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Abstract

We discuss the evaluation of convolution sums involving the divisor function,
Y. o(l)o(m), for the class of levels a belonging to all natural numbers.
(I,m)eIN?
al+pm=n
The evaluation of convolution sums belonging to this class is achieved by apply-
ing modular forms and primitive Dirichlet characters. We illustrate our method
with the explicit examples for the levels a = 33, 40, 45, 50, 54, and 56. As
a corollary, the known convolution sums for the levels af =10, 11, 12, 15, 16,
18, 24, 25, 27, 32 and 36 are improved when we revisit their evaluations. If the
level @ =0 (mod 4), we determine natural numbers 4,b and use the evaluated

convolution sums together with other known convolution sums to carry out the
4
number of representations of #n by the octonary quadratic forms a ) x +b Z x
i=1 i=5
Similarly, if the level a = 0 (mod 3), we compute natural numbers ¢,d and

make use of the evaluated convolution sums together with other known convo-
lution sums to determine the number of representations of n by the octonary

quadratic forms ¢ Z (le |t X2i-1%2i +x21 )+d Z (le |t X2i-1%2i +x§l) In
i=1 =3
addition, we determine formulae for the number of representations of a positive

integer n when (a,b) = (1,1), (1,3), (1,6), (2, 3).

Keywords: Sums of Divisors; Dedekind eta function, Convolution Sums, Modular
Forms, Dirichlet Characters, Eisenstein forms, Cusp Forms, Octonary quadratic
Forms, Number of Representations.
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Elementary Evaluation of Convolution Sums for a Class of Levels E. Ntienjem

1 Introduction

In this work, we denote by IN, Z, Q, R and C the sets of natural numbers, integers,
rational numbers, real numbers and complex numbers, respectively. Let in addition
IN|) denote the set of natural numbers without zero, i.e., Ny = IN'\ {0}. Let k € N and
let n € Ny. The sum oy (n) of the k™ powers of the positive divisors of # is defined

by
ox(n) = Z dx. (1)
0<d|n
We let o(n) stand for oy (n). For m ¢ IN we set o(m) = 0 and for all k € IN; we set
(Tk(O) =0.
Let a, f € INg be such that a < . We define the convolution sum, W, g)(n), as
follows:
Wapm= ) oho(m). 2)
(I,m)eN?
al+pm=n
We write Wg(n) as a shorthand for Wy g)(n). If for all (I,m) € IN? it holds that
al+pm=n, then we set Wy, g)(n) =0
So far known convolution sums are displayed in Table 1.

Level af References

1 Besge (1885), Glaisher (1862), and Ramanujan (1916)
2,3,4 Huard et al. (2002)

5,7 Cooper and Toh (2009) and Lemire and Williams (2006)
6 S. Alaca and Williams (2007)

8,9 Williams (2005, 2006)

10,11,13, 14 Royer (2007)

12,16, 18, 24 A. Alaca, S. Alaca, and Williams (2006, 2007a,b, 2008)
15 Ramakrishnan and Sahu (2013)

10, 20 Cooper and Ye (2014)

23 Chan and Cooper (2008)

25 Xia, Tian, and Yao (2014)

27,32 S. Alaca and Kesicioglu (2016)

36 Ye (2015)

14, 26, 28, 30, 22, | Ntienjem (2015, 2017a,b)

44,52, 48, 64

Table 1 — Known convolution sums W, g)(n) of level af

Let 1 be a subset of INy which is defined as follows:
N ={2"0|v €{0,1,2,3} and U is a finite product of distinct odd primes}.
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1. Introduction
We evaluate the convolution sum W, g)(n) for the class of levels a such that
(1) apefand
(2) af e Ng\ .

Therefore, we evaluate the convolution sum W, g)(n) for the class of levels af
belonging to all natural numbers. We use in particular Dirichlet characters and
modular forms to evaluate these convolution sums. The evaluation of the convolu-
tion sum for these classes of levels is new.

We observe that the levels aff =9, 16, 18, 25, 27, 32, 36, 48, 64 from Table 1
belong to the class of levels mentioned in item (2) while the other levels from Table 1
are handled in item (1).

As an immediate consequence of the generalization of the evaluation of convolu-
tion sums, we revisit the evaluation of the convolution sums for the levels aff =9,
10,11,12,15, 16, 18, 24, 25, 27, 32 and 36, which leads to the improvement of the
result of the evaluation of the convolution sums for af =10, 11, 12, 15, 16, 18, 24,
25, 27, 32 and 36.

We illustrate our general approach in case

1. ap €N by evaluating the convolution sum for a = 33, 40 and 56.

2. af € Ny \ 91 by evaluating the convolution sum for af =45, 50 and 54.

Again, these convolution sums have not been evaluated as yet.

As an application, convolution sums are used to determine explicit formulae
for the number of representations of a positive integer n by the octonary quadratic
forms

4 8
a xi2 +b lez (3)
i=1 i=5
and
2 4
c (X2 +xy; +x2)+d 2 ; +x2 4
2i-1 2i—1%2i +X5;) + (xzi_1 + X2i-1X2i T X5; ) (4)
i=1 i=3

respectively, where a,b,¢,d € INj.
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So far known explicit formulae for the number of representations of #n by the
octonary form (3) are displayed in Table 2.

a,b) References

) Williams (2006)

) A. Alaca, S. Alaca, and Williams (2007a)
) Cooper and Ye (2014)

) Ramakrishnan and Sahu (2013)
)

)

~

S. Alaca and Kesicioglu (2016)
,(1,11),(1,13), | Ntienjem (2015, 2017a,b)
2),(1,16), (3,4)

(
(1,2
(1,4
(1,5
(1,6
(1,8
(1,7
(1,1

’

Table 2 — Known representations of n by the form (3)

Similarly, so far known explicit formulae for the number of representations of n by
the octonary form (4) are referenced in Table 3.

o
N

[
~

References

Lomadze (1989)

S. Alaca and Williams (2007)

Williams (2005)

,(1,6),(1,8), A. Alaca, S. Alaca, and Williams (2006, 2007a,b)

~

-

~

|||

~

Ramakrishnan and Sahu (2013)
S. Alaca and Kesicioglu (2016)
), (2,5), (1,16) Ntienjem (2015, 2017b)

3,4) Ye (2015)

~

~

~

—_ |~ ~| ||~ -~
>—k»—l>—k>—l!\)>—l»—\>—l>~
= =0 U]l WO W W N =

| ol—|—|—
~
<
—_

~

Table 3 — Known representations of n by the form (4)

We first discuss a method to determine all pairs (a,b) € lN(z) and (c,d) € IN% that are
necessary for the determination of the formulae for the number of representations
of a positive integer by the octonary quadratic forms (3) and (4) when the level af is
contained in the above-mentioned class of levels. We then determine explicit formu-
lae for the number of representations of a positive integer n by octonary quadratic
forms (3) and (4) whenever ¢ =0 (mod 3) and aff =0 (mod 4), respectively.

We next use the convolution sums, W, g)(1), where

* af =33, 45 and 54 to give examples of explicit formulae for the number of
representations of a positive integer n by the octonary quadratic forms (3).

* af =40 and 56, to provide examples of explicit formulae for the number of
representations of a positive integer n by the octonary quadratic forms (4).
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2. Essentials to the Understanding of the Problem

Software for symbolic scientific computation is used to obtain the results of this
paper. This software comprises the open source software packages GiNaC, Maxima,
Reduce, SAGE and the commercial software package MAPLE.

2 Essentials to the Understanding of the Problem

2.1 Modular Forms

Let H = {z € C | Im(z) > 0}, be the upper half-plane and let ' = G = SL,(R) = {(‘g Z) |

a,b,c,d e Rand ad — bc = 1} be the group of 2 x 2-matrices. Let N € INy. Then

T(N)={ (24)eSLa@) | (25)=(49) (mod N) |

is a subgroup of G and is called the principal congruence subgroup of level N. A sub-
group H of G is called a congruence subgroup of level N if it contains I'(N).
For our purposes the following congruence subgroup is relevant:

I‘O(N):{ (?%)eSLy(Z)|c=0 (mod N) }

Let kK, N € N and let I” C T be a congruence subgroup of level N. Let k € Z,
¥ €SLy(Z) and f: HUQU {00} = CU {c0}. We denote by f[V]k the function whose
value at z is (cz+d)‘kf()/(z)), ie., fmk(z) = (cz+d)_kf(y(z)). The following definition
is according to N. Koblitz?.

Definition 1 - Let N € Ny, k € Z, f be a meromorphic functionon Hand I’ cT
a congruence subgroup of level N.

(a) f is called a modular function of weight k for I'” if
(al) for all y eI it holds that IV} = f.
2mi

(a2) for any o €T it holds that f[é]k(z) has the form }_ aneTzn and a, = 0 for
finitely many n € Z \IN. nez

(b) f is called a modular form of weight k for I'" if

(bl) f is a modular function of weight k for I,
(b2) f is holomorphic on H,
(b3) for all 6 €T and for all n € Z\ N it holds that 4,, = 0.

(c) f is called a cusp form of weight k for I'" if

(c1) f is a modular form of weight k for I”,
(c2) for all 6 €T it holds that ay = 0.

2Koblitz, 1993, Introduction to Elliptic Curves and Modular Forms, p. 108.
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Let us denote by My (I"’) the set of modular forms of weight k for I, by S(I'’) the set
of cusp forms of weight k for I'" and by Ej(I”) the set of Eisenstein forms. The sets
M (), Sp(I'’) and E(I"’) are vector spaces over C. Therefore, M (I;)(N)) is the space
of modular forms of weight k for Iy(N), Si(Ip(IN)) is the space of cusp forms of weight
k for I{(N), and Ex(IH(N)) is the space of Eisenstein forms. The decomposition of
the space of modular forms as a direct sum of the space generated by the Eisenstein
series and the space of cusp forms, i.e., My (IH(N)) = Ex(IH(N)) @ Sk (IH(N)), is well-
known; see for example the online version of the book3.

We assume in this paper that 2 < k is even and that x and i are primitive
Dirichlet characters with conductors L and R, respectively. It has been noted by
W. A. Stein? that

Exp(@)=Co+ i(ZlP(d)x(g) <! )q”, (5)

n=1\dn
where
COZ{OBM ifL>1
> ifL=1

and By, are the generalized Bernoulli numbers. Theorems 5.8 and 5.9 in Section 5.3
in Stein (2011, p. 86) are then applicable.

If the primitive Dirichlet characters x and i are trivial, then their conductors
L and R are one, respectively Therefore, (5) can be normalized and then given as

follows: Ex(q) =1~ 3" Z ox-1(n)q". This will be the case whenever the level ap

belongs to .

2.2 Eta Quotients
On the upper half-plane H, the Dedekind #-function, #(z), is defined by 7(z) =

2mi

e 2t ﬂ (1 —€?™12), Let us set g = e*™2. Then it follows that

_ %Iﬁl - % F(q), where F(q) = ﬁ(l—q)
n=1

n=1

Let j,x € N and ¢; € Z. According to G. Kohler® an eta product or eta quotient,

3Stein, 2011, Modular Forms, A Computational Approach, p. 81.
41bid., p. 86.
S5Kéhler, 2011, Eta Products and Theta Series Identities, p. 31.
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2. Essentials to the Understanding of the Problem

f(2), is a finite product of eta functions of the form

[ Ttz (6)
j=1

Based on this definition of an eta quotient there exists N € IN such that N =
lem{j | 1 < j < k}. We call such an N the level of an eta product. Therefore, an
eta quotient will simply be understood as

[ Ttz

jIN

K
If k= % )_e;, then an eta quotient f(z) behaves like a modular form of weight k on
j=1
IH(N) with some multiplier system.

We will use eta function, eta quotient and eta product interchangeably as syn-
onyms.

The Dedekind 7-function is applied by M. Newman® to systematically construct
modular forms for I[[)(N). Newman then establishes conditions (i)-(iv) in the follow-
ing theorem. G. Ligozat” determined the order of vanishing of an #-function at all
cusps of Ij(N), which is condition (v) or (v’) in the following theorem.

The following theorem is formulated by L. J. P. Kilford® and G. Kohler?; it will
be used to exhaustively determine #-quotients, f(z), which belong to My (Ix(N)),
and especially those 17-quotients which are in Si(I3(N)).

Theorem 1 (M. Newman and G. Ligozat) — Let N € Ny, D(N) be the set of all posi-

tive divisors of N, 0 € D(N) and rs € Z. Let furthermore f(z) = [ n'9(6z) be an eta
8eD(N)

quotient. If the following four conditions are satisfied

(i) Y o6rs=0 (mod 24),
5eD(N)

(i) Y Xr;=0 (mod 24),
5eD(N)

(iii) [ 6% isasquarein Q,
5eD(N)

6Newman, 1957, “Construction and Application of a Class of Modular Functions”;
Newman, 1959, “Construction and Application of a Class of Modular Functions II1”.

7Ligozat, 1975, “Courbes Modulaires de Genre 1”.

8Kilford, 2008, Modular forms: A classical and computational introduction, p. 99.

9Kohler, 2011, Eta Products and Theta Series Identities, Cor. 2.3, p. 37.
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(iv) 0< Y rs;=0 (mod 4),
5eD(N)

2
(v) Yd e D(N) it holds Yy, B4, 5,
5eD(N)

then f(z) € My(Ly(N)), where k=% Y r5.
0eD(N)
Moreover, the n-quotient f(z) is an element of Sp(Iy(N)) if (v) is replaced by

< 2
(v)) ¥d e D(N)it holds Y, 844 . 5 ¢
6eD(N)

2.3 Convolution Sums W, g)(1)

Given a, € Ng such that a < g, let the convolution sum be defined by (2).
Suppose in addition that gcd (a, ) = 0 > 1 for some 6 € INy. Then there exist
ay,p1 € Ng such that ged (a1, 1) =1, a =o0a; and = 0. Hence,

n
Wapt= 3y olok= ) ook =We.p(3) )
(Lk)eN? (Lk)eN?
al+pk=n oayl+6 Py k=n

Therefore, we may simply assume that gcd (@, ) = 1 as does A. Alaca et al.”.
The formula proved by M. Besge!l, J. W. L. Glaisher!? and S. Ramanujan!3 is
applied to (7) to deduce that

n 5 n 1 1 n
A = =0y — )+ = - — i
weNo Woaa=Wun(g)=550(3) (G- (2) ®
Let g € C be such that |g| < 1. Let furthermore x and 1 be primitive Dirichlet
characters with conductors L and R, respectively.
We assume that the primitive Dirichlet characters x and ¢

1. are trivial whenever af € 91 holds.

2. are such that xy = ¢ and that x is a Legendre-Jacobi-Kronecker symbol other-
wise.

10A. Alaca, S. Alaca, and Williams, 2006, “Evaluation of the convolution sums Y ;. 1 9—n 0(1)o (1)
and ) 37, 4m=pno(l)o(m)”.

11Besge, 1885, “Extrait d’une lettre de M Besge a M Liouville”.

