≥ 0 on ∂Ω, since σ ≥ 0.
Then, again, Theorem 2 permits to conclude that u(t, ·) ≤ η(t) a.e. in Ω. Thus, we
are led to

−∥u0∥∞X = inf
Ω

u0 ≤ u(t,x) ≤ η(t)

for all t ≥ 0 and a.e. in Ω. The case u0 ≥ 0 is shown similarly. □

For 1 < q < 2 and λ ≥ 0 the X 2-norm of a solution remains bounded on bounded
time intervals. This is part of the following result bearing in mind that for the
present case, the solutions of (Pσ,fλ,q ,u0

) are not unique in general, see Remark 3 (iii).

Proposition 4 – Suppose 1 < q ≤ 2 and λ ≥ 0. Let u0 ∈ X 2 be given. Then for any weak
solution of Problem (Pσ,fλ,q ,u0

), the following estimate holds for all t ∈ [0,T ]:

∥u(t, ·)∥X 2 ≤


∥u0∥X 2 eλt for q = 2,(
∥u0∥

2−q
X 2 + (2− q)λ|Ω|

2−q
2 t

) 1
2−q

for 1 < q < 2.

14DiBenedetto, 1993, Degenerate parabolic equations, Chapter VII, Proposition 2.1.
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Proof. Set H(t) = ∥u(t, ·)∥2X 2 . Multiplying the differential equation by u yields

dH
dt

= −2
∫
Ω

|∇u|p dx+ 2λ
∫
Ω

|u|q dx.

In the case q = 2, it follows readily that dH
dt ≤ 2λH . In the case 1 < q < 2, the

inequality

dH
dt
≤ 2λ|Ω|

2−q
2

(∫
Ω

u2 dt

) q
2

≤ 2λ|Ω|
2−q

2 H
q
2

leads to the desired estimate. □

5 Behaviour at infinity

In this section we investigate the behaviour and growth order estimates at infinity
of solutions of (Pσ,fλ,p ,u0

) in the case λ ≤ 0. The uniqueness of solutions of Problem
(Pσ,fλ,p ,u0

) stems from Theorem 2 and Remark 3. Our aim is to prove first some

behaviour at infinity in the spaces X 2 and W 1,p(Ω), c.f. Proposition 7. Secondly
we shall give a more precise rate of convergence at∞ of the X∞ norms, c.f. Propo-
sition 8. Finally, we give more precise informations about the behaviour of the
solution of Problem (18) as t→∞.

Theorem 6 – Let λ < 0 and p > 2 and let u be a solution of Problem (Pσ,fλ,p ,u0
) with

initial data u0 ∈ X 2. Then there exists a sequence (tn)n∈N in R
+ tending to ∞ and a

solution w ∈W 1,p(Ω) of the elliptic problem with Robin–Steklov boundary condition−∆pw −λ|w|p−2w = w in Ω,

|∇w|p−2∂νw = σw on ∂Ω,

such that

lim
n→∞

∥(1 + (p − 2)tn)
2
p−2u(tn, ·)−w∥X 2 = 0.

Proof. We can follow the proof of Berryman and Holland (1980). Set z(t,x) =

(1 + (p − 2)t)
1
p−2u(t,x) for t ≥ 0,x ∈Ω. A simple calculation shows that z solves

(1 + (p − 2)t)∂tz = z+∆pz+λ|z|p−2z in Ω for t > 0,
σ (1 + (p − 2)t)∂tz = −|∇z|p−2∂νz+ σz on ∂Ω for t > 0,
z(0, ·) = u0 in Ω,

(26)
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Consider the energy functional J associated to (26)

J(v) =
1
p

∫
Ω

(|∇v|p −λ|v|p)dx − 1
2

(∫
Ω

|v|2 dx+ σ
∮
∂Ω
|v|2 dρ

)
By Proposition 2, ∥z(t, ·)∥X 2 is uniformly bounded for t > 0 and thereby, using
Lemma 1, ∥z(t, ·)∥W 1,p is uniformly bounded for t ≥ t0 > 0 for any t0 as well. A
similar reasoning as in the proof of Lemma 1, shows that

d
dt
J(z(t, ·)) = −(1 + (p − 2)t)∥∂tz(t, ·)∥2X 2 < 0

for a.a. t > 0. Thus, t 7→ J(z(t, ·)) is bounded from below and decreasing, and
therefore there exists a sequence (tn)n∈N with tn→∞ such that

lim
n→∞

d
dt
J(z(tn, ·)) = 0.

