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Abstract

In this paper we consider sequences of nonlinear functionals of Gaussian
random fields. We prove their convergence to multifractional processes which
generalize Hermite processes.
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1 Introduction

This paper deals with sequences of processes defined from functionals of Gaussian
random fields. Many works state that such sequences converge to various types of
limits which depend on the form of the functionals and on statistical properties
of the random fields. Consider for instance a stationary and Gaussian sequence
(X,,)new of random variables with mean zero and variance 1. We assume that there
exist meIN*, C >0, and «a € (0, %) such that

E(XoX,) ~ (1)

as n — oo. For every N € IN we define the process S(;XH by

LNt

(SN uiz0=| 77 ) #(Xe)

t>0

where H € (%, 1) and ¢ : R — R is a function such that

J ((j)(x))ze_xz/zdx < oo and j 4)(x)e_x2/2dx =0.
R R
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Multifractional processes and nonlinear functionals of random fields R. Marty

Assume that a = % and that the Hermite rank of ¢ is equal to m. By Dobrushin
and Major (1979) and Taqqu (1979), as N — oo, SgH converges in distribution to a

Hermite process B,, ;; defined by

t_m —
c(m,H)J.D dW,, ...demJ; ]_[(9 —xk)fj—3/zd9] (3)
m k=1

t>0

(B, (t))i=0 =

where H =1 + %, D,, ={x; <x <---<x,,}, W is a Brownian motion, and c¢(m, H)
is a constant. The process B, iy can also be written as

— _— (1t((§1 +...+(Em))_1
(Bm, (t)) >0 = [am,H)J AdWe ---dW. . exp -1 ] A
HE))=0 A ¢ 18 - ElTV2(E + o+ E) )i (4)

where W is the Fourier transform of a Gaussian measure and t(m,H) is a constant.
It is a self-similar process with index H and its local Holder exponent is H at every
point. Moreover it is not Gaussian when m > 1, and B; j; is a fractional Brownian
motion with Hurst index H.

The above result is extended in a multifractional framework in Cohen and
Marty (2008) and Marty (2013). Let (X,,(H)) (s, H)enx(1/2,1) be a Gaussian sequence
of random fields with mean zero. We assume that for every (Hy,H,) € (%, 1)? there
exists R(Hy, H,) > 0 such that

R(H;, H,)

E(Xo(H1)X,(Hz)) ~ 2 H

(5)

as n — oo. Notice that if H; = H,, then (5) is similar to (1). We consider a continuous
function h: R, — ( 1) and, for every N € IN, we define the process SN by

(6)

t>0

By Cohen and Marty (2008) and under additional assumptions, as N — oo the
finite-dimensional distributions of S}Il\] converge to those of a Gaussian process Sy,
with mean zero and such that for all ¢; and ¢,

h tzR h(max{6, a}), h(min{6, o
E(Sy(t1)Sn(t2)) f f 0 (T|2})h ( o ){ }))dea.

This is a multifractional extension of the result of Dobrushin and Major (1979)
and Taqqu (1979) in the special case where ¢(x) = x for all x € IR. If h is constant,
then Sy, is a fractional Brownian motion, namely a Hermite process with m = 1. If
h is non-constant, then S, is multifractional like, for instance, the multifractional
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1. Introduction

Brownian motions (defined in Benassi, Jaffard, and Roux (1997) and Peltier and
Lévy Véhel (1995)).
Now consider for every N € IN* the process Sgh defined by

WL (X, (h(n/N)
(Sg,h(f))tzo = [ % (7)
n=1 >0
where
h=1+ h;l

We assume that there exist a function g: (H,&) — g(H, &) and a symmetric compact
set K C R such that the field X = (X,,(H))(u,m)enx(1/2,1) of (7) is

X,,(H) = JKef”‘f lgé(lg_’i)de(g). (8)

Under additional assumptions on g, X satisfies (5) with

R(Hy,H,) = g(Hy,0)g(H>, 0 J |£|H1+H2 Td
Notice that in this case,
R(H;,Hy) = R(Hy, Hy). 9)

The main result of Marty (2013 ) states that, as N — oo, the process S(I;h converges
in distribution in D([0, o), R) to a multifractional process S, , defined by

<sm,h<t>>t>o:(JIRdegl~~dWemf O A R

I Em |h )-1/2 £0

where g is a deterministic function. This is an extension in a non-Gaussian setting
of the result of Cohen and Marty (2008). Moreover, the process S, ;, generalizes
By, i, namely, if there exists H € (%, 1) such that h(x) = H for all x, then S, , = B,,, ;.

