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Abstract

Let X be a Banach space and K an absolutely convex, weak∗-compact subset
of X∗. We study consequences of K having a large or undefined Szlenk index
and subsequently derive a number of related results concerning basic sequences
and universal operators. We show that if X has a countable Szlenk index then
X admits a subspace Y such that Y has a basis and the Szlenk indices of Y are
comparable to the Szlenk indices of X. If X is separable, then X also admits
subspace Z such that the quotient X/Z has a basis and the Szlenk indices of X/Z
are comparable to the Szlenk indices of X. We also show that for a given ordinal
ξ the class of operators whose Szlenk index is not an ordinal less than or equal to
ξ admits a universal element if and only if ξ < ω1; W.B. Johnson’s theorem that
the formal identity map from ℓ1 to ℓ∞ is a universal non-compact operator is
then obtained as a corollary. Stronger results are obtained for operators having
separable codomain.
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1 Introduction

The Szlenk index is an ordinal index that measures the difference between the
norm and weak∗ topologies on subsets of dual Banach spaces. It was introduced by
Szlenk1 to solve (in the negative) the problem of whether there exists a separable,
reflexive Banach space whose subspaces exhaust the class of separable, reflexive
Banach spaces up to isomorphism. Since then the Szlenk index has found many
uses in the study of Banach spaces and their operators, as outlined in the surveys of
Lancien (2006) and Rosenthal (2003).

In the current paper we study the Szlenk index in two main contexts, the
first of these being the theory of basic sequences in Banach spaces. Our work on
basic sequences and the Szlenk index is based on the classical method of Mazur2

for producing subspaces with a basis and on the more recent method of Johnson

1Szlenk, 1968, “The non-existence of a separable reflexive Banach space universal for all separable
reflexive Banach spaces”.

2See e.g. Albiac and Kalton, 2016, Topics in Banach space theory, Section 1.5.
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and Rosenthal3 for producing quotients with a basis (a dual version of the Mazur
technique). We extend previous work in this area by Lancien4 and Dilworth-
Kutzarova-Lancien-Randrianarivony5. The other main motivation for our paper
is the study of universal operators. In Sections 1.1 and 1.2 we provide relevant
background on these two areas of study and explain the main contributions of the
current paper to these topics, along the way providing an outline of the content
of Sections 3 to 7. Basic notation and terminology for Banach space theory is set
out in Section 1.3, whilst background information on more specialised topics such
as Szlenk indices, trees and operators acting on Banach spaces over trees will be
provided in Section 2.

1.1 Structure of Banach spaces with large Szlenk index

Several authors have already studied the structure of subspaces and quotients of
Banach spaces having Szlenk index larger then a given ordinal. We shall now sketch
the previous such results of most relevance to us and explain the contributions of
the current paper to this topic. The first result of interest to us is the following
result due to G. Lancien6.

Proposition 1 – Let X be a Banach space and ξ < ω1. If Sz(X) > ξ then there exists
a separable subspace Y of X such that Sz(Y ) > ξ.

To prove Proposition 1 Lancien showed7 that for a suitable tree T of rank ξ + 1,
the estimate Sz(X,ϵ) > ξ (which follows for some ϵ > 0 from the estimate Sz(X) > ξ)
implies the existence of families of vectors (xt)t∈T ⊆ BX and (x∗t )t∈T ⊆ BX∗ whose
construction depends on ϵ and which satisfy certain properties that bear witness to
the fact that Sz(X) > ξ. Without giving the precise details of Lancien’s construction
here, we mention that the subspace Y is taken to be the closed linear span in X of the
family (xt)t∈T . Recently, Dilworth, Kutzarova, Lancien and Randrianarivony8 have
adapted Lancien’s construction to show that, under the additional hypothesis that X
is reflexive, (xt)t∈T may be assumed to be a basic sequence for a suitable enumeration
of T . In Section 3 we devise a further refinement of Lancien’s construction, the
precise details of which are captured in the statement of our main technical result,
Theorem 9. A number of consequences of Theorem 9 follow, including the main
results of the current paper, namely Theorems 1, 2, 6 and 7.

Our first application of Theorem 9 is the following result, proved in Section 4,
which asserts that if X is an infinite-dimensional Banach space with countable

3Johnson and Rosenthal, 1972, “On w∗-basic sequences and their applications to the study of Banach
spaces”.

4Lancien, 1996, “On the Szlenk index and the weak∗-dentability index”.
5Dilworth et al., 2017, “Equivalent norms with the property (β) of Rolewicz”.
6Lancien, 1996, “On the Szlenk index and the weak∗-dentability index”, Proposition 3.1.
7Ibid., Lemma 3.4.
8Dilworth et al., 2017, “Equivalent norms with the property (β) of Rolewicz”, Proposition 3.1(i).
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Szlenk index, then X admits a subspace with a basis and with ϵ-Szlenk indices
comparable to the ϵ-Szlenk indices of X:

Theorem 1 – Let X be an infinite-dimensional Banach space such that Sz(X) < ω1 and
let δ > 0. Then there exists a subspace Y ⊆ X such that Y has a shrinking basis with basis
constant not exceeding 1 + δ and such that

∀ϵ > 0 Sz
(
Y ,

ϵ
66

)
≥ Sz(X,ϵ), (1)

hence Sz(Y ) = Sz(X).

To compare Theorem 1 with the earlier results of Lancien (1996) and Dilworth
et al. (2017), first note that it follows easily from Proposition 1 that if X is a Banach
space with Sz(X) < ω1, then there exists a separable subspace Y of X such that
Sz(Y ) = Sz(X). For instance, take Y to be the closed linear span of

⋃∞
n=1Yn in X,

where, for each n ∈N, Yn is a separable subspace of X with Sz(Yn) > Sz(X,1/n)− 1.
However, even in the case that X is reflexive one cannot in general conclude from
Proposition 3.1(i) of Dilworth et al. (2017) (or from Proposition 1) that X admits
a subspace with a basis and with Szlenk index equal to the Szlenk index of X.
Indeed, from Proposition 3.1(i) of Dilworth et al. (2017) we may only deduce
that the subspace Y with a basis satisfies Sz(Y ) ≥ ξω (on the other hand, if X is
reflexive and Sz(X) = ωα+1 for some α < ω1, then it follows from Proposition 3.1(i)
of Dilworth et al. (2017) that X admits a subspace Y with a basis and satisfying
Sz(Y ) = Sz(X); to see this, take a subspace Y with a basis such that Sz(Y ) > ωα).

One of the most important features of Theorem 9 is that the construction of
families of vectors (xt) and (x∗t ) in the proof of the theorem depends on a family
(ϵn)n<ω of (possibly infinitely many distinct) epsilons and associated estimates
Sz(K,ϵn) > ξn; the earlier such constructions from Lancien (1996) and Dilworth
et al. (2017) depend instead on consideration of just a single ϵ and an associated
estimate Sz(X,ϵ) > ξ. The greater generality taken in our approach plays a key role
in the proof of Theorem 1. In particular whereas the constructions underpinning
Proposition 1 above and Proposition 3.1(i) of Dilworth et al. (2017) yield an estimate
of the type shown at Equation (1) for single ϵ > 0, with our approach we take the
sequence (ϵn)n<ω in the statement of Theorem 9 to be dense in (0,∞) and apply
a straightforward density argument to obtain the estimate shown at Equation (1)
for all ϵ > 0, which is enough to conclude the final assertion of Theorem 1 (without
any reflexivity hypothesis).

We now turn our attention to quotients. Under the additional assumption that
X is separable, Theorem 9 yields the existence of a quotient of X having a basis and
with ϵ-Szlenk indices comparable to the ϵ-Szlenk indices of X, as per the following
result established in Section 4.

Theorem 2 – Let X be an infinite-dimensional Banach space with separable dual and
let δ > 0. Then there exists a subspace Z ⊆ X such that X/Z has a shrinking basis with
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basis constant not exceeding 1 + δ and such that

∀ϵ > 0 Sz
(
X/Z,

ϵ
9

)
≥ Sz(X,ϵ) , (2)

hence Sz(X/Z) = Sz(X).

Theorem 2 should be compared with the following earlier result of G. Lancien9.

Proposition 2 – Let X be a separable Banach space and ξ < ω1. If Sz(X) > ξ then there
exists a subspace Z of X such that X/Z has a shrinking basis and Sz(X/Z) > ξ.

To prove Proposition 2 Lancien combined the construction developed in the
proof of Lemma 3.4 of Lancien (1996) (previously mentioned in the discussion
following Proposition 1 on p. 164) with the techniques developed by Johnson and
Rosenthal10 for constructing weak∗-basic sequences in dual Banach spaces. We take
a similar approach in the proof of Theorem 9, with the main difference between
Theorem 2 and Proposition 2 again arising from the more general approach taken in
the construction of the families of vectors (xt) and (x∗t ) in the proof of the Theorem 9,
in particular the dependence on an infinite family (ϵn)n<ω of (possibly distinct)
epsilons and associated estimates Sz(K,ϵn) > ξn rather than just a single ϵ and
associated estimate Sz(X,ϵ).

Our comparison of Theorem 2 with Proposition 2 is similar to our comparison
of Theorem 1 with Proposition 1. In general one may deduce from Proposition 2
only that Sz(X/Z) ≥ ξω; the stronger assertion that Sz(X/Z) = Sz(X) need not follow
except in the case that Sz(X) = ωα+1 for some ordinal α and we take Z to satisfy
Sz(X/Z) > ωα . By contrast, Theorem 2 provides the conclusion that Sz(X/Z) = Sz(X)
in all cases.

Remark 1 – Trees have been used by a number of authors to study and compare
a variety of ordinal indices on Banach spaces. For instance, the work of Alspach,
Judd, and Odell (2005) defines and studies a number of local ℓ1-indices and com-
pares these indices with one another and with the Szlenk index.

1.2 Universal operators

The initial motivation for writing the current paper was a desire to study the
Szlenk index in the context of the problem of finding universal elements for certain
subclasses of the classL of all (bounded, linear) operators between Banach spaces.
For operators T ∈ L (X,Y ) and S ∈ L (W,Z), where W,X,Y and Z are Banach
spaces, we say that S factors through T (or, equivalently, that T factors S) if there

9Lancien, 1996, “On the Szlenk index and the weak∗-dentability index”, Proposition 3.5.
10Johnson and Rosenthal, 1972, “On w∗-basic sequences and their applications to the study of Banach

spaces”.
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exist U ∈ L (W,X) and V ∈ L (Y ,Z) such that V TU = S. With this terminology,
for a given subclass C ofL we say that an operator Υ ∈ C is universal for C if Υ
factors through every element of C . Typically C will be the complement ∁I of an
operator ideal I in the sense of Pietsch11 (that is, ∁I consists of all elements of
L that do not belong to I ), or perhaps the restriction J ∩∁I of ∁I to a large
subclass J of L ; e.g., J might denote a large operator ideal or the class of all
operators having a specified domain or codomain. One may think of a universal
element of the class C as a minimal element of C that is ‘fixed’ or ‘preserved’ by
each element of C .

The notion of universality for a class of operators goes back to the work of
Lindenstrauss and Pełczyński12, who obtained the following result.

Theorem 3 – Let X and Y be Banach spaces and suppose T : X −→ Y is a non-weakly
compact operator. Then T factors the (non-weakly compact) summation operator Σ :
(an)∞n=1 7→ (

∑n
i=1 ai)

∞
n=1 from ℓ1 to ℓ∞. In particular, Σ is universal for the class of

non-weakly compact operators.

Since the publication of Lindenstrauss and Pełczyński (1968) a number of results
in a similar spirit to Theorem 3 have appeared in the literature. Perhaps the most
well-known is the following result of W.B. Johnson13, which is a special case of
Theorem 6 of the current paper.

Theorem 4 – Let X and Y be Banach spaces and suppose T : X −→ Y is a non-compact
operator. Then T factors the (non-compact) formal identity operator from ℓ1 to ℓ∞.
In particular, the formal identity operator from ℓ1 to ℓ∞ is universal for the class of
non-compact operators.

Another universality result of note, due to C. Stegall14, is the existence of
a universal non-Asplund operator. The Asplund operators have several equivalent
definitions in the literature; in the current paper we say that an operator T : X −→ Y
is Asplund if (T |Z )∗(Y ∗) is separable for any separable subspace Z ⊆ X. We refer the
reader to Stegall (1981) for further properties and characterisations of Asplund
operators. Stegall’s universal operator is defined in terms of the Haar system
(hm)∞m=0 ⊆ C({0,1}ω), where each factor {0,1} is discrete and {0,1}ω is equipped with
its compact Hausdorff product topology. For the purpose of stating Stegall’s result,
we let µ denote the product measure on {0,1}ω obtained by equipping each factor
{0,1} with its discrete uniform probability measure and let H : ℓ1 −→ L∞({0,1}ω,µ)
be defined by setting Hx =

∑∞
m=1 x(m)hm−1 for each x = (x(m))∞m=1 ∈ ℓ1. Stegall’s

result is the following theorem.

11Pietsch, 1980, Operator ideals.
12Lindenstrauss and Pełczyński, 1968, “Absolutely summing operators inLp-spaces and their appli-

cations”, Theorem 8.1.
13Johnson, 1971, “A universal non-compact operator”.
14Stegall, 1975, “The Radon-Nikodým property in conjugate Banach spaces”, Theorem 4.
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Theorem 5 – Let X and Y be Banach spaces such that X is separable and suppose
T ∈L (X,Y ) is such that T ∗(Y ∗) is nonseparable. Then H factors through T .

Since the domain of H , namely ℓ1, is separable, and since H ∗ has non-separable
range, H is a non-Asplund operator. It therefore follows from Theorem 5 that H is
a universal non-Asplund operator. We note that a different universal non-Asplund
operator has been obtained by the author of the current paper using the techniques
developed here in the context of studying the Szlenk index15.

Other universality results besides those mentioned above can be found in the
work of Brooker (2017), Cilia and Gutiérrez (2015), Dilworth (1985), Girardi and
Johnson (1997), Hinrichs and Pietsch (2000), Oikhberg (2016), and the Handbook
survey on operator ideals by Diestel, Jarchow, and Pietsch (2001). Theorem 4 above
has been applied in the study of information-based complexity by Hinrichs, Novak,
and Woźniakowski (2013).

Remark 2 – K. Beanland and R.M. Causey16 have recently attained universality
results for further classes of operators defined in terms of operator ideals.

In Section 5 we turn our attention to applying Theorem 9 to the study of univer-
sal operators for classes defined in terms of a bound on the Szlenk index. Our main
result to this end is the following theorem.

Theorem 6 – Let X and Y be Banach spaces, α < ω1, T ∈L (X,Y ) \S Z α(X,Y ) and
(T ,⪯) a countably infinite, rooted, well-founded tree with ρ(T ) < ωα+1. Then ΣT ⋆
factors through T . Moreover if T is blossomed and ρ(T ) ≥ωα , then ΣT ⋆ is universal for
∁S Z α . It follows that, for an ordinal β, the class ∁S Z β admits a universal element if
and only if β < ω1.

In the statement of Theorem 6 S Z α denotes the class consisting of all operators
whose Szlenk index is an ordinal no larger than ωα (c.f. Definition 1 on p. 172),
whilst the operator ΣT ⋆ is the path-sum operator of T ⋆ defined in Section 2.3, where
T ⋆ is the rooted tree T minus its (unique) minimal element.

Stronger universality results are achieved in Section 6 for operators having
separable codomain, the main result in this direction being the following theorem.

Theorem 7 – Let X and Y be Banach spaces, α < ω1, T ∈L (X,Y ) \S Z α(X,Y ) and
(T ,⪯) a countably infinite, rooted, well-founded tree with ρ(T ) < ωα+1. If Y is separable
then σ̊T factors through T . Moreover if T is blossomed and ρ(T ) ≥ ωα then σ̊T is
universal for the class of non-α-Szlenk operators having separable codomain.

The operator σ̊T featured in the statement of Theorem 7 is the path-sum operator
defined at Definition 4 on p. 198, which is essentially the same as ΣT but with

15Brooker, 2017, “Non-Asplund Banach spaces and operators”.
16Beanland and Causey, 2017, “Genericity and universality for operator ideals”, arXiv:1711.09244.
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a restricted (in particular, norm separable) codomain. We conclude Section 6 by
noting that stronger versions of the classical universality results of Lindenstrauss
and Pełczyński (Theorem 3 on p. 167) and Johnson (Theorem 4 on p. 167) hold for
operators whose codomain has weak∗-sequentially compact dual ball.

In Section Section 7 we investigate whether the techniques developed in Sec-
tions 3 and 5 can be used to show the existence of universal operators for classes of
Asplund operators having an uncountable strict lower bound for the Szlenk index.
Though we do not completely answer this question, we show that the techniques de-
veloped in the earlier sections of the paper cannot decide the existence of universal
operators in this setting in ZFC.

