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Abstract

We study in this paper the functional equation

αu(t) + C ⋆ (χu)(t) = f(t)

where α ∈ Cd×d , u,f : R→ C
d , u being unknown. The term C ⋆ (χu)(t) denotes

the discrete convolution of an almost zero matricial mapping C with discrete
support together with the product of u and the characteristic function χ of
a fixed segment.

This equation combines some aspects of recurrence equations and/or delayed
functional equations, so that we may construct a matricial based framework
to solve it. We investigate existence, unicity and determination of the solution
to this equation. In order to do this, we use some new results about linear
independence of monomial words in matrix algebras.

Keywords: Difference equations, matricial polynomial functions, matrix sequences,
combinatorics on words.

msc: 39A06, 39A70, 39A12, 68R15.

1 Introduction

Let [t0, tf ] be some interval of time and χ its characteristic function, and ε > 0
a fixed time delay. Let (ck)k∈Z be an almost zero sequence of matrices in C

d×d where
d denotes the “physical” dimension.

We define next C : R→C
d×d by

C(t) =

c−t/ε if t ∈ εZ
0 otherwise

.

1L.M.P.A., Université du Littoral, 62280 Calais Cedex, France
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We denote by Id the identity matrix of size d and we fix throughout a matrix
α ∈Cd×d . We have the discrete convolution product over εZ:

(u ⋆ v)(t) =
∑
s∈εZ

u(s)v(t − s), t ∈R

where u and v are two mappings defined in R with matrix values of format (d × d,
d × 1) or (1× d,d × 1).

This paper is devoted to the study of the functional equation

αu+ C ⋆ (χu) = f (1)

which may be rewritten equivalently as

αu(t) +
∑
k∈Z

cku(t + kε)χ(t + kε) = f(t), (2)

where u,f : R→C
d , u being unknown. The sum in the left-hand side of (2) will be

denoted throughout the paper by □u = C ⋆ (χu), where the operator □ may occur
in the context of discrete calculus of variations2. Equation (1) may be thought as
a discrete version of the differential equation αu(t) +u′(t) = f(t) where u′ has been
replaced by □. An analogous functional equation appears in the field of time-scale
calculus and has led to many works, see for instance Bohner and Peterson (2001)
and the literature therein. However, we do not require here that the operator □
behaves as a derivative.

We define N as the largest integer such that cN , 0 or c−N , 0. For example,
when N = 1, equation (2) rewrites as

f(t)−αu(t) =



0 if t < t0 − ε
c1u(t + ε) if t0 − ε ≤ t < t0
c1u(t + ε) + c0u(t) if t0 ≤ t < t0 + ε
c1u(t + ε) + c0u(t) + c−1u(t − ε) if t0 + ε ≤ t ≤ tf − ε
c0u(t) + c−1u(t − ε) if tf − ε < t ≤ tf
c−1u(t − ε) if tf < t ≤ tf + ε
0 if tf + ε < t

. (3)

In general, the equations (2) may be thought as a mixture between recurrence
equations and delayed functional equations.

2Ryckelynck and Smoch, 2013, “Discrete Calculus of Variations for quadratic Lagrangians”;
Ryckelynck and Smoch, 2014, “Quadratic choreographies”.
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We focus in this paper on the following two problems. What are the analytical
properties of functions of the shape □u and is the functional equation (1) well-
posed?

The paper is organized as follows. In Section 2 we provide some analytical
properties of the functions □u. Section 3 presents some technical lemmas for
matricial linear recurrences. Section 4 is concerned with the non-vanishing property
for entries and determinants of matricial polynomial functions. It ensures that
the linear compatibility equations extracted when solving (1) are Cramer for the
specific case N = 1. We prove in Sections 5 and 6 that (1) is well-posed if α is
invertible, with proper accuracies, according to the respective cases N = 1 and
arbitrary N . The case α = 0 is also investigated, and stands for the characterization
of the range of the operator □. At last, Section 7 gives some concluding remarks and
perspectives.

2 Analytical properties of the functions □u

In order to comprehend equation (1) and present some robust methods for solving
it, we provide first some features of the operator □.

Theorem 1 – Let ν ∈N∪ {∞}.

1. The operator □ maps the space of the functions u : R→C
d of piecewise-Cν regu-

larity, to the space of compactly supported functions v : R→ C
d of piecewise-Cν

regularity, such that Supp(v) ⊂ [t0 −Nε,tf +Nε].

2. If u : R→ C
d has p points of discontinuity on R, then □u has at most (4N + 2) +

(2N + 1)p points of discontinuity on R.

3. If cN or c−N is invertible, then the kernel of □ consists of the functions which vanish
on [t0, tf ].

4. If cN or c−N is invertible, then for all u : R → C
d , □u is measurable, (respec-

tively integrable, of piecewise-Cν regularity) on R if and only if u is measurable
(respectively integrable, of piecewise-Cν regularity) on [t0, tf ].
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Proof. The main ingredient of the proof is the explicit formula for □u(t) provided
in Ryckelynck and Smoch (2013):



0 if t < t0 −Nε
cNu(t +Nε) if t0 −Nε ≤ t < t0 −Nε+ ε
cN−1u(t +Nε − ε) + cNu(t +Nε) if t0 −Nε+ ε ≤ t < t0 −Nε+ 2ε
...

...

cN−pu(t +Nε − pε) + . . .+ cNu(t +Nε)
if p ∈ {0, . . . ,2N − 1} and
t0 + (p −N )ε ≤ t < t0 + (p+ 1−N )ε

...
...

c−Nu(t −Nε) + . . .+ cNu(t +Nε) if t0 +Nε ≤ t ≤ tf −Nε
...