In this paper we extend the results mentioned above. We consider fields X such
that for all H; = H,,

R(Hy,H,) # R(Hy, Hy),

in contrast with Marty (2013). With such fields X, we prove the convergence of
sequences defined as in (7) to a process of the form

t m —
UD AW, ..-dmeJ; f(e)]_[(a—xk)ﬁ“’)‘”de (11)

k=1 t>0
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where f is a deterministic function. The limit is multifractional and generalizes
Hermite processes, even though it generally differs from S, ;, defined by (10) and
studied in Marty (2013). In addition, we prove the convergence when N — oo of

[LN” @ (X (R(n/NF)))

NA(VNF)

(12)

n=1 >0

for all B € R\{1}. In this case, the limit is a Hermite process with Hurst index
depending on the sign of - 1.

The paper is organized as follows. In Section 2 we present the setting and state
the main result of the paper. In Section 3 we analyze a multifractional process of
the form (11). Section 4 is devoted to the proof of the main result.

2 Setting and main result

Our main result is the convergence of a sequence defined from a functional of
a Gaussian field with long-range dependence. This random field is presented in
Section 2.1 and two examples are given in Section 2.2. The main result is stated in
Section 2.3.

2.1 Gaussian fields with long-range dependence
We consider a random field X = {X(t,H)}(t,H)EIR+X(%’1) such that for all (¢, H) € R, x
(3.1),

t
X(t,H):J a(t—x, H)dW, (13)

(o]

where W is a Brownian motion and a : R, X (%, 1) —» IR} is a continuous function
such that fooo a(x,H)?dx = 1 for all H. As a consequence, X is a Gaussian field with
mean zero and covariance function r which can be written as

minfty, s}

H(t1, Hy, by, Hy) = E(X (1, Hy)X (5, Hy)) = f alty —x, H )at - x, Hy)dx

—00

for all (t1,Hy,tp, Hy) € (R, X (%, 1))2. This implies that for all (t,H), r(t,H,t,H) =
[E(X(t,H)?) = 1, and that for every H the process t — X(t, H) is stationary, because
for all (1, t,),

E(X(t;,H)X(t,, H)) = Jo a(x, H)a(|t; — to| + x, H)dx.
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2. Setting and main result

In addition to (13), we assume that there exists a continuous function A : (%, 1)> R}
such that for every compact set K C (%, 1),

lim sup |x*?Ha(x,H) - A(H)| = 0.
Y7 HeK

(14)

We deduce the following property of the covariance which implies that X satisfies
the assumptions considered in Cohen and Marty (2008).

Lemma 1 - For every compact set K C (%, 1)?

’

lim  sup |ty — 6P r(ty, Hy, ty, Ho) = R(ty, Hy, £y, Hp)| = 0. (15)
It ~t2l=00 (F,, H,)ek

where R : (IR, X (%, 1))?> — R% is a continuous function such that for all (t;, Hy,t,, H,) €
(Ry x(5,1))%,

R(ty, Hy, ty, Hy) =1, 51, A(H, )A(Hz)j (1+x)1=3/2xH2=3/2 4«
0

oo (16)
+ 14, <, A(H; )A(Hz)J (14 x)M273/2x =372 g«

0

Notice that if we set for all (Hy, H,),

[>9

C(Hy, Hy) = A(H, )A(Hz)J- (14 232302 g
0

then
C(Hy,Hy) # C(Hy, Hy)

when H; # H,. Indeed, if we assume that H; > H,, then

o0 oo 1 \H1-3/2
f (1 4+ x)H1=3/2xH2=3/2 4 (1 + _) Hi+H=3
0 0 x

J
oo 1 \H2-3/2
(1 + —) xH+HH=3 gy (17)
JO x
oo
— (1 + X)HQ_S/ZXHI_S/ZCIX.
Jo

Hence, the framework of this paper is different from that of Marty (2013).
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Proof. (Lemma 1) We assume t; > ;. We have

r(ty, Hy, tp, Hp)

= f ) (a(t; —x, Hy) — (t, — )2 A(H) ) aty — x, Hy) — (t, - x)27¥2 A(H,))dx

(i2
| (alt—x Hy) = (0 =) 2A(HD)) (1 = 0272 A(Hy ) dx (18)
J—-00
rt2
+ | (=M 2AH a(ty - x, Hy) - (£, — %) 272 A(H,))dx
J—00
(i2
+ (ty —x)H 32 A(Hy ) (t, - x)H2 732 A(H, ) dx.
J—00

We set 0 = t; —t,. By the change of variable x — t, — x we get

r(ty, Hy, t, Hy)

:Jm(a(b +x,Hy)— (5 + )32 A(H) ) a(x, Hy) — x™2732 A(H, ))dx
0

(o

+ | (a(6+xHy)— (6 +x) M3 2AH, )xH2732 A(H,)dx

Jo (19)
(0

+ | (8+x)M32AH, ) (a(x, Hy) - x"232 A(H,))dx

JO

(>

+ | 0+ x)M2AH,)xT2732A(H,)dx.