1.3 Notation and terminology

We now outline the notation and terminology used in the current paper. We work
with Banach spaces over the scalar field K = R or C. Typical Banach spaces are
denoted by the letters W , X, Y and Z, with the identity operator of X denoted IdX .
Following the terminology introduced earlier in the current paper, for Banach
spaces W , X and Z and an operator S : W −→ Z, we say that S factors through X
if S factors through IdX . We write X∗ for the dual space of X and denote by ıX
the canonical embedding of X into X∗∗. We define BX := {x ∈ X | ∥x∥ ≤ 1} and
B◦X := {x ∈ X | ∥x∥ < 1}. By a subspace of a Banach space X we mean a linear subspace
of X that is closed in the norm topology. For a Banach space X, C ⊆ X and D ⊆ X∗
we define C⊥ := {x∗ ∈ X∗ | ∀x ∈ C, x∗(x) = 0} and D⊥ = {x ∈ X | ∀x∗ ∈D, x∗(x) = 0}. We
denote by [C] the norm closed linear hull of C in X, with a typical variation on this
notation being that for an indexed set {xi | i ∈ I} ⊆ X we may write [xi]i∈I or [xi | i ∈ I]
in place of [{xi | i ∈ I}]. With this notation we have that [D]

w∗
is the weak∗ closed

linear hull of D in X∗. We shall make use of the well-known fact that, for a Banach
space X and a sequence (x∗m)∞m=1 ⊆ X∗, the quotient map Q : X −→ X/

⋂∞
m=1 ker(x∗m)

has the property that Q∗ is an isometric weak∗-isomorphism of (X/
⋂∞
m=1 ker(x∗m))∗

onto [x∗m |m ∈N]
w∗

.
Operator ideals are denoted by script letters such as I . Operator ideals of

particular interest in the current paper are:

• K , the compact operators;

• W , the weakly compact operators;

• X , the operators having separable range;

• X ∗, the operators whose adjoint has separable range;

• S , the strictly singular operators;
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• D , the Asplund operators (also known as the decomposing operators); and,

• S Z α , the α-Szlenk operators for a given ordinal α.

All of the operator ideals in the list above are closed, and most of them are well
known. An operator T : X −→ Y is strictly singular if for every infinite dimensional
subspace Z ⊆ X the restriction T |Z fails to be an isomorphic embedding of Z into
Y (that is, if for every such Z and every ϵ > 0 there exists z ∈ Z such that ∥z∥ = 1
and ∥T z∥ < ϵ). For a given ordinal α, the class S Z α consists of all operators whose
Szlenk index is an ordinal not exceeding ωα . These classes have been studied
in some detail by the current author17 and we note in particular that important
relationships between the operator ideals S Z α and other ideals in the list above
shall be given in Section 2.1. It is well known18 that X ∗ is a subclass of X .

For infinite dimensional Banach spaces X and Z we say that X is Z-saturated
if every infinite dimensional subspace of X contains a further subspace that is
isomorphic to Z. It is well known19 that for each 1 ≤ p <∞ the Banach space ℓp
is ℓp-saturated and that for distinct p,q ∈ [1,∞) neither of the spaces ℓp and ℓq is
isomorphic to a subspace of the other. From this is follows readily that if X is
ℓp-saturated and Y is ℓq-saturated for distinct p,q ∈ [1,∞) then every operator from
X to Y is strictly singular (we shall use this fact later in the proof of Proposition 10).

By Ord we denote the class of all ordinals, so that by α ∈Ord we mean that α is
an ordinal. We write cof (α) for the cofinality of the ordinal α. If α is a successor
ordinal, we write α − 1 to mean the unique ordinal whose successor is α.

For a set S and a subset R ⊆ S we write χSR for the indicator function of R in
S, or simply χR if no confusion can result. When discussing a Banach space ℓ1(S)
for some set S, for s ∈ S we typically denote by es the element of ℓ1(S) satisfying
es(s′) = 1 if s′ = s and es(s′) = 0 if s′ , s (s′ ∈ S).We thus denote by (en)∞n=1 the standard
unit vector basis of ℓ1 = ℓ1(N). Where confusion may otherwise result, we may
write eSs in place of es to specify the space ℓ1(S) to which es belongs.

We shall repeatedly use the fact that for a set I , Banach space X and family
{xi | i ∈ I} ⊆ X with supi∈I ∥xi∥ < ∞, there exists a unique element of L (ℓ1(I),X)
satisfying ei 7→ xi , i ∈ I .

For a Banach space X, a subset A ⊆ X, and ϵ > 0, we say that A is ϵ-separated if
∥x − y∥ > ϵ for any distinct x,y ∈ A. For B ⊆ C ⊆ X and δ > 0 we say that B is a δ-net
in C if for every w ∈ C there exists z ∈ B such that ∥w − z∥ ≤ δ.

17Brooker, 2012, “Asplund operators and the Szlenk index”.
18See e.g. Pietsch, 1980, Operator ideals, Proposition 4.4.8.
19See e.g. Albiac and Kalton, 2016, Topics in Banach space theory, Chapter 2.
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2. The Szlenk index, trees and operators on Banach spaces over trees

2 The Szlenk index, trees and operators on Banach
spaces over trees

2.1 The Szlenk index

Let X be a Banach space. For each ϵ > 0 define a derivation sϵ on weak∗-compact
subsets of X∗ as follows: for weak∗-compact K ⊆ X∗ let

sϵ(K) := {x∗ ∈ K | diam(U ∩K) > ϵ for every weak∗-open U ∋ x∗} .

Iterate sϵ transfinitely by setting s0ϵ(K) = K , sξ+1
ϵ (K) = sϵ(s

ξ
ϵ (K)) for every ordinal

ξ, and sξϵ (K) =
⋂
ζ<ξ s

ζ
ϵ (K) whenever ξ is a limit ordinal. The ϵ-Szlenk index of K ,

denoted Sz(K,ϵ), is defined as the smallest ordinal ξ such that sξϵ (K) = ∅, if such
an ordinal exists; if no such ordinal exists then Sz(K,ϵ) is undefined. (Note that,
by weak∗-compactness, Sz(K,ϵ) is a successor ordinal when it exists.) Notationally,
we write Sz(K,ϵ) < ∞ to mean that Sz(K,ϵ) is defined, and Sz(K,ϵ) = ∞ to mean
that Sz(K,ϵ) is undefined. If Sz(K,ϵ) is defined for all ϵ > 0 then the Szlenk index
of K , denoted Sz(K), is the ordinal supϵ>0 Sz(K,ϵ). If Sz(K,ϵ) is undefined for some
ϵ > 0, then Sz(K) is undefined; we write Sz(K) <∞ to mean that Sz(K) is defined,
and Sz(K) =∞ to mean that Sz(K) is undefined. Note that while Sz(K,ϵ) ≤ ξ means
that Sz(K,ϵ) is defined and equal to an ordinal not exceeding ξ, the statement
Sz(K,ϵ) ≰ ξ means either that Sz(K,ϵ) is undefined or that Sz(K,ϵ) is defined and
exceeds ξ; similarly, Sz(K) ≰ ξ means either that Sz(K) is undefined or that Sz(K) is
defined and equal to an ordinal exceeding ξ.

Define the ϵ-Szlenk index of X and the Szlenk index of X to be the indices
Sz(X,ϵ) := Sz(BX∗ ,ϵ) and Sz(X) := Sz(BX∗ ), respectively. If Y is a Banach space
and T : X −→ Y an operator, define the ϵ-Szlenk index of T and the Szlenk index of T
to be the indices Sz(T ,ϵ) := Sz(T ∗(BX∗ ),ϵ) and Sz(T ) := Sz(T ∗(BX∗ )), respectively.

A useful survey of the Szlenk index and its applications in Banach space theory
has been written by Lancien (2006). For facts regarding Szlenk indices of operators
we refer the reader to the work of Brooker (2012). The following proposition collects
some well-known facts concerning Szlenk indices of Banach spaces and operators.

Proposition 3 – Let X be a Banach space.

(i) For K1 ⊆ K2 ⊆ X∗, ϵ1 ≥ ϵ2 > 0 and ordinals ξ1 ≥ ξ2 we have sξ1
ϵ1 (K1) ⊆ sξ2

ϵ2 (K2).

(ii) For a subspace Z ⊆ X we have Sz(Z) ≤ Sz(X) and Sz(X/Z) ≤ Sz(X).

(iii) The following are equivalent:

(a) Sz(X) <∞ (that is, the Szlenk index is defined).

(b) X is an Asplund space.
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(c) X∗ has the Radon-Nikodým property.

(d) Every separable subspace of X has separable dual.

An argument due to A. Sersouri20 shows that if the Szlenk index of a Banach
space or an operator is defined, then it is of the form ωα for some ordinal α (and
more recently Causey21 has described all the possible ordinals α for which ωα may
be realised as the Szlenk index of a Banach space); this observation leads to the
following definition.

Definition 1 – For α an ordinal define the class

S Z α := {T ∈L | Sz(T ) ≤ωα} .

If T ∈S Z α , we say that T is α-Szlenk.

It is a result of Brooker (2012) that the classes S Z α are distinct for different
values of α and that each such class is a closed operator ideal. Moreover, S Z 0
coincides with the classK of compact operators, whilst the class

⋃
α∈OrdS Z α of

all operators whose Szlenk index is defined coincides with the classD of Asplund
operators. For operators with separable range, the following result of Brooker22

provides information regarding the relationship between the classes X ∗, D and
S Z α for α ∈Ord.

Proposition 4 – The following chain of equalities holds:

X ∗ =X ∩D =X ∩
⋃
α∈Ord

S Z α =X ∩
⋃
α<ω1

S Z α =X ∩S Z ω1
.

2.2 Trees

A tree is a partially ordered set (T ,⪯) for which the set {s ∈ T | s ⪯ t} is well-ordered
for every t ∈ T . We shall frequently suppress the partial order ⪯ and refer to the
underlying set T as the tree. An element of a tree is called a node. For S ⊆ T we
denote by MIN(S) (resp., MAX(S)) the set of all minimal (resp., maximal) elements
of S . A subtree of T is a subset of T equipped with the partial order induced by the
partial order of T , which we also denote ⪯. A chain in T is a totally ordered subset of
T . A branch of T is a maximal (with respect to set inclusion) totally ordered subset
of T . We say that T is well-founded if it contains no infinite branches, and chain-
complete if every chain C in T admits a unique least upper bound. Clearly, every
well-founded tree is chain-complete. A subset S ⊆ T is said to be downwards closed in
T if S =

⋃
t∈S {s ∈ T | s ⪯ t}. Following Todorčević (1984), a path in T is a downwards

20Sersouri, 1989, “Lavrientiev index for Banach spaces”, proof of Lemma 6.
21Causey, 2017, “The Szlenk index of injective tensor products and convex hulls”.
22Brooker, 2012, “Asplund operators and the Szlenk index”, Proposition 2.11.
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closed, totally ordered subset of T . An interval in T is a subset of T of the form
(t′ , t′′], [t′ , t′′], [t′ , t′′) or (t′ , t′′), where, for t′ , t′′ ∈ T , (t′ , t′′] := {t ∈ T | t′ ≺ t ⪯ t′′} and
the other types of intervals are defined analogously. (For a tree (T ,⪯) and s, t ∈ T
we write s ≺ t to mean that s ⪯ t and s , t.) For t ∈ T we define the following sets:

T [⪯ t] = {s ∈ T | s ⪯ t}
T [≺ t] = {s ∈ T | s ≺ t}
T [t ⪯] = {s ∈ T | t ⪯ s}
T [t ≺] = {s ∈ T | t ≺ s}
T [t+] = MIN(T [t ≺])

By t− we denote the maximal element of T [≺ t], if it exists (that is, if the order type
of T [≺ t] is a successor). If s, t ∈ T are such that s ⪯̸ t and t ⪯̸ s, then we write s ⊥ t.
Following Godefroy, Kalton, and Lancien (2001), a subtree S of T is said to be a full
subtree of T if it is downwards closed, |S ∩MIN(T )| = |MIN(T )|, and for every t ∈ S
we have |S[t+]| = |T [t+]|. A tree is said to be rooted if |MIN(T )| ≤ 1. In particular,
a nonempty tree is rooted if and only if it admits a unique minimal element, which
we call the root of T . We denote by T ⋆ the subtree T \MIN(T ) of T . For t ∈ T the
height of t, denoted htT (t), is the order type of T [≺ t]. The height of T is the ordinal
ht(T ) = sup{htT (t) + 1 | t ∈ T }. Note that ht(T ) ≤ω if and only if T [≺ t] is finite for
every t ∈ T .

Let T = (T ,⪯) be a tree, α an ordinal and ψ : α −→ T a surjection. Then
ψ induces a well-ordering of T that extends ⪯. Indeed, define A0 = T [⪯ ψ(0)]
and, if β > 0 is an ordinal such that Aγ has been defined for all γ < β, define
Aβ = T [⪯ ψ(β)] \

⋃
γ<β T [⪯ ψ(γ)]. The induced well-order ≤ of T is defined by

declaring s ≤ t, where s ∈ Aβ and t ∈ Aβ′ , if β < β′ or if β = β′ and s ⪯ t. Note that
if T is countable and ht(T ) ≤ ω then the well-ordering of T induced as above by
a surjection of ω onto T is of order type ω. In fact, the following statements are
equivalent for an infinite tree T :

(i0) T is countable and T [≺ t] is finite for every t ∈ T ;

(ii0) T is countable and ht(T ) ≤ω;

(iii0) There exists a bijection τ of ω onto T such that τ(l) ⪯ τ(m) implies l ≤ m
for l,m < ω.

Example 1 – Let Ω :=
⋃
n<ω

∏
nω. That is, Ω is the set of all finite (including

possibly empty) sequences of finite ordinals. We define an order ⊑ on Ω by saying
that s ⊑ t if and only if s is an initial segment of t. Note that Ω is a rooted tree,
with its root being the empty sequence ∅. For n < ω and t ∈Ω we denote by n⌢t
the concatenation of (n) with t; that is, n⌢t = (n) if t = ∅ and n⌢t = (n,n1, . . . ,nk)
if t = (n1, . . . ,nk). It is straightforward to show that for an arbitrary tree (T ,⪯) the
following statements are equivalent to statements (i0)–(iii0) above and to each other:
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(iv0) T is order-isomorphic to a subtree of Ω;

(v0) T is order-isomorphic to a downwards-closed subtree of Ω⋆ .

Moreover, if T is rooted then (i0)–(iv0) are equivalent to:

(vi0) T is order-isomorphic to a downwards-closed subtree of Ω.

We now describe a method for inductively defining a decreasing (with respect to
set inclusion) family of downwards closed subtrees of a given tree, indexed by the
ordinals. To this end for a tree (T ,⪯) let

T (0) = T ;

T (ξ+1) = T (ξ) \MAX(T (ξ)) for every ordinal ξ; and,

T (ξ) =
⋂
ξ ′<ξ

T (ξ ′) if ξ is a limit ordinal.

The fact that T (ξ) is downwards closed in T for all ordinals ξ follows from a straight-
forward transfinite induction.

The rank of a node t ∈ T is defined to be the unique ordinal ρT (t) such that
t ∈ T (ρT (t)) \ T (ρT (t)+1), if it exists. Notice that if s, t ∈ T are such that t ≺ s and ρT (t)
exists, then ρT (s) exists and satisfies ρT (s) < ρT (t) since the derived trees T (ξ) are
downwards closed. It follows that if t ∈ T is such that ρT (s) exists for all s ∈ T [t+],
then ρT (t) exists and satisfies

ρT (t) = sup{ρT (s) + 1 | s ∈ T [t+]} . (3)

Thus, if t0 ∈ T is such that ρT (t0) does not exist, there exists t1 ∈ T [t0+] such that
ρT (t1) does not exist; similarly, there exists t2 ∈ T [t1+] such that ρT (t2) does not
exist, and in this way we inductively define an infinite chain (tn)n<ω in T , hence
T is not well-founded. Conversely, if T contains an infinite branch, B say, then,
with sn denoting the element of B of height n in T , we have by induction that
{sn | n < ω} ⊆ T (ξ) for all ordinals ξ, hence ρT (sn) is undefined for all n. We deduce
that ρT (t) exists for all t ∈ T if and only if T is well-founded, if and only if T (ξ) = ∅

for some ordinal ξ. If T is well-founded, the rank of T is the ordinal

ρ(T ) := min{ξ | T (ξ) = ∅} = sup{ρT (t) + 1 | t ∈ T }.

Notice that if T is rooted, with root t0, say, then T (ρT (t0)) = {t0}, hence ρ(T ) =
ρT (t0) + 1 is a successor ordinal.