12Glaisher, 1862, “On the square of the series in which the coefficients are the sums of the divisors of
the exponents”.

13’Ramanujan, 1916, “On certain arithmetical functions”.
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2. Essentials to the Understanding of the Problem

Then the following Eisenstein series hold:

L(g)=Eaq)=1-24 ) o(n)q", (9)
n=1
M(q) = Es(q) = 1+240 ) _as5(n)q", (10)

n=1

M, (q") = E4(q")®x

= X(/\)(Co+ Zx(n)osmm“)
n=1

=x(NCo+ ) x(Anas(mq”

n=1
- n
ZX(/\)C0+ZX(H)U3(X)QH: (11)
n=1
where A € Ny,
Co o 0 ifL>1
R [

and By, are the specially generalized Bernoulli numbers.
Note that M(q) is a special case of (5) or (11) and hold if af € 9. We state two
relevant results for the sequel of this work.

Lemma 1 - Let o, € Ng. Then

(aL(g®) = BL(9"))* € Ma(To(a ).
Proof. If a = B, then trivially 0 = (@ L(g%)—a L(q%))? € My(Ty(«)) and there is nothing
to prove. Therefore, we may suppose that a = § in the sequel. We apply the result

proved by W. A. Stein'* to deduce L(q) — aL(q%) € M,(Ty(a)) € M,(Ty(ap)) and
L(q) - BL(qF) € My(To()) € My(Tp(ap)). Therefore,

aL(g®)- BL(qP) = (L(q) - BL(P)) - (L(q) — a L(q")) € My (Tp(ap))

and so (a L(q*) - L(4"))? € My(To(ap)). 0

14Stein, 2011, Modular Forms, A Computational Approach, Thrms 5.8, 5.9, p. 86.
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Theorem 2 — Let a, 3, N € N be such that N = af,a < f, and a and B are relatively

prime. The case a = f is discussed above. Then

(aL(q%) - BL(qP))? (a—ﬁ)2+Z(240a 03( )+240ﬁ a3(/3)

n=1

+48a(/3—6n)0(£)+48ﬁ(a—6n)0(%)— 1152a8 w(a,ﬁ)(n))q".

Proof. We first observe that

(aL(q")-BL(a") = &’ L?(q") + °L7(¢) - 2aB L(q")L(g")
J. W. L. Glaisher!> has proved the following identity

L(g)=1+ 2(24003(;1)—288110(?1))(]"
n=1

which we apply to deduce

(o]

L2(g%) =1+ 2(24003( ) 288_5(2))qn

n=1

and

Since

[ee]

(icf(z)q")(ia(%)q%;( r

n=1 =1 ‘ak+pl=n

we conclude, when using an accordingly modified version of (9), that

L(g*)L(¢) —1_24Z ( )q -24Z ( )q +5762waﬁ n)q".

Therefore,

(o]

(@L(g®) - BL(g") = (a=p) +Z(240a 03( )+240/3 03(13)

+48a(ﬁ—6n)a(;)+48/3(a—6n)0(3)— 1152ap W(a,ﬁ)(n))q"

as asserted.
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3. Evaluating W, )(n), where af € N

3 Evaluating W, ;)(n), where aff € N,

We carry out an explicit formula for the convolution sum W, g)(1).

3.1 Bases of E4(I)(ap)) and Sy(Iy(ap))

Let D(ap) denote the set of all positive divisors of af.
We apply the dimension formulae as discussed in T. Miyakel® or W. A. Stein!”
to conclude that

* for the space of Eisenstein forms,

dim(E4(Iy(ap))) Z@(gcd( )) = mg, (18)

dlap

where mg € N and ¢ is the Euler’s totient function.

We observe that, if af € 0, then

dim(E,(T(ap))) Z(p(gcd( Fﬂ)) =Y 1=og(ap)=d(@p).  (19)

olap olap

* for the space of cusp forms, dim(S4(Iy(aB))) = mg, where mg € IN.

We use Theorem 1 (i)—(v’) to exhaustively determine as many elements of the space
S4(To(ap)) as possible. From these elements of the space S4(Iy(a)) we select relevant
ones for the purpose of the determination of a basis of this space. The proof of the
following theorem provides a method to effectively determine such a basis.

The so-determined basis of the vector space of cusp forms is in general not
unique. However, due to the change of basis which is an automorphism, it is
sufficient to only consider this basis for our purpose.

Let C denote a set of primitive Dirichlet characters x(n) = (%), where m,n € Z
with m fixed and (%)) is the Legendre-Jacobi-Kronecker symbol. Let furthermore

D, (ap) C D(ap) denote the subset of D(ap) associated with the Dirichlet charac-
ter x. Then it is obvious that not every primitive Dirichlet character is a good
candidate which, applied in (11), will make it constitute a basis element of the space
of Eisenstein series for a given level that belongs to INO \ 91. For example, if the
levels are 25 and 32, the primitive Dirichlet characters ( ) and (5 %) will not permit
one to build a basis of E4(I;)(25)) and E4(I5(32)), respectlvely

15Glaisher, 1862, “On the square of the series in which the coefficients are the sums of the divisors of
the exponents”.

16Miyake, 1989, Modular Forms, Thrm 2.5.2, p. 60.

178tein, 2011, Modular Forms, A Computational Approach, Prop. 6.1, p. 91.
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Let 7,k be natural numbers. It is standard to express a natural number in the
K
for ]_[1 pfi, where p; is a prime number and e; is in INy, modulo a permutation of the
1=
primes p;. Therefore, we will also in the following use this form to express a level
apf e Ng\ .
Definition 2 — Let i,k € Ny and n € IN. Let C € Z be fixed. Suppose that the level
K
apf € Ny \ 9 is fixed and of the form ]_[pfi, where p; is a prime number and ¢; is
i=1
in INy. We say that the primitive Dirichlet character x(n) = (%) annihilates E4(Iy(ap))
or is an annihilator of E4(Iy(ap)) if for some 1 < j < x we have 1 < pjj € Ny \ Dt and
MX(qa) vanishes for all 1 < ¢ positive divisor of p?.

A set C of primitive Dirichlet characters annihilates E4(Iy(af)) or is an annihilator
of E4(Iy(ap)) if each x(n) € C is an annihilator of E4(Iy(aB)).

To illustrate the above definition, suppose that a = 2 x 3% and the primitive
Dirichlet characters is x (1) = (=2). Then C = -3 so that |C[is a positive divisor of
9 =32 Forall 1 <6€D(9)=(1,3,9} one easily verify when applying (11) that

My (q") = ix<n>a3(g)qn =0,

3 -1 ifn=2 (mod 3),
x(n)= (—) =<0 if ged(3,n) =1,
1 ifn=1 (mod 3)

and

(n ) 0 if 5 &Ny,
o3| <=
2\ nonzero gcd(3,n) = 1.

Hence, the primitive Dirichlet character x(n) = (_73) is an annihilator of E4(Ij)(2x3?)).
The following theorem provides a strong criterion for the selection of a primitive
Dirichlet character for a given level af € INj \ 9.

Theorem 3 — Let i,k be in Ny. Let C € Z be fixed. Let x(n) = (%) be a primitive
Dirichlet character with conductor |C| > 1 and let the level af € Ny \ 9 be fixed and of

K .
the form ]_[pf’, where p; is a prime number and e; is in INy. Suppose furthermore that
i=1
p? € INg \ N is a positive divisor of af for some 1 < j < «. If the conductor of x(n) is
C

"

a positive divisor of p; and hence of the level ap, then x(n) = (
E4(To(ap))-

) is an annihilator of
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3. Evaluating W, )(n), where af € N

K
Proof. Suppose that af € N \ N is fixed and of the form []p;’, where p; is a prime
i=1

number and ¢; is in INy. As an immediate consequence of the structure of af there
exists 1 < j < x such that pj’ € INg \ 9 is a positive divisor of af. Now, it is well-

f
) ..
conductor of x(n) is a positive divisor of the level p].], there exists 1 < f <e; such

that p{ =|C|. On the other hand, it holds that

()= (g) _ {o if ged(|Clm) = 1, 0

known that for each 1 < f <e; it holds that p; is a positive divisor of p;j. Since the

nonzero otherwise.

Foreach1l <6 € D(p?) it holds that gcd(|C|, 6) = 1; hence, (%) =0foreach1<d¢€

D(p;j) such that gcd(|C|,8) = 1. Since the conductor of x(n) is greater than one, it
follows that Cy = 0. Then we apply (11) we obtain

My(q°) = ix(n)aa(g)q”~

n=1

Since it also holds that

if 2
03(2): 0 if § & No, (21)
0 nonzero gcd(|Cl,n) =1,

we obtain the stated result by simply putting altogether; that is MX(q‘s) =0 for all
1<ée D(p? ). O

If af € 9T holds, then the primitive Dirichlet characters are trivial. Therefore, the
set C is empty. Hence, the case where o € 9T holds is a special case of the following
theorem.

Theorem 4 — (a) Let C be a set of primitive Dirichlet characters such that for each
x(n) € C it holds that x(n) is not an annihilator of E4(Iy(ap)). Then the set

B ={M(q') | t e D(ap)}U UC{MX(qt) |t € Dy(ap)}is a basis of E4(Ip(ap)).
Xe

(b) Let 1 <i < mg be positive integers, 5 € D(ap) and (r(i,0)); s be a table of the

powers of 11(0z). Let furthermore Bopi(q) = 1] q’(i"s)(é z) be selected elements of
olap
Sy(To(ap)). Then the set Bs ={Bop,i(q) | 1 <i<mg}isa basis of Sy(Ip(ap)).

(c) The set Byy = B U Bg constitutes a basis of M(Iy(ap)).
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Remark 1 - (rl) Bach %B,4;(q) can be expressed in the form }_ b,gi(1)q", where
n=1
1 <i<mg and for each n > 1 the coefficient b, ;(1) is an integer.

(r2) If we divide the sum that results from Theorem 1 (v’), when d = N, by 24, then
we obtain the smallest positive degree of g in B,4,;(q).

The existence of a basis of the space of cusp forms in terms of theta series has
been proved by A. Pizer!® for all square-free levels. M. Newman and G. Ligozat,
see Theorem 1 (i)—(v’), have determined a method to find as many theta series
belonging to a space of cusp forms as possible. Therefore, the proof of this theorem
is essentially restricted to show that the selected elements of the space of modular
forms of the given level are linearly independent.

Proof. We only consider the case where af is in IN; \ 91 since the case aff € M is
proved similarly using the fact that C = @.

(a) W. A. Stein!® has shown that for each t positive divisor of af it holds that
M(q") is in My(Ty(t)). Since My(Ly(t)) is a vector space and the set C of primitive
Dirichlet characters does not annihilates E4(Iy(af8)), it also holds for each
primitive Dirichlet character x(n) = (%) €Cand t e Dy(ap) that 0 = M,(q") is
in My(Iy(t)). Since the dimension of E4(Iy(a)) is finite, it suffices to show that
Bg is linearly independent. Suppose that for each x € C,s € D, (af) we have
z(x)s € C and that for each t € D(a8) we have x; € C. Then

foM(qt)J”Z( Y Z(X)SMX(qS))zo.

tlap X€C ‘seDy(ap)

We recall that x is a Legendre-Jacobi-Kronecker symbol; therefore, for all
0 # a € Z it holds that () = 0. Since the primitive Dirichlet characters x and ¢
are not trivial and have the conductors L and R which we may assume greater
than one, we can deduce that Cy = 0 in (11). Then we equate the coefficients

of q" for n € D(ap)U U {s|s € D, (ap)} to obtain the homogeneous system of
xeC
linear equations in mg unknowns:

Z ( )wZ Z ( ) (x),=0,  teD(ap).

ulap XECvED,(

The determinant of the matrix of this homogeneous system of linear equations
is not zero. Hence, the unique solution is x; = z(x)s; = 0 for all t e D(af) and
for all x € C,s € D, (ap). So, the set B is linearly independent and hence is
a basis of E4(Iy(ap)).

18pizer, 1976, “The representability of modular forms by theta series”.
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(b) We show that each B,pi(g), where 1 < i < mg, is in the space Sy(Iy(ap)).
This is obviously the case since B,pi(¢),1 < i < mg, are obtained using an
exhaustive search which applies items (i)—(v’) in Theorem 1.

Since the dimension of S4(Iy(ap)) is finite, it suffices to show that the set Bg
mg

is linearly independent. Suppose that x; € C and ; xi Bap,i(g) = 0. Then

mg co Mg =

2 xiBapi(q) = L (X xibapi(n))q" = 0 which gives the homogeneous system

i=1 n=1 i=1

of mg linear equations in mg unknowns:

mg
Zbaﬂ,i(n)x,- =0, l<n<ms. (22)
i=1

Two cases arise:

The smallest degree of B, ;(q) is i for each 1 <i <mg Then the square ma-
trix which corresponds to this homogeneous system of mg linear equa-
tions is triangular with 1’s on the diagonal. Hence, the determinant of
that matrix is 1 and so the unique solution is x; = 0 for all 1 <i < myg.

The smallest degree of B, ;(q) is i for 1 <i <mg Let n’ be the largest posi-
tive integer such that 1 <i <n’<mg. Let Bg = {B,p,(q) | 1 <i<n’}and
B¢ ={Bapi(q) | n’ <i<mg}. Then Bs = BgUB and we may consider Bg
as an ordered set. By the case above, the set B; is linearly independent.
Hence, the linear independence of the set 35 depends on that of the
set Bg. Let A = (b,p,i(n)) be the mg x mg matrix in (22). If det(A) = 0,
then x; = 0 for all 1 <i < mg and we are done. Suppose that det(A) = 0.
Then for some n’ < k < mg there exists Bapk(g) which is causing the
system of equations to be inconsistent. We substitute B, (q) with, say
%;ﬁ’k(q), which does not occur in Bg and compute the determinant of
the new matrix A. Since there are finitely many B, «(q) with n’ <k < mg
that may cause the system of linear equations to be inconsistent and
finitely many elements of S4(Iy(ap)) \ Bs, the procedure will terminate
with a consistent system of linear equations. Hence, we will find a set of
linearly independent elements of S4(Iy(ap)).

Therefore, the set {B,4,(9) | 1 <i < mg} is linearly independent and hence is
a basis of S4(Iy(ap)).

(c) Since My(Ty(ap)) = E4(To(ap)) @ S4(Ty(ap)), the result follows from (a) and (b).
o

198tein, 2011, Modular Forms, A Computational Approach, Thrms 5.8 and 5.9, p. 86.
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If C = @, that means that the primitive Dirichlet character is trivial, then the
formulation and the proof of Theorem 4 is straightforward.

If the level ap belongs to the class 91, then Theorem 4 (a) is provable by induction
on the set of positive divisors of af; see for example E. Ntienjem??. Note that each
positive divisor of @ is in the class 9 whenever the level af belongs to the class 1.
This nice property does not hold in general if the level af belongs to the class IN'\ 91.
For example 45 is an element of the class IN \ 91; however, 15 which is a positive
divisor of 45 does not belong to IN \ 91.