Set wn = z(tn, ·). By Lemma 1 the sequence (∥wn∥W 1,p )n∈N is bounded as well, thus
there exists a subsequence still denoted by (wn)n∈N, and a function w ∈ W 1,p(Ω)
such that wn⇀w weakly in W 1,p(Ω), strongly in X 2 and simply τ− a.e. in Ω. Then
the l.h.s. of the equations in (26) tend weakly to 0 in X 2 as n→∞, while the r.h.s.
tend weakly in W 1,p(Ω) to ∆pw + λ|w|p−2w +w in Ω and to −|∇w|p−2∂νw + σw on
∂Ω. □

In the case λ = 0 an asymptotic result holds that is analogous to Proposition 2 and
Theorem 6. Note that the asymptotic constant c0 defined in (27) is exactly the same
one as for the classical Laplacian, i.e. p = 2, see Bandle, Below, and Reichel (2006).

Theorem 7 – Assume λ = 0 and let u0 ∈ X 2 be given. Let u be the weak solution of the
Cauchy problem (Pσ,0,u0

) with initial data u0. Then

lim
t→∞

u(t, ·) = c0 in W 1,p(Ω)

with

c0 :=

∫
Ω
u0 dx+ σ

∮
∂Ω
u0 dρ

|Ω|+ σ |∂Ω|
. (27)

Moreover, for p < 2 there exists t∗ ≥ 0 such that u(t,x) = c0 for all (t,x) ∈ [t∗,∞[×Ω.
Furthermore

t∗ =
∥u0 − c0∥

2−p
X 2

K (2− p)
> 0

with some constant K > 0 depending only on N,p,σ and Ω.
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5. Behaviour at infinity

Proof. Integrating the differential equation leads to

0 =
∫
Ω

∂tu dx −
∮
∂Ω
|∇u|p−2∂νu dρ =

∫
Ω

∂tu dx+ σ
∮
∂Ω
∂tudρ;

that is d
dt

(∫
Ω
udx+ σ

∮
∂Ω
udρ

)
= 0 for any t ≥ 0. Writing α := |Ω|+ σ |∂Ω|, we have∫

Ω

u dx+ σ
∮
∂Ω
udρ =

∫
Ω

u0 dx+ σ
∮
∂Ω
u0 dρ = c0α.

Again, integrating the differential equation multiplied by u leads to

E(u(t, ·)) = − 1
2p

d
dt
∥u(t, ·)∥2X 2 ,

where E(u) := E0(u) = 1
p

∫
Ω
|∇u|p dx. Set v = u − c0 and v0 = u0 − c0 and observe

that
∫
Ω
v0 dx + σ

∮
∂Ω
v0 dρ = 0 and that v is a weak solution of Problem (Pσ,0,u0

)
for the initial data v0. Since v 7→ ∥∇v∥p defines an equivalent norm to the usual
W 1,p(Ω)-norm on the subspace H0 defined by

H0 =
{
v ∈W 1,p(Ω)

∫
Ω

v dx+ σ
∮
∂Ω
v dρ = 0

}
,

we infer from Sobolev’s embedding W 1,p(Ω) ↪→X 2 that

E(v) ≥ K∥v∥pX 2

with some constant 0 < K = K(p,N,σ ,Ω). Then we proceed as in the proof of
Proposition 2 in order to get the bound (23) for the function v. Thus, ∥v∥X 2 = 0 for

all t ≥ t∗ :=
∥v0∥

2−p
X2

K(2−p) if 2 < p. If p > 2, then limt→∞ ∥v(t, ·)∥X 2 = 0. Finally, Lemma 1

implies that the Rayleigh quotient E0[v](t) :=
∫
Ω

(|∇v(t,·)|p

∥v∥p
X2

is non increasing with

respect to t for t > 0, that is

∥∇v(t, ·)∥p ≤
∥∇v(t0, ·)∥p
∥v(t0, ·)∥X 2

∥v(t, ·)∥X 2 for t > t0 > 0.

Then if p , 2, limt→∞ ∥∇v(t, ·)∥p = 0 and limt→∞ ∥v(t, ·)∥W 1,p(Ω) = 0 since v ∈ H0,
which permits to conclude that u(t, ·)→ c0 in W 1,p(Ω) as t→∞. □

Next, we want to establish the L∞-convergence for the previous limit result c0 =
limt→∞u(t, ·). The problem of the global boundedness of positive weak solutions for
the parabolic equation in (Pσ,fλ,p ,u0

) with Dirichlet or Neumann boundary conditions
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and bounded initial data has been completely treated e.g. in DiBenedetto (1993,
Chapter V). Later F. Cipriani and G. Grillo15 gave the so called “ultra-conductivity
bounds" of the solutions of the parabolic equation of (Pσ,fλ,p ,u0

) in the case 2 < p < N
under Dirichlet boundary conditions and initial data u0 ∈ Lq(Ω) with q sufficiently
large. In the case λ = 0 under dynamical boundary conditions such results seem to
be unavailable yet in the literature. Therefore we present the following one here.