We now give the definition of a blossomed tree, due to Gasparis (2005).

Definition 2 – We say that a countable tree (T ,⪯) is blossomed if it is rooted, well-
founded, and for each t ∈ T \MAX(T ) there exists a bijection ψ :ω −→ T [t+] such
that m ≤ n < ω implies ρT (ψ(m)) ≤ ρT (ψ(n)).
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Blossomed trees were used by Gasparis23 to study fixing properties of operators
of large Szlenk index acting on C(K) spaces. The important property of a blossomed
tree T in studying the Szlenk index is that for every t ∈ T \MAX(T ) and cofinite
subset Q ⊆ T [t+] we have

sup{ρT (t′) | t′ ∈ Q} = sup{ρT (t′′) | t′′ ∈ T [t+]}; (4)

this condition clearly holds for any blossomed tree and, moreover, any countable,
rooted, well-founded tree T satisfying the property stated at Equation (4) admits
a subtree S such that ρ(S) = ρ(T ) and S is blossomed. Thus, blossomed trees can
be thought of as the ‘minimal’ trees satisfying these conditions and, moreover, the
formally stronger definition of a blossomed tree is typically more convenient to
work with than the property stated at Equation (4) for the purposes of proving
results concerning the Szlenk index, such as Proposition 11.

The following example guarantees a rich supply of blossomed trees. Note that
other examples of blossomed trees, namely the Schreier families of finite subsets
of N, are used in the context of Szlenk indices in Gasparis (2005). The construction
of trees in Example 2 below is essentially the same as that given by Bourgain on
p. 91 of Bourgain (1979).

Example 2 – We construct, via transfinite induction on ξ < ω1, a family (Tξ )ξ<ω1
consisting of blossomed subtrees of Ω that satisfy ρ(Tξ ) = ξ + 1 for each ξ < ω1. Set
T0 = {∅}. Suppose ξ > 0 is an ordinal such that the Tζ has been defined for all ζ < ξ;
we define Tξ as follows. Let (ξn)∞n=0 be a non-decreasing, cofinal sequence in ξ, and
set

Tξ = {∅} ∪ {n⌢t | n < ω, t ∈ Tξn } .

A straightforward transfinite induction on ζ ≤ ξ shows that

∀ζ ≤ ξ T (ζ)
ξ = {∅} ∪

⋃
n<ω

{n⌢t | t ∈ T (ζ)
ξn
} , (5)

hence

∀ζ < ξ MAX(T (ζ)
ξ ) =

⋃
n<ω

{n⌢t | t ∈MAX(T (ζ)
ξn

)} . (6)

Taking ζ = ξ in Equation (5) yields T (ξ)
ξ = {∅}, hence ρTξ (∅) = ξ and ρ(Tξ ) = ξ + 1.

For n < ω let ın : Tξn −→ Tξ be the map t 7→ n⌢t. From Equation (6) we have
ρTξ (n⌢t) = ρTξn (t) every n < ω and t ∈ Tξn . Thus, if for n < ω and t ∈ Tξn \MAX(Tξn )
the map ψ : ω −→ Tξn [t+] is a bijection such that (ρTξn (ψ(m)))∞m=0 is non-decreasing
(as per Example 2), then ın ◦ψ :ω −→ Tξ [(n⌢t)+] is a bijection with

(ρTξ (ın ◦ψ(m)))∞m=0 = (ρTξ (n⌢ψ(m)))∞m=0 = (ρTξn (ψ(m)))∞m=0

23Gasparis, 2005, “Operators on C(K) spaces preserving copies of Schreier spaces”.
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non-decreasing. Similarly, n 7→ (n) is a bijection of ω onto Tξ [∅+] and

(ρTξ ((n)))∞n=0 = (ρTξn (∅))∞n=0 = (ξn)∞n=0

is non-decreasing. We have now shown that Tξ is blossomed, as required.

The following proposition collects properties of blossomed trees that we shall
need in subsequent sections of the current paper.

Proposition 5 – Let (S ,⪯′) and (T ,⪯) be countable, rooted, well-founded trees.

(i) If S is blossomed and ρ(T ) ≤ ρ(S) then T is order isomorphic to a downwards
closed subtree of S .

(ii) If S is blossomed and S ′ is a full subtree of S then S ′ is blossomed and
ρ(S ′) = ρ(S).

Assertion (i) of Proposition 5 is a trivial generalisation of Lemma 2.7 of Gasparis
(2005), requiring little change in the proof. Assertion (ii) is Lemma 2.8 of Gasparis
(2005). We refer the reader to Gasparis (2005) for the proofs.

There are various natural topologies for trees, many of which are described in
Nyikos (1997). The tree topology which will be of interest to us in Section 6 is the
coarse wedge topology, which is compact and Hausdorff for many trees. The coarse
wedge topology of (T ,⪯) is that topology on T formed by taking as a subbase all
sets of the form T [t ⪯] and T \ T [t ⪯], where the order type of T [≺ t] is either 0 or
a successor ordinal. For a tree (T ,⪯), t ∈ T and F ⊆ T , define

WT (t,F ) := T [t ⪯] \
⋃
s∈F
T [s ⪯] .

The following proposition is clear.

Proposition 6 – Let (T ,⪯) be a tree and let t ∈ T be such that the order type of T [≺ t]
is 0 or a successor ordinal. Then the coarse wedge topology of T admits a local base of
clopen sets at t consisting of all sets of the formWT (t,F ), where F ⊆ T [t+] is finite.

The following result is proved in the aforementioned paper of Nyikos24.

Theorem 8 – Let T be a tree. The following are equivalent.

(i) T is chain-complete and MIN(T ) is finite.

(ii) The coarse wedge topology of T is compact and Hausdorff.

We conclude the current subsection on trees with the following proposition.

24Nyikos, 1997, “Various topologies on trees”, Corollary 3.5.
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Proposition 7 – Let (T ,⪯) be a tree with ht(T ) ≤ω.

(i) Let S ⊆ T be a downwards closed subset of T . Then S is closed in the coarse-wedge
topology of T .

(ii) Let (S ,⪯′) be a tree and suppose φ : S −→ T is an order-isomorphism of S onto
a downwards closed subset of T . Then φ is coarse wedge continuous.

Proof. We first prove (i). Suppose t ∈ T \ S . Then T [t ⪯] is open in the coarse
wedge topology of T since htT (t) < ω. Moreover S ∩T [t ⪯] = ∅ since t < S and S is
downwards closed.

To prove (ii), first note that the sets T [t ⪯] and T \ T [t ⪯], where t varies over
all of T , form a subbasis of clopen sets for the coarse wedge topology of T . To
establish the continuity of φ it therefore suffices to show that φ−1(T [t ⪯]) is clopen
in S for every t ∈ T . To this end suppose t ∈ T . If t < φ(S) then φ−1(T [t ⪯]) = ∅

since φ(S) is downwards closed in T . On the other hand if t ∈ φ(S), say t = φ(s),
then φ−1(T [t ⪯]) = S[s ⪯′] since φ is an order isomorphism. □

2.3 Operators on Banach spaces over trees

Let (T ,⪯) be a tree. Define ΣT : ℓ1(T ) −→ ℓ∞(T ) by setting

ΣT w =
(∑
s⪯t

w(s)
)
t∈T

, w ∈ ℓ1(T ).

Equivalently, ΣT is the unique element ofL (ℓ1(T ), ℓ∞(T )) satisfying ΣT et = χT [t⪯]
for each t ∈ T , with ∥ΣT ∥ = 1 for nonempty T .

Notice that we can state some existing universality results in terms of operators
of the form ΣT . For instance, taking T to be the set of natural numbers N equipped
with its usual order ≤, the operator ΣT is the aforementioned universal non-weakly
compact operator of Lindenstrauss and Pełczyński (Theorem 3 on p. 167). Moreover,
taking T to instead be the set of natural numbers N equipped with the trivial order
= yields ΣT as the formal identity operator from ℓ1 to ℓ∞, shown by Johnson to be
universal for the class of non-compact operators (Theorem 4 on p. 167). Amongst
the outcomes of the current paper is that we add to the collection of trees (T ,⪯)
for which the corresponding operator ΣT is universal for the complement of some
operator ideal.

We shall use the following proposition to determine whetherΣT factors throughT ,
for certain trees (T ,⪯) and operators T .

Proposition 8 – Let (T ,⪯) be a tree, X and Y Banach spaces and T ∈ L (X,Y ). The
following are equivalent:

(i) ΣT factors through T .
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(ii) There exist δ > 0 and families (xt)t∈T ⊆ BX and (x∗t )t∈T ⊆ T ∗BY ∗ such that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ ≥ δ if s ⪯ t
0 if s ⪯̸ t

, s, t ∈ T . (7)

Proof. First suppose that (i) holds and that U ∈L (ℓ1(T ),X) and V ∈L (Y ,ℓ∞(T ))
are such that V TU = ΣT . For each t ∈ T let f ∗t be the element of ℓ∞(T )∗ satisfying
⟨f ∗t , z⟩ = ∥V ∥−1z(t) for every z ∈ ℓ∞(T ). For each s, t ∈ T let xs = ∥Ues∥−1Ues ∈ BX
and x∗t = T ∗V ∗f ∗t ∈ T ∗BY ∗ . Then for s, t ∈ T we have

⟨x∗t ,xs⟩ = ⟨T ∗V ∗f ∗t ,∥Ues∥−1Ues⟩
= ∥Ues∥−1⟨f ∗t ,V TUes⟩
= ∥(Ues∥−1⟨f ∗t ,ΣT es⟩

=

∥Ues∥−1∥V ∥−1 ≥ (∥U∥∥V ∥)−1 if s ⪯ t
0 if s ⪯̸ t

,

hence (i) implies (ii).
Now suppose that (ii) holds and let δ > 0, (xt)t∈T ⊆ BX and (x∗t )t∈T ⊆ T ∗BY ∗ be

such that Equation (7) holds. Define U : ℓ1(T ) −→ X by setting

Uw =
∑
t∈T

w(t)
⟨x∗t ,xt⟩

xt

for each w ∈ ℓ1(T ). Then U is well-defined, linear and continuous with ∥U∥ ≤ δ−1.
For each t ∈ T choose v∗t ∈ BY ∗ such that T ∗v∗t = x∗t . The map V : Y −→ ℓ∞(T ) given
by setting V y = (⟨v∗t , y⟩)t∈T for each y ∈ Y is well-defined, linear and continuous
with ∥V ∥ ≤ 1. To complete the proof we show that V TU = ΣT . To this end note that
for s ∈ T we have

V TUes = V T (⟨x∗s ,xs⟩−1xs) = (⟨x∗s ,xs⟩−1⟨v∗t ,T xs⟩)t∈T
= (⟨x∗s ,xs⟩−1⟨x∗t ,xs⟩)t∈T = χT [s⪯],

hence V TU = ΣT . □

The following result may be proved by an appeal to Proposition 8, but an equally
easy direct proof is possible (we omit the details).

Proposition 9 – Let (S ,⪯′) and (T ,⪯) be trees and suppose that S is order isomorphic
to a subtree of T . Then ΣS factors through ΣT .

Notice that ifI and J are operator ideals and T ∈ J ∩∁I is universal for∁I ,
then every universal element of ∁I belongs to J . In particular, it is a consequence
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of the following proposition that if I is an operator ideal and T is a tree such that
ΣT is universal for ∁I , then any operator that is universal for ∁I must be strictly
singular.

Proposition 10 – Let (T ,⪯) be a tree. Then:

(i) ΣT is strictly singular.

(ii) ΣT is weakly compact if and only if T is well-founded.

(iii) ΣT is compact if and only if T is finite, if and only if ΣT is finite rank.

Suppose (T ,⪯) is a tree. For the purposes of proving Proposition 10 we now recall
the definition of the James tree space of T , denoted J(T ), which is the completion of
c00(T ) with respect to the norm ∥ ·∥J(T ) on c00(T ) that is defined by setting

∥x∥J(T ) = sup
{( k∑

i=1

∣∣∣∑
t∈Si

x(t)
∣∣∣2)1/2 ∣∣∣ S1, . . . ,Sk ⊆ T pairwise disjoint intervals

}
for each x ∈ c00(T ). The formal identity map from (c00(T ),∥ ·∥ℓ1(T )) to (c00(T ),∥ ·∥J(T ))
is norm continuous and therefore admits a (unique) continuous linear extension
AT ∈L (ℓ1(T ), J2(T )). Moreover, the linear map x 7→ (

∑
s⪯t x(s))t∈T from c00(T ) to

ℓ∞(T ) is norm continuous with with respect to the norm ∥ ·∥J(T ) on c00(T ), and thus
extends (uniquely) to some BT ∈L (J(T ), ℓ∞(T )). Since ΣT = BT AT we have that
ΣT factors through the James tree space J(T ).

Remark 3 – For an introduction to properties of James tree spaces we refer the
interested reader to Brackebusch (1988).

Proof (Proof of Proposition 10). Assertion (i) of the proposition follows from the fact
that the domain of ΣT , namely ℓ1(T ), is ℓ1-saturated, whilst ΣT has already been
seen above to factor through the ℓ2-saturated space J(T ). (See Lemma 2 and the final
remark of Hagler and Odell (1978) for details of the proof that J(T ) is ℓ2-saturated.)

For (ii), the assertion that ΣT is weakly compact whenever T is well-founded
follows from the aforementioned fact that ΣT factors through the James tree space
J(T ) of T and the fact that J(T ) is reflexive if and only if T is well-founded. The
proof of this latter fact is obtained via a straightforward transfinite induction on
ρ(T ), using the following facts: an ℓ2-direct sum of a family of reflexive spaces
is reflexive; and, for a rooted tree T , the Banach space

(⊕
t∈MIN(T ⋆ ) J(T [t ⪯])

)
ℓ2

is isometrically isomorphic to a codimension 1 subspace of J(T ); the remaining
details are omitted. On the other hand, if T is not well-founded then T contains
a path order-isomorphic to N equipped with its usual order ≤. It follows then
by Proposition 9 that ΣT factors the universal non-weakly compact operator of
Lindenstrauss and Pełczyński (Theorem 3), hence ΣT fails to be weakly compact
whenever T is not well founded.
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To prove (iii), first note that if T is finite then the codomain is the finite-
dimensional space ℓ∞(T ), hence ΣT is finite rank and therefore compact. Con-
versely, if T is infinite then the set {ΣT et | t ∈ T } is an infinite 1-separated subset of
ΣT Bℓ1(T ), hence in this case ΣT is non-compact, hence non-finite rank. □

We now establish a connection between the rank ρ(T ) and the Szlenk indices of
ΣT in the particular case that T is blossomed. The proof of the following proposition
is similar to the last part of the proof Proposition 6.2 of Beanland and Causey (2018).

Proposition 11 – Let (T ,⪯) be a blossomed tree and ϵ ∈ (0,1). Then Sz(ΣT ⋆ ,ϵ) ≥ ρ(T ).

Proof. Fix ϵ ∈ (0,1), let t
∅

denote the root of T and let B = Σ∗T ⋆Bℓ∞(T ⋆ )∗ . For
each t ∈ T ⋆ let f ∗t ∈ ℓ∞(T ⋆)∗ be the evaluation functional of ℓ∞(T ⋆) at t and let
g∗t := Σ∗T ⋆ f

∗
t ∈ B. Let g∗t

∅

:= 0 ∈ B. Note that {g∗t | t ∈ T } is ϵ-separated, for if s, t ∈ T
are such that s < T [t ⪯] then ∥g∗t − g∗s ∥ ≥ ⟨g∗t − g∗s , et⟩ = 1 > ϵ. For each t ∈ T \MAX(T )
let (tm)∞m=0 be an enumeration of T [t+] with (ρT (tm))∞m=0 non-decreasing. For every
x ∈ ℓ1(T ⋆) and t ∈ T \MAX(T ) we have ⟨g∗tm ,x⟩ =

∑
s⪯tm x(s)→

∑
s⪯t x(s) = ⟨g∗t ,x⟩ as

m→∞, so that (g∗tm )∞m=0 is weak∗-convergent to g∗t .
We will show by transfinite induction that

{g∗t | t ∈ T (ξ) \ T (ξ+1)} ⊆ sξϵ (B). (8)

for every ξ < ρ(T ). Equation (8) is trivially true for ξ = 0. Suppose ζ ∈ (0,ρ(T ))
is such that Equation (8) holds for every ξ < ζ; to complete the induction we
show that {g∗t | t ∈ T (ζ) \ T (ζ+1)} ⊆ sζϵ (B). To this end suppose t ∈ T (ζ) \ T (ζ+1).
By the inductive hypothesis and the fact that (ρT (tm))∞m=1 is non-decreasing we

have that (g∗tl )
∞
l=m ⊆ s

ρT (tm)
ϵ (B). Thus g∗t ∈ s

ρT (tm)
ϵ (B) as the latter set is weak∗-closed.