...

c−Nu(t −Nε) + . . .+ cp−Nu(t −Nε+ pε)
if p ∈ {2N − 1, . . . ,0} and
tf + (N − p − 1)ε < t ≤ tf + (N − p)ε

...
...

c−Nu(t −Nε) + c1−Nu(t −Nε+ ε) if tf +Nε − 2ε < t ≤ tf +Nε − ε
c−Nu(t −Nε) if tf +Nε − ε < t ≤ tf +Nε
0 if tf +Nε < t

(4)

Assertion 1. is an obvious consequence of formula (4). Next, let u : R→ C
d , then

formula (4) shows that the (4N + 2) points t0 + kε and tf + kε, |k| ≤N may be points
of discontinuity of □u. Moreover, if tδ is any point of discontinuity of u, the values
tδ+kε, |k| ≤N , give rise in general to points of discontinuity of □u. Lastly, since there
does not exist any other point of discontinuity of □u, assertion 2. is proved. Let us
prove assertion 3., i.e., the conditional injectivity of □. We first notice due to (4) that
if u vanishes in [t0, tf ], then all the terms occurring in (4) are equal to 0 so that □u
is zero everywhere. Conversely, suppose that det(cN ) , 0. If u ∈ ker(□), second row
of formula (4) shows that u = 0 in [t0, t0 + ε[. Next, by using this result, the third
row of (4) shows that u = 0 in [t0 + ε, t0 + 2ε[ and so on. Then we may prove easily
that u = 0 in [t0, t0 + ε[∪[t0 + ε, t0 + 2ε[∪ . . .∪]tf − ε, tf ]. We may proceed similarly
when det(c−N ) , 0 by starting from the last but one row of (4). As a consequence, if
u,v : R→C

d , we get

□u = □v ⇔ u = v in [t0, tf ]

which proves the third assertion. We proceed in the very same way to prove that
measurability or integrability of u on [t0, tf ] is equivalent to the same property for
□u on R. □
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3. Preliminary lemmas for matricial linear recurrences

3 Preliminary lemmas for matricial linear recurrences

As we shall see in Sections 5 and 6, solving (1) queries to deal with matricial
nonstationary recurrences of the shape

wn+1 = Mnwn + gn, n ∈N, (5)

where Mn is an s × s matrix and wn,gn are vector sequences in C
s, s being a fixed

integer. Since non-commutative products occur in the explicit formula, let us denote
by

m∐
k=0

Mk = MmMm−1 . . .M0

this left-side product.

Lemma 1 – The solution to the recurrence (5) is given by

wn =

n−1∐
k=0

Mk

w0 +
n−1∑
k=0

 n−1∐
ℓ=k+1

Mℓ

gk .
Proof. The cases n = 0 and n = 1 are true and use the conventions of the empty
sum and empty (left-)product. The proof for n > 1 is straightforward by using
induction. □

The particular case when M is independent on n is of some importance and gives
rise to the solution to stationary matricial recurrence of the shape (5) as follows:

wn = Mnw0 +
n−1∑
k=0

Mn−k−1gk . (6)

In the following two lemmas, we deal with sequences of non-commutative matricial
polynomials.

Lemma 2 – Let d ≥ 2, β,γ ∈ Md,d(C) and (δ′n) and (δ′′n ) be the sequences of matrices
defined by the recurrences

δ′n+1 = βδ′n +γδ′n−1, δ′′n+1 = δ′′nβ + δ′′n−1γ, n ≥ 1 (7)

with δ′0 = δ′′0 = 0 and δ′1 = δ′′1 = Id . Then, for all n ≥ 2, we have

δ′n = δ′′n =
∑

βm1γm2βm3γm4 . . . (8)
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where the sum is extended over all the multiplets (m1,m2, . . . ,mn) ∈Nn with

mj ≥ 1 if 2 ≤ j ≤ n− 1 and
[ n2 ]∑
i=1

(m2i−1 + 2m2i) = n− 1.

The number of monomials in the formula (8) is the Fibonacci number Fn.

Proof. First, let us mention that formula (8) is true for n = 0 and n = 1 by using the
empty sum convention and the initial conditions. Let us prove now the formula (8)
for the sequence (δ′n). Suppose that the result (8) holds for n and n− 1 and that δ′n−1
and δ′n are of lengths Fn−1 and Fn respectively. Then, due to (8) and (7) we see that
δ′n+1 is the sum of the words excerpted from the sum δ′n multiplied on the left by
β and those from the sum δ′n−1 multiplied on the left by γ . So we have proved by
induction that δ′n has the shape

δ′n =
∑

e(n,m1,m2,...)β
m1γm2βm3γm4 . . .

where the coefficients e(n,m1,m2,...) are convenient positive integers independent of
β and γ . Let us note that if β = γ = Id , then obviously, δ′n = Fn × Id so, the number
of monomial words in the sum (8) is Fn. Let us prove now that all the coefficients
e(n,m1,m2,...) are in fact equal to 1. Indeed, we see that all the Fn−1 words coming
from δ′n−1 are distinct from the Fn words arising from δ′n since the first ones begin
with β while the second ones start with γ . All the words δ′n+1 occurring in (8) being
distinct, their cardinality is Fn−1 +Fn = Fn+1. So far, we have proved the result (8)
for δ′n and the proof for δ′′n is the same. □

From now on, we set δn = δ′n = δ′′n , ∀n ∈N.