JO

As a consequence, by the change of variable x — 0x,

8> Moy, Hy, 1y, Hy) — A(Hy )A(H,) J:o (1+x)t=32xH2=3/2 (20)
=Ry (0,H1, Ha) + Ro(0, Hy, Hy) + R3(6, Hy, Hy)
where
Ry(8,Hy, Hy) = 83~ Hi-H2 J:o(a(é +0x,Hy)— (8 + 6x)11 732 A(Hy))
x (a(6x, Hy) — (6x)H273/2 A(H,))dx,
R,(8,Hy, Hy) = 6% 1 A(H,) Jooo(a(a‘ +6x,Hy)— (5 + 6x)T1 732 A(H, ))xH2732 dx
and
R;(8,Hy,H,) = 53/2—H2A(H1)Lm (1 +x)H1732(a(5x, Hy) — (5x)H27%2 A(H, ))d x
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2. Setting and main result

We have

R3(5,H1’H2) _ A(Hl)Loo (1 +x)Hl_3/2xH2_3/2((5x)3/2_H2a(c‘ix,Hg) —A(Hz))dx
(21)

Let K be a compact set. Because of (14), for every v > 0 there exist two positive
constants y and ¢ such that

sup |R3(6,Hy,Hy)| <v sup

A(HI)J (1 +x)M73/2Hom3/2
I

(Hi,Hy)eK (H1,H>) /0
W'o (22)
+c sup A(Hl)J. (1+ x)Hl*S/szz_e’/zdx
(Hy,Hy) 0
so that
lim sup |R3(6, Hl,H2)| =0.
6_)°°(H1,H2)€K (23)
Similarly, we prove that
lim  sup IR1(6,Hy, Hp)| = lim sup IR2(6, Hy, Hy)| = 0. (24)
070 (Hy,Hy)eK 0% (Hy,Hy)eK
This completes the proof. O

2.2 Examples

We give two examples of fields satisfying the assumptions presented in Section 2.1.
Consider that X; is defined for all t and H by

Xi(t,H) = ﬁf ((t=x)i 72— (t-1 —x)f’l/z)dwx (25)

—00

where

Ci(H) = \/Lm (072 (- D2 e

For every H, X;(-,H) : t = X;(t, H) is the fractional Gaussian noise (see Tagqu (1979)
for instance), namely the process of the increments By (-) — By (- — 1) of the fractional
Brownian motion By such that for all ¢,

1 ! _ _
Bu(t) = gy | (= = (12w, (26)
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Multifractional processes and nonlinear functionals of random fields R. Marty

Then for all (t,H),

t
Xi(t,H) :j ay(t—x, H)dW,

(S

where for all x > 0,

B 1 H-12 CH-12) .X'H_l/2 ~ _l H-1/2
al(x,H)——Cl(H)((x)+ (x—1)H )_—Cl(H) 1 (1 x)+ .
Moreover, for all u € (-1,1),
_(1—yH12 (gL V3
1—(1—u) _(H 2)u+(H 2)(2 H)p(u,H) (28)
where
p(u,H) ;:f (u—v)(1-v)T"24y (29)
0
which satisfies
u 2
OSp(u,H)s(l—u)H_S/ZJ (u—v)dv:(l—u)H_S/z%. (30)
0

From (27), (28), and (30), we deduce that for all x > 2,

ay(x, H)—

Hos (H=1/2) ‘ . (H-1/2)(3/2-H)

Ci(H) |~ Cl(H)zH—S/ZxS/Z—H'
Hence, the field defined X; by (25) satisfies (14) with the function A(H) = Iél_(lfﬁ
We give a second example. Consider the field X, defined for all t and H by
t t—x
X,(t, H) = T J_oo ((t 12 e—(t—x)J(; eééH—l/zdé)dWX (31)
where

x 2
\/J- HV2 _ e—xJ- of 5H—1/2d5) dx. (32)
0

For every H, t — X,(t,H) is the stationary fractional Ornstein-Uhlenbeck process

(see Cheridito, Kawaguchi, and Maejima (2003) for instance) such that
t
Xz(t,H):BH(t)—e—ff By (6)d6

(o]
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2. Setting and main result

where By is the fractional Brownian motion defined by (26) with the constant C,(H)
instead of C;(H). In this case, for all (¢, H),

t
Xz(t,H):.f ﬂz(t—X,H)dWx

where for all x >0,

a(x, H) = ﬁ(xf—l/z —e_xJ; e‘féH‘mdé).