This yields g∗t ∈ s
ρT (tm)+1
ϵ (B) since ∥g∗t − g∗tl ∥ > ϵ for all l ∈ [m,ω). It follows that

g∗t ∈
⋂
m<ω s

ρT (tm)+1
ϵ (B) = s

ρT (t)
ϵ (B) = sζϵ (B), as required. With the induction now

complete, taking ξ = ρ(T )− 1 in Equation (8) yields g∗t
∅

∈ sρ(T )−1
ϵ (B), from which the

proposition follows. □

3 Absolutely convex sets of large Szlenk index

This section is devoted to proving our key technical result, Theorem 9, from which
the main results of the paper (stated in the Introduction) and a number of other
results in subsequent sections of the paper are derived. In order to state Theorem 9
we introduce the following notation. For a family T = ((Tn,⪯n))n<ω, where each
(Tn,⪯n) is a rooted tree, define ⟦T⟧ := {∅} ∪

⋃
n<ω({n} × T ⋆n ), so that ⟦T⟧ is a rooted

tree when equipped with the order ⪯T on ⟦T⟧ defined by setting ∅ ⪯T t for all
t ∈ ⟦T⟧ and (n1, t1) ⪯T (n2, t2) if and only if n1 = n2 and t1 ⪯n1

t2.
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Theorem 9 – Let X be a Banach space, K ⊆ X∗ a non-empty, absolutely convex, weak∗-
compact set, δ,θ > 0 positive real numbers, (ϵn)n<ω a family of positive real num-
bers, (ξn)n<ω a family of countable ordinals such that sξnϵn (K) , ∅ for all n < ω, and
T = ((Tn,⪯n))n<ω a family of countable, well-founded, rooted trees such that ρ(Tn) ≤ ξn+1
for all n < ω.

(i) There exist families (x∗t )t∈⟦T⟧⋆ ⊆ K and (xt)t∈⟦T⟧⋆ ⊆ SX such that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > ϵn
8+θ if s ⪯T t ∈ {n} × T ⋆n

0 if s ⪯̸T t
, s, t ∈ ⟦T⟧⋆ , n < ω. (9)

Moreover, for any bijection τ : ω −→ ⟦T⟧ such that τ(l) ⪯T τ(m) implies l ≤m we
may choose (xt)t∈⟦T⟧⋆ so that (xτ(m))∞m=1 is a basic sequence with basis constant not
exceeding 1 + δ.

(ii) If X∗ is norm separable then the families (x∗t )t∈⟦T⟧⋆ and (xt)t∈⟦T⟧⋆ in (i) may
be chosen so that (xτ(m))∞m=1 is shrinking and (Qxτ(m))∞m=1 is a shrinking basis
for X/Z with basis constant not exceeding 1 + δ. Here Z =

⋂
t∈⟦T⟧⋆ ker(x∗t ) and

Q : X −→ X/Z is the quotient map.

The proof of Theorem 9 shall invoke the following lemma due to G. Lancien25,
who established the result for the special case K = BX∗ and ζ of the form ωα for
some ordinal α; the same argument gives the more general statement presented
below.

Lemma 1 – Let X be a Banach space, K ⊆ X∗ an absolutely convex, weak∗-compact set,
ζ an ordinal and ϵ > 0. If sζϵ (K) , ∅ then

∀n < ω 0 ∈ sζ2n

ϵ/2n+1(K). (10)

We require the following result, which is Lemma 2.2 of Dilworth et al. (2017).

Lemma 2 – Let X be a Banach space, ν > 0 a real number, F a finite-dimensional
subspace ofX∗,A a ν

4+2ν -net in SF and {yf ∗ | f ∗ ∈ A} ⊆ SX a family such that inf{|f ∗(yf ∗ )| |
f ∗ ∈ A} ≥ 4+ν

4+2ν . Then for every x∗ ∈ {yf ∗ | f ∗ ∈ A}⊥ we have sup{|x∗(y)| | y ∈ BF⊥ } ≥
1

2+ν ∥x
∗∥.

We do not know a reference for the following result, so we provide the straight-
forward proof.

Lemma 3 – Let X be a Banach space and x∗ ∈ X∗. Then

{x∗ + ϵB◦X∗ +C⊥ | ϵ > 0, C ⊆ X, |C| <∞}

is a local base for the weak∗ topology of X∗ at x∗.

25Lancien, 1996, “On the Szlenk index and the weak∗-dentability index”, p. 67.
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Proof. We assume x∗ = 0, from which the general case follows easily. For ϵ > 0 and
finite C ⊆ X we have ϵB◦X∗ +C⊥ ⊆

⋂
x∈C{y∗ ∈ X∗ | |y∗(x)| < ϵ}, so it suffices to show

that ϵB◦X∗ +C⊥ is weak∗-open for ϵ > 0 and finite C ⊆ X.
Fix ϵ > 0 and a finite set C ⊆ X. Set Y = span(C). Notice that C⊥ = Y⊥. We have

ϵB◦X∗ +C⊥ = {x∗ ∈ X∗ | dist(x∗,Y⊥) < ϵ} =Q−1(ϵB◦X∗/Y⊥ )

where Q : X∗ −→ X∗/Y⊥ is the canonical quotient map. It is thus enough to show
that Q is weak∗ continuous. This follows from the classic decomposition Q = S ◦R,
where R : X∗ −→ Y ∗ is the restriction map, which is clearly weak∗ continuous, and
S : Y⊥ −→ X∗/Y⊥, defined by S(Rx∗) =Qx∗, is weak∗ continuous as a bounded linear
map between finite dimension normed spaces. □

Lemma 4 – Let X be a Banach space, K and L weak∗-compact subsets of X∗, ξ an ordinal
and ϵ > 0. If x∗ ∈ sξϵ (K) and y∗ ∈ L then x∗ + y∗ ∈ sξϵ (K +L).

Proof. We proceed by transfinite induction on ξ. The assertion of the lemma is true
for ξ = 0. Suppose that ζ > 0 is an ordinal such that the assertion of the lemma is
true for ξ = ζ; we will show that it is true then for ξ = ζ + 1. Let x∗ ∈ sζ+1

ϵ (K) and
y∗ ∈ L. Since x∗ ∈ sζϵ (K) it follows from the induction hypothesis that x∗+y∗ ∈ sζϵ (K+L).
Since x∗ ∈ sζ+1

ϵ (K) we have that for any weak∗-neighbourhood U of x∗ +y∗ there exist
x∗1,x

∗
2 ∈ s

ζ
ϵ (K)∩ (−y∗ +U ) such that ∥x∗1 − x

∗
2∥ > ϵ. Since x∗1 + y∗,x∗2 + y∗ ∈ U ∩ (K + L)

and ∥(x∗1 + y∗)− (x∗2 + y∗)∥ > ϵ, we deduce that x∗ + y∗ ∈ sζ+1
ϵ (K +L).

Now suppose ζ is a limit ordinal and the assertion of the lemma is true for all
ξ < ζ. For x∗ ∈ sζϵ (K) =

⋂
ξ<ζ s

ξ
ϵ (K) and y∗ ∈ L we have

x∗ + y∗ ∈
⋂
ξ<ζ

sξϵ (K +L) = sζϵ (K +L),

which completes the induction. □

The final preliminary result before proving Theorem 9 is the following theorem
due to Kadec26 and Klee27; a short proof due to Davis and Johnson (sketched in
Davis and Johnson 1973) has been published by Lindenstrauss and Tzafriri28.

Theorem 10 – Let (X,∥ ·∥) be a Banach space and c > 1 a real number. If X∗ is norm
separable then X admits a norm ||| · ||| such that the following properties hold:

(i) For every x∗ ∈ X∗ we have ∥x∗∥ ≤ |||x∗||| ≤ c∥x∗∥.

26Kadec, 1958, “On strong and weak convergence”.
27Klee, 1960, “Mappings into normed linear spaces”.
28Lindenstrauss and Tzafriri, 1977, Classical Banach spaces. I, p. 13.
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(ii) If (x∗n) ⊆ X∗ and x∗ ∈ X∗ are such that x∗n
w∗→ x∗ and |||x∗n||| → |||x∗|||, then

|||x∗n − x∗||| → 0.

As is implicit in the statement of Theorem 10, when we apply the renorming
result Theorem 10 we shall use ||| · ||| to denote also the corresponding induced norm
on duals, subspaces, quotients and operators on X.

Proof (Proof of Theorem 9). We shall first prove (i) without any assumption on the
norm density of X∗, then show how to modify the arguments in the proof of (i) to
obtain also the assertions of (ii) when X∗ is assumed to be norm separable.

Fix δ,θ > 0 and let ν > 0 be a real number small enough that

1− 2ν
4(2 + ν)(1 + ν)

≥ 1
8 +θ

. (11)

Let τ : ω −→ ⟦T⟧ be a bijection such that τ(l) ⪯T τ(m) implies l ≤ m (c.f. the
paragraph preceding Example 1), noting that we necessarily have τ(0) = ∅, the root
of ⟦T⟧. For 0 < m < ω we may write τ(m) = (nm, tm), where nm < ω and tm ∈ T ⋆nm .
Fix a sequence (δm)∞m=1 ⊆ (0,1) of positive real numbers such that

∑∞
m=1 δm < ∞

and
∏∞
m=1(1− δm) ≥ (1 + δ)−1. Proceeding via an induction over m ∈ [1,ω), we shall

construct families (f ∗τ(m))m<ω ⊆ X
∗ and (xτ(m))1≤m<ω ⊆ SX satisfying the following

conditions for all m ∈ [1,ω):

(I) f ∗τ(m) ∈ s
ρTnm (tm)

ϵnm /2

(
(1 + ν

∑m
j=1 2−j )K

)
.

(II) For all i, j ∈ [1,m],

⟨f ∗τ(j),xτ(i)⟩ =

⟨f ∗τ(i),xτ(i)⟩ >
(1−2ν)ϵni

4(2+ν) if τ(i) ⪯T τ(j)

0 if τ(i) ⪯̸T τ(j)
. (12)

(III) For all x ∈ span{xτ(l) | 1 ≤ l < m} and scalars awe have ∥x+a xτ(m)∥ ≥ (1−δm)∥x∥.

Since for 0 < m < ω we have s
ρTnm (tm)

ϵnm /2

(
(1 + ν

∑m
j=1 2−j )K

)
⊆ (1 + ν)K , once the

induction is complete the first assertion of (i) then follows from Equation (11), (I)
and (II) by taking x∗t = 1

1+ν f
∗
t for each t ∈ ⟦T⟧⋆ .

The second assertion of (i) follows from the Grunblum criterion29 and the fact
that, by (III), for 1 ≤ l < m < ω and scalars a1, . . . , am we have

∥∥∥∥ l∑
q=1

aqxτ(q)

∥∥∥∥ ≤ 1
m∏

q=l+1

(1− δq)

∥∥∥∥ m∑
q=1

aqxτ(q)

∥∥∥∥ ≤ (1 + δ)
∥∥∥∥ m∑
q=1

aqxτ(q)

∥∥∥∥ .
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For each n < ω let on denote the root of Tn. It follows from Equation (10) that

0 ∈
⋂
n<ω

sξnϵn/2(K) ⊆
⋂
n<ω

s
ρ(Tn)−1
ϵn/2

(K) =
⋂
n<ω

s
ρTn (on)
ϵn/2

(K). (13)

Define f ∗τ(0) := 0 ∈
⋂
n<ω s

ξn
ϵn/2

(K). Since

f ∗τ(0) ∈ s
ρTn1

(on1 )

ϵn1 /2
(K) ⊆ s

ρTn1
(t1)+1

ϵn1 /2
(K) = sϵn1 /2

(
s
ρTn1

(t1)

ϵn1 /2
(K)

)
,

it follows from the definition of the derivation sϵn1 /2
that there is f ∗τ(1) ∈ s

ρTn1
(t1)

ϵn1 /2
(K)

such that ∥f ∗τ(1)∥ = ∥f ∗τ(1) − f
∗
τ(0)∥ > ϵn1

/4. Choose xτ(1) ∈ SX so that

⟨f ∗τ(1),xτ(1)⟩ >
ϵn1

4
.

It is readily checked that (I)–(III) hold for m = 1.

Fix k ∈ [1,ω) and suppose that the points f ∗τ(m) ∈ s
ρTnm (tm)

ϵnm /2

(
(1 + ν

∑m
j=1 2−j )K

)
and

xτ(m) ∈ SX have been defined for 1 ≤m ≤ k in such a way that properties (I)–(III) are
satisfied for 1 ≤m ≤ k. Let (k+1)− denote the unique ordinal less than k+1 and such
that τ((k + 1)−) = τ(k + 1)−. To carry out the inductive step of the proof we show how

to construct f ∗τ(k+1) ∈ s
ρTnk+1

(tk+1)

ϵnk+1
/2

(
(1 + ν

∑k+1
j=1 2−j )K

)
and xτ(k+1) ∈ SX so that (I)–(III)

are satisfied for 1 ≤m ≤ k + 1. Our first task will be to define f ∗τ(k+1) as a point inside
a certain weak∗-neighbourhood of f ∗τ(k+1)− and then show that (I) holds for m = k + 1.
To this end let G be a finite δk+1-net in Sspan{xτ(i) |1≤i≤k} and for each g ∈ G let h∗g ∈ X∗

be such that ⟨h∗g , g⟩ = 1. Set F = span
(
{f ∗τ(i) | 1 ≤ i ≤ k} ∪ {h

∗
g | g ∈ G}

)
⊆ X∗, let A be

a finite ν
4+2ν -net in SF and let {yf ∗ | f ∗ ∈ A } ⊆ SX be such that f ∗(yf ∗ ) ≥ 4+ν

4+2ν for each
f ∗ ∈ A. Let

U1 =
k⋂
i=1

{
x∗ ∈ X∗

∣∣∣∣ |⟨x∗ − f ∗τ(k+1)− ,xτ(i)⟩| <
2−k−4ν(1− 2ν)ϵni
k(2 + ν)(1 + ν)

}
and

U2 = f ∗τ(k+1)− +
νϵnk+1

4(2 + ν)
B◦X∗ +

(
{xτ(i) | 1 ≤ i ≤ k} ∪ {yf ∗ | f ∗ ∈ A}

)⊥
.

Note that U2 is a weak∗-open neighbourhood of f ∗τ(k+1)− by Lemma 3, hence U :=
U1 ∩U2 is a weak∗-open neighbourhood of f ∗τ(k+1)− . On the one hand, if (k + 1)− = 0
then f ∗τ(k+1)− = 0, hence by Equation (13) in this case we have

f ∗τ(k+1)− = 0 ∈ s
ρTnk+1

(onk+1
)

ϵnk+1
/2 (K) ⊆ s

ρTnk+1
(onk+1

)

ϵnk+1
/2

(
(1 + ν

k∑
j=1

2−j )K
)

(Cont. next page)
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⊆ s
ρTnk+1

(tk+1)+1

ϵnk+1
/2

(
(1 + ν

k∑
j=1

2−j )K
)
. (14)

On the other hand, if (k + 1)− , 0 then n(k+1)− = nk+1 and t(k+1)− = t−k+1 ∈ Tnk+1
. So by

the hypothesis that (I) holds for 1 ≤m ≤ k, we have

f ∗τ(k+1)− ∈ s
ρTnk+1

(t−k+1)

ϵnk+1
/2

(
(1 + ν

(k+1)−∑
j=1

2−j )K
)
⊆ s

ρTnk+1
(t−k+1)

ϵnk+1
/2

(
(1 + ν

k∑
j=1

2−j )K
)

⊆ s
ρTnk+1

(tk+1)+1

ϵnk+1
/2

(
(1 + ν

k∑
j=1

2−j )K
)
. (15)

It follows from Equations (14) and (15), and the definition of the derivation sξϵ

for ϵ > 0 and ξ ∈ Ord that there exists u∗ ∈ U ∩ s
ρTnk+1

(tk+1)

ϵnk+1
/2

(
(1 + ν

∑k
j=1 2−j )K

)
such

that ∥f ∗τ(k+1)− −u
∗∥ > ϵnk+1

/4. Define

f ∗τ(k+1) := u∗ −
k∑
l=1

⟨u∗ − f ∗τ(k+1)− ,xτ(l)⟩
⟨f ∗τ(l),xτ(l)⟩

(f ∗τ(l) − f
∗
τ(l)− ).

