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Abstract

By a recent work of Gran-Kadjo-Vercruysse, the category of cocommutative
Hopf algebras over a field of characteristic zero is semi-abelian. In this paper, we
explore some properties of this category, in particular we show that its abelian
core is the category of commutative and cocommutative Hopf algebras.
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Introduction

It is a classical result that the category of commutative and cocommutative Hopf
algebras is an abelian category (see for example Corollary 4.162 or Theorem 4.33). It
is also known that this is no more the case for the category of cocommutative (resp.
commutative) Hopf algebras since the coproduct and the product are not equivalent
in each of these categories.

In 2002, the more general notion of semi-abelian category emerges in category
theory4. In a semi-abelian category, classical diagram lemmas (five lemma, snake
lemma . . . ) are valid. Among the examples of semi-abelian category we have the
categories of groups, ring without unit, Lie algebras (and more generally algebras
over a reduced linear operad) and sheaves or presheaves of these. Abelian categories
are also examples of semi-abelian categories. In fact, a category C is abelian precisely
when both C and Cop are semi-abelian. Since then, semi-abelian categories become
widely-known as the good generalization of the category of groups just as abelian
categories is the good generalization of the category of abelian groups.

1Institut de Recherche Mathématique Avancée, UMR 7501 de l’université de Strasbourg et du CNRS
7 rue René-Descartes 67084 Strasbourg Cedex, France

2Takeuchi, 1972, “A correspondence between Hopf ideals and sub-Hopf algebras”.
3Newman, 1975, “A correspondence between bi-ideals and sub-Hopf algebras in cocommutative

Hopf algebras”.
4Janelidze, Márki, and Tholen, 2002, “Semi-abelian categories”.
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A category is semi-abelian if it has a zero object and finite products and is
Barr-exact5 and protomodular in the sense of Bourn6. For more details on exact,
protomodular and semi-abelian categories, we refer the reader to the excellent book
by Borceux and Bourn7.

In this paper, we follow the characterization of semi-abelian categories given by
Hartl and Loiseau8. Namely, a category C is semi-abelian if and only if the following
four axioms are satisfied.

(A1) The category C is pointed, finitely complete and finitely cocomplete.

(A2) For any split epimorphism p : X→ Y with section s : Y → X and with kernel
κ : K ↪→ X, the arrow < κ,s > : K ⨿Y → X is a cokernel.

(A3) The pullback of a cokernel is a cokernel.

(A4) The image of a kernel by a cokernel is a kernel.

To be specific, we use this characterization to give a new proof of the following
theorem, established by Gran, Kadjo and Vercruysse9.

Theorem 1 – The category of cocommutative Hopf algebras over a field of characteristic
zero is semi-abelian.

Eventually, we compute the abelian core of this semi-abelian category (i.e. the
subcategory of abelian objects). We obtain the main result:

Theorem 2 – The abelian core of the category of cocommutative Hopf algebras over
a field of characteristic zero is the category of commutative and cocommutative Hopf
algebras.

Roughly speaking the abelian core of a semi-abelian category C is the biggest
abelian subcategory of C. In particular, we recover as a corollary of this theorem the
fact that the category of commutative and cocommutative Hopf algebras is abelian.

The paper is organized as follows. In Section 2, we check that the category of
cocommutative Hopf algebras satisfies Axiom (A1). The verifications of the axioms
(A2) and (A3) are heavily based on a result of Newman10 (see also Masuoka 1991)
recalled in Section 3. In Section 4, we consider Axiom(A3) which corresponds to

5Barr, 1971, “Exact categories”.
6Bourn, 1991, “Normalization equivalence, kernel equivalence and affine categories”.
7Borceux and Bourn, 2004, Mal’cev, protomodular, homological and semi-abelian categories.
8Hartl and Loiseau, 2011, “A characterization of finite cocomplete homological and of semi-abelian

categories”.
9Gran, Kadjo, and Vercruysse, 2016, “A torsion theory in the category of cocommutative Hopf

algebras”.
10Newman, 1975, “A correspondence between bi-ideals and sub-Hopf algebras in cocommutative

Hopf algebras”.
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1. Conventions and prerequisites.