From the following calculations we deduce that the field X, defined by (31) satisfies
(14) with the function A(H) = (H —1/2)/C,(H). For all (x,H), by the change of
variable & - x-&,

X X
CH1/2 e—xf (EEH2 g _pmx 12 e—xf of (xH-V2 _ gH-12) ¢
0 0

H-1/
Xy H1/2  (H-1/2 fxe—é (1 _ (1 _ %) ' 2)d5

0

X é H-1/2 (33)
:e—xxH—1/2+xH—1/2J 6—5(1_(1__) )dé
x/2 x
x/2 & H-1/2
+xH_1/2J. e“f(l—(l——) )dé.
0 X
For every compact subset K C (%, 1),
-x,H-1/2 1
lim sup x> HE X _ im xe*su ‘ =0. (34)
x_"x’Heg Cy(H) x—e0 Heg Cy(H)

By the change of variable £ — x¢, for all (x, H),

x H-1/2 1
xH—l/ZJ e“i(l—(l—é) )dé =XH+1/2J e—x{(l_(l_é)Hfl/Z)dé
x/2 x 1/2

1

SxH+1/2e—x/2f (1_(1_6)1—1*1/2)(15
1/2

SxH+1/267X/2'

Then
H-12 px £\H-12
lim sup [x*?7H J e * (l—(l——) )dé
X—00 preg C2(H) Jys2 x (35)
1
< lim x%¢ 2 su ' =0.
xoe Hek| Co(H)
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By (28),

x/2 & H-1/2 1
le/ZJ e5(1—(1——) )dé :xH’l/z(H——)
0 X 2

= ——
N W
|
ay
~—
e x
<
)
(9N
-
o)
—_—
R |
ay
S —
[
aet

where p is defined by (29). From (30) we deduce that

LX/Zeép(%,H)d(f L Lm 675(1 _%)H—S/Z i—idé

-2 x/2 -2
X X
- —&x2 =
< SH2 J; et s Spmn.

Hence,

lim sup |x
x—00 Heg Cy(H)

(H-1/2)(3/2-H)| _
2H*7/2C2(H) -

Z H
x

32t p-1/2 (H=1/2)(3/2— H) fm (L ) é’
0

(37)

< lim x7 ! sup

X—00 HeK

Finally,
/2
xH—l/Z(H_ l)fx e‘éédé _ H-32 (H— l)(l _ o2, Ee—x/Z)’
2, x 2 2
which implies that

lim sup |x

3/2-H H-1/2(H ~1/2) JX/Z e édé _(H-1/2)
X2 Hek CZ(H) 0 X

‘ Co(H)

‘ =0. (38)
, (36), (37), and (38) we conclude that X, satisfies (14) with the
2

By (33), (34), (35
-1/

function A(H) = G-

ofTm—

2.3 Main result

Letd e LZ(IR, e‘xz/zdx) be a function with Hermite rank m € IN*, which means that
- Dk
©=) KB (39)
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2. Setting and main result

where the convergence of )} is defined from the norm || - ”LZ Re2/2dx) P, is the
Hermite polynomial of degree k for every k > m, namely
dk
Pe:x o P(x) = (-1)ke 22— 72,
dxk
and
1 -x%/2
Ok = AP, Pid o o224y = EL(D x)P(x)e™ "“dx.
Leth: R, — (%, 1) be a continuous function and for all 6 € R,,
~ h(@)-1 1
Ho)=1+ 19 6(1——,1). (40)
m 2m

We set h~ = minh and h* = maxh, and assume that [, h*] C (%, 1).

Let X be a random field defined as in Section 2.1, namely a Gaussian field such
that (13) and (14) are satisfied. We fix a real interval I such that I C [0, 0). For all
N € N* and t € I, we consider

Nt]

£N () = Z (X (n, h(n/NF))) (41)

Nn/NF)

n=1
where B € R. Moreover, if f <1, we assume that limg_,, h(0) exists and belongs to
( 1). We denote this limit by h(co).
The main result states the convergence of the process )Z o, a8 N — co. The proof
is postponed to Section 4.

Theorem 1 - As N — oo, the process ): o, converges in distribution in D(I,R) to the
process ¥, j, defined by

t
Emn(Drer = (f AW, ---dwxmf GO, 1, % )dO (42)

m 0 tel

where D,,, = {x1 <x <--- < x,,}, W is a Brownian motion, and for all (0,xy,---,x,,) €
[0, 00) x D,,,,

m

ouA(HO) " [O-x"  ifp>,
k=1
GO x1, ) =1 ouA(HO)"] JO -5 " ifp=1, (43)
k=1
mﬁ@ xk 00)=3/2 if p<1.
k=1
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If B # 1, then the limit X, ;, is a Hermite process as defined in Dobrushin and Major
(1979) and Taqqu (1979) with Hurst index equal to /(0) or h(co) depending on the
sign of f—1.

If B =1 and h is a non-constant function, then the limit ¥,, ; is a multifractional
process as those we analyze in Section 3.