Theorem 8 – Let us assume λ = 0 and u0 ∈ W 1,p(Ω). Let u be a solution of (Pσ,0,u0
)

with initial data u0 and let c0 be defined as in (27). Then the following estimates hold.

(i) If p < N and u0 ∈ X p∗ , then there exists 0 < d = d(p∗,Ω,σ ) such that, for all t > 0,

∥u(t, ·)− c0∥X∞ ≤ d t
− 1
p∗−2 ∥u0 − c0∥

p∗−p
p∗−2
X p∗ . (28)

(ii) If p ≥ N and u0 ∈ X q then for some q > max{p,2}, there exists 0 < d = d(q,Ω,σ )
such that, for all t > 0,

∥u(t, ·)− c0∥X∞ ≤ d t
− 1
q−2 ∥u0 − c0∥

q−p
q−2
X q .

In particular

lim
t→∞
∥u(t, ·)− c0∥X∞ = 0.

Proof. We shall give only the proof in the case (i), as the proof of case (ii) is the same
provided p∗ is replaced by q. Let us assume first that u0 ∈ X∞ ∩W 1,p(Ω), we shall
get rid of this assumption at the end of the proof. As in the proof of Proposition 7,
we shall use v = u − c0 and v0 = u0 − c0. Since v0 ∈ X∞, Theorem 2 gives readily the
estimates

∥v∥∞,R+×Ω ≤ ∥v0∥∞,Ω, ∥v∥∞,R+×∂Ω ≤ ∥v0∥∞,∂Ω,

in particular for all t ≥ 0, v(t, ·) ∈ X∞. We can consider for any m ≥ 2 the test
function ϕ = |v|m−2v, yielding

d
dt
∥v(t, ·)∥mXm = −m(m− 1)

(
p

p+m− 2

)p∫
Ω

∣∣∣∣∣∇|v(t, ·)|
m−2+p
p

∣∣∣∣∣p dx. (29)

Note that for any m ≥ 2, |v|
m−2
p v ∈H , where H is defined in Lemma 2 below. Hence,

by combining (32) and trace embeddings we infer the existence of a constant C
depending only on p∗,Ω, and σ such that∫

Ω

∣∣∣∣∣∇|v(t, ·)|
m−2+p
p

∣∣∣∣∣p dx ≥ C ∥∥∥∥∥|v(t, ·)|
m−2+p
p

∥∥∥∥∥pX p∗ .
15Cipriani and Grillo, 2001, “Uniform bounds for solutions to quasilinear parabolic equations”.
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Then it follows from (29) that

d
dt
∥v(t, ·)∥mXm ≤ −Cm(m− 1)

(
p

p+m− 2

)p
∥v(t, ·)∥p+m−2

X
p∗
p (p+m−2)

.

Set r0 = p∗
p , m0 = p∗ and for k ∈N∗

mk = r0(p+mk−1 − 2) = rk+1
0

p∗ − 2
r0 − 1

−
r0(p − 2)
r0 − 1

.

Now the previous inequality for m =mk reads

d
dt
∥v(t, ·)∥mkXmk ≤ −Cθk∥v(t, ·)∥

mk+1
r0
Xmk+1 , (30)

where θk := mk(mk − 1)
(

p
p+mk−2

)p
. Denote for simplicity Yk = ∥v∥mkXmk and fix t > 0

and k ∈N∗. Define, for 0 ≤ j ≤ k,

s0 = t, sj − sj+1 =
µ

θk−jr
(p−1)(k−j)
0

for some µ > 0 to be chosen later. By integrating (30) between s1 and s0 we have,
using that t 7→ Yj (t) is a positive decreasing function,

Yk(s0)−Yk(s1) ≤ −Cθk(s0 − s1)Y
1
r0
k+1(t)

and

Yk+1(t) ≤ [Cµr−(p−1)k
0 ]−r0Yk(s1)r0 .

Iterating k + 1 times leads to

Yk+1(t) ≤ αkβkY0(sk+1)r
k+1
0

with

αk := (µC)−
∑k
j=0 r

j+1
0 = (µC)

r0
r0−1 (1−rk+1

0 )
,

βk :=
k∏
j=0

r
(p−1)(k−j)rj+1

0
0 = r

(p−1)[−k r0
r0−1 +

r20
(r0−1)2

(rk0−1)]

0 .

Thus,

Y
1

mk+1
k+1 (t) ≤ α

1
mk+1
k β

1
mk+1
k Y0(sk+1)

rk+1
0
mk+1 . (31)
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Now choose µ in such a way that limk→∞ sk = 0, i.e.