Lemma 3 – Let d ≥ 2, β,γ ∈ Md,d(C), (gn)n ∈ (Cd)N, and let (wn)n ∈ (Cd) ∈ N the
vector sequence satisfying for all n ≥ 1 the second-order matricial recurrence equation:

wn+1 = βwn +γwn−1 + gn. (9)

Then for all n ∈N⋆ we have

wn = δnw1 + δn−1γw0 +
n−1∑
k=1

δn−kgk . (10)

Proof. Let us define

M =
(
β γ
Id 0

)
.
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We may easily prove by induction that

Mn =
(
δn+1 δnγ
δn δn−1γ

)
,

for all n ∈N⋆ , by using the recurrence (7) for the sequence (δn). Next, (9) may be
rewritten as(

wn+1
wn

)
= M

(
wn
wn−1

)
+
(
gn
0

)
.

By setting

w′n =
(
wn
wn−1

)
, g′n =

(
gn
0

)
and by using a slightly adapted version of formula (6), we get

wn = Mn−1w1 +
n−1∑
k=1

Mn−1−kgk .

Now, the formula (10) is obtained by reading the first row of the previous for-
mula. □

Remark 1 – Blanchard and Watson3 have introduced, in mathematical finance, the
model of rational expectations (RE) bubbles, based on the dynamical equation
Xt+1 = atXt + bt , where (at), (bt) are two given discrete stochastic processes, which
may depend on the process Xt . The bidimensional generalization of this model4 is
based on a dynamical system of the shape Xt+1 = atXt + bt , where (at), (bt) are two
given matricial discrete stochastic processes. In the study of the stability of this
dynamics, the role of the ordered products at .at−1.at−2 . . . a0 is crucial.

Remark 2 – The study of Lyapunov stability of non-autonomous dynamical systems
has given rise to a lot of papers. Here is a situation where stochastic processes play
a central role. Let us consider a linear discrete-time evolution of an N -dimensional
system described by d complex degrees of freedom. The state of the system at time
t is given by a d-dimensional vector xt and the dynamics of the system is simply
xt+1 = Yt+1xt , where the evolution operator Yt+1 is represented by a d × d matrix.
In that situation, the total evolution from the initial state xt = Z(t)x0 is effectively
driven by the product matrix Z(t) = YtYt−1 · · ·Y1. When the matrices Yj are i.i.d.
complex non-Hermitian random matrices, interesting problems related to stability

3Blanchard and Watson, 1982, Bubbles, Rational Expectations and Speculative Markets, in: P. Wachtel,
ed., Crisis in Economic and Financial Structure: Bubbles, Bursts, and Shocks.

4Sornette and Malevergne, 2001, “From Rational Bubbles to Crashes”.
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of the system and distribution of eigenvalues of YtYt−1 · · ·Y1 have been studied by G.
Akemann, Z. Burda, M. Kieburg5, who give also a large bibliography. For previous
works on products of random matrices, we may also cite the book of Bougerol and
Lacroix6.

4 Linear independence of words in matrix algebras

We shall obtain a result which ensures that the foregoing linear compatiblity equa-
tions which arise when solving the functional equation (1) are Cramer for almost
all choices of matrices α,c−1, c0, c1 ∈Cd×d if N = 1.

Let us call a matricial polynomial function of two matricial indeterminates (ζ,ξ)
an expression of the shape

ψ(ζ,ξ) =
∑

κm1,m2,...ζ
m1ξm2ζm3ξm4 . . . (11)

with coefficients in C. As an example, we may cite the sequence of matrices occurring
in Lemma 2. Given such a function, for all (p,q) ∈N2, we denote by Kpq the sum
of all the coefficients κm1,m2,... such that m1 +m3 + . . . = p and m2 +m4 + . . . = q.
Similarly, for all (p,q, r, s) ∈N4, we introduce the sum K̃p,q,r,s of all the coefficients
m1 ×m2 × . . .×κm1,m2,... such that m1 +m3 + . . . = p, m2 +m4 + . . . = q, and where r and
s count the occurrences of ζ and ξ respectively in the monomial of (11) associated
to the multiplets (m1,m2, . . .). We must have necessarily |r − s| ≤ 1. We shall say
that the function (11) is generic when at least one sum Kpq and one sum K̃p,q,r,s are
nonzero. For instance, the matrices δn occurring in (8) are the specializations at
(β,γ) of generic polynomials, since the coefficients are either 1 or 0.

Let us give now the main result of this section.

Theorem 2 – Suppose we are given l generic matricial polynomial functions ψ(k)(ζ,ξ),

and let us set ψ(k)
i,j (ζ,ξ) = (ψ(k)(ζ,ξ))ij . Then, the set of couples (ζ,ξ) such that

∀i, j,k, ψ
(k)
i,j (ζ,ξ) , 0, with 1 ≤ i, j ≤ d, 1 ≤ k ≤ l, and

∀k, det(ψ(k)(ζ,ξ)) , 0, with 1 ≤ k ≤ l

consists in an open dense subset of (Cd×d)2.

Proof. In order to prove this result, we first show that if ψ(ζ,ξ) is the generic
matricial polynomial function defined by (11), then all its entries ψi,j(ζ,ξ) are

5Akemann, Burda, and Kieburg, 2014, “Universal distribution of Lyapunov exponents for products
of Ginibre matrices”.