We conclude this section with a continuous version of Theorem 1. For every
€ >0, we define the process Eg,h by

t
Tou(t) = fo MO (X (70, (e 0)))dO
t/e 5 _
:f "D (X (0, h(PO)))do.
0

The following theorem states the convergence of Efb pase—0.

Theorem 2 — As ¢ — 0, the process f&) , converges in distribution in C(I,IR) to the
process X, 1, defined as in Theorem 1.

The proof of Theorem 2 is omitted because it is similar to that of Theorem 1 in a
continuous setting.

3 A multifractional process

In this section we analyze a stochastic process which has the form of ¥, (see
Theorem 1). In particular we prove that it satisfies multifractional properties.
We fix m € IN* and for all ¢ > 0 we define

t m
0)-3/2
Y(t)= J dW,, ---dWXmJ fO] J©-x)"a0 (44)
D 0 k=1
where D,, = {x; < x, <--- < x,,,}, W is a Brownian motion (see It6 (1951) for the
definition of the multiple Wiener integrals),and f : R, » R} and p: R, — (1—%, 1)

are continuous functions. The process Y is well defined by Lemma 2 which is stated
below and is used throughout the paper.

Lemma 2 — For every (t, 1, , Vm) € Ry X (1 - =, 1)",

2m’

fom 2
f dx--dx,, j ﬂ(e—xk)?‘?’”de < co. (45)
R™ 0
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3. A multifractional process

Proof. By the Fubini theorem and changes of variables,

2
f dxl---dx,,,(f (0 —x )l ”de)

t t m
— [ ] dodo [ e [ [0 xe)uto -2 (46)
0 JO R™ k=1
t t m )
= [ [ dvaoio-oPEre2 [ [t s i
0 Jo k1 JO
Since y, € (1 - ﬁ, 1) for all k, the upper bound of (46) is finite. m|

The following lemma states the continuity of Y.
Lemma 3 — The sample paths of Y are continuous almost surely.

Proof. For all s <t such that |t — s is small enough,

E((Y(t)-Y(s))*)

:Jl; dxq - dxm[f f(e
SJ dQJ daf dx, +--dx,,f(0)f (o~)ﬁ(e—xk)fw*”(o_xk)f“”*/?

k=1

2
( )= 3/2d9]
=1

By changes of variables,

E((Y(t)-Y(s))?) < sup |f|2f dej do(t 2+m ((t—5)0+s)+@((t—s)o+s)-2)

[s:t]
~ |9 _ O.|m @((t=s)0+s)+@((t—s)o+s)-2) (47)

x (Jw dx(l + x)qv((tfs)9+s)—3/2x(p((t75)0+5)73/2
0

m

We deduce that there exists a constant C > 0 independent of (s, t) such that

E((Y(t)-Y(s )) ) < Cs[:l}])lﬂ (t—s) 2(1+m(infs, ) 9-1)) (a5)

Remark that 2(1 + m(inf[; ;) ¢ — 1)) > 1. By the Kolmogorov continuity theorem, we
deduce that Y has a modification with almost surely continuous sample paths. O

The multifractional properties of Y are stated in the following two theorems. The
first one establishes that Y is locally self-similar.
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Theorem 3 — Let t > 0. If @ is Holder-continuous then, as € — 0, the process

Y(t+eu)-Y(t)
el+m(p(t)-1) -0

converges in distribution to

{f(t)JD AW, ---dW, J]_[e X 3/2d9] (50)

u>0
in C([0,0),R).
Proof. For all t and u,

Y(t+eu)-Y(t)
cl+m(g(t)-1)

t+eu
- g—l—mup(t)—l)f W, --dW, J

W

©- xk)f(e)—yzde

:]§

=~

=1
m

:,g—mw(f)—l)f AW, --dW, f fleO+1) ]_[ (e6 + t —x) 0249,
D k=1

Then, by a change of variable in the stochastic integral, for every t the process
defined by (49) is equal in distribution to

u
(f dle---dWxn,f ¢f(t,x,6)d6) (51)
Dy, 0 )
where
m
¥ (1 x,0) = e @O0 £ 4 1) [ [(0 - x) PO (52)
k=1

To prove the convergence of the finite-dimensional distributions, it suffices to show
that

2
u m
. )-3/2
= 53
ll_l’)l;l) Dmdxl dxm[J0 dQ[lp t,x,0 I | ]] 0 (53)

=1

For all (t,x,0), by the continuity of f and ¢,

m
. )=3/2
1 (t,x, (6-x 0.
:n[ #0)=f0] |@-xf ]



3. A multifractional process

Moreover, there exists a constant C > 0 such that for all (¢, x, 0),

m
2 2 -3/2
£(t,x,0 I_I )-3/ SC]_[( mln(p 3/ (e_xk)Taxq) 3/ )