µ =
t∑∞

j=0 r
j(1−p)
0 θ−1

j

.

Note that the series in the denominator converges, since θj scales with (mj )2−p and

r
(2−p)j
0 . Moreover, a simple calculation gives

lim
k→∞

rk+1
0
mk+1

=
(r0 − 1)

(p∗ − 2)r0
, lim

k→∞
α

1
mk+1
k = (µC)−

1
p∗−2 , lim

k→∞
β

1
mk+1
k = r

p−1
(p∗−2)(r0−1)
0 .

Now, the estimate (28) follows by passing to the limit in (31). Note that the
convergence of Y0(sk+1) = ∥v(sk+1, ·)∥

p∗
p∗ to Y0(0) = ∥v0∥

p∗
p∗ follows from the fact that

v ∈ C([0,T ];L2(Ω)) by Definition 1 and by the boundedness of v.
Finally assume that u0 ∈ X p∗ and take a sequence

(
u0
n

)
n∈N

in X∞ ∩W 1,p(Ω)

converging to u0 in X p∗ . In particular c0
n := c0

(
u0
n

)
→ c0. Let un be the unique

solution of (Pσ,fλ,p ,u0
) for λ = 0 and initial data u0

n . Thus, (28) holds for each un.

By Corollary 3, for any t ∈ R, un(t, ·)→ u(t, ·) in X 2 and therefore, for a.a. x ∈ Ω,
un(t,x)→ u(t,x), which permits to conclude. □

Lemma 2 – Let 0 < q < p∗ be fixed and set

H :=
{
u ∈W 1,p(Ω) ∃s ∈ (0,q] :

∫
Ω

|u|s−1udx+ σ
∮
∂Ω
|u|s−1udρ = 0

}
.

Then there exists a constant C = C(q) > 0 such that for all u ∈H ,∫
Ω

|∇u|p dx ≥ C
∫
Ω

|u|p dx. (32)

Proof. Assume by contradiction that there exists a sequence (un)n∈N in W 1,p(Ω) and
a sequence (sn)n∈N in (0,q] such that∫

Ω

|un|sn−1un dx+ σ
∮
∂Ω
|un|sn−1un dρ = 0, (33)∫

Ω
|un|p dx = 1 and

∫
Ω
|∇un|p dx ≤ 1

n . Choose a subsequence of (sn)n∈N denoted
again by (sn)n∈N, that is converging to some s0 ∈ [0,q]. As the sequence (un)n∈N is
bounded in W 1,p(Ω), there exists a subsequence of (un)n∈N, still denoted by (un)n∈N,
converging weakly to some v0 ∈W 1,p(Ω), strongly in Lp(Ω)∩X s0 and simply a.e. in
Ω. Then v0 has to be constant, say c since∫

Ω

|∇v0|p dx ≤ lim
n→∞

∫
Ω

|∇un|p dx = 0.
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But v0 = c , 0 a.e. in Ω by the strong convergence in Lp(Ω). On the other hand, by
letting n tend to∞ in (33) and by the strong convergence in X s0 , we are led to the
contradiction

0 =
∫
Ω

|c|s0−1cdx+ σ
∮
∂Ω
|c|s0−1cdρ. □

Remark 7 – The existence of a solution of (Pσ,fλ,p ,u0
) in the case λ ≤ 0 in the sense

of distributions has been proved for instance in Showalter (1997, p. 141) and in
Lions (1969) in the case λ = 0, that is readily extended to the case λ < 0. Note that
our notion of a weak solution in Definition 1 requires more regularity, since we
impose ∂tu(t, ·) ∈ L2(Ω) and ∂tu|∂Ω(t, ·) ∈ L2(∂Ω,ρ) for a.a. t ∈ [0,T ). This higher reg-
ularity is not a restriction since distributional solutions of (Pσ,fλ,p ,u0

) with initial data
u0 ∈W 1,p(Ω) bear this property, see e.g. Showalter (1997, p. 124) or Brézis (1973,
Theorem 3.1). Furthermore, following Brézis (1973, Theorem 3.2), ∂tu ∈ L∞(R+,X 2).

Closing this section we present the occurrence of global solution existence in the
presence of a hyperbolic equilibrium for a reaction term f ∈ C1(R). Thus, the
Cauchy problem in question reads

∂tu = ∆pu + f (u) in Ω for t > 0,
σ∂tu + |∇u|p−2∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 ∈ C(Ω).