6Bougerol and Lacroix, 1985, Products of Random Matrices with Applications to Schrödinger Operators.
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nonzero polynomials w.r.t. their 2d2 indeterminates. The proof goes as follows. Let
us specialize ψ at matrices of the shape

ζ =

 x z 01,d−2
0 x 01,d−2

0d−2,1 0d−2,1 Id−2

 and ξ =

 y t 01,d−2
0 y 01,d−2

0d−2,1 0d−2,1 Id−2


for convenient x,y,z, t ∈C. We easily get

ψ(ζ,ξ) =

ψ(x,y) ψ̃(x,y,z, t) 01,d−2
0 ψ(x,y) 01,d−2

0d−2,1 0d−2,1 ψ(1,1)Id−2

 (12)

whereψ is the function (11) evaluated at complex numbers and is equal to
∑
Kp,qx

pyq

while ψ̃ is the polynomial
∑
K̃p,q,r,sx

p−ryq−szrts. Due to the hypotheses, the sets of
couples (x,y) or quadruplets (x,y,z, t) such that ψ(x,y) , 0 or ψ̃(x,y,z, t) , 0 respec-
tively, are open everywhere dense subsets in C

2 and in C
4 respectively. Now, in

order to deal with the zero-like entries of (12), we use the following property of ψ.
We have

ψ(g−1ζg,g−1ξg) = g−1ψ(ζ,ξ)g,

where g is any invertible matrix in C
d×d . Especially, if we choose g as a permutation

matrix µσ , we obtain

ψij (µ
−1
σ ζµσ ,µ

−1
σ ξµσ ) = ψσ (i),σ (j)(ζ,ξ).

The symmetric group Sd acts transitively on the set of couples (i, i) with 1 ≤ i ≤ d
and transitively on the set of couples (i, j) with 1 ≤ i, j ≤ d and i , j. Thus, since ψ1,1
and ψ1,2 are nonzero polynomials, we may claim by using suitable specializations
of (ζ,ξ) that every other entry ψi,j of ψ(ζ,ξ) gives rise to a nonzero polynomial.

Let us prove now that if ψ is generic, then det(ψ(ζ11, . . . ,ξdd)) is a nonzero
polynomial. Indeed, if we particularize ζ and ξ to be two multiples of the identity
matrix, i.e., (ζ,ξ) = (ρId ,σ Id) with ρ and σ in C, we get the polynomial

det(ψ(ρId ,σ Id)) =

∑
p,q

Kp,qρ
pσ q


d

= ψ(ρ,σ )d

which is nonzero in C[ρ,σ ] since there exists at least one coefficient Kpq , 0.

Collecting all these informations, we may work with open dense sets in C
2d2

instead of dealing with nonzero polynomials. Let us consider for all k ∈ {1, . . . , l} and
i, j ∈ {1, . . . ,d} the closed algebraic varieties of codimension 1

F (k)
ij =

{
(ζ,ξ) ∈ (Cd×d)2/ψ

(k)
ij (ζ11, . . . ,ξdd) = 0

}
9
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and

F (k)
det =

{
(ζ,ξ) ∈ (Cd×d)2/ det(ψ(k)(ζ11, . . . ,ξdd)) = 0

}
.

Since each hypersurface is meager, the union (
⋃
ijk F

(k)
ij ) ∪ (

⋃
k F

(k)
det ) is a closed

meager subset of (Cd×d)2. Thus, its complementary is an everywhere open dense
subset of (Cd×d)2. This ends the proof of the result. □

Remark 3 – As an example, for all integerm, the set of couples (β,γ) ∈ (Cd×d)2 such
that

det(β) , 0, det(γ) , 0, βγ , γβ and det(δn) , 0, ∀n ∈ {0, . . . ,m},

is an open dense subset of (Cd×d)2. In the very special case when the matrices β,γ
are multiples of Id , i.e., β = β̃Id and γ = γ̃Id with β̃ and γ̃ in C, we easily find due to
(7) that

δn =
1√

β̃2 + 4γ̃


 β̃ +

√
β̃2 + 4γ̃

2


n

−

 β̃ −
√
β̃2 + 4γ̃

2


n Id .

The set of couples (β̃, γ̃) such that

β̃ +
√
β̃2 + 4γ̃

β̃ −
√
β̃2 + 4γ̃

is not of the shape exp( 2ikπ
n ) is open dense in C

2 and, for those couples, we have
det(δn) , 0.

Remark 4 – The set of generic polynomials is an open dense subset in the vector
space of matricial polynomial functions of given degree.

Remark 5 – Let us mention how to proceed if we deal with non-generic polyno-
mials. We may use in this case the so-called defect Theorem of P.M. Cohn7. If K
is a commutative field and Ω is an alphabet of non commuting variables, we may
denote by K⟨⟨Ω⟩⟩ the algebra of non commutative formal series in these variables.
Then the defect theorem states that if ϕ1,ϕ2 are elements of K⟨⟨Ω⟩⟩ without constant
term, satisfying a non-trivial relation Φ(ϕ1,ϕ2) = 0 for some non commutative series
Φ in two variables, then ϕ1,ϕ2 commute. This theorem allows to exhibit at least one
nonzero polynomial entry to ψ(ζ,ξ), but the conclusion is not as so accurate than in
Theorem 2.

7Lothaire, 2002, Algebraic Combinatorics On Words, Theorem 9.6.1, p. 283.
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5 Solving explicitly the functional equation
when N = 1

Let us show now how to solve the functional equation (1) when N = 1 by using the
preceding results. We restrict ourselves to the quite opposite cases α invertible or
α = 0. Let us define M ≥ 1 as the integer part of

tf −t0
ε .