The proof of Theorem 4 (b) provides us with an effective method to determine
a basis of the space of cusp forms of level af whenever o belongs to INj.

3.2 Evaluating the Convolution Sum W, g)(n)

We recall that it is sufficient to assume that the primitive Dirichlet character y is
not trivial since the case x trivial can be concluded as an immediate corollary.

Lemma 2 - Let a, f € N be such that gcd(a, ) = 1. Let furthermore By; = Bg U Bg be
a basis of My(Iy(ap)). Then there exist X5, Z(x)s, Y; € C,wherel < j<mgs,x €C,s €
D, (ap) and olap, such that

(@L(g") =L@’ = ) Xs+) Z C0

Slap X€EC seD,(
+§(Z4O|§’a3( )Xé+);;’5€DZ,;ﬁ ( )X(”)Z(X)s+jibj(ﬂ)Yj)qn-

(23)
Proof. That (aL(q®) — BL(qP))? € My(Ty(ap)) follows from Lemma 1. Hence, by

Theorem 4 (c), there exist Xs,Z(x)s,Y; € C,1 < j <mg,x €C,s € Dy(ap)and o is
a divisor of a8, such that

(aL(@")=BL(@")’ = ) X;M(g")+) ) Z(x>sMX<qS)+ZS1@sBJ-<q>
j=1

olap X€C seDy(ap)
n
Y e Y Y Gzt ) (200 Yo%)
olap X€C seD, (ap) n=1 olap
Mg
n
Y )((n)03(§)Z()()5+ij(n)Yj)qn
X€C seD,(ap) j=1

20Ntienjem, 2017a, “Evaluation of the Convolution Sum involving the Sum of Divisors Function for
22,44 and 52”.
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We equate the right hand side of (23) with that of (12) to obtain

Y (20 Y xeen(B)+ Y (T wtmos(2)zix )Zm )

n=1 dlap X€C " seDy(ap)

_Z(Z40a 03( )+24Oﬁ 03(ﬁ)+480‘(ﬁ 6n)o (Z)

n=1

+48p(a - 6n)a(%)— 1152 ap W(a,ﬁ)(n))q”.

We then take the coefficients of ¢q" such that n is in D(a) and 1 < n < mg, but as
many as the unknown, X, ..., X4, Z(x)s for all x €C,s € Dy(ap), and Yy,..., Yy, to
obtain a system of mp + mg linear equations whose unique solution determines the
values of the unknowns. Hence, we obtain the result. O

For the following theorem, let for the sake of simplicity X5, Z(x)s and Y; stand for
their values obtained in the previous lemma.

Theorem 5 — Let n be a positive integer. Then

5 n 1 n
Wap(m) ==3225 % 03(3))(5_ 1152ap ; EDZ(ﬁ)Z(X)SG3(§)
a S Xa

oza,
5 2 n 5 2 n
-X = -X =
+24 [)’(a a)f73( )+24aﬁ(‘g ﬁ)Us(ﬁ)
5 g [ e 2 - ol
1152a/3 bj(n 24 48" 24 12" )%\ B/
Proof. We equate the right hand side of (23) with that of (12) to yield

1152aB Wa (1 —240203( )Xa—z Z ( )

Slap xeC s€ED(

—Zb n)Y; + 24042 03( )+240ﬁ 03(/3)

n n
+48a(ﬁ—6n)0(;)+48/3(a—6n)o(E).

We then solve for W(, g)(1) to obtain the stated result. a
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Remark 2 - (a) We observe that the following part of Theorem 5 depends only
on n, a and f but not on the basis of the modular space My(Iy(ap)):

1 3 1 ( n ) N ( 1 3 1 ) n
22~ 18" |%\a) \2a " 1" )\ B)
(b) For all x €C and for all s € D, (ap) the value of Z(x); appears to be zero in all

explicit examples evaluated as yet. Will the value of Z(x); always vanish for
all a belonging to INg \ 91?

We now have the prerequisite to determine a formula for the number of repre-
sentations of a positive integer n by an octonary quadratic form.

4 Number of Representations of a Positive Integer
for this Class of Levels

We discuss in this section the determination of formulae for the number of represen-
tations of a positive integer by the octonary quadratic forms (3) and (4), respectively.

4.1 Representations of a Positive Integer by the Octonary
Quadratic Form (3)

We determine formulae for the number of representations of a positive integer by
the octonary quadratic forms (3).

Formulae for the Number of Representations by (3)
Let n € IN and let the number of representations of n by the quaternary quadratic

4 4

form inz be defined by ry(n) = card({(xy,x,,x3,%4) € Z* | n = inz}). It follows
i=1 i=1

from the definition that r4(0) = 1. Jacobi’s identity r4(n), n € Ny, is

ra(n) = 80(11)—32(7(%), (24)
a proof of which is given in K. S. Williams?!.
Now, let the number of representations of n by the octonary quadratic form (3)

be

4

n=a x2+b y x2 4],
P ol
i=5

i=1

N(a,b)(n) = Card({(xll-XZ: X3,X4,X5,X6, X7, xS) € ZS

where a,b € IN|.

21Williams, 2011, Number Theory in the Spirit of Liouville, Thrm 9.5, p. 83.
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It immediately follows from the definition of N, ;)(n) that if a,b € IN; are such
that gcd(a, b) = d > 1 for some d € INg, then N4 ;)(n) = N(% %)( ) Therefore, one can

simply assume that a,b € IN are relatively prime.
We then derive the following result:

Theorem 6 — Let n € N and let a,b € N be relatively prime. Then
n n n
Nun(n) =80 () =320 o)+ 80 () -320( )
+ 64 W(a,b)( ) +1024 Wa (a,b) ( 2 ) 256( (4a,b)(n) + W(a,4b)(n)>'

Proof. We have

Nap) = Y ralbram) = ra(2 )0+ rarra () + Y ralliratm)

(I,m)eN? (1,m)eN?
al+bm=n al+bm=n

We make use of (24) to obtain
n n n
N(u,b)(n)_s(;(;)—3za(4—)+8 (b 320(417)

) (80 (m 320(2))

+
II M
A
U)
'a’
v

We know that

l m
(80(1)—320(1))(80(711)—320(1))
l m l m
= 640(1)o(m)— 2560 (Z)o(m) _2560(I)0 (Z) +10240 (Z) o (Z)'
In the sequel of this proof, we assume that the evaluation of

W= )  oll)o(m),
(I,m)eN}
al+bm=n
Wiaa,p)(n) and W, 43)(n) are known.
Let 1<AlelN and 7 :IN — N be an injective function such that v(n) = A - n for
each n e IN.
We set A = 4 in the sequel. When we use the function 7 with | as argument we
derive

W= 3 a(glom= 3 atotm

(1,m)eN? (1,m)eN?
al+bm=n 4al+bm=n
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When we apply the function 7 with m as argument we infer

W= ) oo(5)= Y olhotm)

(1,m)eN3 (1,m)eN?
al+bm=n al+4bm=n

We simultaneously apply the function t with I and m as arguments, respectively, to
conclude

l ™ "
=il T st )
(Lm)eN2 (1,m)eN?
al+bm=n al+bm=14

We finally put all these evaluations together to obtain the stated result for N, ;)(n). O

From this proof, one immediately observe that a formula for the number of
representations of a positive integer n by the octonary quadratic form (3) depends
on the evaluated convolution Sums for some given levels ab and 4ab with a,b € IN.

Based on this observation, we only take into consideration those levels a which
are multiple of 4; thatis af =0 (mod 4).

Determination of All Relevant (a,b) € ]Ng for N(, ,)(n) for a Given a € N,

We carry out a method to determine all pairs (a,b) € IN% which are necessary for the
determination of N(, (1) for a given level af € Ny such that @ =0 (mod 4) holds.

Let A = % =2"720, Py = {py = 2"} U ->U1{pj | pj is a prime divisor of O} and
]
P(P;) be the power set of P;. Then for each Q € P(P;) we define u(Q) = [] p. We set

peQ
#(Q) = 1if Q is an empty set. Let now

Q= {(y(Ql),y(Qz)) | there exist Q;,Q, € P(Py) such that
ged (1(Q1), p(Q2)) = 1 and p(Q1) u(Q2) = A}.

Observe that (4 # @ since (1,A) € Q4.
To illustrate our method, suppose that af = 23.3.5. Then A = 2-3-5, P, ={2,3,5)
and Qg = {(1,30),(2,15),(3,10), (5, 6)}.

Proposition 1 - Suppose that the level af € Ny and af = 0 (mod 4). Furthermore,
suppose that Q) is defined as above. Then for all n € IN the set Q)4 contains all pairs
(a,b) € IN% such that N, p)(n) can be obtained by applying W, g)(n) and some other
evaluated convolution sums.
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Proof. We prove this by induction on the structure of the level a 8.
Suppose that af = 2Vp,, where v € {2,3} and p; is an odd prime. Then by the
above definitions we have A = 2V72p,, P, = {2V72,p,},
P(Py) ={2,{2"72}, (P2}, {2" 2, pa) ),

and Qy = ((1,2"2p,), (22, py) ).

Following the observation made at the end of the proof of Theorem 6, we note
that ap = 4ab = 2Vp,. Hence, ab = 2"~%p, which leads immediately to Ng,p)(1).

We show that ()4 is the largest such set. Assume now that there exist another
set, say () :L, which results from the above definitions. Then there are two cases.

Case Qfl € Q4 There is nothing to show. So, we are done.
Case Qg C Q) Let (¢, f) € Q) \ Q4. Since ef = 2V7?p, and ged (e, f) = 1, we must

have either (e, f) = (1,2"72p,) or (e, f) = (272, p2). So, (e, f) € Q4. Hence,
Q4=0Qj5.

Suppose now that af = 2Vp,p3, where v € {2,3} and p,, p3 are distinct odd primes.
Then by the induction hypothesis and by the above definitions we have essentially

Q4 =1{(1,2""2pap3), (2772, p2p3), (2" P2, p3), (2" %p3.p2) ).

One notes that ap = 4ab = 2" p,p3. Hence, ab = 2"~?p,p3 which immediately gives

Ng,p)(1).
Again, we show that ()4 is the largest such set. Suppose that there exist another
set, say () Zp which results from the above definitions. Two cases arise.

Case ()} C Q4 There is nothing to prove. So, we are done.

Case Q4 C Q) Let (¢, f) € Q) \ Q4. Since ef = 2V %p,p; and ged(e, f) = 1, we

must have (e, f) = (1,2""2p,p3) or (e, f) = (2772, pap3) or (e, f) = (2V"?py, p3) or
(e,f) =(2""p3,p2). So, (e, f) € Q4. Hence, Qg = Q). O

We then deduce the following:
Corollary 1 - Let n € N, ap € Ny with aff = 0 (mod 4) and Q)4 be determined as

above. Then for each (a,b) € Q)4 we have

Ng,p)(n) = 80(2)—320(%)+ 80(%)—320(%)

n
+ 64 W(a,h)(n) +1024 W(u,b) (Z) - 256 (W(4a'b)(1/l) + W(a,4b)(n)).

4.2 Representations of a Positive Integer by the Octonary
Quadratic Form (4)
We now determine formulae for the number of representations of a positive integer

by the octonary quadratic forms (4).
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Formulae for the Number of Representations by (4)
Let n € IN and let 54( n) denote the number of representations of n by the quaternary

quadratic form Z (x21 1 HX2im1X0; +x21) that is,
i=1

2
Z le 1+ X4 1x2,+x21)})

s4(n) = card({(xl,xz,x3,x4 ezt
i=1

It is obvious that s4(0) = 1. For all n € Ny, J. G. Huard et al.??, G. A. Lomadze?? and
K. S. Williams?# have proved that

S4(n) = 12(7(11)—360(%). (25)

Now, let the number of representations of n by the octonary quadratic form (4) be

Rca)(n) = card({(xl,xz,x3, X4, X5, X6, X7,Xg) € 78

2 4
_ 2 2 2 2
n=c E (x%;_1 +Xi_1%0i +x5; ) +d E (x5;_1 +X2i_1X0i + X5; )}),

i=1 i=3

where ¢,d € N,
From this definition of ¢,d € INy suppose that ¢,d € N are such that ged(c,d) =

e > 1 for some e € Ny. Then R 4)(n) = R(£ 4)( ) Hence, one can simply assume

that c,d € INg are relatively prime.
We infer the following

Theorem 7 — Let n € N and c,d € INg be relatively prime. Then
Riea() =12 (")—36 (” )+12 ( ) 36 ( )
(ed)\1) =120 c g 3¢ o d o 3d
+144W(C,d)( )+1296W(cd)( ) 432( (3c,d)(n)+w(c,3d)(n))~

Proof. It holds that

n n
Reafm =) salsalm) =s4(%)sa() 4 sy(0)sy (5 )+ Y sallisatm)
(I,m)eIN? (1,m)eN?
cl+dm=n cl+dm=n

22Hyard et al., 2002, “Elementary evaluation of certain convolution sums involving divisor functions”.
23Lomadze, 1989, “Representation of numbers by sums of the quadratic forms x% +X1X2 + x%”.

24Williams, 2011, Number Theory in the Spirit of Liouville, Thrm 17.3, p. 225.
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We apply (25) to derive

K =n(2) - e 235

Py (120 360( )) 120 360(%)).

(I,m) GIN2
cl+dm n

We know that

(120(1)—360(%))(120(141)—360(%))
~ 1440(I)o(m) - 4320 - a(m)—4320(1)a(f)+12960 L a(f)
- 3 3 3)°\3)
We assume that the evaluation of

Wiea(m= ) oll)o(m),

(1,m)eN3
cl+dm=n

Wic34)(n) and W3 4)(n) are known. We set A = 3 in the sequel. We apply the
functlon T to m to derlve

Y oo(%)= Y atetm = Wi,

(1,m)eN? (1,m)eN?
cl+dm=n cl+3dm=n

Let A and 7 be defined as in Subsection 4.1. Let us set A to 3 in the sequel. We make
use of the function 7 with [ as argument to conclude

y a(m)o(§)= Y o(ha(m) = Waea(n).

(1,m)eN3 (1,m)eN3
cl+dm=n 3cl+dm=n

We simultaneously apply apply the function 7 to [ and to m as arguments, respec-
tively, to infer

m l "
Y ol5)ol5)= X owotm=wiea(5)
(1m)eN2 (1 m)eNg
cl+dm=n cl+dm=1%

Finally, we bring all these evaluations together to obtain the stated result for
R(C,d)(n). O
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From this proof, we note that a formula for the number of representations of
a positive integer n by the octonary quadratic form (4) depends on the evaluated
convolution Sums for some given levels cd and 3cd with ¢,d € IN.

As a consequence, we do consider only the levels a which are divisible by 3;
thatis af =0 (mod 3).