(34)

We suppose that

(34) defines a local flow in X∞ ∩W 1,p(Ω) (35)

and that there are real numbers −∞ < A < B < C <∞ such that

f (A) = f (B) = f (C) = 0, f ′(B) < 0, f > 0in (A,B), f < 0in (B,C). (36)

Introduce F(s) =
∫ s
A
f (η)dη, and recall that the energy functional EF : W 1,p(Ω)→R

is defined formally by EF(u) = 1
p

∫
Ω
|∇u|p dx −

∫
Ω
F(u)dx. Now we can state the

following.

Theorem 9 – Under the conditions (35), (36), and u0 ∈ X∞ ∩W 1,p(Ω), any weak
solution of Problem (34) with initial condition fulfilling A ≤ u0 ≤ C τ-a.e. in Ω exists
globally in [0,∞) and satisfies A ≤ u ≤ C τ-a.e. in Ω for all t ≥ 0. Moreover, the
equilibrium B is stable in the class of functions from W 1,p(Ω) taking their values in
[A,C] τ-a.e. in Ω.
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Proof. If u0 takes its values in [A,B] or [B,C] τ-a.e. in Ω, then Theorem 2 for the
given σ permits to conclude that A ≤ u(t, ·) ≤ B or B ≤ u(t, ·) ≤ C respectively τ-a.e.
in Ω for all t ≥ 0. For an initial condition u0 satisfying A ≤ u0 ≤ C τ-a.e. in Ω

Theorem 2 again applies to the solutions u, u, and u with respective initial data

u0 := min {u0,B} ≤ u0 ≤max {u0,B} =: u0

and yields

∀t ≥ 0: A ≤ u(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ C τ-a.e. in Ω.

As for the last assertion, note that EF(u) defines a generalized Lyapunov function
for the equilibrium B in the class of functions from W 1,p(Ω) taking their values in
[A,C] τ-a.e. As above, the orbital derivative along solutions of (34) is nonpositive,
since

d
dt
EF(u(t, ·)) = −

∫
Ω

(∂tu(t, ·))2 dx − σ
∮
∂Ω

(∂tu|∂Ω(t, ·))2 ds ≤ 0.

Moreover, for functions belonging to the mentioned class the potential energy term
is bounded from below by −|Ω|F(B). Thus, the equilibrium B is stable, see e.g.
Amann (1990, Section 18). □

We note in passing that by Lasalle’s Principle16, the trajectories of the flow belonging
to (34) have their ω-limits in the set of functions satisfying d

dtEF(u) = 0. This yields
another global existence proof. Moreover, attractive properties of the equilibrium B
might be obtained by using similar arguments as in Below (1994, Theorem 17.31)
We omit the details here and mention only the following result under the Neumann
boundary condition.

Corollary 4 – Under the hypotheses of Theorem 9 in the case σ = 0, any weak solution
of 

∂tu = ∆pu + f (u) in Ω for t > 0,
∂νu = 0 on ∂Ω for t > 0,
u(0, ·) = u0 ∈ C(Ω)\{A,C} ,

satisfies

lim
t→∞
∥u(t, ·)−B∥X∞ = 0.

16Amann, 1990, Ordinary differential equations, Section 18.
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Proof. Recall c0 :=
∫
Ω
u0 dx+σ

∮
∂Ω
u0 dρ

|Ω|+σ |∂Ω| and get by assumption that A < c0 < C. Using
the notations of Theorem 9, by Theorems 8 and 2 there exists tc ≥ 0 such that

∀t ≥ tc :
A+ c0

2
≤ v(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ u(t, ·) ≤ v(t, ·) ≤ C + c0

2
τ-a.e. in Ω,

where v and v denote the solutions for f = 0 with initial conditions u0 and u0,
respectively. But the solutions z1 and z2 ofż1 = f (z1) for t ≥ tc,

z1(tc) = A+c0
2 ,

ż2 = f (z2) for t ≥ tc,
z2(tc) = C+c0

2 ,

tend both uniformly to B, while z1(t) ≤ u(t, ·) ≤ z2(t) τ-a.e. in Ω for all t ≥ tc by
Theorem 2. □

6 Blow up phenomena

This section is devoted to the occurrence of blow up for the solutions of Problem
(Pσ,f ,u0

). We note in passing, that among others, the recent rather general blow up
results by Vulkov17 complement nicely the ones presented here, but do not include
the latter ones. First, we consider a rather general case of nonnegative source terms
f (t,x,u) of the form (37). Then we shall study a source term with a sign change of
the form f = fλ,q, with q ≥ p and λ > 0. For the first case, assume that f is of the
form

f (t,x,u) =m(t,x)g(u), (37)

where g and m satisfy

g ∈ C1(R), g(s) > 0 for all s > 0, (38)

g(s) ≥ 0 for all s ∈ R, g ′(s) ≥ 0 for all s > 0 (39)∫ ∞
s0

dη

g(η)
<∞ for some s0 > 0, (40)

m ∈ L1
loc(R+;L1(Ω)), m ≥ 0,

and ∫ τ

0

(∫
Ω

m(t,x)dx
)
dt→∞ as τ→∞ (41)