Theorem 3 – If N = 1, for all quadruplets (c−1, c0, c1,α) in an open dense subset of
(Cd×d)4, the equation

αu+ C ⋆ (χu) = f

admits one and only one solution.

Proof. We may assume by density that c1 is invertible. If M = 1, the result follows
easily from the inspection of (3).

The main part of the proof consists in solving (3) and is valid for all α. Outside
[t0 − ε, tf + ε], one has f(t) = αu(t) which allows to determine u if α is invertible.
Next, we focus on the interval [t0 + ε, tf − ε]. By using (2), we get the recurrence
equation:

u(τ + (n+ 1)ε) = c−1
1 (−(α + c0)u(τ +nε)− c−1u(τ + (n− 1)ε) + f(τ +nε)), (13)

∀τ ∈ [t0, t0 + ε[ and n ≥ 1. So we see that (13) is a recurrence of the shape (9). Using
Lemma 3 with

β = −c−1
1 (α + c0), γ = −c−1

1 c−1, (14)

and wn = u(τ +nε), gn = c−1
1 f(τ +nε) for τ fixed, we get

u(τ +nε) = δnu(τ + ε) + δn−1γu(τ) +
n−1∑
k=1

δn−kc
−1
1 f(τ + kε), (15)

for all instant τ +nε ≤ tf . Since τ ∈ [t0, t0 + ε[, we have in any case n ≤M − 1. More
explicitly, we shall use (15) in the following ranges of indices:

τ ∈ [t0, tf −Mε[ ⇒ max{n/τ +nε ≤ tf } =M, (16)

τ ∈ [tf −Mε,t0 + ε[ ⇒ max{n/τ +nε ≤ tf } =M − 1. (17)

We find it convenient to denote by ℓ = ℓ(τ) the maximal value of n for which we
may use (15), given by (16) or (17). Although the formula (15) is true for n = 1,
this result is tautological in this case. For n ≥ 2, (15) expresses the solution to the
functional equation (1) in the interval [t0 + 2ε, tf ], as a linear combination of the

11
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restrictions u(τ) and u(τ + ε) of u to the two intervals [t0, t0 + ε[ and [t0 + ε, t0 + 2ε[.
The coefficients of this linear relationship are independent on time and constitute
the sequence of matrices (δn) which depend only on β and γ .

Now, let us determine the two additional unknown functions u(τ) and u(τ+ε) by
solving (2) near the boundaries t0 and tf . In order to do this, let us write explicitly
the four remaining equations:

if t ∈ [t0 − ε, t0[, f(t) = αu(t) + c1u(t + ε), (18)

if t ∈ [t0, t0 + ε[, f(t) = (α + c0)u(t) + c1u(t + ε), (19)

if t ∈]tf − ε, tf ], f(t) = (α + c0)u(t) + c−1u(t − ε), (20)

if t ∈]tf , tf + ε], f(t) = αu(t) + c−1u(t − ε). (21)

We note that the restriction of u to [t0 − ε, t0[ is undetermined. Let us call this
function ϕ. Next we solve (18) and (19) as follows, by adapting slightly the range of
the time variable. If t ∈ [t0, t0 + ε[, (18) provides

u(t) = c−1
1 f(t − ε)− c−1

1 αϕ(t − ε). (22)

If t ∈ [t0 + ε, t0 + 2ε[, (19) and (22) give

u(t) = c−1
1 f(t − ε)− c−1

1 (α + c0)c−1
1 f(t − 2ε) + c−1

1 (α + c0)c−1
1 αϕ(t − 2ε). (23)

The formulas (22) and (23) give the two additional restrictions of u needed in the
expansion (15). We note that these restrictions, at the time being, depend on the
auxiliary restriction ϕ of u.

Now it remains to solve (20) and (21). First, the two functions occurring in the
r.h.s. of the equation (20) are already known and may be expressed through (15).
The equation (20) may be thought as a constraint either on ϕ or on the l.h.s. f of (1).
We may observe that ϕ(τ − ε) occurs twice in u(t) and two times in u(t − ε). So, the
coefficient we are looking for is equal to

θ = ((α + c0)δℓ + c−1δℓ−1)[coeff of ϕ in u(τ + ε)]

+ ((α + c0)δℓ−1 + c−1δℓ−2)γ[coeff of ϕ in u(τ)],

where ℓ = M or ℓ = M − 1, depending on the location of τ w.r.t. tf −Mε. Direct
inspection of these coefficients from (22) and (23) yields the explicit expression of
the coefficient of ϕ in (20):

θ = ((α + c0)δℓ + c−1δℓ−1)(c−1
1 (α + c0)c−1

1 α)

+ ((α + c0)δℓ−1 + c−1δℓ−2)γ(−c−1
1 α)

= [((α + c0)δℓ + c−1δℓ−1)c−1
1 (α + c0)− ((α + c0)δℓ−1 + c−1δℓ−2)γ]c−1

1 α.

12



5. Solving explicitly the functional equation when N = 1

Now, in order to simplify the matrix θ, we use the formulas (14) to eliminate α + c0
and c−1 and we get

θ = c1[(βδℓ +γδℓ−1)β + (βδℓ−1 +γδℓ−2)γ]c−1
1 α.

By using three times the recurrence (7), we obtain

θ = c1δℓ+2c
−1
1 α.