Since u∗ ∈ U1 and since f ∗τ(l) − f
∗
τ(l)− ∈ 2(1 + ν)K for 1 ≤ l ≤ k (by the assumption

that (I) holds for 1 ≤ m ≤ k), it follows from the definition of f ∗τ(k+1) that we have
f ∗τ(k+1) −u

∗ ∈ cK , where c > 0 is a scalar that may be taken to satisfy

c ≤
k∑
l=1

|⟨u∗τ(k+1) − f
∗
τ(k+1)− ,xτ(l)⟩|

|⟨f ∗τ(l),xτ(l)⟩|
2(1 + ν)

≤
k∑
l=1

2−k−4ν(1− 2ν)ϵnl
k(2 + ν)(1 + ν)

4(2 + ν)
(1− 2ν)ϵnl

2(1 + ν)

=
k∑
l=1

2−k−1ν
k

= ν2−k−1. (16)

An appeal to Lemma 4 yields

f ∗τ(k+1) = u∗ + (f ∗τ(k+1) −u
∗) ∈ s

ρTnk+1
(tk+1)

ϵnk+1
/2

((
1 + ν

k+1∑
j=1

2−j
)
K

)
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hence (I) holds for m = k + 1.
We now show how to define xτ(k+1) and then verify that (II) and (III) hold for

m = k + 1. Since u∗ ∈ U2 we may write u∗ = f ∗τ(k+1)− + y∗ + x∗, where ∥y∗∥ <
νϵnk+1
4(2+ν) and

x∗ ∈ ({xτ(i) | 1 ≤ i ≤ k} ∪ {yf ∗ | f ∗ ∈ A})⊥. Since

∥x∗∥ ≥ ∥u∗ − f ∗τ(k+1)−∥ − ∥y
∗∥ >

ϵnk+1

4
−
νϵnk+1

4(2 + ν)
>

(1− ν)ϵnk+1

4
,

an application of Lemma 2 with F, A and {yf ∗ | f ∗ ∈ A} ⊆ SX as defined above in the
current proof yields y ∈ SF⊥ such that

⟨x∗, y⟩ > 1
2 + ν

(1− ν)ϵnk+1

4
.

Set xτ(k+1) = |⟨u∗, y⟩|⟨u∗, y⟩−1y, so that xτ(k+1) ∈ SF⊥ ⊆ SX and

⟨u∗,xτ(k+1)⟩ = |⟨u∗, y⟩| = |⟨u∗ − f ∗τ(k+1)− , y⟩| = |⟨x
∗ + y∗, y⟩|

>
(1− ν)ϵnk+1

4(2 + ν)
−
νϵnk+1

4(2 + ν)
=

(1− 2ν)ϵnk+1

4(2 + ν)
.

We now show that (II) holds for m = k + 1. By the induction hypothesis, we need
to prove the case where at least one of i and j is equal to k + 1. Since xτ(k+1) ∈ SF⊥ ⊆⋂k
j=1 ker(f ∗τ(j)) we have ⟨f ∗τ(j),xτ(k+1)⟩ = 0 for 1 ≤ j ≤ k. Moreover it is clear from the

definition of f ∗τ(k+1) and the fact that xτ(k+1) ∈
⋂k
j=1 ker(f ∗τ(j)) that

⟨f ∗τ(k+1),xτ(k+1)⟩ = ⟨u∗,xτ(k+1)⟩ − 0 = ⟨u∗,xτ(k+1)⟩ >
(1− 2ν)ϵnk+1

4(2 + ν)
.

Since (II) holds for 1 ≤m ≤ k, if l, i ∈ [1, k] then

⟨f ∗τ(l) − f
∗
τ(l)− ,xτ(i)⟩ =

⟨f ∗τ(i),xτ(i)⟩, if i = l

0, if i , l
. (17)

It follows that if 1 ≤ i ≤ k then

⟨f ∗τ(k+1),xτ(i)⟩ = ⟨u∗,xτ(i)⟩ −
⟨u∗ − f ∗τ(k+1)− ,xτ(i)⟩
⟨f ∗τ(i),xτ(i)⟩

⟨f ∗τ(i),xτ(i)⟩

= ⟨f ∗τ(k+1)− ,xτ(i)⟩

=

⟨f ∗τ(i),xτ(i)⟩ >
(1−2ν)ϵni

4(2+ν) if τ(i) ⪯T τ(k + 1)

0 if τ(i) ⪯̸T τ(k + 1)
,
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hence (II) holds for m = k + 1.
Finally, we show that (III) holds for m = k + 1. Let a be a scalar and, to

avoid triviality, let x ∈ span{xτ(i) | 1 ≤ i ≤ k} be nonzero. Let gx ∈ G be such that∥∥∥∥x∥−1x − gx
∥∥∥ ≤ δk+1. Since ⟨h∗gx , gx⟩ = 1 and xτ(k+1) ∈ ker(h∗gx ) we have

∥x+ axτ(k+1)∥ ≥ |⟨h∗gx ,x+ axτ(k+1)⟩|

= |⟨h∗gx ,∥x∥
−1x⟩| ∥x∥

≥
(
|⟨h∗gx , gx⟩| − |⟨h

∗
gx ,∥x∥

−1x − gx⟩|
)
∥x∥

≥ (1− δk+1)∥x∥,

which completes the proof of part (i) of the theorem.
We now prove (ii). To this end suppose X∗ is norm separable and let (z∗m)∞m=1

a norm dense sequence in X∗. To see that (xτ(m))∞m=1 may be chosen to be a shrinking
basis, we modify the proof of (i) by extending the list of conditions (I)–(III) to
include the following fourth condition:

(IV) xτ(m) ∈
⋂m−1
j=1 ker(z∗j ).

In the inductive construction involving the verification of properties (I)–(III), we
amend the argument to ensure that (IV) holds for all m ∈ [1,ω) as follows. For the
base step we require no change in the argument since

⋂0
j=1 ker(z∗j ) = X. For the

inductive step we change the definition of F so that

F = span
(
{f ∗τ(i) | 1 ≤ i ≤ k} ∪ {h

∗
g | g ∈ G} ∪ {z∗j | 1 ≤ j ≤ k}

)
.

Since xτ(k+1) is defined so that xτ(k+1) ∈ SF⊥ , the induction yields that (IV) holds for
allm ∈ [1,ω). With this modification it is now easy to see that (xτ(m))∞m=1 is shrinking.
Indeed, let f ∗ ∈ [(xτ(m))∞m=1]∗ and fix ϵ > 0. Let f̃ ∗ ∈ X∗ be an extension of f ∗ to X and
let N < ω be such that ∥f̃ ∗ − z∗N ∥ < ϵ. By (IV) we have ⟨z∗N ,xτ(m)⟩ = 0 for all m > N ,
hence m > N implies

∥f ∗|[xτ(m)]m>N ∥ = ∥f̃ ∗|[xτ(m)]m>N ∥ ≤ ∥(f̃
∗ − z∗N )|[xτ(m)]m>N ∥+ ∥z∗N |[xτ(m)]m>N ∥ < ϵ .

In particular, limM→∞ ∥f ∗|[xτ(m)]m>M ∥ = 0. As f ∗ ∈ [(xτ(m))∞m=1]∗ was chosen arbitrarily,
(xτ(m))∞m=1 is shrinking by Proposition 3.2.8 of Albiac and Kalton (2016).

We now show how to modify the proof of (i) further so that (Qxτ(m))∞m=1 is
a shrinking basis for X/Z with basis constant not exceeding 1 + δ. In a similar
spirit to the proof of Proposition 3.5 of Lancien (1996), the main idea is to modify
the proof of (i) to incorporate the arguments from Johnson and Rosenthal’s proof
of Theorem III.1 of Johnson and Rosenthal (1972). To this end let ||| · ||| be an
equivalent norm on X such that properties (i) and (ii) of Theorem 10 hold with
c = (1 + δ)1/2 and let (zp)∞p=1 be a norm dense sequence in S(X,||| · |||). Fix a sequence
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(δ′m)∞m=1 ⊆ (0,1) ⊆ R such that
∑∞
m=1 δ

′
m <∞ and

∏∞
m=1(1− δ′m) ≥ (1 + δ)−1/2. At the

kth stage of the inductive construction, after having defined the new f ∗τ(k), we set

vk := |||f ∗τ(k) − f
∗
τ(k)− |||

−1(f ∗τ(k) − f
∗
τ(k)− ). We modify the inductive construction in proof

of (i) to include the construction of a strictly increasing sequence (pm)∞m=0 ⊆ ω such
that the following additional conditions hold for m ∈ [1,ω):

(V) For each v∗ ∈ [(vj )
m
j=1]∗ with |||v∗||| = 1 there is a natural number p ≤ pm such

that |⟨v,zp⟩ − ⟨v∗,v⟩| ≤ |||v|||δ′m/3 for all v ∈ [(vj )
m
j=1].

(VI) |⟨vm, zp⟩| < δ′m/3 for all zp with p ≤ pm−1.

At the base step of the induction we set p0 = 0 and use Helly’s theorem (or Goldstine’s
theorem), the density of (zp)∞p=1 in S(X,||| · |||) and the total boundedness of S([{v1}],||| · |||)
and S([{v1}]∗,||| · |||) to obtain also p1 > p0 large enough that (V) holds for m = 1 (we leave
the straightforward details to the reader). Since p0 is defined to be 0, which is not
in the index set of the sequence (zp)∞p=1, (VI) is true for m = 1.

At the inductive step of the modified construction we assume that for some
k ∈ [1,ω) the properties (I)–(VI) hold for m = 1, . . . k. We again use Helly’s theorem
to obtain pk+1 > pk so that (V) holds for m = k + 1. To obtain that (VI) is true for
m = k + 1 we modify the argument in the proof of (i) as follows. For 1 ≤ i ≤ k let
ci ∈R be such that

kci
4(2 + ν)

(1− 2ν)ϵni
2(1 + ν)sup{∥y∗∥ | y∗ ∈ K} = 1

2

δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)
1

(1 + δ)1/2

and define

U3 =
k⋂
i=1

{
x∗ ∈ X∗

∣∣∣∣ |⟨x∗ − f ∗τ(k+1)− ,xτ(i)⟩| < ci
}

and

U4 =
pk⋂
p=1

{
x∗ ∈ X∗

∣∣∣∣ |⟨x∗ − f ∗τ(k+1)− , zp⟩| <
1
2

δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)

}
.

We modify the definition of U in the proof of (i) so that U := U1 ∩ U2 ∩ U3 ∩ U4

and, as in the proof of (i), choose u∗ ∈ U ∩ s
ρTnk+1

(tk+1)

ϵnk+1
/2

(
(1 + ν

∑k
j=1 2−j )K

)
such that

∥f ∗τ(k+1)− −u
∗∥ > ϵnk+1

/4. Now we define f ∗τ(k+1) and xτ(k+1) as before. It is clear that
properties (I)–(III) hold for them (by the same proof as before). Since (II) holds for
1 ≤m ≤ k and since u∗ ∈ U3, it follows from the definition of f ∗τ(k+1) that

∥f ∗τ(k+1) −u
∗∥ ≤ 1

2

δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)
1

(1 + δ)1/2
.
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Hence, since u∗ ∈ U4 we deduce that for all p ≤ pk we have

|⟨f ∗τ(k+1) − f
∗
τ(k+1)− , zp⟩|

≤ ∥f ∗τ(k+1) −u
∗∥∥zp∥+ |⟨u∗ − f ∗τ(k+1)− , zp⟩|

≤ 1
2

δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)
1

(1 + δ)1/2
(1 + δ)1/2 +

1
2

δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)

=
δ′k+1

3

(1− 2ν)ϵnk+1

4(2 + ν)
. (18)

Since

|||f ∗τ(k+1) − f
∗
τ(k+1)− ||| ≥ ∥f

∗
τ(k+1) − f

∗
τ(k+1)−∥

≥ ⟨f ∗τ(k+1) − f
∗
τ(k+1)− ,xτ(k+1)⟩ >

(1− 2ν)ϵnk+1

4(2 + ν)
,

it follows from Equation (18) that for

vk+1 := |||f ∗τ(k+1) − f
∗
τ(k+1)− |||

−1(f ∗τ(k+1) − f
∗
τ(k+1)− )

we have |⟨vk+1, zp⟩| ≤ δ′k+1/3 for all p ≤ pk . Thus (I)–(VI) hold for all m ∈ [1,ω) with
these modifications to the proof of (i).

Still following the argument in Johnson and Rosenthal (1972), our next step is
to show that (vm)∞m=1 is a basic sequence whose basis constant with respect to ||| · |||
is no larger than (1 + δ)1/2. To this end fix m ∈ [1,ω) and let v ∈ [(vq)

m
q=1] be such

that |||v||| = 1. Choose v∗ ∈ [vj ]∗1≤j≤m such that ⟨v∗,v⟩ = 1 = |||v∗||| and choose p ≤ pm
so that (V) holds for v∗. Then |⟨v,zp⟩| ≥ 1− δ′m/3, hence for any scalar a we have

|||v + avm+1||| ≥

1 if |a| > 2

|⟨v,zp⟩+ ⟨avm+1, zp⟩| ≥ (1− δ′m
3 )− 2δ′m

3 if |a| ≤ 2

≥ 1− δ′m.

It follows that |||
∑m
q=1 aqvq ||| ≤ 1

1−δ′m
|||
∑m+1
q=1 aqvq ||| for any scalars a1, . . . , am, am+1. Thus

for 1 ≤ l < m < ω and any scalars a1, . . . , am we have

∣∣∣∣∣∣∣∣∣∣∣∣ l∑
q=1

aqvq

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1∏m
q=l+1(1− δ′q)

∣∣∣∣∣∣∣∣∣∣∣∣ m∑
q=1

aqvq

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ (1 + δ)1/2
∣∣∣∣∣∣∣∣∣∣∣∣ m∑
q=1

aqvq

∣∣∣∣∣∣∣∣∣∣∣∣. (19)

By Grunblum’s criterion, (vm)∞m=1 is a basic sequence whose basis constant with
respect to ||| · ||| is no larger than (1 + δ)1/2.

Let (v∗m)∞m=1 be the sequence of functionals in [(vm)∞m=1]∗ biorthogonal to (vm)∞m=1
and define T : X −→ [(vm)∞m=1]∗ by ⟨T x,v⟩ = ⟨v,x⟩ for x ∈ X and v ∈ [(vm)∞m=1]. That
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is, T x = (ıXx)|[(vm)∞m=1] for each x ∈ X. Note that ker(T ) =
⋂∞
m=1 ker(vm). Moreover

since f ∗τ(0) = 0 we have

f ∗t =
∑

∅≺Ts⪯Tt
(f ∗s − f ∗s− )

for each t ∈ ⟦T⟧, hence

ker(T ) =
∞⋂
m=1

ker(vm) =
⋂

t∈⟦T⟧⋆
ker(f ∗t − f ∗t− ) =

⋂
t∈⟦T⟧⋆

ker(f ∗t ) =
⋂

t∈⟦T⟧⋆
ker(x∗t ) = Z.

It is a well known fact that the sequence of coordinate functionals associated with
a basis is also a basis with the same basis constant30, so let us momentarily denote by
Pm, m ≥ 1, the basis projections associated to the basic sequence (v∗m)∞m=1. Notice that
by Equation (19) we have |||Pm||| → 1 as m→∞. This together with the condition (V)
is enough to prove that T (X) = [(v∗m)∞m=1] (see pp. 83–84 in Johnson and Rosenthal
1972). Therefore there exists a linear isometry T : (X/Z, ||| · |||) −→ ([(v∗m)∞m=1], ||| · |||)
such that TQx = T x for every x ∈ X. We thus have

TQxτ(m) = T xτ(m) =
∞∑

m′=1

⟨T xτ(m),vm′ ⟩v∗m′

=
∞∑

m′=1

⟨vm′ ,xτ(m)⟩v∗m′ =
⟨f ∗τ(m),xτ(m)⟩
|||f ∗τ(m) − f

∗
τ(m)− |||

v∗m.

