

Stability of Jamison sequences under certain perturbations

João Paulos¹

Received: September 14, 2018/Accepted: May 27, 2019/Online: July 24, 2019

Abstract

An increasing sequence of positive integers (*nk*) is said to be Jamison if whenever *T* is a linear bounded operator on a complex separable Banach space, the following holds:

sup *k* ∥*T ⁿ^k* [∥] *<* ∞ ⇒ *^σp*(*^T*)∩*^S* 1 is countable

In this paper, we study certain perturbations on the set of Jamison sequences and prove a stability result.

Keywords: Jamison sequences, linear dynamics..

msc: 47A10, 54A99.

1 Introduction

Throughout this paper, unless otherwise stated, *X* is a complex separable Banach space and $\mathcal{L}(X)$ is the Banach algebra of bounded linear operators on *X*. Furthemore, we denote the unit circle in \mathbb{C} , as $S^1 = \{z \in \mathbb{C} : |z| = 1\}.$

Definition 1 – Let (*n^k*) be an increasing sequence of positive integers and let *T* ∈ $\mathcal{L}(X)$. We say that *T* is partially power bounded (with respect to (n_k)) if:

$$
\sup_k \|T^{n_k}\| < \infty
$$

In particular, if *T* is partially power bounded with respect to $(n_k) = (k)$, then *T* is said to be power bounded.

Definition 2 – Let (n_k) be an increasing sequence of positive integers. We say that (n_k) is a Jamison sequence if whenever an operator T ∈ $\mathcal{L}(X)$ is partially power bounded with respect to (n_k) , then $\sigma_p(T) \cap S^1$ is countable. Here, $\sigma_p(T)$ denotes the point spectrum of *T*, i.e $\sigma_p(T) = {\lambda \in \mathbb{C} : \text{ker}(T - \lambda) \neq \{0\}}$.

¹ Chalmers University of Technology, Department of Mathematical Sciences, Chalmers Tvärgata 3, 412 96 Göteborg

Remark 1 – If a sequence (n_k) is not a Jamison sequence, we say that (n_k) is a non-Jamison sequence.

Notation 1 – Let (*t^k*) and (*n^k*) be two increasing sequences of positive integers. We define another sequence $(r_k)_{\frac{t_k}{k}}$, as follows ($[\cdot]$ *denotes the closest integer)*: *nk*

$$
r_k := \left| t_k - \left[\frac{t_k}{n_k} \right] n_k \right|
$$

In this paper we prove that the set of Jamison sequences is stable under certain perturbations. More concretely, our main result in its full generality is as follows (Corollary [4\)](#page-9-0):

Theorem 1 – *Let* (*t^k*) *be a (non) Jamison sequence and suppose that* (*n^k*) *is an increasing sequence of positive integers. Then, if one of the following conditions hold,* (*n^k*) *is also a (non) Jamison sequence:*

- 1. $\sup_k \left(\frac{t_k}{n_k} \right)$ $\left(\frac{t_k}{n_k}\right)$ < ∞ and $\sup_k (r_k)_{\frac{t_k}{n_k}} < \infty$
- 2. $\sup_k \left(\frac{n_k}{t_k} \right)$ $\left(\frac{n_k}{t_k}\right)$ < ∞ and $\sup_k (r_k) \frac{n_k}{t_k}$ < ∞

The proof of our main result relies on a characterization of Jamison sequences proved in Badea and Grivaux [\(2007\)](#page-10-0). This characterization has as a central tool, the introduction of a metric $d_{(n_k)}$ in S^1 associated to each increasing sequence of positive integers (*n^k*).

In section [2,](#page-1-0) we present a brief overview of previous results on Jamison sequences. Some of these results will be used further in this paper and others should illustrate the relation between the size of $\sigma_p(T) \cap S^1$ and the growth rate of the sequence $(||T^{n_k}||).$

In section [3,](#page-4-0) we prove that $(S^1, d_{(n_k)})$ is never compact (Corollary [1\)](#page-5-0) and after introducing all the remaining necessary results, we provide a short list of examples.