At the time being, no assumption has been made about α. From now on, we consider
the case when α is invertible and chosen in such a way that det(δℓ+2) , 0 (see (14)
and Remark 3). Therefore, det(θ) , 0. Hence, (20) may be solved w.r.t. ϕ(τ − ε). As
a by-product of the previous results, ϕ(τ − ε) is a linear combination of the values
of f on the set {τ + kε |k| ≤N }. It remains to solve equation (21) on ]tf , tf + ε]. We get
simply u(t) = α−1(f(t)− c−1u(t − ε)) for all t ∈]tf , tf + ε], where the r.h.s. has already
been determined. Then we have proved that, for a generic quadruplet (c−1, c0, c1,α)
and for all f : R → C

d , there exists one and only one solution to the functional
equation (1). □

Next, let us consider the case when α is zero, which stands for the characterization
of Im(□).

Theorem 4 – For all triplets (c−1, c0, c1) in an open dense subset of (Cd×d)3 and for
all g : [t0, tf ] → C

d , there exists one and only one extension f of g to R such that
Supp(f) ⊂ [t0 − ε, tf + ε] and the functional equation f = □u admits one and only one
solution in [t0, tf ].

Proof. We may assume by density that c1 and c−1 are invertible. Let be given
a function g : [t0, tf ]→ C

d and let us construct an appropriate extension f : R→ C
d

of g as follows. We set

f(t) =



0 if t < t0 − ε
p(t) if t0 − ε ≤ t < t0
g(t) if t0 ≤ t ≤ tf
q(t) if tf < t ≤ tf + ε
0 if t > tf + ε

for some auxiliary functions p and q with values in C
d . The proof consists in

showing that f lies in the range of □ if and only if p and q are uniquely determined
by g. We keep the notations of the previous proof. When α = 0, the formulas (13) to
(23) still hold, we have θ = 0 and the auxiliary function ϕ does not occur anymore.
Let us solve the two equations (20) and (21) w.r.t. the two restrictions p and q of f.
To write these equations, we introduce the operators

∆ℓf(τ) =
ℓ−1∑
k=1

δℓ−kc
−1
1 f(τ + kε).

13
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Let us notice that these operators may be thought as discrete integral operators.
Plugging formula (15), with the maximal value ℓ allowed for n, in the equation (20),
we get for all t ∈]tf − ε, tf ]

f(t) = c0(δℓu(τ + ε) + δℓ−1γu(τ) +∆ℓf(τ)) + c−1(δℓ−1u(τ + ε) + δℓ−2γu(τ)

+∆ℓ−1f(τ)),

t and τ being connected as previously by the requirements that τ ∈ [t0, t0 + ε[ and
t−τ
ε ∈N. Remembering the values of β,γ given by (14) and the recurrence (7), we

get:

f(t) = −c1(δℓ+1u(τ + ε) + δℓγu(τ)) + c0∆ℓf(τ) + c−1∆ℓ−1f(τ). (24)

Since we may respectively rewrite (22) and (23) as

u(τ) = c−1
1 p(τ) and u(τ + ε) = c−1

1 f(τ)− c−1
1 c0c

−1
1 p(τ),

we see that the coefficient of p = f(τ − ε) in (24) is given by:

(δℓ+1c
−1
1 c0 − δℓγ)c−1

1 = −δℓ+2c
−1
1 .

We assume the triplet (c−1, c0, c1) lies in the open dense subset where det(δℓ+2) , 0
and thus, we have shown that the restriction p exists and is unique. This being done,
the equation (20) yields

f(t + ε) = q(t) = c−1(δℓu(τ + ε) + δℓ−1γu(τ) +∆ℓf(τ)),

t and τ being connected as before, which is well-determined. As a consequence, the
formula (15) gives rise to one unique function u on [t0, tf ] such that □u = f and this
ends the proof. □

6 A matricial-based framework when N is arbitrary

Let us use a matricial-based framework for solving the functional equation for arbi-
trary N . In this section we assume throughout that cN and α are invertible, mainly
for the ease of exposition. We shall say that the (2N + 2)-tuple (c−N , . . . , c0, . . . , cN ,α)
is generic in (Cd×d)2N+2 provided the foregoing system (35) is Cramer. This system
(35) consists in N equations w.r.t. N unknowns, generalizing the auxiliary function
ϕ occurring in Section 5. Its coefficients are matricial polynomial functions w.r.t.
c−1
N (c0 + α) and the 2N − 1 matricial indeterminates c−1

N ck , k ∈ {−N,. . . ,N − 1} and
k , 0, which in a sense generalize (11).

Theorem 5 – If the (2N + 2)-tuple (c−N , . . . , c0, . . . , cN ,α) is generic, the functional equa-
tion (1) admits one and only one solution.

14
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Similarly, we shall say that the (2N + 1)-tuple (c−N , . . . , c0, . . . , cN ) is generic in
(Cd×d)2N+1 provided the foregoing matrix Θ defined by (36) is invertible. This
matrix is associated to a linear system of N equations w.r.t. N unknowns p1, . . .pN ,
which are the restrictions of f to parts of [t0 −Nε,t0[ in order that f lies in the range
of the operator □.

Theorem 6 – If the (2N +1)-tuple (c−N , . . . , c0, . . . , cN ) is generic, for all g : [t0, tf ]→C
d

there exists one and only one extension f : R→C
d such that Supp(f) ⊂ [t0−Nε,tf +Nε]

and the functional equation f = □u admits one and only one solution in [t0, tf ].