Hence, by the bounded convergence theorem and Lemma 2, we obtain (53). It
remains to prove the tightness of the family of processes defined by (49). For all u
and v,

m(( Y(t+eu)-Y(t) Y(t+ev)- Y(t))2

cl+m(p(t)-1) a cl+m(gp(t)-1)

2-2m(g(t)-1) freu - )-3/2 ’
=g omel- J dxy---dx J- 0 —x)? ae
D 1 m , 1_[

i +ev k=1

:JD dxl...dxm(ft,bf(t,x,e)d@)z

m

2
mm 3/2 max @—3/2
SHf”ZoJ dxl"'dxm(j d@ﬂ( P2 (0 -x) T ¢ )] .

m

Then there exists a constant C > 0 independent of (s, ) such that

2
gl (YErew) - Y({) Y(t+ev)-Y() < Clu — P Lmlinfp-1))
el+m(p(t)-1) el+m(gp(t)-1)

The tightness is proved (see Billingsley (1968) for instance), then Y is locally self-
similar. O

The following results gives the local Holder exponent.

Theorem 4 — Let t > 0 and assume that f(t) # 0. The local Holder exponent of Y at t is
1+m(p(t)—1).

Proof. By Theorem 3 and similar arguments to those of the proof of Proposition 10
of Peltier and Lévy Véhel (1995), it suffices to show that for every p € IN* there exists
Cp > 0 such that for all s <t in a neighborhood of ¢,

E((Y(t) - Y(5))?P) < Cp(t —5)2P Inflsn(1+m(e-1)) (54)
This is obtained from (48) and Nelson (1973). m|

We conclude this analysis of Y with an important remark. Assume that f =ao¢
where «a is a strictly positive function, so that

t
Y(t):J;) dle.--dWXmJ; a((p(@)) 6 )79 40 (55)
m k=1

45



Multifractional processes and nonlinear functionals of random fields R. Marty

which is the form of the limit ¥, ; of Theorem 1 (Section 2.3). For non-constant
functions ¢, the processes defined by (55) are generally different from those of
Marty (2013). This can be shown as follows. As in the proof of Theorem 3 (see also
the proof of Proposition 1 of Cohen and Marty (2008)), we can establish that for all
s#t,

lim e 2E((Y(t+ €)= Y(1)(Y(s+¢€) = Y(s)))

-0
=t —s|?W 2 (p(s))a(@(t))Ry (@(max{s, t}), p(min{s, t}))
with for all (Hy, Hy),

1({(*® "
RY(Hl,Hz):%(J; (1+x)H1—3/2xH2—3/2dx) .

Notice that Ry (H;, H,) # Ry(H,, Hy) if Hy # H, (see Section 2.1).
Now consider the process such that for all ¢,

B ~ ~ (! exp(i0(&; + -+ &)
Z(t)_fmdwél...dwémLﬁ(q;(e)) TRWRTET: 4o (56)

where B is a continuous function and W the Fourier transform of W. This is the
form of the processes studied in Marty (2013). We can prove that for all s = ¢,

lim e 2E((Z(t + €) - Z(t))(Z(s + &) — Z(5)))

e—0

£ sIP 25 (5) B ()R (p(max(s, ), @(mins, 1)
with for all (H;, H,),

Rz(Hy, Hy) = (f exp(i&)|E 24

The function Ry is symmetric, in contrast with Ry. Consider three points #;, f, and
t3 € IR, such that t; < t, < t3, and a function ¢ such that ¢(t) = @(t3) > @(t;). Since
Rz is symmetric,

Rz(p(max{ty, tp}), (minft, t,})) = Rz (p(max{ts, t,}), p(min{ts, t,})). (57)
As a consequence of (17),

Ry(qo(max{tl,tz}),<p(m1n{t1,tz})) Ry(p(t2), (t1)))

Ry(¢p(t1), @(t2)))
—RY((P(t?:):(P 2))
= Ry(p(max{ts, t,}), p(min{ts, t,})),

which differs from (57). Finally, this proves the following result.
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4. Proof of Theorem 1

Theorem 5 — There exist functions ¢ € C(R,, (%, 1)) such that for all a € C((%, 1),R})
and B € C((%,l),IR) the processes Y and Z defined by (55) and (56) have different
distributions.

Hence, the processes given by (55) are generally different from those studied in
Marty (2013).

4 Proof of Theorem 1

In this section we prove Theorem 1. It is a consequence of the tightness (Section 4.1)
and of the convergence of the finite-dimensional distributions of Zgh as N - o0
(Section 4.2). Technical lemmas are postponed to Section 4.3.

4.1 Tightness

The following lemma establishes the tightness of (Xg,h)N in D(I,R).

Lemma 4 — The sequence of processes (Egh)l\f is tight in D(I, R).