Finally, in section [4,](#page-7-0) we prove our main result.

2 Overview

In this section, we present a brief overview of previous results on Jamison sequences. The starting point is the following result by Jamison, which we slightly reformulate as follows^{[2](#page-1-1)}:

Theorem 2 – *The sequence* $(n_k) = (k)$ *is a Jamison sequence.*

² [Jamison, 1965,](#page-10-1) "Eigenvalues of modulus 1".

2. Overview

Proof. We start by introducing an equivalence relation in S^1 : for $z, w \in S^1$, $z \sim w$ if and only if there are integers i,j such that $z^i w^j = 1.$ It is a well known fact that if z and w are not equivalent, then the subset $\{(z^n, w^n) : n \in \mathbb{N}\}$ is dense in $S^1 \times S^{13}$ $S^1 \times S^{13}$ $S^1 \times S^{13}$. This fact together with the following lemma, implies our result.

Lemma 1 – Let $T \in \mathcal{L}(X)$ be such that $\sup_k ||T^k|| = M < \infty$ and suppose that $\lambda_1, \lambda_2 \in \mathcal{L}(X)$ *σp*(*T*)∩*S* ¹ *are not equivalent, with norm one eigenvectors x*¹ *and x*2*, respectively. Then:*

$$
||x_1 - x_2|| \ge \frac{2}{M+1}
$$

Proof. Since λ_1 and λ_2 are not equivalent, we can pick a sequence (n_k) such that $(\lambda_1^{n_k}, \lambda_2^{n_k}) \rightarrow (-1, 1)$. By triangular inequality, one has that:

$$
\left\|{x_1-\lambda_1^{n_k}x_1}\right\|\leq\left\|{x_1-x_2}\right\|+\left\|{x_2-\lambda_2^{n_k}x_2}\right\|+\left\|{\lambda_2^{n_k}x_2-\lambda_1^{n_k}x_1}\right\|
$$

The left hand side converges to $||2x_1|| = 2$ and, on the other hand one has that $||x_2 - \lambda_2^{n_k} x_2||$ → 0 and that $||\lambda_2^{n_k} x_2 - \lambda_1^{n_k} x_1|| \le M ||x_1 - x_2||$. □

Now, suppose that $\sup_k \|T^k\| < \infty$ and that, by contradiction, $\sigma_p(T) \cap S^1$ is uncountable. By Lemma [1,](#page-2-1) there is an uncountable and mutually disjoint collection of open balls $\{B(x, \frac{1}{M+1})\}$, which contradicts the separability of *X*.

Remark 2 – The previous result does not hold if one drops the separability condition on *X*. Indeed, consider $X = l^2(I)$ for some uncountable index set *I* and let *T* ∈ *L*(*X*) be such that *T*(*x_i*) := (λ_i *x_i*) for any uncountable subset { λ_i }_{*i*∈*I*} ⊂ *S*¹. It is clear that $||T^n|| = 1$ however, by definition, $\sigma_p(T) \cap S^1$ is uncountable.

It follows from Theorem [2](#page-1-2) that if $\sigma_p(T) \cap S^1$ is uncountable, then one has that $\sup_k ||T^k|| = \infty$. In this context, the following question is quite natural:

Let
$$
\sigma_p(T) \cap S^1
$$
 be uncountable. Does this imply that $\lim_k ||T^k|| = \infty$?

Under some extra hypothesis, the answer is positive. Indeed, in the following two theorems, we relate measure theoretic, topological and set theoretic properties of $\sigma_p(T) \cap S^1$ with the growth of {||T^k||}. A proof of these results was given in Ransford [\(2005\)](#page-10-2).