Proof (Of both theorems). Let u : R → C
d be a solution to equation (1), related to

A,B and U defined over R as follows:

B(t) =


c−1
N f(t)

0
...
0

 ∈C
2dN , U(t) =



u(t + (N − 1)ε)
...

u(t)
...

u(t −Nε)


∈C2dN , (25)

A(t) =


−c−1
N cN−1χ(t + (N − 1)ε) . . . −c−1

N (α + c0χ(t)) . . . −c−1
N c−Nχ(t −Nε)

Id 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 Id 0

 . (26)

The matrix A(t) ∈ C2dN×2dN is locally constant w.r.t t. Especially, when t ∈ [t0 +
Nε,tf −Nε], all the characteristic functions of the entries of A(t) are equal to 1 and
we shall agree to denote by A the constant value of A(t) in this segment. Let us
mention that the matrix A depends only on the 2N + 2 matrices ci and α and is
nothing but the block companion matrix of the functional equation (1).

When t < t0 −Nε or t > tf +Nε, we have already seen that the solution to the
equation (1) is given by u(t) = α−1f(t). Now, if t ∈ [t0 −Nε,tf −Nε], (2) may be
written as

u(t +Nε) = c−1
N [f(t)− (cN−1χ(t + (N − 1)ε)u(t + (N − 1)ε) + . . .

+ (α + c0χ(t))u(t) + . . .+ c−Nχ(t −Nε)u(t −Nε))]. (27)

When t ∈ [t0 −Nε,t0[, this equation expresses u(t +Nε) explicitly as a combination
of the N auxiliary functions ϕk(τ) = u(τ − kε), 1 ≤ k ≤N , which are at this level un-
known. Obviously, the functions ϕk(τ), 1 ≤ k ≤N , stand for the last N components
of U(τ). By using definitions (25) and (26), recurrence (27) may be rewritten as

U(t + ε) = A(t)U(t) +B(t), ∀t ∈ [t0 −Nε,tf −Nε].
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The preceding recurrence and Lemma 1 yield the formula

U(t +nε) = Cn(t)U(t) +Fn(t) (28)

for t0 −Nε ≤ t ≤ t + (n− 1)ε ≤ tf −Nε, where

Cn(t) =



n−1∐
k=0

A(t + kε) if t + (n− 1)ε < t0 +Nε,

An−N
N−1∐
k=0

A(t + kε)

 otherwise

(29)

and

Fn(t) =
n−1∑
k=0

 n−1∐
ℓ=k+1

A(t + ℓε)

B(t + kε). (30)

Focusing on the first row of (28), i.e., the first component u(t + (n +N − 1)ε) of
U(t+nε), we emphasize the fact that the unknown function u(t) may be expressed as
a linear combination of the delayed functions f(t + kε), k ∈Z through Fn(t), as well
as the auxiliary functions ϕk(τ), 1 ≤ k ≤ N , through U(t). So, as a first conclusion
of these calculations, u(t) is well-determined in the whole interval ] −∞, tf ], as
a combination of the auxiliary functions ϕk .

When t ∈ [tf −Nε,tf +Nε], we may deduce from (1) and (4) the two systems of
N functional equations which are analogous to (20) and (21), i.e.,

f(t) = αu(t) + c−Nu(t −Nε) + . . .+ cN−1u(t + (N − 1)ε) in ]tf −Nε,tf − (N − 1)ε]
f(t) = αu(t) + c−Nu(t −Nε) + . . .+ cN−2u(t + (N − 2)ε) in ]tf − (N − 1)ε, tf − (N − 2)ε]
...

f(t) = αu(t) + c−Nu(t −Nε) + . . .+ c0u(t) in ]tf − ε, tf ]

(31)

and 
f(t) = αu(t) + c−Nu(t −Nε) + . . .+ c−1u(t − ε) in ]tf , tf + ε]
f(t) = αu(t) + c−Nu(t −Nε) + . . .+ c−2u(t − 2ε) in ]tf + ε, tf + 2ε]
...

f(t) = αu(t) + c−Nu(t −Nε) in ]tf + (N − 1)ε, tf +Nε]

. (32)

Let us consider the case when α is invertible. We convert (31) into a linear system
for the N auxiliary unknown functions ϕk . To do this, we note first that (28), with
n =M and t = τ −Nε, writes as

U(τ + (M −N )ε) = CM (τ −Nε)U(τ −Nε) +FM (τ −Nε). (33)
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The first N components of U(τ −Nε) which occur in the right-hand side of the
previous equality are the auxiliary functions while the last N components are
values of the function α−1f at instants τ − (N + k)ε, 1 ≤ k ≤ N . Next, by shifting
adequately t in the system of equations (31), we get for all t ∈]tf −Nε,tf − (N − 1)ε]
the equality

f(t)
f(t + ε)
...

f(t + (N − 1)ε)

 = D


u(t + (N − 1)ε)

...
u(t −Nε)

 (34)

where

D =



cN−1 . . . . . . c1 (α + c0) c−1 . . . c−N
cN−2 . . . c1 (α + c0) c−1 . . . c−N 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

c1 . .
.

. .
.

. .
.

. .
. ...