Proof. We only give the main idea of the proof because it is similar to Section 4.4
of Marty (2013). By the Cauchy-Schwarz inequality, the properties of the Hermite
polynomials, and Lemma 1, we prove that there exists C > 0 such that for all N and
for all (t1,1,,t5) satisfying #; <t, <t3 and t3—t; <1 we have

(%, (t3) = T ()16 4(12) = T (1)) < Clt = 1)
Since h > 1/2 and by Theorem 15.6 of Billingsley (1968), we get the tightness

property of (Zg,h IN- O

4.2 Convergence of the finite-dimensional distributions

In this subsection we prove the convergence of the finite-dimentional distributions
of Zgh as N — oo. For all n and N we set

N._p( N
) ._h(Nﬁ) and i ._h(Nﬁ).

Lemma 5 - Let d € N* and (t;,---,t;) € [?. As N — oo, (Egh(tl),~~~,2gh(td)) con-
verges in distribution to (X, 5(t1), -, Xpn(ta)) in R7.
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Proof. By Lemma 6, it suffices to prove the convergence of the finite-dimensional
distributions of the process @Y defined for all ¢ by

qb LNt]
oN(t) = 1m ZN " Poy(X(n, 1Y) (58)
Since P,, is the Hermite polynomial of degree m and IE(X(t, H)?) = 1 for all (t, H),

m
P,(X(t, H)) j ]_[a t—x, H)dW,, - dW, (59)
k:l

where D,,(t) = {x; <xp <---<x, <t}. As a consequence,

oN(t) _ P ZN " Py(X(n, 1Y)

|_NtJ m
= ZNWJ ]_[a(n—xka?,j)alwx1 dW, (60)
n=1 Dy () k=1
[Nt] m
= ‘f)"‘j AW, ---dW, ZN’W ]_Ia(n —x, Y.
D,,(n) n=1 k=1

By a change of variable in the stochastic integral and the self-similarity property of
W, ©F is equal in distribution to ® defined for all ¢ by

LNtJ m

®N(t):¢mJ\ dle' xm ZN h"+m/21Nx"<nI_[ (n_karzﬁz\])
D

m n=1 k=1
LNt]

:(pmf AW, ---dW, ZN ! +m/2|_[1ka<n (n—Nxp, hN).

m

(61)

By Lemma 10, the convergence of the finite-dimensional distributions of @Y is
equivalent to the convergence of those of @é\] which is defined for all ¢ by

WN_3/2
(%),

! (62)
:J AWy, ---dWy J (6,x1,-,x,,)d0
D,
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4. Proof of Theorem 1

with for all 0 € [0, 1),
INt] m YR
GN(O,x1, %) = P Zl((n—l)/N,n/N )" ( —xk)
= k=1 (63)

B m |—N9-| h%\f@'\ -3/2
= er I_I %)

where [-] is the ceiling function. Finally, by Lemma 11, the proof is completed. O
4.3 Technical lemmas

In this section we prove Lemmas 6, 10, and 11 which are used in the proof of the
convergence of the finite-dimensional distributions of Zg , (Lemma 5). The norm
Il - llz2(q,p) is denoted by || - ||.

Lemma 6 — Forall t, limy_,, ”):g,h(t) - @i\’(t)” =0.

Proof. As a consequence of (15), the proof is similar to that of Lemma 4.5 of Marty
(2013). O

Lemmas 7, 8, and 9 which follow are used in the proof of Lemma 10.

Lemma 7 — For every 1 > 0 there exist two positive constants C(y) > 0 and K(n) >0
such that for all x; >0, x, >0, ..., x,, >0, and H € [h~,h*],

la(x1, H) -+ a(x,, H) = A(H)™ (x; -+ x,,) /2|

m
_ (64)
< B(xl o 'xm)H 3/2 Z(ﬁlxkﬂ((‘q) + C(W)lkaK(q))
k=1
with
B = max ( m |x3/2*Ha(x,H)|k*1 X max IA(H)Im*k*1 < co.
k=1,,m\(x,H)eR, x[h~,h"] Helh=,h"]

Proof. By (14), for every n > 0 there exists K(1) > 0 such that for all x > K(1) and
Helh,h*],

la(x, H) - A(H)xH=32| < xH=3/2y, (65)
Moreover, for all x € [0,K(#)],
la(x, H) = A(H)x" 32|

< max la(x, H)| + x~3/? max |A(H)|
(x, H)[0,K (1) Jx [, 1+ ] He[hh*]
(66)
< xH=3/2(1 4 x¥2-H max la(x,H)|+ max |A(H)|
(x,H)€e[0,K(n)]x[h=,h*] He[h=,ht]

< C(ﬂ)XH_3/2
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with

C(n)=(1+K(n)¥*H H A(H)||.
()= (1+K(n) ) xHe[OKq] - hﬂla(x )I+Hen[r;l'c}§ﬂ| (H)|

From (65) and (66) we deduce that for all x > 0 and H € [h~,h7],
la(x, H) = A(H)x2 <2732 (1 s gy + COp L) (67)
Hence, for all (xy,---,x,,, H),

|a(xy, H) -~ a(x,, H) = A(H)™ (x1 - x,,)F 2]