Theorem 3.711. Section 5 is devoted to the proof of Axiom (A2) and, in Section 6, we
prove Axiom (A4). The last section is devoted to the proof of Theorem 2.

1 Conventions and prerequisites.

In the whole article, k is a commutative field. By module we will understand
module over k. The unadorned symbol ⊗ between two k-modules will stand for ⊗

k
.

We denote by Hcoco the category of cocommutative Hopf algebras over k and by
Hco−coco the category of commutative and cocommutative Hopf algebras over k.

Let H be a Hopf algebra. Its structure maps will be denoted as follows: multipli-
cation µH : H ⊗H →H , comultiplication ∆H : H →H ⊗H , unit ηH : k→H , counit
εH : H → k and antipode SH : H → H . Moreover, for any a,b ∈ H , we will denote
µH (a⊗b) by ab. The unit ηH (1) will be denoted by 1A or simply 1. We also adopt
the Sweedler-Heyneman notation ∆H (a) = a1⊗a2. More generally, a generic element
in a tensor product of k-modules A⊗B, will be denoted by a⊗b, the summation
sign being omitted.

We will call Hopf ideal of a Hopf algebra H any two-sided ideal I of the algebra
H which is also a two-sided coideal of the coalgebra H (i.e. ∆H (I) ⊂ I ⊗H +H ⊗ I
and εH (I) = 0) such that, moreover, one has SH (I) ⊂ I . In particular, the structure
on H induces a Hopf algebra structure on the quotient H/I .

A sub-Hopf algebra A of a Hopf algebra H will be called normal if, for any a ∈ A
and y ∈ H , one has y1aS(y2) ∈ A. In particular, when H is commutative, one has
y1aS(y2) = y1S(y2)a = ε(y)a. Thus, in that case, all sub-algebras of H are normal.

For of any morphism of Hopf algebras ϕ, we will denote by im(ϕ) its linear
image and by ker(ϕ) its linear kernel. A morphism of Hopf algebras ϕ is injective
if ker(ϕ) = 0. The kernel ker(εH ) of the counit of a Hopf algebra H will more
specifically be denoted by H+.

2 Completeness and cocompleteness

In this section we prove Axiom (A1).

Theorem 3 – The category Hcoco is pointed, finitely complete and finitely cocomplete.

Proof. First, we remark that the category Hcoco is pointed. Indeed, its zero object is
the ground field k with initial and terminal morphisms given by the unit ηH : H → k

and the counit εH : k→H .
Finite (co)completeness is the existence of finite (co)limits which is equivalent

to the existence of finite (co)products and (co)equalizer. For the finite (co)products,

11Gran, Kadjo, and Vercruysse, 2016, “A torsion theory in the category of cocommutative Hopf
algebras”.
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as the category is pointed, it is in fact sufficient to prove the existence of binary
(co)products. Details can be found in Mac Lane (1998, §V.2).

The explicit descriptions of the binary (co)products and (co)equalizer in Hcoco

are given below. The reader may check, by straightforward computations, that the
given constructions fulfill the definitions. □

The definition of equalizers for morphisms of general Hopf algebras was first
given by Andruskiewitsch and Devoto12 generalizing the notions of kernel given
in Sweedler (1969) or Blattner, Cohen, and Montgomery (1986). The same authors
give explicit description of coequalizers and cokernels. For finite coproducts of
Hopf algebras we refer to Pareigis (2002, §2) and for products to Agore (2011b),
Brzezinski and Wisbauer (2003), Agore (2011a). We simply follow the cited authors.
It happens that their constructions for Hopf algebras restricts to Hcoco.

2.1 Equalizers, kernels and products

First, we give the constructions of equalizers and kernels inHcoco. By Lemma 1.1.313,

for any two morphisms A B
f

g
of Hcoco the set

Heq(f ,g) = {x ∈ A | f (x1)⊗x2 = g(x1)⊗x2} = {x ∈ A | x1⊗f (x2) = x1⊗g(x2)}

is a sub-Hopf algebra of A. The equalizer of A B
f

g
in Hcoco is the inclusion

morphism heq(f ,g) : Heq(f ,g)→ A.