17Vulkov, 2007, “Blow up for some quasilinear equations with dynamical boundary conditions of
parabolic type”.
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We follow a technique developed in Bandle, Below, and Reichel (2006) to exclude
the existence of global weak solution of Problem (Pσ,f ,u0

) for positive sources in
the case p = 2. Unlike in that reference, it is impossible to establish an expansion
formula for the solution of the homogeneous linear problem corresponding to
(Pσ,f ,u0

) for p , 2. However, as a consequence of the asymptotic result Theorem 8
obtained for the homogeneous Problem (Pσ,0,u0

), u is bounded from below after a
certain finite time. A main result of this section is the following.

Theorem 10 – Assume (37)–(41) and let u0 ∈ X p∗ if p < N or u0 ∈ X q for some q > p if
p ≥N . Assume that u0 fulfils∫

Ω

u0 dx+ σ
∮
∂Ω
u0 dρ > 0.

Then there is no weak solution u of (Pσ,f ,u0
) existing for all times.

Proof. Suppose that u is a global weak solution of (Pσ,f ,u0
). First, we claim that

there exists t0 > 0 such that u(t, ·) ≥ c0
2 a.e. in Ω and for t ≥ t0, with c0 defined

in (27). Let v be the unique solution of the homogeneous problem (Pσ,0,u0
) with

initial data u0. Theorem 8 implies that there exists a t0 ≥ 0 such that for all t ≥ t0,
c0
2 ≤ v(t, ·) a.e. in Ω. As v is a solution of (Pσ,0,u0

) for t ≥ t0, Corollary 1 applies to
f1 := 0 ≤ m(t,x)g(u) =: f2 by (39) and yields u(t, ·) ≥ v(t, ·) a.e. in Ω for all t ≥ t0.
Trivially, by (39), we also have g(u(t,x)) ≥ g( c02 ) a.e. in Ω for all t ≥ t0.

Fix any t > t0 and any M > c0
2 and consider the test function defined by

ϕM (x) =

 1
g(u(t,x)) if u(t,x) ≤M;

1
g(M) if u(t,x) >M.

Then ϕM is admissible in the formulation of a weak solution of (Pσ,f ,u0
), i.e. ϕM ∈

W 1,p(Ω). Thus,∫
Ω

∂tuϕM (u)dx+ σ
∮
∂Ω
∂tuϕM (u)dρ

−
∫
{x∈Ω|u(t,x)<M}

|∇u|p
g ′(u)
g(u)2 dx︸                               ︷︷                               ︸

≥0

−
∫
Ω

m(x, t)g(u)ϕM (u)dx = 0,

so that∫
Ω

∂tuϕM (u)dx+ σ
∮
∂Ω
∂tuϕM (u)dρ ≥

∫
Ω

m(x, t)g(u)ϕM (u)dx

≥
∫
Ω

m(x, t)dx.
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Letting M tend to∞ implies∫
Ω

∂tu
g(u)

dx+ σ
∮
∂Ω

∂tu
g(u)

dρ ≥
∫
Ω

m(x, t)dx.

Setting h(s) =
∫ s

s0

dη

g(η)
and integrating between t0 and τ lead to

∫
Ω

(
h(u(τ,x))− h(u(t0,x))

)
dx+ σ

(∮
∂Ω

(
h(u(τ, r))− h(u(t0, r))

)
dρ(r)

)
≥

∫ τ

t0

∫
Ω

m(x, t)dxdt.

By (41), the r.h.s. tends to infinity as τ→∞, whereas the l.h.s. remains bounded by
Hypothesis (40). This contradiction permits to conclude. □

Remark 8 – The result in Theorem 10 applies especially to reaction terms of the
form f = λ|u|q−1 with λ > 0 and q > 2 or of the form f (u) = eu .

In the sequel, Tmax(u) will denote the maximal existence time of the weak solution
of (Pσ,f ) with respect to the L∞(Ω)-norm, i.e.

Tmax(u) def= inf
{
s > 0 limsup

t↗s
∥u(t, ·)∥∞ =∞

}
. (42)

In the case m ≡ 1 a lower bound for the maximal existence time can be obtained by
comparison with the solution of the ODE under an appropriate initial condition.