<Z'ﬂ x1, H)-+-alxe-, H) @l H) = A2 A" (g -2
m (k=1

<(xp Xy H 3/ZZ x/ x], (ﬂlxk>K( )+C(’7)1kaK(17))A(H)mikil
k=1 ]:]

SB(Xl "'xm)H_3/2 Z(lekﬂ((q) + C(V/) xksK(q))
k=1

which completes the proof. O

Lemma 8 — Let t > 0. Forall (6,x) €[0,t] xR,

no)-3/2 .
[NOT _\Five =2 (O yop=t
Jim (5] =0l e, (68)
©-x)"2 i s

Moreover, for all (N,0,x) e N*x[0,f] xR,

(fNQT x)ﬁf,’m—a/z 3 © _x)sup[ot 1h=3/2 (0 _x)iff[o"] h-3/2 if p>1, o
N + = ©- )sup[om \h=3/2 +(0 _x)inf[o,oo)ﬁ—3/2 if p<1
+ .
Proof. For all 6 and N,
L NOT 1
0+
<UrN

Then (68) follows from the continuity of h. Moreover, for all x,

LGENE

(0-x), <
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4. Proof of Theorem 1
Since 71}\1’\,61 - % < —% <0,
N g1-3/2 _3/2
([I\II\IG] —x) G <(O-x) No=3/
+

and then we get (69). O

Lemma 9 - Let t > 0 and F; be the function such that for all (0,xy,---,x,,) € [0,t] xR™,

m

h-3/2 infjo,) h-
[ To—x0i ™" w0 —x) ") i p 21,
Fi(0,x1,,xy) =1 ! . 70
t( 1 m) m sup h—3/2 infjo i 3/2 ( )
[ Jwo- +(0-xi); )if p<1
k=1
We have
t 2
J dx1~~~dxm(j Ft(G,xl,---,xm)dG) < oo (71)
m O
Proof. It is a consequence of Lemma 2. O

Lemma 10 — Forall t, limy_, ||®£\I(t) - @é\](t)” =0.

Proof. Fix 1 >0. By Lemma 7,

LNVE) m m 7Y -3/2
ZN—hn +m/2]_[a((n ka)+rh )_NA hN m (——Xk)
n=1 =1 k=1
INt] m TN _ m
B n hy, =3/2
SN : !{_ll(ﬁ_xk)Jr Z{(UlnijZK(q)+C(77)1nij<K(r]))
n= = J=

AN —3/2

[NOT el <
=B . d@]_[( ) Z(’YlfN(ﬂ Nx2K(n) + CONINOI-Nx <K ()
k=1

]_

As a consequence,

[N (1) -0 (|| < 2B (¢)2 (1 UN (1) + Cp) > UN (1))

with
N6 INoy=3/2
U{V(t) = .[Rm dx; ---dxm[J do erNe]/N ~x;2K()/N ]_[(u —xk) ]
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and

2
N
h[N@'\_g’/z

N e "INOT
UZ (t) = . dxl ~~de . do erNg]/N,xj<K(,7)/NI_I(T —Xk)+
=1 k=1

By Lemmas 8 and 9, and the bounded convergence theorem,
t 2
Jim UN(t) = f dx ---dme Fi(6,x, ---,xm)de)
—00 m 0

and
lim UN(t)=0.
Nakie (#)

It follows that for all 7 > 0,

t 2
oslimsupH@%)—@é“(t)l)zs2n2<¢m>2f dxl---dxm(f Fy(0,%1 -+, %,)d0 | .
N—-co m 0

This gives
li Ny-eNw)| =
Jlim @) (1) -0y () =0
and completes the proof. O

Lemma 11 — For all t, limpy_,, ||®§\[(t) - )Zm’h(t)” =0.
Proof. For all ¢,

t
[0 (1) = (1) < JIR dx, ---dxm(jo |GN(0,x1,++, %) = G(0,x1,++,x,,)|dO | .

By (68), for almost every (0,x,---,x,,),
lim |GN(6,%x1,-, %) — G(6,%1,-++, x)| = 0.

N-—>oco

Moreover, by (69), there exists C > 0 such that for almost every (0,xy,---,x,,),
|GN(91x11"' ’xm) - G(lell"' ’xm)| < CPt(e,Xl,“' 1xm)

where F; is defined by (70). By Lemma 9 and the bounded convergence theorem,
we deduce that

t 2
lim dxi ---dx,, (f IGN(O,x1,-++, %) = G(O,x1,-+,x,)|dO] =0,
R™ 0

N—-oo

which completes the proof with (72). O
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