We denote by hker(f ) the kernel of a morphism A
f
−→ B inHcoco which is, by defi-

nition, the equalizer heq(f ,ηB◦εA). Explicitly, hker(f ) is the inclusion Hker(f )→ A
with

Hker(f ) = {x ∈ A | x1⊗f (x2) = x⊗1} = {x ∈ A | f (x1)⊗x2 = 1⊗x}.

It can be easily check by straightforward computation that the kernel Hker(f )

of a morphism A
f
−→ B is a normal sub-Hopf algebra of A.

The direct product of two objects A and B inHcoco is given by the tensor product
over k. Indeed the product is < πA,πB > where the projections

A A⊗B B
πBπA

are given by πA(a⊗b) = εB(b)a and πB(a⊗b) = εA(a)b for a⊗b ∈ A⊗B. For any two
morphisms f : H → A and g : H → B ofHcoco, the morphism ϕ : H → A⊗B fulfilling
the universal property of the product is defined by ϕ(x) = f (x1)⊗g(x2).

12Andruskiewitsch and Devoto, 1996, “Extensions of Hopf algebras”.
13Ibid.
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2. Completeness and cocompleteness

This expression of the product is very specific of the cocommutative case. It
is a consequence of the fact that the comultiplication ∆H of a Hopf algebra H is a
morphism of coalgebras if and only if H is cocommutative.

2.2 Coequalizers, cokernels and coproducts

We now give explicit description of coequalizers and cokernels in Hcoco. Let A and

B be two cocommutative Hopf algebras. For any two morphisms A B
f

g
, set

J = {f (x)− g(x) | x ∈ A} and Hcoeq(f ,g) = B/BJB

The projection hcoeq(f ,g) : B→ Hcoeq(f ,g) is the coequalizer of A B
f

g
in

Hcoco.
In the sequel, for simplicity of notations, we sometimes denote the Hopf ideal

BJB by ⟨J⟩. Notice that J is a co-ideal of B as a consequence of the relation

∆
(
f (x)

)
= f (x1)⊗f (x2) =

(
f (x1)− g(x1)

)
⊗f (x2)− g(x1)⊗

(
f (x2)− g(x2)

)
with x ∈ A. It follows that ⟨J⟩ = BJB is a Hopf ideal of B and Hcoeq(f ,g) an object of
our category Hcoco.

The cokernel hcoker(f ) of a morphism A
f
−→ B in Hcoco is, by definition, the

coequalizer hcoeq(f ,ηB◦εA). Notice that, when g = ηB◦εA, the set J reduces to
J = f (A+) where A+ = ker(εA) is the linear kernel of the counit of A. Indeed, in
this particular case, on has J = {f (x) − ε(x)1B | x ∈ A}. The inclusion f (A+) ⊂ J is
straightforward. On the other hand, for x ∈ A, one has f (x)− ε(x)1B = f (x − ε(x)1A).
As x − ε(x)1A belongs to A+, we get the reverse inclusion.

So the cokernel of f is the projection map

hcoker(f ) : B→ B/⟨f (A+)⟩.

We set

Hcoker(f ) = B/⟨f (A+)⟩.

Let A and B be two objects in Hcoco. The coproduct object A⨿ B of A and B in
Hcoco has the following explicit description (see Pareigis 2002 or Agore 2011a). The
coproduct A⨿B is the module spanned over k as an algebra by the elements 1, ta
and tb with a ∈ A and b ∈ B submitted to the relations

tλ = λ, tλa+b = λta + tb, taa′ = tata′ , tbb′ = tbtb′

with λ ∈ k, with a,a′ ∈ A, and b,b′ ∈ B.
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The coproduct A⨿B is endowed with a Hopf algebra structure given by:

∆(ta) =
∑

ta1
⊗ ta2

, ε(ta) = ε(a), S(ta) = tS(a).

with a ∈ A or a ∈ B. The coproduct diagram is given by

A A⨿B B
ιA ιB

with ιA(a) = ta and ιB(b) = tb for a ∈ A, and b ∈ B. This construction satisfies the
universal property of the coproduct. Indeed, for any two morphisms f : A→H and
g : B→ H of Hcoco, the unique morphism h : A⨿B→ H such as one has h◦ιA = f
and h◦ιB = g is defined on the generators of A⨿B by h(ta) = f (a) and h(tb) = g(b)
with a ∈ A and b ∈ B.