For each m ∈ [1,ω) let am = ⟨f ∗τ(m),xτ(m)⟩|||f ∗τ(m) − f
∗
τ(m)− |||

−1, so that TQxτ(m) = amv
∗
m

for each such m. As T is an isometry with respect to ||| · |||, then, with respect to
||| · |||, (Qxτ(m))∞m=1 is a basis for X/Z isometrically equivalent to (amv∗m), whose basis
constant coincides with the basis constant of (v∗m)∞m=1, which coincides with the
basis constant of (vm)∞m=1, which is no larger than (1 + δ)1/2 (as shown above). It
follows that for 1 ≤ l ≤m < ω and any scalars a1, . . . , am we have

∥∥∥∥ l∑
q=1

aqQxτ(q)

∥∥∥∥ ≤ (1 + δ)1/2
∣∣∣∣∣∣∣∣∣∣∣∣ l∑
q=1

aqQxτ(q)

∣∣∣∣∣∣∣∣∣∣∣∣
≤ (1 + δ)

∣∣∣∣∣∣∣∣∣∣∣∣ m∑
q=1

aqQxτ(q)

∣∣∣∣∣∣∣∣∣∣∣∣
≤ (1 + δ)

∥∥∥∥ m∑
q=1

aqQxτ(q)

∥∥∥∥.
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In particular, (Qxτ(m))∞m=1 is a basis for X/Z whose basis constant with respect to
∥ ·∥ is no larger than 1 + δ. It remains then to show that (Qxτ(m))∞m=1 is shrinking. As
(Qxτ(m))∞m=1 is equivalent to (amv∗m)∞m=1, which is shrinking if and only if (v∗m)∞m=1 is
shrinking, it follows from the duality between shrinking and boundedly complete
bases31 that, to complete the proof, it suffices to show that (vm)∞m=1 is boundedly
complete. To this end recall the following definition from Johnson and Rosenthal
(1972):

Definition 3 – Let X be a Banach space. A sequence (y∗m)∞m=1 ⊆ X∗ is said to be
weak∗-basic if there is a sequence (ym)∞m=1 ⊆ X so that (ym, y∗m)∞m=1 is biorthogonal

and for each y∗ ∈ [y∗m |m ∈N]
w∗

we have
∑m
q=1⟨y∗, yq⟩y∗q

weak∗−→ y∗ as m→∞.

The following result is Proposition II.1 of Johnson and Rosenthal (1972).

Proposition 12 – Let X be a Banach space and (y∗m)∞m=1 ⊆ X∗. Let Q denote the quotient
map X −→ X/

⋂∞
m=1 ker(y∗m). Then

(a) (y∗m)∞m=1 is weak∗-basic if and only if X/
⋂∞
m=1 ker(y∗m) has a basis (em)∞m=1 with

associated biorthogonal functionals (e∗m)∞m=1 such that Q∗e∗m = y∗m for all m ∈N. It
follows that if (y∗m)∞m=1 is weak∗-basic, then (y∗m)∞m=1 is basic.

(b) The following are equivalent:

(i) (y∗m)∞m=1 is a boundedly complete weak∗-basic sequence;

(ii) (y∗m)∞m=1 is weak∗-basic and [(y∗m)∞m=1] = [y∗m |m ∈N]
w∗

.

We shall first apply (a) of Proposition 12 to show that (vm)∞m=1 is weak∗-basic, then
apply (b) of Proposition 12 to deduce that (vm)∞m=1 is boundedly complete, as desired.
For m ∈ [1,ω) let

em :=
|||fτ(m)∗ − f ∗τ(m)− |||
⟨f ∗τ(m),xτ(m)⟩

Qxτ(m),

so that T em = v∗m. For m ∈ [1,ω) let v∗∗m := (ı[(vq)∞q=1]vm)|[(v∗q)∞q=1] and e∗m := T
∗
v∗∗m, so that

(v∗∗m)∞m=1 and (e∗m)∞m=1 are the sequences of biothogonal functionals associated to the
basic sequences (v∗m)∞m=1 and (em)∞m=1, respectively. For 1 ≤m < ω and x ∈ X we have

⟨Q∗e∗m,x⟩ = ⟨e∗m,Qx⟩ = ⟨v∗∗m ,T Qx⟩ = ⟨T x,vm⟩ = ⟨vm,x⟩, (20)

hence Q∗e∗m = vm for each m ∈ [1,ω). By Proposition 12(a), (vm)∞m=1 is weak∗-basic.
By Proposition 12(b), to complete the proof of Theorem 9 it now suffices to show

that [(vm)∞m=1] = [vm |m ∈N]
w∗

.
For each m ∈ [1,ω) let ym = ⟨vm,xτ(m)⟩−1xτ(m) so that, by Equation (9) and the

definition of vm, the system (ym,vm)∞m=1 ⊆ X ×X∗ is biorthogonal. Following now

191



Absolutely convex sets of large Szlenk index P. A. H. Brooker

the proof of Theorem III.2 in Johnson and Rosenthal (1972), for each M ∈ [1,ω) the
operator

SM : [vm |m ∈N]
w∗
−→ [vm |m ∈N]

w∗

given by setting SMy∗ =
∑M
m=1⟨y∗, ym⟩vm for each y∗ ∈ [vm |m ∈N]

w∗
satisfies |||SM ||| ≤∏∞

m=M
1

1−δ′m
. Suppose y∗ ∈ [vm |m ∈N]

w∗
. Then (SMy∗)∞M=1 converges weak∗ to y∗

since (vm)∞m=1 is weak∗-basic, hence liminfM |||SMy∗||| ≥ |||y∗|||. On the other hand,
since |||SM ||| → 1 we have limsupM |||SMy∗||| ≤ |||y∗|||. It follows that |||SMy∗||| → |||y∗|||
as M→∞, hence |||SMy∗ − y∗||| → 0 since ||| · ||| satisfies property (ii) of Theorem 10.
As SMy∗ ∈ [(vm)∞m=1] for all M, we conclude that y∗ ∈ [(vm)∞m=1], which completes the
proof of Theorem 9. □

The following corollary of Theorem 9 may be useful in situation where one
considers the ϵ-Szlenk index for only a single ϵ > 0 (rather than a for a sequence
(ϵn)n<ω), such as the work in the current paper on universal operators.

Corollary 1 – Let X be a Banach space, K ⊆ X∗ an absolutely convex, weak∗-compact
set, ϵ > 0, ξ > 0 a countable ordinal, and (T ,⪯) a countable, well-founded tree such that
ρ(T ) ≤ ξ + 1. If sξϵ (K) , ∅ then there exist families (x∗t )t∈T ⊆ K and (xt)t∈T ⊆ SX such
that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > ϵ
17 if s ⪯ t

0 if s ⪯̸ t
, s, t ∈ T . (21)

Proof. Suppose sξϵ (K) , ∅ so that, by Lemma 1, sξ+1
ϵ/2 (K) ⊇ sξ2

ϵ/2(K) , ∅. Let t0 be a set
such that t0 < T and let (T0,⪯0) be the tree obtained by setting T0 = T ∪ {t0} and
extending ⪯ to T0 by making t0 the unique minimal element of T0. Let ξ0 = ξ + 1,
so that ρ(T0) ≤ ξ0 + 1 and sξ0

ϵ/2(K) , ∅. The conclusion of the corollary follows
from an application of Theorem 9(i) with θ = 1/2, ϵn = ϵ/2 for all n < ω, ξn = 0
for 0 < n < ω, and (Tn,⪯n) a tree consisting of a single node for 0 < n < ω (since
(⟦T⟧⋆ ,⪯T) = ({0} × T ,⪯T) is, in this case, naturally order isomorphic to T ). □

4 Structure of Banach spaces of large Szlenk index

In this section we provide the proofs of Theorem 1 and Theorem 2. In doing so we
continue with the notation introduced in Section 3. First we prove Theorem 1.

29See e.g. Albiac and Kalton, 2016, Topics in Banach space theory, Proposition 1.1.9.
30See e.g. Fabian et al., 2001, Functional analysis and infinite-dimensional geometry, Fact 6.6.
31See e.g. Singer, 1970, Bases in Banach spaces. I, Corollary 6.1.
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Proof (Proof of Theorem 1). Fix θ ∈ (0,
√

65−8) and fix {ϵn | n < ω}, a countable dense
subset of (0,∞) ⊆R. We apply Theorem 9 with K = BX∗ , ξn = Sz(X,ϵn)−1 for each
n < ω, and T = ((Tn,⪯n))n<ω a family of blossomed trees with ρ(Tn) = Sz(X,ϵn) for
each n < ω, to obtain families (xt)t∈⟦T⟧⋆ ⊆ SX and (x∗t )t∈⟦T⟧⋆ ⊆ BX∗ such that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > ϵn
8+θ if s ⪯T t ∈ {n} × T ⋆n

0 if s ⪯̸T t
, s, t ∈ ⟦T⟧⋆ , n < ω. (22)

Let Y0 = [xt]t∈⟦T⟧⋆ . It follows from Equation (22) that for every n < ω the set
{x∗(n,t) | t ∈ T

⋆
n } is ϵn

8+θ -separated and that for every t ∈ T ⋆n the sequence (x∗(n,u))u∈Tn[t+]

converges weak∗ in Y ∗0 to x∗n,t . Now an easy inductive argument (similar to that used
to prove Equation (8)) shows that

∀n < ω ∀ (n,t) ∈ {n} × T ⋆n x∗(n,t)|Y0
∈ s

ρT ⋆n
(t)

ϵn/(8+θ)(BY ∗0 ).

Hence, since (x∗(n,u))u∈Tn[∅+] converges weak∗ in Y ∗0 to 0, we obtain that

0 ∈ sρ(Tn)−1
ϵn/(8+θ)(BY ∗0 ) = sSz(X,ϵn)−1

ϵn/(8+θ) (BY ∗0 )

for each n < ω. It follows that

∀n < ω Sz
(
Y0,

ϵn
8 +θ

)
≥ Sz(X,ϵn) . (23)

Let τ : ω −→ ⟦T⟧ be a bijection such that τ(m) ⪯T τ(m′) implies m ≤ m′. Since
Sz(Y0) < ω1 and Y0 is separable, the dual Y ∗0 is norm separable. Thus, by Equa-
tion (23) and Theorem 9 there exist families (yt)t∈⟦T⟧⋆ ⊆ SY0

and (y∗t )t∈⟦T⟧⋆ ⊆ BY ∗0
such that

⟨y∗t , ys⟩ =

⟨y∗s , ys⟩ > ϵn
65 if s ⪯T t ∈ {n} × T ⋆n

0 if s ⪯̸T t
, s, t ∈ ⟦T⟧⋆ , n < ω. (24)

and (yτ(m))∞m=1 is a shrinking basic sequence with basis constant not exceeding 1 + δ.
Let Y = [(yτ(m))∞m=1]. It follows from Equation (24) that

∀n < ω ∀ (n,t) ∈ {n} × T ⋆n y∗(n,t)|Y ∈ s
ρT ⋆n

(t)

ϵn/65 (BY ∗ )

and, subsequently, that 0 ∈ sρ(Tn)−1
ϵn/65 (BY ∗ ) = sSz(X,ϵn)−1

ϵn/65 (BY ∗ ) for each n < ω. Thus,

∀n < ω Sz
(
Y ,
ϵn
65

)
≥ Sz(X,ϵn) . (25)
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For each ϵ > 0 choose N (ϵ) < ω such that ϵN (ϵ) ∈ [ 65ϵ
66 ,ϵ]. From Equation (25) we

obtain

∀ϵ > 0 Sz
(
Y ,

ϵ
66

)
≥ Sz

(
Y ,
ϵN (ϵ)

65

)
≥ Sz(X,ϵN (ϵ)) ≥ Sz(X,ϵ),

which completes the proof of the theorem. □

Two applications of Theorem 9 were used in the proof of Theorem 1 - the first
to achieve separable reduction and the second to obtain a shrinking basic sequence.
Clearly, if X is assumed norm separable then only one application of Theorem 9 is
required, in which case the number 65 in Equation (1) may be replaced by 8 +θ for
any θ > 0. Moreover, in the general case we may replace 65 by 16 +θ for any θ > 0;
this is achieved by proving a version of Lemma 3.4 of Lancien (1996) for families
(ϵn)n<ω ⊆ (0,∞) and blossomed trees ((Tn,⪯n))n<ω (as in the proof Theorem 9), then
applying this generalisation of Lemma 3.4 of Lancien (1996) to achieve separable
reduction in the proof of Theorem 1 with ϵ/2 (rather than ϵ/(8 +θ)) replacing ϵ.

We now prove Theorem 2.

Proof (Proof of Theorem 2). Fix a countable, dense subset {ϵn | n < ω} of (0,∞). We
apply Theorem 9 with θ = 1

2 , K = BX∗ , ξn = Sz(X,ϵn) − 1 for each n < ω, and
T = ((Tn,⪯n))n<ω a family of blossomed trees with ρ(Tn) = Sz(X,ϵn) for each n < ω.
Let τ : ω −→ ⟦T⟧ be a bijection such that τ(m) ⪯T τ(m′) implies m ≤ m′. By Theo-
rem 9 there exist families (xt)t∈⟦T⟧⋆ ⊆ SX and (x∗t )t∈⟦T⟧⋆ ⊆ BX∗ such that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > 2ϵn
17 if s ⪯T t ∈ {n} × T ⋆n

0 if s ⪯̸T t
, s, t ∈ ⟦T⟧⋆ , n < ω. (26)

and (Qxτ(m))∞m=1 is a shrinking basis for X/
⋂
t∈⟦T⟧⋆ ker(x∗t ) with basis constant

not exceeding 1 + δ, where Q : X −→ X/
⋂
t∈⟦T⟧⋆ ker(x∗t ) is the quotient map. Let

Z =
⋂
t∈⟦T⟧⋆ ker(x∗t ). To complete the proof we will show that Equation (2) holds.

We may assume that the families (xt)t∈⟦T⟧⋆ and (x∗t )t∈⟦T⟧⋆ above are those con-
structed in the proof of Theorem 9. Let (f ∗t )t∈⟦T⟧⋆ and (vm)∞m=1 also be as in the proof
of Theorem 9. We have

span{x∗t | t ∈ ⟦T⟧⋆} = span{f ∗t | t ∈ ⟦T⟧⋆} = span{vm | 1 ≤m < ω} ⊆Q∗
(
(X/Z)∗

)
,

(27)

where the first equality is immediate from the definitions, the second equality
follows from the inductively verified fact that

∀k < ω span{f ∗τ(m) | 1 ≤m ≤ k} = span{vm | 1 ≤m ≤ k},

and the final inclusion follows from Equation (20). Since ∥Q∥ = 1 and since Q∗ is an
isometric embedding it follows respectively that Qxt ∈ BX/Z and that (Q∗)−1(x∗t ) is
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a well-defined element of B(X/Z)∗ for every t ∈ ⟦T⟧⋆ . Since for s, t ∈ ⟦T⟧⋆ and n < ω
we have

⟨(Q∗)−1(x∗t ),Qxs⟩ = ⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > 2ϵn
17 if s ⪯T t ∈ {n} × T ⋆n

0 if s ⪯̸T t

and, since span{Qxt | t ∈ ⟦T⟧⋆} is norm dense in X/Z, we have that the family
{(Q∗)−1(x∗(n,t)) | t ∈ T

∗
n } is 2ϵn

17 -separated and that for every t ∈ Tn the sequence

((Q∗)−1(x∗(n,u)))u∈Tn[t+] converges weak∗ in (X/Z)∗ to (Q∗)−1(x∗(n,t)). Now an easy in-
ductive argument (similar to that used to prove Equation (8)) yields

∀n < ω ∀ (n,t) ∈ {n} × T ⋆n (Q∗)−1(x∗(n,t)) ∈ s
ρT ⋆n

(t)

2ϵn/17(B(X/Z)∗ )

and, subsequently, that 0 ∈ sρ(Tn)−1
2ϵn/17 (B(X/Z)∗ ) = sSz(X,ϵn)−1

2ϵn/17 (B(X/Z)∗ ) for each n < ω. Thus,

∀n < ω Sz
(
X/Z,

2ϵn
17

)
≥ Sz(X,ϵn) . (28)

For each ϵ > 0 choose N (ϵ) < ω such that ϵN (ϵ) ∈ [ 17ϵ
18 ,ϵ]. From Equation (28) we

obtain

∀ϵ > 0 Sz
(
X/Z,

ϵ
9

)
≥ Sz

(
X/Z,

2ϵN (ϵ)

17

)
≥ Sz(X,ϵN (ϵ)) ≥ Sz(X,ϵ),

which completes the proof of the theorem. □

5 Universal operators of large Szlenk index

The first and main undertaking of this section is the proof of Theorem 6 which
provides the classification of the ordinals β for which the class ∁S Z β admits
a universal element.

Proof (Proof of Theorem 6). Fix ϵ′ > 0 small enough that sω
α

ϵ′ (T ∗(BY ∗ )) , ∅ and fix

N < ω large enough thatρ(T ) ≤ωα2N+1. Setϵ = 2−N−1ϵ′ , so that s
ρ(T )−1
ϵ (T ∗(BY ∗ )) , ∅

by Equation (10). Corollary 1 yields families (xt)t∈T ⋆ ⊆ SX and (x∗t )t∈T ⋆ ⊆ T ∗BY ∗
such that

⟨x∗t ,xs⟩ =

⟨x∗s ,xs⟩ > ϵ
17 if s ⪯ t

0 if s ⪯̸ t
, s, t ∈ T ⋆ .