Determination of All Relevant (c,d) € IN(Z) for R, 4)(n) for a Given Level aff € N

The following method determine all pairs (¢, d) € IN3 necessary for the determination
of R,q4)(n) for a given af € Ny belonging to the above class. The following method
is quasi similar to the one used in Subsection 4.1.

Let A = ? = @ Let Py = {py = 2"} U Uz{p]- | pj is a prime divisor of O}. Let
]>
P(P;) be the power set of P5. Then for each Q € P(P;) we define u(Q) = [[ p. We
peQ
set u(Q)=11if Q is an empty set. Let now ()3 be defined in a similar way as Q4 in
Subsection 4.1; however, with A instead of A, i.e.,

Q3= {(y(Ql),y(Qz)) ( there exist Qq, Q, € P(P;) such that
ged (4(Q1), #(Q)) = 1 and p(Qy) k(Qa) = Al.

Note that QO3 # @ since (1,A) € Q5.

As an example, suppose again that @ = 2%-3-5. Then A = 23 .5, P; = {2%,5} and
Q3 ={(1,40),(5,8)}.
Proposition 2 — Suppose that the level af € Ny and aff = 0 (mod 3). Suppose in
addition that Q)3 be defined as above. Then for all n € IN the set ()3 contains all pairs
(c,d) e INg such that R 4)(n) can be obtained by applying W,,g)(n) and some other
evaluated convolution sums.

Proof. Similar to the proof of Proposition 1. O

We then infer the following:

Corollary 2— Let n € N, aff € Ny with af = 0 (mod 3) and Q3 be determined as
above. Then for each (c,d) € QO3 we obtain

Rioay(n) =12 (”) 36 (”)+12 (”) 36 (”)
)= 220 ¢ “\3¢ 7\d 7\34
n
+144 W(C,d)(n) +1296 W(C,d) (5)— 432 (W(gcrd)(n) + W(Cr3d)(n)).
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5 Sample of the Evaluation of the Convolution Sums
when the Level Belongs to 91

In this section, we give explicit formulae for the convolution sum W, g)(1) when
apf = 33, 40 and 56. These levels belong to 9. Hence, the primitive Dirichlet
characters are trivial.

When we apply T. Miyake?5, we conclude that

My(To(11)) € My(Ip(33)) (26)

My(Io(5)) € My(Tp(10)) € My(IH(20)) € My(Tp(40)) (27)
My(Ty(8)) € My(Tp(40)) (28)

My(T(7)) € My(Tp(14)) € My(I(28)) € My(Tp(56)) (29)
My(To(8)) € My(Ip(56)) (30)

This implies the same inclusion relation for the bases, the space of Eisenstein forms
of weight 4 and the spaces of cusp forms of weight 4.

5.1 Bases of E (I)(ap)) and Sy4(Iy(ap)) for ap = 33,40,56
We apply the dimension formulae in T. Miyake?® or W. A. Stein?’ to deduce that
dim(S4(Ty(33))) = 10, dim(S4(Tp(40))) =14 and dim(S4(T,(56))) = 20.
We use (19) to infer that
dim(E4(I5(33))) =4 and dim(E4(I((40))) = dim(E4(I(56))) = 8.

We apply Theorem 1 to determine as many elements of S4(IH(33)), S4(IH(40)) and
S4(TH(56)) as possible. Then we apply Remark 1 (r2) when selecting basis elements
of a given space of cusp forms as stated in the proof of Theorem 4 (b).

Corollary 3— (a) The sets Bpss = {M(q") | t33}, Beso = {M(q") | |40} and
Bess = {M(q") | t|56} are bases of E4(I(33)), E4(I((40)) and E4(Io(56)), re-
spectively.

(b) Leti,jkeNgsatisfy 1 <i<10,1<j<14and1<k<20.
Let 01 € D(33) and (r(i,01));,5, be the Table 5 of the powers of 1(9,z).
Let 6, € D(40) and (r(j, 63));,s, be the Table 6 of the powers of 11(9,2).
Let 63 € D(56) and (r(k, 63))k,s, be the Table 7 of the powers of 1(53z).

25Miyake, 1989, Modular Forms, Lema 2.1.3, p. 41.
261bid., Thrm 2.5.2, p. 60.
27Stein, 2011, Modular Forms, A Computational Approach, Prop. 6.1, p. 91.
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Let furthermore

Bisia)= [ [ 012, Baojla)= [ |17 (622),
51133 5,40

Bser(q) = ]_I’?r(k'é3)(532)
53156
be selected elements of S4(I(33)), S4(Io(40)) and S4(Io(56)), respectively.
Then the sets

Bs;33={B33,(q) | 1<i<10}, Bsago={DBaoj(q)| 1<j<14},
Bs,56 ={PBsex(q) | 1 <k <20}

are bases of S4(I5(33)), S4(Ip(40)) and S4(IH(56)), respectively

(c) The sets Byg,33 = B33 U Bs 33, Bu,40 = BE,a0 U Bs,40 and Bpy,s6 = Bg,56 U Bs 56
constitute bases of My4(I(33)), M4(Iy(40)) and M4(Iy(56)), respectively.

By Remark 1(rl), B33i(q), B4o,j(q) and Bse(q) can be expressed in the form

21[733,1‘(”)(1”; 21540,]‘(”)(1" and Zlbsm(n)qn, respectively.
n= n= n=
We observe that

* by (26) the basis element B33 ,(g) is in S4(Iy(11)) and is the only one. In
addition, %33’6(q) = %3372(q2). Hence, b33’6(7’l) = b33’2 (%)

* the basis elements of S4(I;)(40)) have been determined almost with respect to
the inclusion relation (27), except the element 9B 44 5(q) which results from the
basis element of S4(IH(8)) according to (28).

* there is no element of S4(I(7)) which occurs as an element of S4(IH(56)).
This indicates that an element of S4(IH(7)) cannot be determined when using
Theorem 1. The inclusion relations (29) and (30) preserve the bases.

Proof. It follows immediately from Theorem 4.

In case (a): the result is obtained by setting n =1,3,11,33, n=1,2,4,5,8,10,
20,40 and n=1,2,4,7,8,14, 28,56, respectively.

In case (b): the linear independence of the sets Bg 33 and Bs 56 is proved by
applying case 2 in the proof of Theorem 4 (b) and by takingn =1,2,3,4,5,6,7,8,9,10
and n=1,2,3,...,13,14, respectively. Finally Bg 4 is linearly independent by case 1
in the proof of Theorem 4 (b) and by takingn=1,2,3,...,19,20.

Therefore, we obtain the stated result. O
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5.2 Evaluation of W, (1) when a = 33,40,56
Corollary 4 — We have

o (2300736 59459328 n
L(q)-33L(¢>))* = 1024 — ——— (—)
(Ltg)-33L(q™)) +Zl( 71 03(n) = T a3 5

271016064 (n) 75206279808 (n) 348480

1271 \11)]" 77531 3\33) 1271 331(1)
14117760 (n)__6573339072 (n)__26803856448 )
1271 332 77531 33,3 77531 334
62014527936 ) 97134678144 ) 87378566400 ")
77531 33,5 77531 33,6 77531 33,7
742808448 44352 4447872 .
it ke it _Eers , 31
1971 33,8(n) + o771 03soln 1571 533,10(”))61 (31)
348480 106313472 (n
(L")~ 11L(g )" = 64+ 2:( 271 P 77 03(5)
34793088 [ n\ 80875631232 [ n\ 348480
T A1 3(_) T aFEA1 3(_) —633,1(71)
1271 11 77531 33)7 1271
, 3136320 (n)+_1346173632f] (n)+_5361496704b )
1271 332 77531 33,3 77531 33,4
, 11895235776 oy, 17925551424 )+ 15428171520 )
77531 33,5 77531 33,6 77531 33,7
127847808 44352 4447872
T 33,8(”)_ﬁ 33,9(”)+W533,10(”))61"; (32)
= (26800 43520 (n
_ 40 2: s
(L(q) - 40L(q%)) 1521+§:( o o (5]

245120 n\ 26800 n\ 1766400 n\ 127760 n
1) 3 U0 1) 0

39 4] 117 5 13 8 117 2\10
357440 ( n )+ 6558720 ( n )+ 192224 b (n)
39 320 13 3\40 117 ot
439744 304832 1061120
i 40,2(n) + 39 byo,3(n) + 39 b40,4(1)
41840 24320 1688320
3 b40,5(11) —15360b49,6(1n) - 3 byo,7(n) + 39 b4o,8(1n)
128000 485120
+116800by0,9(n) - 3 b40,10(n) — 3 b40,11(n)
1130240 121280
B e— b40,12(1) — 3 b40,13(1) —69120 by 14(n) )", (33)
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(L(q) - 56 L(q))2 = 3025 + i(lT o3(n)— 42003 (f)+ 31584 03(2)
n=1

(7L(q")~8L(¢%)* =1+ Z(—— a3(n) +

s bs6,8(1) +

Elementary Evaluation of Convolution Sums for a Class of Levels E. Ntienjem

5920 76000 n 16960 n
R . MURC-NE
(5Lg7) - Z( 17 M7 7)o G
668000 (E)_{_ 721920 (2)_ 82400 (i)_ 95360 (i)
117 3\5 13 °\8) 117 3\10 39 3\20
721920 n 5920 22720 59200
-3 03(5)—W[’4o,1(”)+ 117 b40,2(n) — 39 b40,3(n)
12800 38800 47360
39 b40,4(n) = 3 b40,5(1) +7680 by 6(1) — 3 bso,7(1)
505088 12800 113920
- b40,8(11) —67520b49 9(n) - 40,10(1) + b40,11(n)
39 3 3
298240 63040
3 b4o,12(n) + 3 b40,13(n) +69120 b40,14(“))‘1", (34)

284

2 5 4

1764 (n) 32256 (n

)588 (n) 51744 (n)
5 3\7 5 8 (12 5 2\23

3687936 n 11916 92604
e 3(%)"' Tbse,l(”)“‘ bs6,2(1) + 29568 bsg 3(1)

1140216 2557632
e bs6,4(1) — 411936 bsg 5(1) + —5 bs6,6(1)

+223608 [156’7(71) +3998400 656,8(71) +4042752 656,9(71)

145152 532224
z bs6,10(1) — 8064 bs¢ 11(1) — 48384 bs6 15(1) + G bse,14(1)

225792
5

+161280 [156’15(1/1)— b56,16(n)+129024[]56,17(”)

2515968
+ S

5 b56,18(”)+ 1354752{]56,19(71)—225792556’20(71))(1”, (35)

(9]

2

308 1876  (n\ 40096 (n
(3)- 55 = (3)

25 25 25

n=1

N 285908 (n) 409088 (n) 27076 ( n ) 60704 n )
3 Az Y3 Y- he
28

25 7 25 8 25 °\14
562688 n 308 2436 11648
=2 e 0 ) S b1 (1) + 2 b () + o bsg ()
121352 101472 288064 87864
75 bs6,4(1) — 75 bse,5(1) + 2% bs56,6(1) — 2% bs6,7(1)
2190912 1821312 201984

5 56,9(n) + 75 bs6,10(1)
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284928 1512192
+29568bs6,11(n) + 5 bsg,12(1) —59136 b56,13(”)—2—5556,14(”)
6724096
+59136 656,15(’1) + 2—5 bSé,lG(”) +118272 b56,17(7’l)
1616896
+ T b56,18(n) + 430080 [)56719(1’1) +53760 b56’20(1/l) qn. (36)

Proof. These identities follow immediately when one sets («, ) = (1,33), (3,11),
(1,40), (5,8), (1,56), (7,8) in Lemma 2. In case of aff = 40, we take all n in the
following set {1,2,...,20,40,80} to obtain a system of 22 linear equations with
unknowns X; and Y;, where 6 € D(40) and 1 <j < 14. O

We are now prepared to state and to prove our main result of this section.
Corollary 5 - Let n be a positive integer. Then

W () = 13859 oa(n) + 51614 - (f) @ (i)
(1,33) 335544 ° 2558523 °\3) 1271 °\11
L () o (1)

1860744 24 132 24 4
55 4085 11412047 0+ 15511491

"y ittt ol
(m+ 13081 332(1) + 5117046 333" T705682 33407
35888037 28106099 25283150

b33,7(n)

§ 2220270, 22277 ettt
705682 03350+ geogay Uase(m+ oo
214933 7

+ 13981 33,8(1) — =676 b33,9(n) + 1971 b33,10(1),

* 7626 V331 ("

(37)

Wi (n) =

55 (73(n)+ 12869 03(71) 15089 (73(1)— 6382231 o;,(i)
7626 620248 10168 11 232593 33

1 1 1 1 1 n 55 165
(ﬂ‘ﬁ”) (3”)+(ﬂ‘ﬁ”)“(ﬁ)‘m"m< )= 2547 033201
2337107 1551359 6883817

~ 5117046 "33~ gs2sar 334" T T705482 0335
943053 4464170 3363

155062 33,6(”) T 852841 33,7(") 1271 b33,8(”)
117

Ty b33,9(1) = 971 b33,10(1),

1 17 n 383 n 335 n
W(1,4o)(”) = ——o03(n) - —03(5)— —(73(—)+ —03(—)

4212 2106 2808 3\ 2) " 67392 3\ 5
115 n 1597 n 1117 n 34 n
T 397 3(8) 67392 (T6)4'561603(56)_'T§°3(16)
11 1 n\ 6007
(Cont next page) +(§Z 160 ) () + (24 4") (Z_)"16848064“1“”
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6871 4763 829 523

~ 84240 "4021") = 25080 403" ~ 1407 Pa04(M) = 1755 baos(n)
1 19 1319 365 25
+ = b40 6(n) + m b4, 7(n)— —1404 [140,8(71) - m b40,9(1’l) + E b40,10(”)

379 883 379 3
+mb4011( ) 108 []4012( ) mb40,13(7‘l)+§b40’14(n), (39)

37 475 n\ 53 n\ 425 n
Wis9) (1) = ~33656 73+ 33606 U3(§)+ WU3(Z)+ m%(g)
34 (n)+ 103 cr(n)+ 149 (n)+47a(n)
39 2\ 8 )" 67392 2\ 10/ " 2808 73\ 20/ 39 73\ 40
+(1 1 ) (n)+(1 1 ) (n)+ 37 bag ()
24 32 2420 )°\8/" 33696 !
71 185 5 485
+—p 2
~ Tegag 2402 + 5o ba03(1) = 705 baoa(n) + 1775 bag s (1)

1 37 1973 21
—6540 6(n)+ Tos b40,7(n) + mbzlo s(n)+mb4o,9(”)+ﬁb4o,1o(”)

89 233 197 3
~ 108 b40,11(n) = Tos b40,12(1) = 32 —= byg13(n )—5540,14(11), (40)

W _ 1 5 ny 47 n 7 n 1 n
(1.56)(1) = M@(”“%"S(z) m"a(z)+mf’3(7)+ﬁ"3(§)
ol Tl o )2 e
768 14 480 28 30 56 24 224

1 1 n 331 7717
S o) 22y Sy LY
+(24 4”)0(56) 8960 U561 (")~ 55550 P56.2(1) ~ 57 bses(n)
B 6787 () + 613 (n) - 1903 (n) 1331 (n)
1920 05641 + 5~ bse5(1n —240 56,6 Sgq U567
2975 188 1
13 bs6,8(11) — —— bs6,9(1) — 2—0 bs6,10(1) + 3 bse,11(1)
3 33 5 7
+1556,12(”)—2—0556,14(”)—5556,15(”)ﬁ556,16(”)

39 7
—2bs6,17(n) - 5 bse,18(1) =21 b56 19(1) + 5 bs6,20(1), (41)

11 67 n\ 179 (ny 289  (n
W8 = 57650 23" ~ 57600 U3(§)+ %03(Z)+ 57600 ‘73(7)
7 n 967 n 271 n 157 n
_ﬁ“3(§)+57600“3(ﬁ)+70003(%)+ﬁ03(%)

)i
24 32 24 28°)°\8/) 57600 !