3 Newman correspondence, semi-direct product

In this section, we recall some constructions and results involving kernels and
cokernels which we will use in the sequel.

3.1 The Newman correspondence

The following result is crucial for our next proofs.

Theorem 4 (14) – For any cocommutative Hopf algebra over a field, there is a one-to-one
correspondence between its sub-Hopf algebras and its left ideals which are also two-sided
coideals.

With a sub-Hopf algebra G of a Hopf algebra H , Newman associates the ideal
τ(G) = HG+. He proves that τ is bijective with inverse map σ (I) = Hker(H →H/I).

We state three lemmas directly induced by this result.

Lemma 1 – Let H be a cocommutative Hopf algebra over a field. For any Hopf ideal I
of H , there exists a sub-coalgebra G of H such that one has the isomorphism of cocommu-
tative Hopf algebras

H/I �H/HG+H.

In other words, the projection map H →H/I is a cokernel in the category Hcoco.

Proof. The two-sided ideal I is in particular a left ideal. So after Corollary 3.415,
one has I � HG+ for G = Hker(H → H/I). As I is also a right ideal, we deduce
I = IH �HG+H . □

14Newman, 1975, “A correspondence between bi-ideals and sub-Hopf algebras in cocommutative
Hopf algebras”.
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3. Newman correspondence, semi-direct product

As a consequence, we have:

Lemma 2 – Let f : H →H ′ be a surjective map of cocommutative Hopf algebras over a
field. The map f is a cokernel in the category Hcoco.

Proof. Consider the linear ideal I = ker(f ) of f : H →H ′ . It is well know that I is a
Hopf ideal. Moreover, one has H/I �H ′ . After Lemma 1, the map is a cokernel. □

Lemma 3 – Let H be a cocommutative Hopf algebra over a field and G one of its normal
sub-Hopf algebras. Then, we have G �Hker(H →H/HG+H).

In other words, any inclusion of a normal sub-Hopf algebra into a Hopf algebra is
a kernel.

Proof. As G is a normal sub-Hopf algebra, the usual trick gh = h1(S(h2)gh3) for
g ∈ G and h ∈ H shows that HG+H = HG+. Moreover, one has the equality
HG+ = H(Hker(H →H/HG+H))+ by Corollary 3.416 and, as τ is injective by Corol-
lary 2.517, on has the isomorphism G �Hker(H →H/HG+H). □

We also point out an important lemma which can be found as a part of the proof
of Theorem 4.418.

Lemma 4 – A monomorphism in Hcoco is injective.

Proof. Let m : X → Y be a monomorphism in Hcoco. The linear kernel ker(m) of
m is a Hopf ideal of X by Theorem 4.1719. By Lemma 1, it exists a Hopf algebra
inclusion G Xι such as Xι(G+)X = ker(m). This implies

(m◦ι)(g) = εX(g)1Y = (m◦ηY ◦εX◦ι)(g)

for g ∈ G. So we get ι = ηY ◦εX◦ι and thus we have G = k. Finally, one has ker(m) =
Xk

+X = {0}. □

3.2 The semi-direct product of Hopf algebras

We will need a notion of semi-direct product of Hopf algebras. The construction
we will recall for our purpose is a very special case of the now classical semi-direct
product introduced by Blattner, Cohen and Montgomery20 to whom we refer for

15Newman, 1975, “A correspondence between bi-ideals and sub-Hopf algebras in cocommutative
Hopf algebras”.