By Proposition 8, ΣT ⋆ factors through T .
We now suppose that T is blossomed and ρ(T ) ≥ ωα . Since T is infinite and

rooted we have ρ(T ) ≥ 2 and that ρ(T ) is a successor ordinal. It follows that
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ρ(T ) > ωα , hence by Proposition 11 we have Sz(ΣT ⋆ ) ≥ Sz(ΣT ⋆ ,ϵ) ≥ ρ(T ) > ωα , so
that ΣT ⋆ ∈∁S Z α . It follows that ΣT ⋆ is universal for ∁S Z α .

Finally, let β be an arbitrary ordinal. If β < ω1 then, by the second assertion of
Theorem 6, ΣT ⋆

ωβ
is universal for ∁S Z β , where Tωβ is as constructed in Example 2.

Now suppose on the other hand that β ≥ ω1; to complete the proof we show that
∁S Z β does not admit a universal element. Suppose by way of contraposition that

∁S Z β does admit a universal element, Υ say. Since32 Sz(C(ωω
β

+ 1)) =ωβ+1, where

C(ωω
β

+ 1) denotes the Banach space of continuous scalar-valued functions on the
compact ordinal ωω

β
+ 1, we have that Υ factors through the identity operator of

C(ωω
β

+ 1). It follows that Sz(Υ ) satisfies Sz(Υ ) ≤ Sz(C(ωω
β

+ 1)) =ωβ+1 by the ideal
property of S Z β+1. Moreover the identity operator of ℓ1 belongs to ∁S Z β since
ℓ1 is not an Asplund space, hence Υ factors through ℓ1 and, in particular, Υ has
separable range. It thus follows by Proposition 4 that Sz(Υ ) < ωω1 = ω1, hence
Υ ∈ S Z ω1

⊆ S Z β – a contradiction. Thus ∁S Z β does not admit a universal
element whenever β ≥ω1. □

In Section 7 we will study whether each of the classes D ∩∁S Z β , β ≥ ω1,
admits a universal element of the form ΣT for an uncountable tree T .

Remark 4 – It is straightforward to observe that we may replace ΣT ⋆ by ΣT in
the statement of Theorem 6. However, the reason for our choice of ΣT ⋆ over ΣT
is that universal operators may be thought of as ‘minimal’ elements of the class
for which they are universal, and the operator ΣT ⋆ can be thought of as naturally
‘smaller’ than ΣT since T ⋆ is a subtree of T and ΣT⋆ therefore factors through ΣT
by Proposition 9. Moreover, T is not order isomorphic to a subtree of T ⋆ since T is
assumed to be well-founded.

The following result can be proved directly using standard Szlenk index tech-
niques, however as we shall refer to this result later we provide a quick proof here
using Theorem 6.

Corollary 2 – Let (T ,⪯) be an infinite blossomed tree. Then Sz(ΣT ⋆ ) = ρ(T )ω.

Proof. Let α < ω1 be the (unique) ordinal satisfying ωα ≤ ρ(T ) < ωα+1. Since
Sz(C(ωω

α
+ 1)) = ωα+1 > ωα by Samuel’s computation33 of Sz(C(K)) for countable

compact Hausdorff K , by Theorem 6 we have that ΣT ⋆ factors through C(ωω
α

+ 1),
hence Sz(ΣT ⋆ ) ≤ Sz(C(ωω

α
+ 1)) =ωα+1 = ρ(T )ω by the ideal property of S Z α+1.

As T is infinite and rooted we have ρ(T ) ≥ 2. Moreover, as noted in Section 2.2,
ρ(T ) is a successor ordinal. It follows that ρ(T ) > ωα , hence Sz(ΣT ⋆ ) ≥ Sz(ΣT ⋆ ,ϵ) ≥
ρ(T ) > ωα by Proposition 11. As Sz(ΣT ⋆ ) is a power of ω, we deduce that Sz(ΣT ⋆ ) ≥
ωα+1 = ρ(T )ω, which completes the proof. □

32Brooker, 2013, “Szlenk and w∗-dentability indices of the Banach spaces C([0,α])”, Theorem 2.6.
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Remark 5 – Theorem 4 may be obtained as an immediate consequence of Theo-
rem 6 and the fact thatK =S Z 0 by Proposition 2.3 of Brooker (2012).

The following proposition relates some of the factorisation results of the current
paper to known relationships between various closed operator ideals.

Proposition 13 – Let I be a cofinal subset of ω1 and for each ordinal ξ ∈ I let Tξ be
a blossomed tree with ρ(Tξ ) = ξ+1. For T ∈X , i.e. T with separable range, the following
are equivalent:

(i) T factors ΣT ⋆ξ for every ξ ∈ I .

(ii) T factors ΣΩ, where Ω is the full countably branching tree of Example 1.

(iii) T factors ΣT for every countable tree T with ht(T ) ≤ω.

(iv) T ∈∁D .

(v) T ∈∁X ∗.

(vi) T ∈∁S Z ω1
.

(vii) T ∈∁
⋃
α∈OrdS Z α .

(viii) T ∈∁
⋃
α<ω1

S Z α .

The proof of Proposition 13 relies on the following result of the author34.

Theorem 11 – Let X and Y be Banach spaces and T ∈L (X,Y ). Suppose that at least
one of X and Y is separable and that T <X ∗(X,Y ). Then ΣΩ factors through T .

Proof (Proof of Proposition 13). The equivalence of assertions (iv)–(viii) follows im-
mediately from Proposition 4. To complete the proof it thus suffices to show that
(v)⇒(ii)⇒(iii)⇒(i)⇒(viii).

To see that (v)⇒(ii), let X and Y be Banach spaces and T ∈ X (X,Y ) \X ∗(X,Y ).
Let T̃ : X −→ T (X) be the separable codomain operator given by setting T̃ x = T x
for all x ∈ X. Since T̃ < X ∗, by Theorem 11 there exist U ∈ L (ℓ1(Ω),X) and
V ∈ L (T (X), ℓ∞(Ω)) such that V T̃U = ΣΩ. Since ℓ∞(Ω) is injective35 V admits
a continuous linear extension Ṽ ∈L (Y ,ℓ∞(Ω)), and for such Ṽ we have Ṽ T U = ΣΩ.
Thus (v)⇒(ii).

The implication (ii)⇒(iii) follows from Proposition 9 and the fact that every
countable tree T with ht(T ) ≤ ω is order isomorphic to a subtree of Ω, whilst
(iii)⇒(i) is immediate from the fact that blossomed trees are by definition countable
and well-founded.

Finally, the implication (i)⇒(viii) is a consequence of Proposition 11. □

33Samuel, 1984, “Indice de Szlenk des C(K) (K espace topologique compact dénombrable)”.
34Brooker, 2017, “Non-Asplund Banach spaces and operators”, Theorem 5.5.
35See Lindenstrauss and Tzafriri, 1977, Classical Banach spaces. I, p. 105.
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6 When the codomain is separable

It is evident from the definition of the operator ΣT associated to a tree (T ,⪯) that
the range of ΣT is contained in the closed linear span in ℓ∞(T ) of the indicator
functions χT [t⪯], for t ∈ T . For example, the range of the universal non-compact
operator ℓ1 ↪→ ℓ∞ of Johnson (c.f. Theorem 4) is contained in the subspace c0 of ℓ∞,
whilst the range of the Lindenstrauss-Pełczyński universal non-weakly compact
summation operator from ℓ1 to ℓ∞ (c.f. Theorem 3) is contained in the subspace
c of ℓ∞ consisting of all convergent scalar sequences. In both these cases, the
range is contained (up to isometric isomorphism) in a separable C(K) space. In the
corresponding papers of Johnson36 and Lindenstrauss-Pełczyński37 it is noted that
stronger versions of the universal operator theorems presented there hold under
restriction to the class of operators having separable codomain. More precisely, it is
noted in Johnson (1971) that if T : X −→ Y is noncompact and Y is separable, then
T factors the formal identity operator from ℓ1 to c0. Moreover, in Lindenstrauss
and Pełczyński (1968) it is noted that if T : X −→ Y is non-weakly compact and
Y is separable, then T factors the summation operator from ℓ1 to c defined by
(an)∞n=1 7→ (

∑n
i=1 ai)

n
i=1. In a similar vein, in the current section we show that for

every α < ω1 there exists an operator Υα from ℓ1 into a separable C(K) space with
Sz(Υα) > ωα and such that Υα factors through any T : X −→ Y with Y separable and
Sz(T ) ≰ωα .

Let (T ,⪯) be a rooted and chain-complete tree and let t
∅

denote the root of T . By
Theorem 8 the coarse wedge topology of T is compact Hausdorff, thus for such T we
shall denote by C(T ) the Banach space (with the supremum norm) of coarse-wedge-
continuous scalar-valued functions on T . We denote by C0(T ) the codimension-1
subspace {f ∈ C(T ) | f (t

∅
) = 0} of C(T ). Note that if T is countable then C(T ) and

C0(T ) are norm separable.
The following definition establishes the class of operators from which we shall

draw our examples of universal non-α-Szlenk operators with separable codomain.
We note that although the definition can be adapted to trees of arbtrarily large
height, such generality is unnecessary for our purposes.

Definition 4 – Let (T ,⪯) be a rooted, well-founded tree. Define σT : ℓ1(T ) −→ C(T )
by

(σT x)(t) =
∑
s⪯t

x(s), x ∈ ℓ1(T ), t ∈ T .

That is, σT is the unique element of L (ℓ1(T ),C(T )) that maps each et ∈ ℓ1(T ) to
χT [t⪯] ∈ C(T ). Similarly, define σ̊T to be the unique element of L (ℓ1(T ⋆),C0(T ))
that maps each et ∈ ℓ1(T ⋆) to χT [t⪯] ∈ C0(T ).

36Johnson, 1971, “A universal non-compact operator”.
37Lindenstrauss and Pełczyński, 1968, “Absolutely summing operators inLp-spaces and their appli-

cations”.
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Notice that Proposition 11 holds true with σ̊T in place of ΣT ⋆ . Indeed, since
C0(T ) naturally embeds linearly and isometrically into ℓ∞(T ⋆) via the restriction
map R ∈ L (C0(T ), ℓ∞(T ⋆)), defined by setting R(f ) = f |T ⋆ for each f ∈ C0(T ),
and since ΣT ⋆ = Rσ̊T , we have σ̊ ∗T (BC0(T )∗ ) = Σ∗T ⋆ (Bℓ∞(T ⋆ )∗ ). We thus deduce that
Sz(σ̊T ) = Sz(ΣT ⋆ ) since the Szlenk indices of σ̊T and ΣT ⋆ are determined by the
same subset of ℓ1(T ⋆)∗.

Similarly to the comments in Remark 4 regarding Theorem 6, we note that
although σ̊T may be replaced by σT in the statement of Theorem 7, we present
Theorem 7 as stated since σ̊T may be viewed as being naturally ‘smaller’ than σT .

A smallness condition of some kind on Y is necessary for the first assertion of
Theorem 7 to hold in general. To see this, by Corollary 2 it is enough to observe
that for a countably infinite, rooted, well-founded tree (T ,⪯), σ̊T does not factor
through ΣT ⋆ . Firstly, the fact that such T is infinite and well-founded implies that
MAX(T ) contains an infinite anti-chain {tn | n < ω}, so that σ̊T is non-compact since
the set {σ̊T etn | n < ω} is an infinite ϵ-separated subset of σ̊T (Bℓ1(T ⋆ )) for any ϵ ∈ (0,1).
Secondly, the norm separability of C0(T ) and the fact that ℓ∞(T ⋆) is a Grothendieck
space implies that38 L (ℓ∞(T ⋆),C0(T )) =W (ℓ∞(T ⋆),C0(T )). Thirdly, the fact that
T is well-founded implies that ΣT ⋆ is weakly compact by Proposition 10, hence
for any V ∈ L (ℓ∞(T ⋆),C0(T )) = W (ℓ∞(T ⋆),C0(T )) we have that VΣT ⋆ is com-
pact since ℓ∞(T ⋆) is isomorphic to a C(K) space and therefore has the Dunford-
Pettis Property3940. Finally, since VΣT ⋆ therefore cannot factor σ̊T for any V ∈
L (ℓ∞(T ⋆),C0(T )), we conclude that ΣT ⋆ does not factor σ̊T .

To prove Theorem 7 we first establish the following continuous analogue of
Proposition 8.

Proposition 14 – LetK be a compact Hausdorff space, I an index set and {Ki}i∈I a family
of clopen subsets of K . For Banach spaces X and Y and T ∈L (X,Y ) the following are
equivalent:

(i) T factors the unique element ofL (ℓ1(I),C(K)) satisfying ei 7→ χKi , i ∈ I .

(ii) There exists (δi)i∈I ⊆R with infi∈I δi > 0, a family (xi)i∈I ⊆ X with supi∈I ∥xi∥ <∞
and a weak∗-continuous map Ξ : K −→ Y ∗ such that

∀ i ∈ I ∀k ∈ K ⟨Ξ(k),T xi⟩ =

δi , k ∈ Ki
0, k < Ki

.

Proof. For each k ∈ K let g∗k ∈ C(K)∗ denote the evaluation functional of C(K) at k;
that is, g∗k(f ) = f (k) for each f ∈ C(K).

38Grothendieck, 1953, “Sur les applications linéaires faiblement compactes d’espaces du type C(K)”.
39Ibid.
40See also Albiac and Kalton, 2016, Topics in Banach space theory, Theorem 5.4.6.
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Suppose (i) holds. Let S denote the unique element ofL (ℓ1(I),C(K)) satisfying
ei 7→ χKi , i ∈ I , and let U ∈L (ℓ1(I),X) and V ∈L (Y ,C(K)) be such that S = V TU .
The map k 7→ g∗k is a homeomorphic embedding of K into C(K)∗ with respect
to the weak∗-topology of C(K)∗, hence the map Ξ : K −→ Y ∗ defined by setting
Ξ(k) = V ∗g∗k for each k ∈ K is weak∗-continuous. For each i ∈ I set xi =Uei , so that
supi∈I ∥xi∥ ≤ ∥U∥ <∞. Then for i ∈ I and k ∈ K we have

⟨Ξ(k),T xi⟩ = ⟨V ∗g∗k ,T Uei⟩ = ⟨g∗k ,V TUei⟩ = ⟨g∗k ,Sei⟩ = ⟨g∗k ,χKi ⟩ =

1, k ∈ Ki
0, k < Ki

.

By taking δi = 1 for each i ∈ I we see that (ii) holds, as desired.
Now suppose (ii) holds. Let U ∈L (ℓ1(I),X) be defined by setting Uei = δ−1

i xi
for each i ∈ I , noting that U is well-defined with ∥U∥ ≤ (infi∈I δi)−1 supi∈I ∥xi∥. Let
V be the element of L (Y ,C(K)) satisfying (V y)(k) = ⟨Ξ(k), y⟩ for y ∈ Y and k ∈ K ,
noting that V is well-defined with ∥V ∥ = supk∈K ∥Ξ(k)∥ <∞. For i ∈ I and k ∈ K we
have

(V TUei)(k) = ⟨g∗k ,V TUei⟩ = δ−1
i ⟨V

∗g∗k ,T xi⟩ = δ−1
i ⟨Ξ(k),T xi⟩ =

1, k ∈ Ki
0, k < Ki

,

hence V TUei = Sei for every i ∈ I , hence V TU = S. □

The following lemma is another key ingredient required for the proof of Theo-
rem 7.

Lemma 5 – Let X and Y be Banach spaces such that Y is separable. Let T ∈L (X,Y ),
δ > 0, (R,⪯′) a blossomed tree and (xr )r∈R ⊆ SX and (x∗r )r∈R ⊆ T ∗(BY ∗ ) families such that

⟨x∗s ,xr⟩ =

⟨x∗r ,xr⟩ > δ if r ⪯′ s
0 if r ⪯̸′ s

, r, s ∈ R. (29)

Then for any ξ < ρ(R) and any r0 ∈ R(ξ) \R(ξ+1) there exists a full subtree S of R[r0 ⪯′]
and a family (y∗s )s∈S ⊆ BY ∗ such that

⟨y∗s ,T xr⟩ = ⟨x∗s ,xr⟩, s ∈ S , r ∈ R (30)

and the map s 7→ y∗s from S to Y ∗ is coarse-wedge-to-weak∗ continuous.

Proof. We proceed by induction on ξ. For the base case, namely ξ = 0, fix r0 ∈
R(0) \R(1), let S = {r0} and choose y∗r0 ∈ BY ∗ such that T ∗y∗r0 = x∗r0 . In this way we see
that the assertion of the lemma is true in the case ξ = 0.