29 13 2167 151
~ 19200 562"~ g0 "6 ~ 25500 Use4 ")+ 3550 bses()

(Cont. next page)
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6. Sample of the Evaluation of the Convolution Sums when the Level is in Ny \ 0

643 523 11411 1581

~ 3600 56,6(1) + 9600 56,7(1) — 8100 56,8(1) — 1400 bse,9(1)

_ % bse,10(1) — % bse,11(n) — % bs6,12(17) + % bs6,13(1)

+ % bse,14(1) — % bse,15(n) — % Bs6,16(1) — % bs6.17(n)

- i;z bs6,18(17) = ? bs6,10(17) = g bs56,20(1). (42)

Proof. These identities follow from Theorem 5 when we set (a, ) = (1,33),(3,11),
(1,40),(5,8),(1,56),(7, 8). O

6 Sample of the Evaluation of the Convolution Sums
when the Level is in IN, \ 91

Explicit formulae for the convolution sums Wy 45)(1), W(5 9)(1), W(1,50)(1), W(2,25)(1),
W(1,54)(1) and W(;,57)(n) are provided in this section. Since these levels belong to
Ny \ 9, the primitive Dirichlet characters are non-trivial.

The two convolution sums W(; 50)(1) and W(;,»5)(n) are worth mentioning due
to the fact that the positive divisors of 50 which are associated with the Dirichlet
character for the formation of a basis of the space of Eisenstein forms constitute the
entire set of positive divisors of 50.

6.1 Bases of E4(Iy(ap)) and S4(Iy(ap)) when af = 45,50,54

The dimension formulae for the space of cusp forms as given in T. Miyake’s book?8
and W. A. Stein’s book?® and (18) are applied to compute

dim(E4(Ip(45))) =8,  dim(S4(Ip(45))) = 14,
dim(E4(Ty(50)) = 12, dim(S4(Ip(50))) = 17,
dim(E4(Ty(54))) = 12,  dim(S4(T(54))) = 21.

We use Theorem 1 to determine many eta quotients which are elements of the spaces
S4(To(45)), S4(Ip(50)) and S4(Iy(54)), respectively.

Let D(45), D(50) and D(54) denote the sets of positive divisors of 45, 50 and 54,
respectively.

28Miyake, 1989, Modular Forms, Thrm 2.5.2, p. 60.
29Gtein, 2011, Modular Forms, A Computational Approach, Prop. 6.1, p. 91.
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We observe that

My(To(5)) € My(Ip(15)) € My(Tp(45)) (43)

My(T5(9)) € My(Tp(45)) (44)
My(To(5)) € My(Tp(25)) € My(IH(50)) (45)
My(To(5)) € My(Ip(10)) € My(Ip(50)). (46)
My(To(6)) € My(Ip(18)) € My(Ip(54)) (47)
My(T5(9)) € My(Tp(18)) € My(Ip(54)) (48)
My(Tp(9)) € My(Tp(27)) € My(Tp(54)) (49)

Corollary 6 - (a) Let n € N, x(n) = (%) and p(n) = (*73) be primitive Dirichlet
characters such that x(n) is not an annihilator of E4(Iy(45)) and E4(Iy(54)), and
Y(n) is not an annihilator of E4(I5(50)). Then the sets

Bas = {M(q") | t]45} U M- )@’ [s=1,3},
Be,s0 = {M(q") | t[50} U {M(=3)(q°) |'s € D(50)} and
Bess =1{M(q") | t154} U {M(=2)(q°) s =1,3,9,27)

NS

=L =l =]

constitute bases of E4(Iy(45)), E4(Ip(50)) and E4(Iy(54)), respectively.
(b) Let 1 <i<14,1<j<17and 1 <k <21 be positive integers.

Let 01 € D(45) and (r(i,01));,5, be the Table 8 of the powers of 1(0; z).
Let 65 € D(50) and (r(j, 62));,s, be the Table 9 of the powers of 1(6; z).
Let 03 € D(54) and (r(k, 03))k,s, be the Table 13 of the powers of 11(63 z).
Let furthermore

Bysi(@) = | [ 612, Bsoja) = [ |70 (622) and

81145 8,150

Bsailq) = | 1 652)
53]54

be selected elements of S4(Iy(45)), S4(Iy(50)) and S4(Iy(54)), respectively.
The sets

Bsas ={Bys,i(q)| 1<i<14}, Bss0={Bs0j(q)| 1<j<17} and
Bs54 = {Bsar(g)| 1 <k <21}

are bases of S4(I5(45)), S4(Ip(50)) and S4(Iy(54)), respectively.
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6. Sample of the Evaluation of the Convolution Sums when the Level is in Ny \ 0

(c) The sets

Batas = BE,as U Bs a5, Bus0 = Be,soUBs,so  and
Bu,54 = BE,54 U Bs 54

constitute bases of My (Iy(45)), M4(I5(50)) and My(Iy(54)), respectively.

By Remark 1 (r1), each B,;,(q) is expressible in the form Z bap,i(n)q".

n=1

Proof. Let n € IN. It holds that 45 = 32x5 and 54 = 2x33. Since gcd(4,3) = 1, it holds
that the primitive Dirichlet character x(n) = (%) is not an annihilator of E4(T(3?%))
and E4(T(3%)). Hence, x(n) = (=) is not an annihilator of E4(T(45)) and E4(Ty(54)).
Similarly, since gcd(3,5) = 1, the primitive Dirichlet character ¢(n) = (_73) is not an
annihilator of the space E4(I)(5%)). Therefore, i(n) = (_73) is not an annihilator of
E4(Ip(50)).

We only give the proof for By 45 = BE 45 U Bs 45 since the other cases are proved
similarly. In the case of B 59, the applicable primitive Dirichlet character

3 -1 ifn=2 (mod 3),
(—) =<0 if ged(3,n) =1, (50)
1 ifn=1 (mod 3).

(a) Suppose that x5,21,z3 € C with 6|45. Let

Y x5 M(q°)+ 21 M(5)(q) + 23 M4
5|45

)(q3):0.

n

We observe that
4 -1 ifn=3 (mod 4),
(7) =0 if ged(4,n) =1, (51)
1 ifn=1 (mod 4).

and recall that for all 0 # a € Z it holds that (§) = 0. Since the conductor of the
Dirichlet character (5> 2) is 4, we infer from (5) that Cy = 0. We then deduce

|Z ;(2405;,03( )( ) o3 )zw(-;)%(g)%)qnzo.

Then we equate the coefficients of ¢" for n € D(45) plus for example n = 2,7 to
obtain a system of 8 linear equations whose unique solution is x5 =zy =23 =0
with 0 € D(45). So, the set Bg is linearly independent. Hence, the set B is
a basis of E4(I(45)).
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14
(b) Suppose that x; e Cwith 1 <i <14. Let }_ x;B45,(9) = 0. Then
i=1

14 0 co ;14
inzb45,i(n)q" = Z(Zbéﬁ,i(”)xi)qn =0.
i=1 n=1 n=1"i=1

So, we equate the coefficients of g” for 1 < n < 14 to obtain a system of 14 linear
equations whose unique solution is x; = 0 for all 1 <i < 14. It follows that the
set Bg is linearly independent. Hence, the set Bg is a basis of S4(I(45)).

(c) Since M4(T(45)) = E4(T(45)) @ S4(T(45)), the result follows from (a) and (b).
O

6.2 Evaluation of W, g)(1n) when a = 45,50,54

In this section, the evaluation of the convolution sum W, g)(n) is discussed for
(a,B) =(1,45), (5,9), (1,50), (2,25), (1,54) and (2, 27).

Corollary 7 — It holds that

120 51960 (n\ 75000 (n
(5L(g%)-9L(e")" =16+ Z( 2= 555-02(5 )+ T35 5)
1296000 (E)_ 5089800 (£)+ 5184000 (i)_ 19344 )
71 \9 923 3\15 71 3\a5) 1349 !
239256 0+ 10760952 e 762672 )
1349 42 17537 43 1349 4
2459904 |, 1247280 1y, 5755968 )
1349 459 1349 456 1349 7
370080 2503632 302400
71 545,8(”)+W 45,0(n) + 71 bys,10(1)
14389920 413352 11760
—W545,11(”)+Wb45,12(”)+ 1349 bys,13(n ))q : (52)
120 51960 (n\ 75000 (n
45L1(g*))? =1936 + - (—) i (—)
(Lg)-45L(*)? Z( os(m) - 220, (1), 12000,
1296000 (E)_ 5089800 (£)+ 5184000 (i)_ 19344 )
71 °\9 923 3\15 71 3\a5) 1349 !
239256 ( , 10760952 (n)+76267Zb )
1349 452U T T o5an D453 1349 454
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2459904 1247280 5755968

T 1329 45,5(”)+W 45,6(”)+W 45,7(n)

370080 2503632 302400
-1 b45,8(”)+wb45,9(’1)+ 71 bys,10(1)

14389920 4 413352 1760
1349 4511 17537 4512 1349 45130 [

810 11460 n 3210 n
(2L(q ) 25L( =529+ Z(—O’g, TO-?,(E)_TO-?)(_)

n\ 1890000 [ n\ 240000 [ n\ 810
_66003(10) 13 3(%)_ 13 3(%)_ T3 Us0a(®)

6714 178950
3 b50,2(1) = 162050 3(1) — 4230 b50 4(1) - 3 bs0,5(1)

—-20250 b50’6(1”l) + 810 550’7(71) —-13050 bSO,S(”) +12420 550,9(71)
68400
13

+

bs0,10(1) —4500b50,11 (1) =36000b50,12(1) — 21150 b5,13(1)

+ 1800 b50’14(1/l) — 15000 550’15(1’1) +20700 b50’16(1/l) + 28800 650’17(71))qn.

(54)
(L(q) - 50 L(¢*"))? = 2401 + i(?zo o3(n) + 1315300 o (g)— 6?? ag(g)
23100 n 6001(1):01 n 7560000 n 38772
=15 oslig)- T o5 ) T oslsg) T wseat)
63?292 bs50,2(17) = 7020 b50,3(1) — 20250 b5 4(1) — 21050 bs0,5(1)
— 116550 bsg,(11) — 2250 b5 7 (1) — 123750 bsg, g (1 )+99900550,9(n)
- 91(1)200 b50,10(1) —38700b50,11 (1) —309600 b5 15(1) + 13950 bsg 13(1)

— 88200 [150’14(1/1) —-129000 [350'15(71) —-6300 550,16(71) + 28800 [150’17(1/1))qn.
(55)

(L(q)-54L(g>*

86736 . 1016064 (n
=92 fuhduhendeiap Ry (e
809+ Z( 305 " 7505 03(2)
3796704 (n) 32553792 (n) 62804160 (n)
+——"03 03 — 03

305 3 305 61

6

9
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306688896 ( n ) 61725888 ( n ) 68024448 ( n )
———03 +———03 -———03

305 18 61 27 305 54
689184 () + 417024 (n) 1963008 (n)
305 0541 a1 54,2 a1 54,4
746496 34450272 8259840
el bs4,5(1) — — 305 bs4,6(1) — el bs4,7(1)
12462336 13347072 32368896
T el b54,8(”) T T 305 b54,9(”) T 61 554,10(”)
2664576 30642624 5889024
i bs4,11(1) + ~305 b54,12(n) + el bs4,13(n)
148252032 1919808 17943552
T 61 554,14(”) + 305 554,15(”) T 61 b54,16(”)
18009216 418176 946944
T bsg17(n) - o1 bs4,18(1) + ol bs4,19(1)
4686336 41682816
“ el bs4,20(n) + —305 b54,21 (”))qn (56)
— [ 2592 196416 (n
2L(g%)-27L(g*"))* = 625 - (—)
(2L(¢%) =27 L(g*)) +; T o3(n) + =035

41777 (n) 146803358 (n) 20326 (n)
T 59742 Y3 = Y3

~ 2745 B\3)T T 275 6) a5 9
2031846244 ( n ) 851427 ( n ) 235058418 ( n )

- ||t — = |t ————— 03—

2745 18 5 27 305 54

2592 21504 3657617

1 b54,1(n) — 31 bs40(n) + ~7a5 bs43(n)
1009152 311040 4112640

"l bs44(n) + 6l b545(1) + bsg6(1) — 1 bs4,7(n)
9248256 29090321 19927296

T el bsyg(n)+ —915 bsy49(n)— el b54,10(1)
1057536 5350010 6822144

e bs411(n) - el bs4,12(1) + e bs4,13(1)
93125376 6842758 10934784

e bs414(n) + BETTEE bs415(n) — —<1 bs4,16(1)
559872 297216 5965056

+ Tl 5417 n)+ 61 54,18(1) + 61 54,19(1)
1741824 6843124

t el b54,20(1) — EETEEE bs4,21(n))q" (57)

Proof. We give the proof for the case where & =5 and = 9. The proof for the other
cases can be done similarly.
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6. Sample of the Evaluation of the Convolution Sums when the Level is in Ny \ 0

This follows immediately when one sets @ =5 and f =9 in Lemma 2. However,
we briefly show the proof for (5L(g°) —9L(q”))? as an example. One obtains

(5L(g%) = 9L(a°)? = ) xsM(q°) +21 M(=s)(q) + 23 M Xy]ms,
5|45
-4
_Zx5+Z(ZZ4O(T3( )Xa'i'( )(73( )z
5|45 5|45

4 14
+(7)03(g)23+2545,]‘(”)3)]')‘1"- (58)
=

Since the conductor of the Dirichlet character (57 ) is 4, from (5) we have Cy = 0.
Now when we equate the right hand side of (58) with that of (12), and when we
take the coefficients of ¢q"” for which 1 <n <15and n=17,19,21,23,25,27,45 for
example, we obtain a system of linear equations with a unique solution. Hence, we
obtain the stated result. O

Now we state and prove our main result of this subsection.