16Ibid.
17Ibid.
18Ibid.
19Sweedler, 1969, Hopf algebras.
20Blattner, Cohen, and Montgomery, 1986, “Crossed products and inner actions of Hopf algebras”.
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proofs. Anyway, all the properties of the product we state here may also be checked
through direct calculation.

Let Y and K be two Hopf algebras, we will say that K is a Y -Hopf algebra if Y
acts on K . In other words, if there exists an action map – ⇀ –: Y ⊗K → K which is
a morphism of coalgebras and satisfies the following axioms:

y ⇀ (ab) = (y1 ⇀a)(y2 ⇀b) 1Y ⇀a = a

(yy′) ⇀a = y ⇀ (y′⇀a) y ⇀ 1K = εY (y)1K

with y,y′ ∈ Y and a,b ∈ K . We denote by Y -Hcoco the subcategory of Hcoco whose
objects are the Y -Hopf algebras and whose morphisms are those ofHcoco compatible
with the action.

Given an object K in Y -Hcoco, one may define the semi-direct product K#Y of K
and Y . It is by definition the module K⊗Y endowed with the Hopf algebra structure
defined by

(a⊗y)(b⊗y′) = a(y1 ⇀b)⊗y2y
′ ∆(a⊗y) = (a1⊗y1)⊗(a2⊗y2)

η(1) = 1⊗1 ε(a⊗y) = ε(a)ε(y)

and

S(x⊗y) = (S(y1) ⇀S(a))⊗S(y2)

given for a,b ∈ K and y,y′ ∈ Y .
This product is nothing else than the product K#σY

21 where σ is the cocycle
given by σ = ηY ◦(εK ⊗εK ) : K⊗K → Y . In the sequel, an element a⊗y ∈ K#Y will
be denoted by a#y.

Consider the category P tY of pointed objects over an object Y ofHcoco. Its objects

are the couples of maps (p,s) : X Yp

s

of Hcoco such that s is a section of p

(i.e. p◦s = idY ). The morphisms of P tY between two objects X Yp

s

and

X ′ Y
p′

s′

are the maps f : X→ X ′ satisfying p′◦f = p and f ◦s = s′ .

Lemma 5 – Let Y be an object ofHcoco. The categories P tY and Y -Hcoco are equivalent.

Proof. We will only describe the correspondence between objects. Details may be
found in Blattner, Cohen, and Montgomery (1986). With an action – ⇀ –: Y ⊗K →
K one associates the maps

p = εK ⊗ id
Y

: K#Y → Y and s = ηK ⊗ id
Y

: Y → K#Y .

21Blattner, Cohen, and Montgomery, 1986, “Crossed products and inner actions of Hopf algebras”.
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4. Pullbacks of cokernels, Regularity

On the other hand, given the data X Yp

s

, one sets K = Hker(p). It is easy
to check that y ⇀ k = s(y1)ks(SY (y2)) defines an action of Y on K .

The equivalence is based on the isomorphism between K#Y and X given by the
maps

F : X→ K#Y

x 7→ x1s(Sp(x2))#p(x3)
and

G : K#Y → X

k#y 7→ ky
□

4 Pullbacks of cokernels, Regularity

In this section we survey the construction of pullbacks in the Hcoco. A result of
Gran, Kadjo and Vercruysse22 gives the claim of Axiom (A3). As a consequence, one
deduces that the category Hcoco is regular and homological.

From the definitions of products and equalizers, one easily derives the definition
of pullbacks. Let A, B, and C be cocommutative Hopf algebras and let f : A→ C
and g : B→ C be morphisms of Hopf algebras. The pullback object of A and B over
C is the module

A ⨿

CB = {a⊗b ∈ A⊗B | a1⊗f (a2)⊗b = a⊗g(b1)⊗b2}.
It is a sub-Hopf algebra of the Hopf algebra product A⊗B. One has the commutative
diagram

A ⨿
CB B

A C

πB

πA g

f

with πA(a⊗b) = ε(b)a and πB(a⊗b) = ε(a)b.
The universal property of pullbacks is given in the following way. For any

cocommutative Hopf algebra H and any two morphisms γ : H → B and ϕ : H → A,
there exists a unique morphism F : H → A ⨿

CB such that the diagram

H

A ⨿

CB B

A C

γ

ϕ

F

πB

πA g

f

is commutative. The morphism F is defined by F(d) = ϕ(d1)⊗γ(d2) for any d ∈H .