We now address the inductive step. Suppose 0 < ζ < ρ(R) and that the assertion
of the lemma holds for all ξ < ζ; we will now show it is then true for ξ = ζ. To this
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end fix r0 ∈ R(ζ) \R(ζ+1) and for each t ∈ R[r0+] let St be a full subtree of R[t ⪯′]
and (y∗s )s∈St ⊆ BY ∗ a family such that

⟨y∗s ,T xr⟩ = ⟨x∗s ,xr⟩, s ∈ St , r ∈ R (31)

and the map Ξt : s 7→ y∗s from St to Y ∗ is coarse-wedge-to-weak∗ continuous. Let d
be a metric on BY ∗ that is compatible with the weak∗ topology on BY ∗ and let (tn)∞n=0
be an injective sequence in R[r0+] such that (y∗tn )∞n=0 is weak∗ convergent. Let y∗r0
denote the weak∗-limit of (y∗tn )∞n=0. Passing to a subsequence we may assume that
d(y∗tn , y

∗
r0 ) < 1/n for each n < ω. By Proposition 6 and the continuity of the maps Ξtn ,

n < ω, for each n < ω we may choose a finite set Fn ⊆ Stn [tn+] such that

∀n < ω ∀ t ∈WStn (tn,Fn) d(Ξtn(t),Ξtn(tn)) <
1
n
.

Define S := {r0} ∪
⋃
n<ωWStn (tn,Fn) and Ξ : S −→ Y ∗ by

Ξ(s) =

y∗r0 , s = r0
Ξtn(s), s ∈WStn (tn,Fn), n < ω

It is straightforward to check that S is a full subtree of R[r0 ⪯′] sinceWStn (tn,Fn)
is a full subtree of Stn for every n < ω. To see that Equation (30) holds for this S ,
note that since Equation (31) holds for t = tn, for all n < ω, we need only check that
Equation (30) holds in the case where s = r0. To this end note that for all r ∈ R we
have

⟨y∗r0 ,T xr⟩ = lim
n→ω
⟨y∗tn ,T xr⟩ = lim

n→ω
⟨x∗tn ,xr⟩ = ⟨x∗r0 ,xr⟩,

where the final equality follows from Equation (29). Thus Equation (30) holds for
all s ∈ S and r ∈ R.

To complete the proof it remains only to establish the continuity of Ξ. Since
each Ξtn is continuous, for n < ω, the only nontrivial case to check is whether Ξ

is continuous at r0. Fix λ > 0. Let N < ω be large enough that Nλ > 2 and let
F = {t0, . . . , tN−1}. For each s ∈WS (r0,F ) \ {r0} there exists a unique ns ≥N such that
tns ⪯

′ s. So for s ∈WS (r0,F ) \ {r0} we have

d(Ξ(s),Ξ(r0)) ≤ d(Ξ(s),Ξ(tns )) + d(Ξ(tns ),Ξ(r0)) <
1
ns

+
1
ns
≤ 2
N
< λ.

It follows that d(Ξ(s),Ξ(r0)) < λ for all s ∈ WS (r0,F ), hence Ξ is continuous at r0
sinceWS (r0,F ) is open in S by Proposition 6. □

Proof (Proof of Theorem 7). Suppose Y is separable. Let (R,⪯′) be a blossomed tree
with ρ(R) = ρ(T ) (c.f. Example 2), let ϵ′ > 0 be small enough that sω

α

ϵ′ (T ∗(BY ∗ )) , ∅,
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and let N < ω be large enough ρ(T ) ≤ ωα2N + 1. Set ϵ = 2−N−1ϵ′, so that

s
ρ(T )−1
ϵ (T ∗(BY ∗ )) , ∅ by Equation (10). Corollary 1 yields families (xs)s∈R ⊆ SX

and (x∗s)s∈R ⊆ T ∗(BY ∗ ) such that

⟨x∗s ,xr⟩ =

⟨x∗r ,xr⟩ > ϵ
17 if r ⪯′ s

0 if r ⪯̸′ s
, r, s ∈ R . (32)

We apply Lemma 5 with r0 the root of R and ξ = ρ(T )− 1 to obtain a full subtree S
of R and a family (y∗s )s∈S ⊆ BY ∗ such that

⟨y∗s ,T xr⟩ = ⟨x∗s ,xr⟩, s, r ∈ S , (33)

and the map Ξ : s 7→ y∗s from S to Y ∗ is coarse-wedge-to-weak∗ continuous. From
Equation (32) and Equation (33) we deduce that

⟨y∗s ,T xr⟩ =

⟨y∗r ,T xr⟩ > ϵ
17 if r ⪯′ s

0 if r ⪯̸′ s
, r, s ∈ S . (34)

By an application of Proposition 14 with K = S , index set I = S , clopen sets
Ks = S[s ⪯′] for s ∈ S , and δs = ϵ/17 for all s ∈ S , we obtain that σS factors through T .
So to prove the first assertion of Theorem 7 it now suffices to show that σ̊T fac-
tors through σS . To this end we now define three operators, S, R, and P , so that
σ̊T = P SσSR. Letφ : T −→ S be an order-isomorphism of T onto a downward-closed
subtree of S , noting that such an embedding exists by Proposition 5. Since φ is
coarse wedge continuous by Proposition 7(ii), the operator S ∈L (C(S),C(T )) given
by setting Sf = f ◦φ for each f ∈ C(S) is well-defined. Let R ∈L (ℓ1(T ⋆), ℓ1(S)) be
the operator defined by setting Ret = eSφ(t) for every t ∈ T ⋆ . Let t

∅
denote the root

of T and define P ∈L (C(T ),C0(T )) by setting P f = f − f (t
∅

)χT for each f ∈ C(T ).
Since for t ∈ T ⋆ we have

P SσSRet = P SσSe
S
φ(t) = P SχS[φ(t)⪯′] = P χT [t⪯] = χT [t⪯] = σ̊T et ,

we conclude that σ̊T = P SσSR. The first assertion of the theorem is proved.
For the second assertion of the theorem, we now suppose that T is blossomed

and ρ(T ) ≥ ωα . As T is infinite and rooted, we have that ρ(T ) ≥ 2 and ρ(T ) is
a successor ordinal, hence ρ(T ) > ωα . Since T is blossomed, an application of
Proposition 11 yields Sz(ΣT ⋆ ) ≥ ρ(T ) > ωα . Moreover, as noted in the paragraph
following Definition 4 on p. 198, Sz(ΣT ⋆ ) coincides with Sz(σ̊T ), hence σ̊T is non-α-
Szlenk. Note also that the codomain of σ̊T , namely C0(T ), is norm separable since
T is countable. On the other hand, by the first assertion of the theorem we have
that σ̊T factors through any non-α-Szlenk operator with separable codomain, hence
we conclude that σ̊T is in this case universal for the class of non-α-Szlenk operators
with separable codomain. □
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Remark 6 – Bourgain, in a study41 of fixing properties of operators of large Szlenk
index acting on C(K) spaces, represented C(L) spaces with L countable, compact
and Hausdorff as spaces of scalar-valued functions on blossomed trees. Bourgain
associates to each tree (Tξ ,⊑) constructed in Example 2 above (subtrees of the
tree (Ω,⊑) constructed in Example 1) a Banach space Xξ , isometrically isomorphic
to C0(Tξ ), defined as the completion of c00(T ⋆ξ ) (the space of finitely-supported
scalar-valued functions on T ⋆ξ ) with respect to the norm ∥ ·∥ξ defined by setting

∥x∥ξ = sup
t∈T ⋆ξ

∣∣∣∣∑
s⊑t

x(s)
∣∣∣∣, x ∈ c00(T ⋆ξ ).

The main assertion of Theorem 7 may be recast as follows: Suppose α,ξ < ω1 are such
that ωα ≤ ξ < ωα+1 and let Tξ ∈L (ℓ1(T ⋆ξ ),XT ⋆ξ ) denote the continuous linear extension

of the formal identity map from (c00(T ⋆ξ ),∥ ·∥ℓ1(T ⋆ξ )) to XT ⋆ξ . Then Tξ is universal for the
class of non-α-Szlenk operators with norm separable codomain.

We conclude the current section with some observations regarding the afore-
mentioned universal operator theorems of Johnson and Lindenstrauss-Pełczyński.
In particular, we note the following corollaries of Theorems 3 and 4. These results
appear in Johnson (1971) and Lindenstrauss and Pełczyński (1968), respectively,
under the stronger hypothesis that Y is norm separable.

Corollary 3 – LetX and Y be Banach spaces such that Y has weak∗-sequentially compact
dual ball and let T ∈L (X,Y ) be non-weakly compact. Then T factors the summation
operator (an)∞n=1 7→ (

∑n
i=1 ai)

∞
n=1 from ℓ1 to c.

Proof. By Theorem 3 there exist U ∈ L (ℓ1,X) and V ∈ L (Y ,ℓ∞) such that V TU
is the summation operator from ℓ1 to ℓ∞. For n ∈ N let f ∗n denote the nth co-
ordinate functional on ℓ∞; that is, f ∗n (f ) = f (n) for every f ∈ ℓ∞. Since Y has
weak∗-sequentially compact dual ball there is a weak∗-convergent subsequence
(V ∗f ∗nk )

∞
k=1 of (V ∗f ∗n )∞n=1. Define A ∈L (ℓ1,X) by setting Aek = Uenk for each k ∈N

a define B ∈L (Y ,c) by setting By = (⟨V ∗f ∗nk , y⟩)
∞
k=1 for each y ∈ Y . For k, l ∈N we

have

(BTAek)(l) = ⟨V ∗f ∗nl ,T Aek⟩ = ⟨f ∗nl ,V TUenk ⟩ =

1, l ≥ k
0, l < k

,

hence BTA coincides with the summation operator from ℓ1 to c. □

Corollary 4 – LetX and Y be Banach spaces such that Y has weak∗-sequentially compact
dual ball and let T ∈ L (X,Y ) be non-compact. Then T factors the formal identity
mapping from ℓ1 to c0.

41Bourgain, 1979, “The Szlenk index and operators on C(K)-spaces”.
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Proof. By Theorem 4 there exist U ∈ L (ℓ1,X) and V ∈ L (Y ,ℓ∞) such that V TU
is the formal identity mapping from ℓ1 to ℓ∞. For n ∈ N let f ∗n denote the nth
coordinate functional on ℓ∞. Since Y has weak∗-sequentially compact dual ball
there is a subsequence (V ∗f ∗nk )

∞
k=1 of (V ∗f ∗n )∞n=1 converging weak∗ to some y∗ ∈ Y ∗.

Define A ∈L (ℓ1,X) by setting Aek = Uenk for each k ∈N and define B ∈L (Y ,c0)
by setting By = (⟨V ∗f ∗nk − y

∗, y⟩)∞k=1 for each y ∈ Y . Since

∀k ∈N ⟨y∗,T Uenk ⟩ = lim
l→∞
⟨V ∗f ∗nl ,T Uenk ⟩ = lim

l→∞
⟨f ∗nl ,V TUenk ⟩ = 0,

it follows that for k, l ∈N we have

(BTAek)(l) = (BTUenk )(l) = ⟨V ∗f ∗nl − y
∗,T Uenk ⟩ = ⟨f ∗nl ,V TUenk ⟩ =

1, l = k
0, l , k

,

hence BTA coincides with the formal identity mapping from ℓ1 to c0. □

We conclude the current section of the paper with the following open question.

Question 1 – Does the statement of Theorem 7 remain true if the condition that
Y be norm separable is relaxed and Y is only assumed to have weak∗-sequentially
compact dual ball?

7 Uncountable Szlenk indices and universality

The proof of Theorem 6 makes use of the fact that an operator T can fail to be
α-Szlenk for a given ordinal α in essentially two different ways. More precisely, it
can be that Sz(T ) is defined and larger than ωα , or it can be that Sz(T ) is undefined.
In particular, a non α-Szlenk operator can be either Asplund or non-Asplund. This
observation and the first assertion of Theorem 6 lead naturally to the following
open question.

Question 2 – Let α ≥ ω1 be an uncountable ordinal. Does D ∩ ∁S Z α admit
a universal element?

In light of the approach taken in Theorem 6 to prove the existence of univer-
sal elements of ∁S Z α for α < ω1, it is natural to guess that a first step towards
answering Question 2 could involve consideration of operators of the form ΣT ,
where (T ,⪯) is a tree, and extending the definition of a blossomed tree (c.f. Defi-
nition 2) to the uncountable setting as follows: say that a tree (T ,⪯) is blossomed
if it is rooted, well-founded, and for every t ∈ T \MAX(T ) there exists a bijec-
tion ψt : max{ω,cof (ρT (t))} −→ T [t+] such that ζ ≤ ζ′ <max{ω,cof (ρT (t))} implies
ρT (ψt(ζ)) ≤ ρT (ψt(ζ′)). Examples of such trees T with ρ(T ) = ξ + 1 for a given
ordinal ξ may be obtained via a similar construction to that provided in Example 2,
but with T consisting of finite sequences of ordinals (ordered by extension, as in
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Example 2). Moreover, under this more general definition of a blossomed tree, a blos-
somed tree (T ,⪯) satisfies ρ(T ) < ω1 if and only if T is countable and satisfies the
usual definition of blossomed tree given in Definition 2. The natural candidate for
a universal element ofD∩∁S Z ω1

under this approach is ΣS , where for each α < ω1
we let (Tα ,⪯α) be a blossomed tree with ρ(Tα) = α + 1 and set S =

⋃
α<ω1

({α} × Tα),
with an order ⪯ on S defined by setting (α,t) ⪯ (α′ , t′) if and only if α = α′ and
t ⪯α t′ . We do not know the answer to Question 2, even in the case α =ω1. However,
as we shall now see, operators of the form ΣT , where (T ,⪯) is a well-founded tree -
cannot be expected to provide absolute examples of universal elements of the classes
D ∩∁S Z α for α ≥ ω1 in general. In particular, we shall see that it is consistent
with ZFC that the operator ΣS defined above is not universal forD ∩∁S Z ω1

.
Let Z be a Banach space and (T ,⪯) a tree. Let

OT = {t ∈ T | htT (t) = 0 or htT (t) is a successor},

noting that OT = T if and only if ht(T ) ≤ ω. In particular, OT = T whenever
T is well-founded. If ΣT factors through Z then, by Proposition 8, there exist
δ > 0, (xt)t∈T ⊆ Z and (x∗t )t∈T ⊆ Z∗ satisfying Equation (7). It follows that Z admits
a biorthogonal system of cardinality |OT |, namely (xt , z∗t )t∈OT , where

z∗t =

x∗t − x∗t− if htT (t) > 0
x∗t if htT (t) = 0

, t ∈ OT .

(For background on biorthogonal systems in Banach spaces we refer the reader to
the book Hájek et al. (2008).) The following proposition is now immediate.

Proposition 15 – Let Z be a Banach space not admitting an uncountable biorthogonal
system and let (T ,⪯) be a tree such that OT is uncountable. Then ΣT does not factor
through Z.

It is consistent with ZFC that there exists an Asplund space W with Sz(W ) > ω1 and
W does not admit an uncountable biorthogonal system. Thus, by Proposition 15, it
is consistent with ZFC that the operator ΣS defined earlier in the current section is
not universal forD ∩∁S Z ω1

. An example of a compact Hausdorff space K such
that C(K) is such a space W was constructed in the 1970s by Kunen, though the
construction was not published until much later by Negrepontis42. (For further
historical remarks concerning the existence of uncountable biorthogonal systems,
see Remark 4 of Todorčević (2006).) Since a Banach space C(L) is Asplund if and
only if L is scattered43, the space C(K) arising from Kunen’s construction is Asplund.
Moreover, the Cantor-Bendixson rank of Kunen’s space K is larger than ω1. Thus,
the C(K) space arising from Kunen’s construction is indeed an example of such

42Negrepontis, 1984, “Banach spaces and topology”.
43Namioka and Phelps, 1975, “Banach spaces which are Asplund spaces”.
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a space W once we have observed the following fact: for L a compact Hausdorff
space the Szlenk index of C(L) is bounded below by the Cantor-Bendixson rank
of L. This is an easy consequence of the well-known fact that the mapping that
takes l ∈ L to the evaluation functional of C(L) at l is a homeomorphic embedding
with respect to the weak∗ topology, and the image of L under this embedding is
a 1-separated subset of BC(L)∗ . From this fact it is easy to see that Sz(C(L),1) is
bounded below by the Cantor-Bendixson rank of L, hence Sz(C(L)) is bounded
below by the Cantor-Bendixson rank of L.

Finally, we mention a more recent construction of Brech and Koszmider44, who
establish the consistency of a scattered compact Hausdorff space J having Cantor-
Bendixson rank equal to ω2 + 1 and such that C(J) does not admit an uncountable
biorthogonal system. If T is a tree that is blossomed in the generalised sense
introduced at the beginning of the current section, and if ρ(T ) = ω2 + 1, then
Sz(ΣT ) =ω2ω. However, by Proposition 15, ΣT does not factor through the Brech-
Koszmider space C(J) which satisfies Sz(C(J)) ≥ω2ω.
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