Corollary 8 — Let n be a positive integer. Then

1 433 n 25 n 13 n
W(5,9)(n) =——o3(n)+ —03(—)+ —63(—)+ —03(—)

5616 398736 °\3)" 5616 >\5)" 568 3\9
+424150(71) 1000(n)+(1 ln)a(n)+(1 1n)a(n)
398736 °\15) 71 2\45)"\24 36 5/"\24" 20 9
L 403 () 3323 ) 448373 )
1456920 *>! 971280 5?2 37879920 >3
15889 6406 5197
1456920 454(1)+ 1821155455() 2913845454”)
3331 257 52159 35
- _ ="y =7
20470 bys,7(n) 7556 45,8(n) 1456920 45,9(n) — 26 bys,10(1)
3331 5741 4
" -2 p -} . 59
16188 45,11(n) 17676640 45,12(n) 791384 45,13(1) (59)
217 433 n\ 625 (n\ 25 (m
Winas) (1) = Tg7503(m) + 39873603(5)"561603(3)"7T03(§)
+424150(71) 587a(n)+(1 ln)a(n)+(1 1n)a(n)
398736 °\15) 568 °\45) " \24 36 5/"\24" 20 9
L 403 () 3323 ) 448373 )
1456920 *>! 971280 2 37879920 >3
15889 6406 5197 3331

(n) - (n)

(Cont. next page)

~ 1256920 "454UM ¥ Too175 145501 ~ 597357 P56 — 57 bas 7
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257 52159 35
—b - —b
~ 9556 45,8(1) 1456920 45,9(n) = 176 45,10(n)
3331 5741 49
(60)

* 16188 bas,11(n)— 12626640 bas,12(1n) = 291384 by5,13(n).

W2,25)(1) = ’ o3(n) + 17 G(n)+ o U(n) 5 (n
(2250~ 8320 73 12480 >\2/" 24960 \5/" 960 >\ 10

w5155 ) 75 56+ (3 7 (5)+ (5500 (55)

+ 83;,20 bso,1 (1) — % bs0,2(n) + 3—20 bso,3(1) + % bs50,4(1)
i;z; bso,5(1) + 14258 bs0,6(17) — 620 bso,7(n) + 1229 bs0,5(1)
36290 bs0,9(1) + 21_098 bs50,10(1) + 6_4 bso,11(n) + g bs0,12(1) + 14778 bs0,13(1)
312 bs50,14(1) + 2 5 bs015(1) - 2_431 bs50,16(1) + % bs50,17(n) (61)

Wir <o) = 149 o3(1) 15 - (n)+ 229 o (n)+ 77 U(”)
LSOV = 54960 73" " 832 73\ 2) T 24960 \5 ) 2496 7\ 10

312 %\ 25) 778 %3\50) "\ 22 ~ 200"/ T\ 22 " 4")°

1277 243 39 45
L 2 2 2
21600 50,1(1) 1664 50,2(”)+320 50,3(n )+128 50,4(1)
4807 259 5 275
* 1997 bs0,5(1) + 128 b50,6(1 )+m[’507( )+m5508( 1)
111 253 43 43 31
—6—4550,9(”) 308 bs50,10(n )+—f’5011( )+—f’5012( ) - 178 bs0,13(1)
49 215 1
+555014( )+ T3 bs0,15(1) + ab50,16(”)—5550,17(”): (62)
W (n) = 47 o3(11) 49 (n) 13183 (n) 188390 (11)
W59\ ="c5880 915 3\2) " 65880 7*\3) " 10980 2\ 6
12115 (I’l) 88741 ( ) 3969 ( n ) 180990 ( n )
732 °\9) 5490 18) 244 © 1220 °\54
+( 1 1 ) ( 1 ) ( ) 2393 2393 (n)
24 216 24 4 65880 ¥
181 284 13291
—@554,2(””@554,4(””5554,5( n)+ 7320 —ann b546(n)
1195 601 1931 1561
Ty 54,7(1) + 183 54,8(1) + 745 54,9(”)+Wbs4,10(”)
257 5911 284 14299
(Cont. next page) * 366 bs4,11(1) — 3660 o bsa12(n) = 183 54,13(n )+Wbs4,14(”)
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1111 2596 579 121
—-——bD —bDb —0b +——0>0
10980 54,15( n)+ 549 54,16(1) — 122 5417( )+ 1098 54,18(”)

137 226 12061
-—b —b -———b 63
519 54,19(1) + 133 54,20(1) =190 54,21(n) (63)

W (1) = 1 oa(1) - 359 . (n)+ 41777 - (n)+734016790 (n)
2208~ 146473 9882 2\2/" 170760960 °\3)" 85380480 °\6
10163 (n) 507961561 ( n )+ 2597 - ( n )
1399680 42690240 34560 3 27
130588010(11) (1 1 )G(n)+(1 1n)a(n)
1054080 3 54 24 108 2 24 8 27
1 28 3657617 146
-——5D0 —b _ b
Tied 54,1(1) + YTYT 54,2(1) = 170760960 54,3(”)+54 54,4(11)
1 595 446
3 bs4,5(1) — $2208 b54,6(1) + =19 b547( n)+ 183 —— b5y 8(n)
29090321 961 2675005
Bkt LS 17 My
56920320 54,9(1 )+183 54,10(1) 61 54,11(1) + 1897344 54,12(1)
329 1497 3421379 1582
~ 183 bsg,13(1) + il [’54,14(ﬂ)—m554,15(”)+mbm,ls(”)
9 43 863
= bs4,17(1) = 519 bs4,18(1) — 519 bs4,19(1)

28 1710781

_ 4
e 54,20(1) + 284601655421( 1) (64)

Proof. 1t follows immediately when we set (a, ) = (5,9), (1,45), (2,25), (1,50), (1,54),
(2,27) in Theorem 5. |

7 Some Known Convolution Sums Revisited

In this section, we revisit some known convolution sums to illustrate our approach.
While doing so, we observe that the results of these convolution sum for the levels
11,12,15,16, 18, 25, 27, 32 and 36 are improved.

The basis elements of the space of cusp forms for each of these levels can be
expressed as noted in Remark 1 (r1).

The dimension formulae for the space of cusp forms as given in T. Miyake’s
book3®® or W. A. Stein’s book®! and (18) are applied in the following to compute
the dimension of the space of Eisenstein series and that of the space of cusp forms,
respectively.

3°Miyake, 1989, Modular Forms, Thrm 2.5.2, p. 60.
31Gtein, 2011, Modular Forms, A Computational Approach, Prop. 6.1, p. 91.
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7.1 Convolution Sums for Levels o =10,11,12,15,24

These levels belong to 91; consequently, their primitive Dirichlet characters are
trivial.
We revisit the convolution sums established by

e E. Royer32, and S. Cooper and D. Ye33 for apf =10,
* E.Royer* for af =11,

* A. Alaca et al.® for @ =12, 24, and

* B. Ramakrishnan and B. Sahu3® for a = 15.

The obtained results in each case are immediate corollaries of Theorem 5 and
improve the previous ones since we use the exact number of basis elements of the
space of cusp forms in case of aff =12, 24.

Since aff =10 = 2-5 and because of (27) it holds that B4 »(q) = %40,1(612), and

therefore byg (1) = bag; (%) Our third basis element of the space S4(I(10)) is

different from the one used by D. Ye37, which explains the difference in the two
results. However, since the change of basis is an automorphism, both results are the
same.

In addition to the basis element B33 ,(q) of the space S4(Iy(11)), we use the

eta-quotient %33‘1((1) =n(z)n*(11z) = ¥ b’33’1(n)q” which is a basis element of
Sy(Ip(11)). n=l

B. Ramakrishnan and B. Sahu3® achieve the evaluation of the convolution sums
for af = 15 using a basis which contains one cusp form of weight 2. We consider the
following r-quotients as basis elements of the space S4(I)(15)). These ;7-quotients
are cusp form of weight 4.

Bis1(9) =n*2n*(52)  Bis.(9) = n’(2)n* (32)n>(52)n*(152)

3(2)(32)n7 (15
B153(9) =1 (32)n*(152) Bysa(q) = i (2)17,7(3(25)2)( Z)'

32Royer, 2007, “Evaluating convolution sums of divisor function by quasi modular forms”, Thrm 1.1.
33Cooper and Ye, 2014, “Evaluation of the convolution sums ¥, 50ep 0(1) (1), ¥ a4 5m=n 0 (1)a(m)
and } 57, 5u=n 0(l)o(m)”, Thrm 2.1.
34Royer, 2007, “Evaluating convolution sums of divisor function by quasi modular forms”, Thrm 1.3.
35A. Alaca, S. Alaca, and Williams, 2006, “Evaluation of the convolution sums ¥ ;.1 2=p o(1)o(m)
and } 374 4im=n 0(1)o(m)”;
A. Alaca, §. Alaca, and Williams, 2007b, “Evaluation of the convolution sums Y, 54,,—,, o (I)o(m)
and ) 37 8m=pno(l)o(m)”.
Ramakrishnan and Sahu, 2013, “BEvaluation of the convolution sums
Yig15m=n0(Do(m) and } 31, 5=y o (I)o(m)”.
7Cooper and Ye, 2014, “Evaluation of the convolution sums ¥, 20,m=n 0(1)0 (1), ¥ 414 5m=n o (1)o (1)
and ) 574 5=y 0(1)o(m)”.
38Ramakrishnan and Sahu, 2013, “Evaluation of the convolution sums
Yi+15m=n0(Do(m) and Y 37, 5,,=, 0 (I)o(m)”.
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The 77-quotients whose exponents are displayed in Table 4 build a basis of S4(Ij)(24)).
It is obvious to verify using Remark 1 (r2) that these elements of the space of cusp
forms are linearly independent; hence, they build a basis of S4(IH(24)).

Note that the space S4(Iy(12)) is a subspace of the space S4(I(24)). However,
our selected B,, 3(q) is not an element of 54(IH(12)); hence, we will use the element
B, 5(q) = n*(2z)n7%(42)n°(12z) instead.

It holds that B15,3(q) = B15,1(4%), and B14,2(q) = B14,1(4°), B4,4(4) = B4,1(4")
and B46(9) = Ba3(9%). Therefore bys3(n) = bys1 (%), and byys(n) = by (%),
b24,4(1) = b2g,1 (4 ) and bag () = bog5(%)-

Corollary 9 - We have

= (2640 1920 (n\ 12000 (n
-0 )-8 )
o) 104g" 0 =81+ )_ (275 ot 300 (5) - 5
264000 [ n\ 2976 14400
* 3 03(ﬁ)+Tb40,1(n)+ 3 b40,2(”)—960[’40,3(”))(111’ (65)
[ 480 10560 (n\ 66000 [(n
2y _ 502 _=ov e -
(21(8%) - 5L(¢°) 9+;( 50 30+ 12500 5, (1) 0004, ()
48000 ([ n\ 480 576
“ 13 G3(E)+ﬁb40,1(”)_Eb40,2(”)+960540,3(”))an (66)
= (6240 5524320 n
L(g)—11L(g'"))? =1 = (——)
o) =1114g 0 =100+ ) (S0 + 0% (1
17280 77184
T 331(1n)+ ) 533,2(”))4”; (67)
= (1056 432 (n\ 1296 (n
(L<q)—12L<q”>)2=121+;(Toa<n>—Tog(5)—Tag(§)
__23040_(2) 3888 (E) 1520640_(11) 1584 )
5 34 5 36 5 3 12 241
4896 )
+— b24r2(n)+864b24,3(n))q”, (68)
[ 144 432 (n\ 9504 (n
(3L(q3)—4L(‘14))2:1+;(—T03(”)—?03(E)+ 5 03(5)
, 16896 (n) 3888 (n) 20736 ( n )+ 144 )
5 23l\3)” 75 %6 5 B{12)" 5 Pl
2016 )
+ b24’2(l/l)—864b24[3(11))qn, (69)
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2976 3456 n 144000 n
bl 151467 =196+ (5ot ) 5% 5)
756000 n 5760
t—3 3(E) 3 ———bi5,1(n) +2304by5,(n)
48384
3 [’15,3(”)—3456515,4(”))‘1”: (70)

= 576 25056 n 204000 n
3 512 — B n n
(3L(q°)-5L(q°))" =4+ E ( 13 o3(n)+ 3 03(3)+ 3 03( )

n=1

216000 n 576
"3 03(15)+—[’151( n)+576by5 (1)

13
8640
13

+

bys,3(n )+3456b15,4(”))qn; (71)

(L(q) - 24 L(q%%))? = 529+ i(zzxo o3(n) - 288 05 (g)— 14405 (g)
n=1

_20160(71)_1440 (n)+32256 (n) 66240(11)
5 \4 \6 5 2\ 5 li2
612864
+ T (27’14)+ 864 [1241( )+ 3744 b24,2(1”l) + 3888 624’3(1’1)
35136
+ 5 524’4(71)—6912524[5(7’1)-{-8640524’6(7’1)
—6912[324,7(n)+6912[)24,8(11))(]", (72)

LI -81) =25+ ) (Zosm -2 os(2)+ 102 s (1)

_8640(11)_1944 (n)+72192 (n)_7776 (n)
5 73 *\6 5 33 5 3\12

4 5
41472 n 72 1008
- ( ) b240(1) —864by4 3(1)

z Y —bogi(n)+
9792

+ [124’4(71)%- 1728 [124’5(Tl)—5184 [124'6(71)4-8640 [324'7(n))q”. (73)

In the case of the evaluation of W(; 1)(1), we observe, using Lemma 1, that for all
a € N it hods that

0=(aL(q")-aL(q"))* € My(To(a?)). (74)

140



7. Some Known Convolution Sums Revisited

Corollary 10 — Let n be a positive integer. Then

R T NEET NI

n 5 n
VYa € NO W(a,a)(n) = W(l:l) ( a ) = (

W () = o3(n) + la(n)Jr 25 (n)+25 (n)+(l 1n)o(n)
(1,10) 3127 782\2) " 31273\5) 7 783 \10) "\ 22 " 20
11 ny 31 5 ny 1
(—4 1" ) (m)—mb40,1(")—5—2[’40,1(5)+ 5540,3(11), (76)
1

st g (3 (5 Zol )Ll
@5 =3 BT 7573 3127 78 \10/"\22 " 20")7\2
1 1 n 1 1 n 1
+(ﬂ_§")a(§) 312 401 (1 )+2_6()b401(2) 124031 77)

5 605 n 1 1 1 1 n

W(1,11)(n)——146403(n)+—146403(H)+(ﬁ—ﬂﬂ)ﬁ(ﬂﬂ(ﬂ—zﬂ)o(—)
_ 1615 () — 90493 )

386496 33! 386496 2V

W L Lm0
“'12)(”)_48003(”)+160"3(2) 0 3(3)+3o"3(4) 16063(6)
() el - )
1072(12)"\22 " 18 2474
17

12)” 180 bog1(n)

L,
- 240 24,2(”)—R[’24,3(n)

Wi3,4)(n) =

30 4)+%U3(g)
+13—303(1—”2)*(%-11—6")“(?)*(i 7)o (3)- 3

22 12")° 180 "221 (1)