22Gran, Kadjo, and Vercruysse, 2016, “A torsion theory in the category of cocommutative Hopf
algebras”.
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The following theorem shows that the category of cocommutative Hopf algebras
satisfies Axiom (A3).

Theorem 5 (Theorem 3.723) – In the category Hcoco, the pullback of a cokernel is a
cokernel when the ground field has characteristic zero.

Remark 1 – We do not know if the similar statement for a field of positive charac-
teristic is still true. In fact, the proof of Gran, Kadjo, and Vercruysse (2016) uses in
an essential way the Cartier-Milnor-Moore theorem which requires the condition on
the characteristic of the ground field.

5 Coproducts and split epimorphisms

The following proposition proves (A2) for the category Hcoco.

Proposition 1 – Let p be a morphism inHcoco, let s be one of its sections (i.e. p◦s = idY )
in Hcoco and κ : K → X be the kernel of p in Hcoco:

K X Yκ
p

s

The arrow < κ,s > : K
∐
Y → X is a cokernel in Hcoco.

Proof. First remark that if, an element x ∈ X, is also an element of K = Hker(p),
then, for any y ∈ Y , one also has s(y1)xs(SY (y2)) ∈ K . A straightforward computation
proves that the formula y ⇀ x = s(y1)xs(SY (y2)) defines an action of Y over K .

Now consider the two linear maps f ,g : K⊗Y → K
∐
Y defined by f (x⊗y) =

ty1⇀xty2
and g(x⊗y) = tytx with y ∈ Y and x ∈ K . We denote by L the linear image

im(f − g).
Note that both maps preserve the coalgebra structure. So, we have

∆◦(f − g) =
(
(f − g)⊗f + g⊗(f − g)

)
◦∆.

This later relation implies that L is a two-sided coideal of K
∐
Y . Let us set

U = (K
∐
Y )L(K

∐
Y ) which is both a two-sided ideal a two-sided coideal.

Moreover, for any x ∈ K and y ∈ Y , one computes

S(ty1⇀xty2
− tytx) = tS(y1)ty2⇀S(x) − tS(x)tS(y)

= tS(y1)ty2⇀S(x)ty3
tS(y4) − tS(y1)ty2

tS(x)tS(y3)

= tS(y1) ((f − g)(S(x)⊗y2)) tS(y3)

23Gran, Kadjo, and Vercruysse, 2016, “A torsion theory in the category of cocommutative Hopf
algebras”.
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6. Images of kernels

Notice that, for the first equality, we used cocomutativity and the relation
S(y⇀x) = y⇀S(x) which is a consequence of S2 = id. Here we remember that the
antipode of a cocommutative Hopf algebra is involutive (cf. Proposition 4.0.124).
Our computation proves S(U ) ⊂U and consequently that U is a Hopf ideal.

One clearly has (K
∐
Y )/U ≃ K#Y which is isomorphic to X after the proof of

Lemma 5. Moreover, after Lemma 1, the map (K
∐
Y )→ (K

∐
Y )/U is a cokernel.□

Corollary 1 – If the ground field has characteristic zero, the category Hcoco is finitely
cocomplete homological.

Proof. The category satisfies the axioms (A1), (A2) and (A3)25. □

Corollary 2 – If the ground field has characteristic zero, the category Hcoco is regular.

Proof. The result of Proposition 5.1 combined with the existence of finite limits and
coequilazers fulfills the axioms defining regular categories. □

6 Images of kernels

It remains to check Axiom (A4). As the category Hcoco is regular, the image of a
morphism is canonically defined as the coequalizer of its kernel pair26.