Proposition 5 – Let u0 ∈ X∞. Under (38) and (40), suppose that z is the solution of the
ordinary IVP

ż = g(z), for 0 < t < t0 :=
∫ ∞
∥u0∥X∞

dη

g(η)

z(0) = ∥u0∥X∞ ,

Then any weak solution u of (Pσ,g,u0
) satisfies either Tmax(u) = 0 or Tmax(u) ≥ t0 and

u(t, ·) ≤ z(t) for all t ∈ [0,Tmax(u)), a.e. in Ω.

Proof. Since g is of class C1, g and the pair (u,z) satisfy the one-sided Lipschitz
condition (1) for 0 < t < Tmax(u), with l(t) = max{|g ′(s)| | s ∈ [0,max{z(t),∥u(t, ·)∥∞}]}
(c.f. Remark 3). Thus, by Theorem 2, for all t ∈ [0,Tmax(u)), u(t, ·) ≤ z(t) a.e. in Ω.
Note that by (40), the maximal existence time t0 of z satisfies∞ > t0 =

∫∞
∥u0∥X∞

dη
g(η) ,

since by separation of variables, t =
∫ t

0
ż(s)
g(z(s)) ds =

∫ z(t)
z(0)

dη
g(η) . □
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Let us prove now three different blow up results for nonlinearities of the form
f = fλ,q, always assuming that λ > 0. We start with the particular case q = p > 2,
i.e. with Problem (Pσ,fλ,p ,u0

). We recall the definition of Eλ(u) := 1
p

∫
Ω

(|∇u|p − |u|p)dx.
Note that according to Proposition 4, blow up in finite time cannot occur for
1 < q ≤ 2.

Theorem 11 – Suppose u0 ∈ W 1,p(Ω)∩ L∞(Ω) satisfies Eλ(u0) < 0. Let u be a weak
solution of Problem (Pσ,fλ,p ,u0

) with λ > 0,p > 2 and initial data u0. Then Tmax(u) <∞.

Proof. Assume by contradiction that Tmax(u) =∞. Then, for any s > 0 there exist
Ms,δs > 0 such that ∥u(t, ·)∥∞ < Ms for all t ∈ [s − δs, s]. Put δ0 = 0,M0 = ∥u0∥∞.
Hence, by a compactness argument, u ∈ L∞(ΩT ) for any T > 0, and the condition
(11) of Theorem 5 will be satisfied in [0,T ]. Using the results and notations of
Lemma 1, and the fact that Eλ(u0) < 0 and H(t) ≥ 0, it follows that Eλ(u(t, ·)) < 0
a.e. and thereby, that H1− p2 is decreasing. The continuity of H and the concavity
of H1− p2 will imply that H1− p2 vanishes in finite time, which leads to the desired
contradiction. □

Next, we shall prove that there is also blow up for solutions of Problem (Pσ,fλ,q ,u0
)

for q >max{2,p} and for (sufficiently regular) positive initial data u0. We shall use
in this case the following parabolic equation under Dirichlet boundary conditions∂tu = ∆pu +λ|u|q−2u in Ω for t > 0,

u(t, ·) = 0 on ∂Ω for t > 0.
(43)

The corresponding energy functional EF defined in (10) related to Problem (43) and
to (Pσ,fλ,q ,u0

) will be denoted by Eλ,q:

Eλ,q(u) =
1
p

∫
Ω

|∇u|p dx − λ
q

∫
Ω

|u|q dx.

For any solution u of Problem (43) we will define Tmax(u) identically as in (42). We
have

Theorem 12 – Suppose that λ > 0 and q >max {2,p}. Let u0 ∈W
1,p
0 (Ω)∩L∞(Ω) with

Eλ,q(u0) ≤ 0. Then any weak solution v of the Cauchy problem (43) with initial data u0
blows up in finite time with respect to ∥ · ∥2 at the latest at time T ∗ satisfying satisfying

Tmax(v) ≤ T ∗ ≤
q

λ(q − 2)(q − p)
|Ω|

q−2
2

(∫
Ω

|u0|2 dx
) 2−q

2

=: T2. (44)
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Proof. According to the results of Zhao (1993, Theorem 2.1), there exists a local
solution of (43) which is bounded. Thus, Tmax(v) > 0. Introduce

N (t) = ∥v(t, ·)∥22 =
∫
Ω

|v(t,x)|2 dx.

Multiplying the differential equation by v leads to∫
Ω

v∂tv dx = −
∫
Ω

|∇v|p dx+λ
∫
Ω

|v|q dx = −pEλ,q(v) +λ
q − p
q

∫
Ω

|v|q dx.