()+1 (n)+3a(n)+1a(n
2807 160 (2) " 160 3\ 3 3

4

L.,
240 bogo(n)+ 16 [’24,3(”)

(80)
Wii,15)(n) =

1 oa(n) + 1 (n) 250(11)_250(11)
15602 65 °\3/"39°%\5) 104 °\15

11 11 ny 1 2
#(55-g07)em+ (55~ 37)o(15) - 35 015100 = 33 0152t
14 1

—55153( )+§bl5,4(ﬂ),
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W (n) = 1 oa(n) + 7 G(n) 175 (n) 25 (n)
(35 = 39073 52073/ 73127 2673\ 15

(i_zlo )U(g) (i_% )0(2) 3;0[’151() 310[;15,2(;1)

1 1
—2—6[’15,3(”)—3515,4(”); (82)
1 n 1 n 7 n
Wo2n () = 52055 )+ 15505 (5 )+ g5 72 (5)+ 192"3(5)‘— 5(5)
+23(7(11)4_17(7(11)_1_(1 1n)a(n)+(1 1)(11)
480 2\12/)7 10 3\24) "\ 24 96 24 4 24
1 13 9 61
~ 33 b241(n)— %524,2(”)—a524,3(”)—%524,4(”)
1 6 1 1
+a bog5(n)— Te bog6(n)+ 1 bog7(n)— 1 boyg(n), (83)

L 1 n 3 n 1 n 9 n
W(3,8)(71): 1920 03(71)'1'm(73(5)+m0‘3(§)+m03(1)+%03(g)
+10(n)+90(n)+30(n)+(1 ln)a(n)
30 2\8/) " 160 2\12) " 1073\ 24) "\ 24 " 32 3
1 1 n 1 7 1
+(24 12”)0(8) 1920 "241 (1) = Ggg P24.2(1) ¥ 35 0245(1)
17 1 3 5
%40 b24,4(m) - 16 bag,5(n) + 16 b24,6(n) - Te b24,7(n). (84)

For example (75) is easily proved as follows. Due to (74) and applying (12) we
have

0:—1152a2W(aa( )+480a’ 03(a)+96a(a 6n)o (Z)

Therefore, we obtain (8). By setting a = 1, one gets the result obtained by M. Besge3?,
J. W. L. Glaisher®® and S. Ramanujan*!

7.2 Convolution Sums for Levels af =9,16,18,25,27,32,36

These levels are in IN \ 91; therefore, the primitive Dirichlet character of each of
them is non-trivial and has a conductor greater than one.

39Besge, 1885, “Extrait d’une lettre de M Besge a M Liouville”.

40Glaisher, 1862, “On the square of the series in which the coefficients are the sums of the divisors of
the exponents”.

41 Ramanujan, 1916, “On certain arithmetical functions”.
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We revisit the evaluation of the convolution sum

* W1,9)(n) obtained by K. S. Williams*?

* W,16)(n), W(1,18)(n) and W, 9)(n) obtained by A. Alaca et al.#3,

* W(1,25)(n) obtained by E. X. W. Xia et al. 44

* Wq,27)(n) and W(; 32)(n) obtained by §. Alaca and Y. Kesicioglu®3, and

* W,36)(n) and Wiy )(n) obtained by D. Yet6,

The convolution sums for af = 9, 16, 18, 25 and 36 have been evaluated using
a different technique. The evaluation of the convolution sum for @ = 27 and 32 is
done using almost the same approach as the one that we are generalizing; however,
we are not able to replicate those results using the provided basis elements of the
space of the cusp forms.

Our method leads to an improvement of the result of the evaluation of the
convolution sums for af = 16, 18, 25 and 36 since we apply the right number of
basis elements of the space of cusp forms corresponding to the level 16, 18 and 25.

Due to (44), using Bys 1(q) as basis element of 54(I(9)) and applying the same
primitive Dirichlet character as for E4(I;(45)), one easily replicates the result for
the convolution sum W(; )(n).

For the evaluation of the convolution sums of level @ = 16 and 25, we compute

dim(E4(I5(16))) = 3,
5.

dim(E4(Io(25))) =

,  dim(S4(Tp(16))) =

6
6, dim(S4(IH(25))) =
In case of the evaluation of W(y 14)(n), we use

* the basis elements whose table of the exponent of the #-quotients is displayed
in the first half of Table 12 and

* the primitive Dirichlet character (50).

42williams, 2005, “The convolution sum Zm<L9' o(m)o(n—9m)”.

437, Alaca, S. Alaca, and Williams, 2007a, “Evaluation of the convolution sums ) ;. 1g,,=, 0(I)o(m)
and ¥ 19— o (o (m)’;

A. Alaca, S. Alaca, and Williams, 2008, “The convolution sum
Zm<% o(m)o(n—16m)”.

#44Xia, Tian, and Yao, 2014, “Evaluation of the convolution sum ¥ ;, 55—, o (1)a (1m)”.

455. Alaca and Kesicioglu, 2016, “Bvaluation of the convolution sums
Y 1427m=n0()o(m) and }_j, 39—y 0 (1) (m)”.
46ye, 2015, “Evaluation  of the convolution sums Y, 36nu=n0(l)o(m) and

Z4l+9m:n o(l)o(m)”.

143



Elementary Evaluation of Convolution Sums for a Class of Levels E. Ntienjem

For the evaluation of W(; »5)(n) we use the basis element

B,2(9) = 1° (20" (52)1(252) = ) b5g 5(m)g"

n>1

instead of B5(,(g) given in Table 9 and we apply the primitive Dirichlet charac-
ter (50).
Now, in case of the convolution sums for a8 = 18 and 36, we have

My(To(6)) € M4(To(12)) € My(To(36)) (85)
My(Tp(9)) € My(Ip(18)) € My(Iy(36)). (86)

Therefore, it suffices to consider the basis of S4(I)(36)), whose table of the exponent
of the #-quotients is given in Table 10. Note that

dim(E4(To(18))) =8,  dim(S4(Tp(18))) =5,

In case of the spaces E4(I)(18)) and E4(I(36)) the primitive Dirichlet character (51)
is applicable.

Some of the elements of S4(I)(36)) used by D. Ye# are different from our ba-
sis elements of S4(I(36)), which translates into a slightly different result of the
convolution sums. However, we are not able to replicate the result obtained by
D. Ye3 since we are unable to replicate the linear independence of the elements of
S4(Ty(36)) provided by D. Ye*® by applying (22).

In case of the convolution sum for @ = 27 and 32, we are unable to replicate
the linear independence of the elements of the spaces of cusp form S4(I(27)) and
S4(Tp(32)) provided by S. Alaca and Y. Kesicioglu®® by applying (22). For the basis of
the Eisenstein series E4(I(27)) and E4(I(32)), S- Alaca and Y. Kesicioglu®! consider
the primitive Dirichlet characters (50) and (51), respectively.

When one applies these primitive Dirichlet characters for those spaces, one
obviously finds that

M(-Ta)(qs) = Z(_—:)Gg, (g)q” =0, for all 1 <se D(27)

47Ye, 2015, “Evaluation  of the convolution sums Y j,36m=yn0(/)o(m) and
Y 4149m=n 0 (Do (m)”.
481bid., Thrm 2.1.

4Ibid.
505. Alaca and  Kesicioglu, 2016, “Bvaluation of the convolution sums
213%7,”:,, o(l)o(m)and ) j,372=p0(l)o(m)”, Thrms 2.2 (a), 2.3 (a).
Ibid.
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and

M(;4)(q5) = ;(_74)03 (g)q” =0, for all 1 <s e D(32).

Therefore, the primitive Dirichlet characters x(n) = (=2 3) and P(n) = (_7—14) anni-

hilate E4(I(27)) and E4(I(32)), respectively. Hence, no non-empty subset of
the set {M( Z)( g°)|s € D(27)} together with the set {M(q")|t € D(27)} can build
a set of basis elements of E4(I)(27)). Similarly, no non-empty subset of the set
{M(%;)(qs) |s € D(32)} together with the set {M(q")|t € D(32)} can build a set of basis
elements of E4(I3(32)). Consequently, we are not able to replicate the result in

S. Alaca and Y. Kesicioglu5?
We observe that

M,4(Tp(9)) € M4(Tp(27)) (87)
My(To(8)) € My(Ip(16)) € My(Io(32)). (88)
We then compute
dim(E4(Ip(27))) =

6, dim(54(Ip(27))) =6,
dim(E4(I5(32))) =8, dim(S4(Ip(32))) =8

By Theorem 3, the primitive Dirichlet characters (51) and (50) are not the annihila-
tors of the spaces E4(I(27)) and E4(Iy(32)), respectively. Then by Theorem 4 (a), the
sets {M(q")|t € D(27)}U{M(%4)(q5) |s=1,3}and {M(q")|t € D(32)}U{M(%3)(q5)|s =1,4}
are bases for the space of Eisenstein series E4(I)(27)) and E4(I(32)), respectively.

The basis elements with the exponents in Table 11 and Table 12 are obtained as
a result of the application of Theorem 1 (i)-(v’). One can easily verify using Remark
1(r2) and Theorem 4 (b) that these basis elements of the spaces of cusp forms are
linearly independent; therefore, they constitute a basis of S4(I)(27)) and S4(I5(32)),
respectively.

We notice that B,; 3(q) =By (g%); hence, byy3(n) = by <3) analogously, we

observe that B3;,(9) = B35,1(q%), B324(9) = B32,1(q*) and B3;6(9) = B3p3(4%).
Therefore, bsy,5(1) = bsa,1 (4 ), b32,4(1) = b3z, (%) and by (1) = b3z3(%)-

Corollary 11 — It holds that

n
(L(g)-9L(g°))* = 64+ 2(19203 38403(5)
+1555203(9)+ 192645, (n ))q". (89)
523, Alaca and Kesicioglu, 2016, “Evaluation  of the convolution sums

Yis27m=n0(Do(m)and Y ;,30,,=, 0(l)o(m)”, Thrms 2.2 (b), 2.3 (b).
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(L(q) - 16 L(q"))? = 225 + i(21603(n)—7203(2)—28803(2)— 115203(2)

n=1

+ 55296 03 (%)4— 504 53271(1’1) + 864 b32’2(71) +2304 532’3(71))[]”. (90)

= (1104 384 (n\ 768 (n

o) 1814g'")7 =289+ ) _[H%astn) - o (5)- 75 s 5]

3072 (E)_7776U (E)+357696 (l) 2976, )
5 36 5 39 5 3\18 5 %6l
8544 17952 53376 52992

+— b36,2(1) + 5 b3e,3(n) + 5 b36,4(1) — 5 b36,5(”))qn'

(91)

4416 n 768 n
(ZL(q) 9L 49+Z(——O'3 5 0'3(5)—TO'3(3)

3072 (n) 89424 (n) 31104 ( )
- 03 +——03 -—

5 6 5 9 5 5 b361(n)
96 3552 4224 16128
-3 b36,2(n) + G b36,3(1) — G b36,4(n) + G E’36,5(”))‘%’1; (92)

(L(q)_25L(q25))2:576+i(2f80 5760 (n) 1800000 _ (i)

3 BT 370\ T3 312

[6)]

12096
+ 13 b50,1(n)+57605'5072(n)+ 17280 b50’3(1’l)

302400
3 b50,5(”))‘1”- (93)

+ 28800 b50’4(1’l) +

(L(q)—27L(q27))2:676+i(22403() 12803(3) 115203(2)

+163296 03 ( 27)+ 1024 bz7 1( ) +2304 527’2(1’1) +2304 52773(1’1)

+10368 52774(1’1) +10368 [127,5(n))q",
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7. Some Known Convolution Sums Revisited

(L(q) - 32L(g%?))? = 961 + i(246o3(n) ~19805 (g)—576 03(3)

n=1
23040, ( M ) + 23347205 ( . ) 1242055, (1) + 3024b3,,5(1)
+ 7488 b32’3(1”l) +4032 [332’4(1”1) +2304 [132’5(11)

+13824 b32,6(”) +13824 532,7(1/1))qn.

1008 n 384 n
)22

(L(q) - 36L(¢°%))* = 1225 + i( 11552 o3(n) -
n=1

5 2) 5 3
+13056 (E)_& (E)_3888 (E)_19968 (i)
5 2\4) 5 36 5 3\9 5 212
11664 n 1492992 n 7248
i 3(E)+T 3(%)+ G b36,1(1) +3744 b3 5(n)
19008 77664 14688
+— b36,3(n) + b36,4(1) + b36,5(11) + 16416 b3 6(n)
80064 84672
+—5 36,7(1) + b36,8(11) —=12960b36 9(n)
90624
+— b36,10(”)+5184636,11(”)"'2592536,12(”))6]”-
1152 1008 n 384 n
o <25 1910
N 13056 (E)+ 80928 (E)_ 3888 (E)_ 913344 (i)
5 S\4 5 e 5 3\9 5 312
n 29187648 n 7248
—50587203(E)+T 3(%)4- 5 b361( )+3744b36,2(n)
19008 77664 14688 864
5 b36,3(17) + b36,4(1) + b36,5(1 )+?b366( )
80064 84672 90624
+— 36,7(1) + b36,8(1) —12960b34 9(11) + b36,10(1)

+5184 b36,11 (71) + 2592 b36y12(n))q”,

Proof. Similar to the proof of Corollary 7 on p. 132.
Corollary 12 — Let n be a positive integer. Then

1 1 ny 3 n 1 1
Wi1,9)(n) = m%(”)"‘ 503(§)+ §U3(§)+(ﬂ - %n)o(n)

(95)

(96)
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1 1 n 1 n 1 n 1 n
Wai61) = 765 030 + 535 03( 5 )+ g7 9( 3 )+ 1 (5 )+ 500 (75
+(1 1n)cr(n)+(1 1’1)0(11) 7 —— b3y 1(n)
24 64 24 4 16) 256 %!

3 1
~ b32,2(n) = 3 b32,3(1) (99)

W 1. R L W Sy £ T Sy LA T Iy
(118" = 7585 @ ()+270‘73(2) 13503(3)+1356( )+4003( )
+ia3(£)+(i—in)a(n) (L—l )U(i)—3—lb361(n)
102\18) 22772 24 2")°\18) " 1080 ¢

89 187 139 23
~ 1080 536,2(”)——1080 36,3(”)_mb36,4(’1)+4 b36,5(1) (100)

W3 9y(n) = 1 o3(n)+ 1 cr(n)+ 1 a(n)+ 4 a(n)+ 30(”)

29V = 7080 73 270 3\2) " 13573\3) " 135 40 3
15 (5) (25 36" (”)+(1 )7 (5) - Ta5g b1
102\18) "\ 22 736")7\2) "\ 22 " 8 9) 1080 35!