Let f : X → Y be a morphism in Hcoco. The coequalizer object of the kernel
pair of f is Hcoeq(π1,π2) where π1 and π2 are the canonical maps of the pullback
diagram

X ⨿

YX X

X Y

π1

π2 f

f

We have X ⨿

YX = {x⊗x′ ∈ X⊗X | x1⊗f (x2)⊗x′ = x⊗f (x′1)⊗x′2} and also π1(x⊗x′) =
ε(x′)x and π2(x⊗x′) = ε(x)x′ . By section 2.2, one has Hcoeq(π1,π2) = X/XJX where
J is the space {ε(x′)x − ε(x)x′ | x⊗x′ ∈ X ⨿

YX}.
The image object HIm(f ) of f : X → Y in Hcoco is the quotient X/XJX. In fact

one has the following lemma which slightly simplify the construction of HIm(f ).

24Sweedler, 1969, Hopf algebras.
25Hartl and Loiseau, 2011, “A characterization of finite cocomplete homological and of semi-abelian

categories”.
26Barr, 1971, “Exact categories”.
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Lemma 6 – Let f : X → Y be a morphism in Hcoco. One has HIm(f ) = X/J where
J = {ε(x′)x − ε(x)x′ | x⊗x′ ∈ X ⨿

YX}.

Proof. We shall prove XJX = J . First we detail the proof of XJ = J .
Note that X acts on X ⨿

YX by a·(x⊗x′) = a1x⊗a2x
′ for a ∈ X and x⊗x′ ∈ X ⨿

YX.
Let us show that a1x⊗a2x

′ is indeed also an element of X ⨿

YX. As x⊗x′ is in
X ⨿

YX, one has

x1⊗f (x2)⊗x′ = x⊗f (x′1)⊗x′2.

By multiplying this relation by a1⊗f (a2)⊗a3 on the left side, one gets

a1x1⊗f (a2x2)⊗a3x
′ = a1x⊗f (a2x

′
1)⊗a3x

′
2

which implies a1x⊗a2x
′ ∈ X ⨿

YX.
Let now be a ∈ X and u = ε(x′)x − ε(x)x′ ∈ J . By the property of the counit, we

have

au = ε(x′)ax − ε(x)ax′ = ε(a2x
′)a1x − ε(a1x)a2x

′

which has the form of the element of J associated with a·(x⊗x′) ∈ X ⨿

YX. We proved
XJ ⊂ J . The reverse inclusion being trivially true, one has J = XJ

Similarly, one shows J = JX. We finally have J = XJX. □

After Borceux and Bourn27, the morphism f factorizes as a product of the
regular epimorphism π = hcoeq(π1,π2) and a monomorphism ι in Hcoco. One has
the diagram

X Y

HIm(f )

f

π
ι

the morphism ι being induced by f : X→ Y . The factorization is unique up to an
isomorphism.

On the other hand, one can consider the linear image im(f ) = {f (x) | x ∈ X} of f .
As f is a morphism of cocommutative Hopf algebras, im(f ) is a sub-cocommutative
Hopf algebra of Y .

In our case, in fact, the two notions of image coincide.

Lemma 7 – If the ground field has characteristic zero, in the category Hcoco, for any
morphism f , one has HIm(f ) � im(f ).

27Borceux and Bourn, 2004, Mal’cev, protomodular, homological and semi-abelian categories.
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6. Images of kernels

Proof. Consider the morphism f : X → Y . We denote by f̂ : X → im(f ) the mor-
phism obtained considering the linear image of f . It is still a morphism of Hcoco, so
one has the factorization diagram

X im(f )

HIm(f̂ )

f̂
π

ι̂

□

where ι̂ is a monomorphism. By Lemma 4, the morphism ι̂ is injective. On the
other hand, f̂ is surjective and consequently ι̂ is. This implies the isomorphism
HIm(f̂ ) � im(f ).

Finally, using the construction of the categorical image, one checks the equality
HIm(f ) = HIm(f̂ ).

We can now prove that Axiom (A4) is fulfilled.

Proposition 2 – If the ground field has characteristic zero, inHcoco the image of a kernel
is a kernel.