(α + c0) c−1 . . . c−N 0 . . . . . . 0


∈CNd×(2Nd)

is a rectangular block Hankel matrix. By setting t = τ + (M −N )ε in (34) and using
(33), we easily get

DCM (τ −Nε)U(τ −Nε) =


f(τ + (M −N )ε)

...
f(τ + (M − 1)ε)

−DFM (τ −Nε). (35)

By partitioning the (Nd)× (2Nd) matrix DCM(τ −Nε) as (Θ1 Θ2), where Θ1,Θ2 ∈
C
Nd×Nd , we see that the previous linear system consists in N vectorial equations in

C
d depending on the N auxiliary functions ϕk and is Cramer provided that Θ1 is

invertible. Under the assumption of genericity, the previous condition is satisfied
and thus, there exists one and only one solution to (35). The auxiliary functions
being determined, as a rule, the function u is well defined and unique on ]−∞, tf ].
Since α is also invertible by assumption, we may compute the various extensions of u
on [tf , tf +Nε] using the system (32). This ends the proof of Theorem 5. The proof of
the second theorem proceeds in the same way. Let pk be the unknown restriction of f
to [t0−kε, t0−(k−1)ε[, for all k ∈ {1, . . . ,N }. Similarly let us define qk as the unknown
restriction of f to ]tf + (k − 1)ε, tf + kε], for all k ∈ {1, . . . ,N }. When α is zero and
det(cN ) , 0, the system (4) shows that u(t) may be arbitrarily chosen outside [t0, tf ].
Indeed, the auxiliary functions ϕk do not occur in the calculation of u. However, u
is well-determined in the whole interval [t0, tf ] provided g is given in this interval
and the pk , 1 ≤ k ≤N , are already determined. In order that u satisfies the systems
(31) and (32), the restrictions pk and qk , 1 ≤ k ≤ N , must be chosen adequately.
Let us focus on (31) or, equivalently, on (35). Indeed, both systems still hold when

17
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α = 0. However, our approach is different from previously since the unknowns
which are the pk’s are located exclusively in the term −DFM(τ −Nε). Indeed, the
above discussion shows that U(τ −Nε) does not depend on the restrictions pk nor
the matrix (f(τ + (M − k)ε))1≤k≤n. Let us determine the coefficient [Θ]ij ∈ Cd×d of
pj (τ) in the i-th equation in the system (35). To do this, we use the convention that
for some matrix Θ ∈C(Nd)×(Nd), the symbol [Θ]ij denotes the (d × d)-block located
at the (i, j)-entry of Θ. Then, due to formulas (25) and (30), we see that

[Θ]ij = −

D M−1∐
k=N−j+1

A(τ + (k −N )ε)


i1

c−1
N . (36)

We assume that the multiplet (c−N , . . . , cN ) is generic, which amounts to say that
Θ is invertible. Therefore, (35) is Cramer and admits one and only one solution
(p1, . . . ,pN ). Next, by using the same transformation which led to (34), the system
(32) may be rewritten as


f(t)
...

f(t + (N − 1)ε)

 =


q1(t)
...

qN (t)

 =


c−1 c−2 . . . c−N
c−2 . . . c−N 0
... . .

.
. .
. ...

c−N 0 . . . 0



u(t − ε)

...
u(t −Nε)

,
for all t ∈]tf , tf + ε]. Since the matrix (u(t − kε))1≤k≤N is known, we obtain as
a conclusion that the restrictions (pk ,qk), 1 ≤ k ≤N , are uniquely determined by g,
which ends the proof of Theorem 6. □

7 Final comments

Before concluding this paper, it is natural to ask if there exist other ways to handle
the functional equation αu+ C ⋆ (χu) = f. Since (1) is a convolution equation, one
might want to use the discrete Laplace (or Z-) transform to solve it. Indeed, if the
Z-transform is defined by Lu(p) =

∑
t∈εZ exp(−pt)u(t), then one has the formula

L(u⋆v)(p) = (Lu)(Lv) for all functions u and v on the real line, with compact support
and values in suitable algebras. So, when α = 0, the image of (1) is L(C)L(χu) = L(f )
and, thus, if L(C) is invertible, we get

L(χu)(p) =

∑
k∈Z

ck exp(pkε)

−1 ∑
k∈Z

exp(−pkε)f(kε)

 .
Unfortunately, the determination of the original u has been transferred to a difficult
problem of moments. Moreover, this approach does not apply to the general case
α , 0.
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Another way to proceed would be to apply Picard’s method. Indeed, one sees
that (1) is equivalent to

u = α−1f−α−1□u = α−1f−α−1□(α−1f−α−1□u) = . . .

= α−1f+
∞∑
k=1

(−1)kα−k−1□kf.

Thus if ∥α−1∥ is small enough, one may hope that □ is a contraction of a suitable
Banach or Fréchet function space F . The main difficulty in this approach is the
requirement that the vector space F is complete, and it is related to the increasing
number of points of discontinuity of □kf, as k increases.

By comparison, the approach developed in this paper is less complicated and
more robust in the sense that the solution is given explicitly. Indeed, the central
parts of the proofs of the four previous theorems highlight not only the well-
posedness of (1) but also an effective computational way to construct interval by
interval the solution u.

In scope of future work, we suggest the three following problems. First, the
formulas (28) and (29) imply that, in the very special case when f is constant, u(t)
may be expressed through exponential-monomial functions inside [t0 +Nε,tf −Nε].
So, in this case, the search for pseudo-periodic solutions of (1) is linked to the
difficult elimination problem of requiring that the spectrum Sp(A) of A is included
in the unit circle of C. Second, we conjecture the following variant of Theorem 2. If
the coefficients κm1,m2,... occurring in formula (11) are rational or even algebraic over
Q and, in contrast, the entries ζi,j and ξi,j generate a subfield of C of transcendance

degree equal to 2d2, then all the quantities ψ(k)
i,j (ζ,ξ) and det(ψ(k))(ζ,ξ) do not

vanish. Lastly, we conjecture also that for all N ≥ 2, the genericity assumption
on the multiplets in Theorems 5 and 6 hold on open dense subsets of appropriate
products of matricial algebras. This conjecture seems natural in light of the two
theorems presented in Section 5.
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