Theorem 3 – Let $T \in \mathcal{L}(X)$. Suppose that, either $\sigma_p(T) \cap S^1$ has positive Lebesgue *measure or that* $\sigma_p(T) \cap S^1$ *is of second Baire category in* S^1 *. Then, one has that* $\lim_{k} \|T^{k}\| = \infty.$

³[Pontrjagin, 1939,](#page-10-3) *Topological Groups*, p. 150.

Theorem 4 – Let $T \in \mathcal{L}(X)$ and suppose that $\sigma_p(T) \cap S^1$ is uncountable. Then, there is *a subset Z* ⊂ N *of density zero such that*

$$
\lim_{k \in \mathbb{Z}} \|T^k\| = \infty
$$

However, it turns out that the answer to our initial question (in its full generality) is negative. This was established in Ransford and Roginskaya [\(2006\)](#page-10-4):

Theorem 5 – Let $B > 1$ and (γ_k) be a sequence such that $\gamma_k \to \infty$. Then, there exists *a separable Banach space X, an operator* $T \in \mathcal{L}(X)$ *and an increasing sequence of positive integers* (n_k) *such that* $\lim_k ||T^{n_k}|| \leq B$, $\frac{n_{k+1}}{n_k}$ $\frac{d}{dt} \leq \gamma_k$ for sufficiently large *k* and yet, $\sigma_p(T) \cap$ *S* 1 *is uncountable.*

The next two lemmas are presented for further reference in this paper:

Lemma 2 – Let *X* be any Banach space, not necessarily separable and $T \in \mathcal{L}(X)$. Let $\lambda_1, \lambda_2 \in \sigma_p(T)$ *and suppose that* x_1 *and* x_2 *are norm one eigenvectors, corresponding respectively to* λ_1 *and* λ_2 *. Then, for any* $n \ge 1$ *one has that:*

 $|\lambda_1^n - \lambda_2^n| \leq 2||T^n|| ||x_1 - x_2||$

Lemma 3 – Let *X* be a separable Banach space and let $T \in \mathcal{L}(X)$. Suppose that (n_k) is an increasing sequence of positive integers such that $\sup_k \|T^{n_k}\| < \infty$. Then, given $\epsilon > 0$, *there is a countable subset* $\{\mu_n\} \subset S^1$ *such that:*

$$
\sigma_p(T) \cap S^1 \subset \bigcup_l \mu_l E
$$

where

$$
E = \bigcap_{k} \{ \lambda \in S^1 : |\lambda^{n_k} - 1| \le \epsilon \}
$$

A proof of the latter result was given in Ransford and Roginskaya [\(2006\)](#page-10-4). For the sake of completeness, we finish this section with two more results that were proven in Ransford and Roginskaya [\(2006\)](#page-10-4).

Lemma 4 – Let (n_k) be an increasing sequence of positive integers and let $\epsilon \in (0,1)$. For *each* $k \geq 1$ *, define:*

$$
E_k = \bigcap_{j=1}^k \{ \lambda \in S^1 : |\lambda^{n_j} - 1| < \epsilon \}
$$

Then, E_k *is the union of* N_k *disjoint arcs, each of length at most* $\frac{\pi \epsilon}{n_k}$ *and moreover,* $N_k \leq n_1 \prod_{j=2}^k \left[1 + \epsilon \frac{n_j}{n_{j+1}}\right]$.

Theorem 6 – Let (n_k) be an increasing sequence of positive integers and let $T \in \mathcal{L}(X)$ *such that* $\sup_k ||T^{n_k}|| < \infty$. If the sequence $\{\frac{n_{k+1}}{n_k}\}$ $\{m_k^{l_{k+1}}\}$ *is bounded, then* $\sigma_p(T) \cap S^1$ *is countable.*