Proof. Consider the following commutative diagram in Hcoco:

A

Hker(g) X Z

HIm(π′) Hcoker(f )

f

hker(g)

π′
π

g

hcoker(f )

ι

As Hker(g) is a normal sub-Hopf algebra of X, its linear image, through the
projection X → Hcoker(f ) is a normal sub-Hopf algebra of Hcoker(f ). The later
linear image is nothing else than HIm(π′). After Lemma 3, it is a kernel object
under our assumptions. □

At this point, we proved that all the axioms (A1), (A2), (A3) and (A4) are fulfilled
for Hcoco and so one recovers Theorem 1.
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7 Abelian core, categorical semi-abelian product

This section is widely inspired by Borceux28. In a first time, we determine the
abelian core of Hcoco. In a second time, we prove that the categorical semi-direct
product in Hcoco is nothing else than the semi-direct product defined in section 3.
In all this section, we assume that the ground field has characteristic zero.

Lemma 8 – Let A be a sub-algebra of a cocommutative Hopf algebra H . The sub-Hopf
algebra is normal if and only if the inclusion A→H is normal in Hcoco.

Proof. Consider a normal map A→ H in Hcoco. The sub-object A is a sub-Hopf
algebra of H such as it exists a morphism ϕ : H →H ′ and A = Hker(ϕ). We already
noticed that kernel objects are normal sub-Hopf algebras. The converse assertion is
Lemma 3. □

The following proposition is Theorem 2.

Proposition 3 – The full sub-category of abelian objects of Hcoco is Hco−coco.

Proof. We use the characterization of Theorem 6.929 which states that an object C
in a semi-abelian category is abelian if and only if its diagonal C→ C⊗C is normal.
In our case, if C is an object of Hcoco, the diagonal map is nothing else than the
comutiplication ∆C . So, after Lemma 7.1, it suffices to prove that C is abelian if and
only if im(∆C) is a normal sub-Hopf algebra of C⊗C.

If C is commutative, so is C⊗C and as sub-Hopf algebras of a commutative
algebra are normal, it follows that im(∆C) is.

On the other hand, suppose that im(∆C) is a normal sub-Hopf algebra of C⊗C.
For any two elements a,c ∈ C it exists d ∈ C such that we have

∆(d) =
(
c1⊗1

)(
a1⊗a2

)
S
(
c2⊗1

)
= c1a1S(c2)⊗a2.

By applying εC to the first and second tensor factors of the above identity we
respectively get d = εC(c)a and d = c1aS(c2). Thus, we have

d = εC(c)a = c1aS(c2).

As the identity is true for any a⊗c ∈ C, we may apply it to the first tensor factor of
a⊗c1⊗c2 and get

εC(c1)a⊗c2 = c1aS(c2)⊗c3 =⇒ εC(c1)ac2 = c1aS(c2)c3 =⇒ ac = ca.

Thus, C is commutative. □

28Borceux, 2004, “A survey of semi-abelian categories”.
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We retrieve the known result: the category Hco−coco is abelian.
To end the article, we prove that the semi-direct product defined in Section 3 is

the semi-direct product in Hcoco in the categorical sense defined in Borceux (2004).
We will follow the latter reference.

For any object Y in Hcoco, we have the pair of adjoint functors:

Hker : P tY →Hcoco

X Yp

s

7→Hker(p)
and

Hcoco→P tY

K 7→ K
∐
Y Y

(εK ,idY )

ιY

where the functor Hker is monadic. Then, one can consider the monad TY asso-
ciated to Hker. By definition, the semi-direct product of an algebra (K,ξ) for the

monad TY and the object Y is the domain of the pointed object (p,s) : X Yp

s

corresponding to (K,ξ) via the equivalence P tY � (Hcoco)TY .

Theorem 6 – Let Y be an object in Hcoco. Let (K,ξ) be an algebra for the monad TY .
The semi-direct product of an algebra (K,ξ) and Y is K#Y .

Proof. The proof given for the category of groups30 is still valid in our case if one
replaces Proposition 5.731 by Lemma 5. □
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