(n)- % b36,3(1) + (n) - 4—75 b36,5(1) (101)

1
*+ 1080 b36,2 2—70 b36,4

1 1 ny 125 n 1 1
W, - 1 my, 125 (my (11
(1,25 (1) 156003(n)+6503(5)+31203(25)+(24 100 ) (1)
1 1 n 21 1, 3
+(ﬁ_1n)0(25) 250 2501 (1) — = b50,5(1) = = bs0,3(n)
21

— bsg4(n) - % bs0,5(1) (102)

W, (n) = ! o3(n)+ ! U(n)+10(n)+3g(n)
(L2 = 7944 73 243 3\3) 7 2773\ 9) T g3\ 27
1 1 1 1 n 8
- . b
(24 108 ) () + (24 1 ) (27) 223 0271(")
1 1
- E ba72(n) - E bo73(n) - 3 by7,4(n) - 3 bo75(1) (103)

W (n) = 1 ()+ 11 (n)+1 (n)+1 (n)+1 (n)
W) == BT 5048 T3 2) T 62 3 \8) T 16 B\ 16) T3 (32
11 11 n\ 69 21

(ﬂ_@ ) m“(ﬂ‘i”)“(ﬁ)‘zozxs b32.1(1) = 555 0322()

13 7 1 3 3

—abaz 3(n) — “ b32,4(n) = Te [’32,5(”)—5532,6(”)—5532,7(”) (104)
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1 7 n 1 n 17 n 1 n

W01 = 3359900+ 137595 (5 )+ 53593 (5) - 375 92 (3)* 720 72§
N 3 a(”)+ 130(;1)+ 9 a(n)+30(n)
160 2\9) " 13572\12) " 160 3\18)" 10 3\36

11 11 ny 151 13
(53 1aa")o00+ (33577 (55 )~ g e 0= 5 02
11 809 17 19 139

120 b36,3(1) = 3160 b36,4(1) — 210 b36,5(1) = 13 b36,6(1 )_%5367( 1)
49 5 59 1
—mb%s( )+Rb369( )—ﬁb%m( )_§b36,11(n)_ﬁb36,12(n)

(105)

Wogor(1) = 1 o3 () + 7 g(n)+ 1 G(n) 170(11) 2810(71)
@™ 4320 7 " 1440 3\ 2/ " 540 2 3/ 270 2\ 4 ) 720\ 6

N 3 (n)+4757 (n)+1171 (n) 15991 (n)
160 2\9) " 1080 2\12) " 96 \18) 120
+(1 1 ) (n)+(1 ln) (n) 151 ba 1 () 13 bac (1)
24 36 )9\a) "\ 22 716" )9\ 9 ) 4320 361V T 44 7362
11 809 17 1 139
~120 36,3(1) — 3160 b36,4(1) — 240 36,5(1) — 340 b36,6(1) — 360 36,7(1)
49 5 59 1 1
—mb%,s("“3536,9(”)—ﬁ536,10(”)—§536,11( n)— 1653612( 1)
(106)
Proof. Similar to the proof of Corollary 8 on p. 135. O

8 Formulae for the Number of Representations
of a Positive Integer

We make use of the convolution sums evaluated in Section 5 and Section 6 among
others to determine explicit formulae for the number of representations of a positive
integer n by the octonary quadratic forms (3) and (4), respectively.

8.1 Representations by the Octonary Quadratic Forms (3)

We determine formulae for the number of representations of a positive integer
n by the Octonary Quadratic Form (4). We mainly apply the evaluation of the
convolution sums Wy 33)(n), W3,11)(n), W(5,9)(n), W1,45)(n), Wi1,54)(n), W(2,27)(n)
and other well-known convolution sums to determine these formulae. In order to
do that, we recall that
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* 33 =3-11, which is of the restricted form in Section 4.2. Hence, from Proposi-
tion 2 we derive that Q3 ={(1,11)}.

s 45 =32.5. Tt then follows from Proposition 2 that Q3 = {(3,5),(1,15)}.

¢ 54 =32.2. Tt is then immediate from Proposition 2 that Q3 = {(2,9),(1,18)}.
We then deduce the following result:
Corollary 13 - Let ne Nand c,d)=(1,11),(1,15),(3,5). Then

n n
R(Ml)(n) = 120’(”)—360’(5)4- 120(11 ) 360(33)+ 144W(1 11) ( )
+1296 W(l 11)(3) 432(W(3’11)(1/l)+W(1,33)(Tl)).

n

R(1’15)(1/l):120'( ) 36(7( )+120(15) 36(7(45)+144W(1’15)(1’1)

3
n
+1296W115( ) 432(W(1,5)(§)+w(1,45)(n)).

Rys5)(1) = 120(%)—360(9)+ 120(5) 360(15)+ 144 W3 5(n)

+1296W(35)(3) 432( (1,5 )(g)+W(5,9)(11)).
n
R(Mg)(n):12(7( ) 360(5)-{—120(18) 360(54)+144W(1 18)( )

+1296W118( ) 432( )(g)+w(1,54)(n)).

R(zlg)(n):12a(2) 360(6)+120(9) 360(27)+144W(29)()

n
+1296W(29( ) 432( (2, )(§)+W(2’27)(71)).

Proof. We only consider the case (c,d) = (1,11) since the other cases can be proved
in a similar way.

It follows immediately from Theorem 7 with (¢,d) = (1,11). One can then make
use of

* (78),(37) and (38) to simplify R(; 11)(n).
¢ Corollary 10, (59) and (60) to simplify R(; 15)(n) and R(35)(1). |
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8. Formulae for the Number of Representations of a Positive Integer

8.2 Representations by Octonary Quadratic Forms (4)

We give formulae for the number of representations of a positive integer n by
the Octonary Quadratic Form (4). We apply among others the evaluation of the
convolution sums Wy 40)(1), W(1,56)(11), W(5 8)() and W7 g)(n). To achieve that, we
recall that 40 = 23 -5 and 56 = 23 -7, which are of the restricted form in Section
4.1. Therefore, we apply Proposition 1 to conclude that Q4 ={(1,10),(2,5)} in case
apf =40and Q4 ={(1,14),(2,7)} in case af = 56.

Corollary 14— Let n € N. Then
n
N(l,lO)(n):80(71)_320-(4)+80( ) (4—)+64W110( )
n
+1024W110 (4) 256(W25 (E 140 )
n
) (g)—?JZU( )+64W25)( )
n

- 3]

N1,14)(n) = 8a(n 320( ) ( ) 320(56)+64W114()

N(y,5)(n) = 80( ) 320(

ool

+1024W25

=

n
+1024W114)(4) 256(W( )(§)+W(1’56)(11)),

n

N(2,7)(n):80(2) 320(8)+80(7

) 320 (28)+64W27)()

n
+1024W(27 (4) 256(W( )( )+W(1’14)(E)).

Proof. These formulae follow immediately from Theorem 6 when we set (4,b) =
(1,10), (2,5), (1,14), (2,7), respectively. One can then use the result of

* S. Cooper and D. Ye33, (76), (39) and (40) for the sake of simplification of
N(l,lo) and N, (2,5)-

* E. Royer®®, E. Ntienjem>3, (41) and (42) to simplify the formulae Ni,14)
and N(2,7 O

53Cooper and Ye, 2014, “Evaluation of the convolution sums ¥, 50men 0(1) (1), ¥ 411 5mn 0 (D)o (m)
and Y 5/, 5,=y 0(l)o(m)”, Thrm 2.1.

54Royer, 2007, “Evaluating convolution sums of divisor function by quasi modular forms”, Thrms
1.7.

55Ntienjem, 2015, “Evaluation of the Convolution Sums Yalspm=no(l)o(m), where (a,p) is in

{(1,14),(2,7),(1,26),(2,13),(1,28),(4,7),(1,30),(2,15),(3,10),(5,6)}”, Thrm 3.2.1.
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9 Forgotten Formulae for the Number
of Representations of a Positive Integer
In the following section, formulae for the number of representations, N, ;)(n), of

a positive integer n for (a,b) = (1,1),(1,3),(1,6),(2,3), are determined as applica-
tions of the evaluation of the convolution sums W(; 4)(n) by J. G. Huard et al.?,

Wii,12)(1n), W(3,4)(1), W(1,24)(1) and W(3 g)(11) by A. Alaca et al. 57, These numbers of
representations of a positive integer n are discovered due to Proposition 1. One
rather considers (79), (80), (83) and (84) in the following result.

Corollary 15— Let n € IN. Then
N(l'l)(i’l):160( ) 640'( )+64W11( )+1024W11 (4) 512W(14( )

—1603(n) 3203( )+256a (Z)

8 16 n 72 n 128 n 144 n
N(1,3)(”) = —03(”)——03(—)+ —03(§)+ —03(—)——03(—)

5 5 2 5 5 4 5 6
1152 n 32 128
+— 03(ﬁ)+?524,1(”)+?[’242()

8 8 n 52 n 56 n 4 n 1408 n
Nig)(n) = 75 03(m) =30 ( ) 15 3(5)_503(1)_503(_) 15 03(8)
_184 (n) 2432 (Tl) 112b (n)+ 3zb (n)

15 2\12)7 15 B3\ 24) " 15 "2V T 5 0240

128 n 976
—ﬁbzz; (4) b242( )+36by43(n )+Ebz44( 1)
—64byys5(n )+80[’246( ) = 64by4 7(1n) + 64by4 ().

2 2 n n n 18 n 128 n
Negyn) =5 o3 -zo (z) (5)“ 7(3)-5 7 (g) 5 (5)
72 n 1152 n 32 n
-5 os{g5) 5o (5) St e (3)

128 n 2 272
15 5241(4) 155242( )—8by43(n HEBM‘I( 1)

+16 [124’5(7’1) -48 524,6(71) + 80 bz4y7(7/l).

56Huard et al., 2002, “Elementary evaluation of certain convolution sums involving divisor functions”.
57A. Alaca, S. Alaca, and Williams, 2006, “Evaluation of the convolution sums Y ;. 19— o(1)o (1)
and } 31, 4pm=n 0 (o (m)";
A. Alaca, §. Alaca, and Williams, 2007b, “Evaluation of the convolution sums ), 54,,—,, o (I)o(m)
and ) 37, gym=y 0 (D)o (m)”.
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10. Concluding Remark

Proof. We set (a,b) = (1,1), (1,3), (1,6), (2,3) in Theorem 6 and we use (75), the
convolution sums W(; 3)(n) and W(j 4)(1) proved by J. G. Huard et al.58, W1,6)(1)
and W, 3)(n) proved by §. Alaca and K. S. Williams®?, (79), (80), (83) and (84) to
simplify and then obtain the stated results. O

10 Concluding Remark

The set of levels (also positive integers) INy can be expressed as the disjoint union of
the sets 9T and INj \ 91. When assuming that a basis of the space of cusp forms is
determined, we have evaluated convolution sums for levels which belong to 91; at
the same time we have evaluated convolution sums for levels which are contained
in INg \ 91 making the same assumption. When we put altogether, we can say that
for all natural numbers a and g, the convolution sums for levels af are evaluated.

The determination of a basis of the space of cusp forms is tedious, especially
when the level af is large and the cardinality of the set of all positive divisors of
ap is greater than 10. An effective approach to constructing a basis of the space of
cusp forms of weight 4 for Ij(a ) is given in the proof of Theorem 4 (b). An efficient
approach to building a basis of the space of cusp forms of weight 4 for Iy(ap) is
a work in progress.

In subsection 3.1, we have given a criterion for the determination of a primitive
Dirichlet character when evaluating a convolution sum of level aff € INy \ 91. It
would be nice to weaken this criterion.

Tables

1 2 3 4 6 8 12 24
1/2 2 2 0 2 0 o0 0
210 2 0 2 2 0 2 0
3]0 o 0o 0 4 0 4 0
4o o o 2 o0 2 2 2
5/0 2 0 -2 -2 2 6 2
6/l0 0 o0 0 -2 0 6
710 2 o0 2 -2 4 6
8|2 -5 -2 6 9 -5 -8 11

Table 4 — Power of #j-quotients being basis elements of S4(I(24))

58 Hyard et al., 2002, “Elementary evaluation of certain convolution sums involving divisor functions”.
59S. Alaca and Williams, 2007, “Evaluation of the convolution sums

”

Yivem=no(l)o(m)and } 5, 3=y o(l)o(m)”.
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1 3 11 33
1 0 8 0 0
2 4 0 4 0
3 3 1 3 1
4 2 2 2 2
5 1 3 1 3
6 0 4 0 4
7 |/-1 5 -1 5
8§ |-2 6 -2 6
9 6 0 0 2
10 4 -2 -2 8

Table 5 — Power of 7j-quotients being basis elements of S4(I(33))

1 2 4 5 8 10 20 40
114 O 0 4 0 0 0 0
2 10 4 0 0 0 4 0 0
312 0 0o -2 0 8 0 0
4 |0 O 4 0 0 0 4 0
5|0 O 0 0 0 4 4 0
6 |0 2 0 0 0o -2 8 0
712 -2 0 -2 0 2 8 0
8§ |0 O 0 0 4 0 0 4
9 |0 O 0 2 4 -4 6
102 -2 2 2 -2 0 0 6
111 O 0o -1 1 2 =2 7
12|10 O 2 0 0o -2 8
130 4 0 -2 0 -4 10
14 (0 2 -2 o -2 2 8

Table 6 — Power of j-quotients being basis elements of S4(I;)(40))
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Tables

56

8 14 28

7

-2

-2

5

-2

10
11

12
13
14
15
16
17
18
19
20

Table 7 — Power of 7-quotients being basis elements of S4(I(56))

45

15

9
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3 0 0 1 4

5 0 -1 -1 5
10| 0 3 0 -1 5
111 1 1 0 -1 6
12|14 O 4 0 0 0
1312 0 2 0 4 0
140 -1 3 9 -3 0

Table 8 — Power of 1j-quotients being basis elements for S4(I)(45))

1 2 5 10 25 50
1 4 0 4 0 0 0
2 0 4 0 4 0 0
3 2 0 4 0 2 0
4 1 0 4 0 3 0
5 0 0 4 0 4 0
6 0 2 0 4 0 2
7 0 4 2 0 -2 4
8 0 1 0 4 0 3
9 1 0 0 4 -1 4
10| O 0 0 4 0 4
11| 0 2 2 0 -2 6
12 0 -1 0 4 0 5
13| 0 1 2 0 -2 7
14 | 1 o 2 0 -3 8
15| 0 o 2 0 -2 8
16 | -1 0 6 -2 -5 10
17| 0 -1 1 3 -5 10

Table 9 — Power of 1j-quotients being basis elements for 54(I;)(50))
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Tables

9 12 18 36

6

-1 -2

-5

11

-5

10
11

12

Table 10 — Power of #-functions being basis elements of S4(I{)(36))

27

-3

6|3 2

Table 11 — Power of #-functions being basis elements of S4(I{(27))

32

16
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—4

0

8|0

Table 12 — Power of #-functions being basis elements of S4(IH(32))

54

27

18

5

-4

-4 11
-6

-4

4

12

10
11

12
13
14
15
16
17
18
19
20

21

Table 13 — Power of #-functions being basis elements of S4(I1(54))
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