Since by hypothesis q > 2, the function fλ,q satisfies the Lipschitz condition (11) in
t ∈ [0,T ], with any T < Tmax(v). Hence (17) implies that Eλ,q(v(t, ·)) is decreasing in
time and, since Eλ,q(u0) ≤ 0, we have Eλ,q(v(t, ·)) ≤ 0 for all t ∈ [0,T ]. Hence

dN (t)
dt

= 2
∫
Ω

v∂tv dx ≥
2λ(q − p)

q

∫
Ω

|v|q dx

and by Hölder’s inequality

∫
Ω

|v|2 dx ≤ |Ω|
q−2
q

(∫
Ω

|v|q dx
) 2
q

,

we obtain

dN (t)
dt

≥
2λ(q − p)

q
|Ω|

2−q
2 N (t)

q
2 =: αN (t)

q
2 .

Integration between 0 and t > 0 leads to

N (t) ≥
(
N (0)

2−q
2 −

q − 2
2

αt
) 2

2−q
.

Since q > 2, N (t) becomes infinite at t = T2, with T2 as defined in the assertion. As
L∞(Ω) ⊂ L2(Ω), the inequality in (44) is plain. □

By comparing positive solutions of parabolic problem with Dirichlet boundary
conditions with those of parabolic problem with dynamical boundary boundary
conditions we have the following result:

Theorem 13 – Assume that ∂Ω is of class C2. Suppose that q > max {2,p} and λ > 0.
Let u0 ∈ W

1,p
0 (Ω)∩ L∞(Ω), u0 ≥ 0 in Ω and Eλ,q(u0) ≤ 0. Then any weak solution of

the Problem (Pσ,fλ,q ,u0
) u blows up at the latest for t = T2.
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Proof. Let us assume by contradiction that Tmax(u) > T2. Let v be the unique weak
solution of Problem (43) with initial data u0 (c.f. J). As u0 ≥ 0, v ≥ 0 as well in [0,T ]
with T < Tmax(v) ≤ T2 < Tmax(u). In particular, both solutions u and v belong to
L∞(ΩT ). Consequently, c.f. Remark 3, the hypotheses (ii) and (iii) of the comparison
result Theorem 4 are satisfied. Moreover, the regularity results already cited in
Remark 1 imply that v ∈ C1((0,T ] ×Ω). Thus, the hypothesis (iv) is satisfied too,
and thereby, u(t, ·) ≥ v(t, ·) a.e. in Ω for all t ∈ [0,T ] and T2 < Tmax(u) ≤ Tmax(v). This
contradicts (44) and permits to conclude. □

As for more general nonlinearities, we deduce the following result

Corollary 5 – Under the hypothesis of Theorem 13, let u be a weak solution of (Pσ,f ,u0
)

with f satisfying

f (·, ·, z) ≥ λ|z|q−2z for all z ≥ 0.

Then u blows up at the latest at T2:

Tmax(u) ≤ T2.

Proof. Let ũ be a solution of Problem (Pσ,fλ,q ,u0
) with initial data u0. As ũ is a weak

lower solution of Problem (Pσ,f ,u0
) and u(t, ·) is bounded for any t ∈ [0,Tmax(u)),

then the Lipschitz condition (1) applies to the pair (ũ,u) and Theorem 2 permits to
conclude. □

Finally, dealing with nonnegative solutions, we can derive another upper bound
for the blow up time under the Neumann boundary condition (σ = 0) for arbitrary
p > p1 and arbitrary q > 2. Note that the upper bound T1 will be optimal, as readily
follows by choosing constant positive initial data.

Theorem 14 – Suppose that q > 2 and λ > 0. Let u0 ∈ X 2 and u0 ≥ 0 a.e. in Ω, u0 . 0.
Then a weak solution u of (P0,fλ,q ,u0

) blows up in finite time with respect the L1-norm at
the latest at time T ∗∗ satisfying

Tmax(u) ≤ T ∗∗ ≤

(∫
Ω
|u0|dx

)2−q

(q − 2)λ|Ω|2−q
=: T1.

Proof. Assume by contradiction that Tmax(u) =∞. First, note that by the aforemen-
tioned hypothesis on λ and u0, Theorem 2 implies that u ≥ 0 for all t ≥ 0 and a.e. in
Ω. Integrating the partial differential equation and using Hölder’s inequality yield∫

Ω

∂tudx = λ
∫
Ω

uq−1 dx ≥ λ|Ω|2−q
(∫

Ω

u dx

)q−1

.
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Set N (t) = ∥u(t, ·)∥1,Ω for t > 0, we are led to

dN (t)
dt

≥ λ|Ω|2−qN (t)q−1 (45)

and, integrating between 0 and t > 0, we obtain

N (t)2−q ≤
(
N (0)2−q − (q − 2)λ|Ω|2−qt

)
,

which implies that N becomes infinite at T1. □
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