Proof. Since $\left\{ \frac{n_{k+1}}{n_k} \right\}$ *n*_{*k*} 1</sub> is bounded, one can choose some $\epsilon > 1$ such that for all *k*, $\frac{\epsilon n_{k+1}}{n_k}$ $\frac{n_{k+1}}{n_k}$ < 1. By Lemma [4](#page-3-0) it follows that E_k is the union of N_k arcs of length at most $\frac{\pi \epsilon}{n_k}$, with

$$
N_k \le n_1 \prod_{j=2}^k \left\lfloor 1 + \epsilon \frac{n_j}{n_{j+1}} \right\rfloor
$$

It follows that *E* has at most n_1 points and thus, by Lemma [3,](#page-3-1) $\sigma_p(T) \cap S^1$ is countable. \Box

The previous result shows that there is a relation between the growth of (n_k) and the size of $\sigma_p(T) \cap S^1$, as a set. It is precisely this interplay that is explored in the next two sections and that motivated our main result.

3 Characterization of Jamison sequences

Henceforth, and without loss of generality, we will consider increasing sequences of positive integers (n_k) such that $n_1 = 1$.

To any such sequence, one can define a metric on *S* ¹ by

$$
d_{(n_k)}(\lambda, \mu) := \sup_{k} |\lambda^{n_k} - \mu^{n_k}| \qquad (\lambda, \mu \in S^1)
$$

Note that it is always the case that $d \leq d_{(n_k)}$, where *d* is the usual Euclidean distance. Hence, $\mathcal{T} \subset T^{(n_k)}$, if \mathcal{T} is the usual topology on S^1 inherited as a subspace of \mathbb{R}^2 and if $\mathcal{T}^{(n_k)}$ is the topology on S^1 induced by $d_{(n_k)}$. A natural question one may ask is if there is some sequence (n_k) such that $\mathcal{T} = \mathcal{T}^{(n_k)}$.

Theorem 7 – There is no sequence (n_k) such that $T = T^{(n_k)}$.

Proof. It is enough to prove that $1_{S^1} : (S^1, \mathcal{T}) \to (S^1, \mathcal{T}^{(n_k)})$ is not continuous, where 1_S ¹ is the identity map on *S*¹. Let *p* = (0, 1) ∈ *S*¹ and let *∈* > 0 be small enough so that if $y \in B_{d_{(n_k)}}(p, \epsilon)$, then $y = e^{i\tau}$ is such that $|\tau| < \frac{\pi}{10}$. Suppose that there is some *δ* > 0 such that *B*_{*d*}(*p*, *δ*) ⊆ *B*_{*d*_(*n_k*)(*p*, *ε*) and pick some *z* = *e*^{*iθ*} with *θ* small enough so} that $z \in B_d(p, \delta)$. Since (n_k) is increasing, choose some n_k such that $\frac{\pi}{2} > n_k \theta > \frac{\pi}{10}$. Then:

 $d_{(n_k)}(z,1) \geq |z^{n_k} - 1| > \epsilon$

Thus, such δ does not exist which proves that 1_{S^1} is not continuous. \Box

We conclude that, for any sequence (n_k) , T is strictly coarser than $T^{(n_k)}$. Another natural question one could ask is if there is any sequence (n_k) such that S^1 , when endowed with $\mathcal{T}^{(n_k)}$, is compact.

In this context it is useful to recall that a compact and Hausdorff topology is a minimal element in the partial order of Hausdorff topologies (in a given set) with respect to inclusion.

Corollary 1 – *There is no sequence* (n_k) *such that* $(S^1, T^{(n_k)})$ *is compact.*

Proof. Suppose that there is some sequence (n_k) such that $(S^1, \mathcal{T}^{(n_k)})$ is compact. Since $T \subseteq \overline{T}^{(n_k)}$ this would imply that $\overline{T} = T^{(n_k)}$ for some sequence (n_k) , contradicting Theorem [7.](#page-4-1) □

The next result is of cornerstone importance. It was proven in Badea and Grivaux [\(2007\)](#page-10-0) (Theorem 2.8) and it provides a characterization of Jamison sequences on which the proof of the main results will heavily rely.

Theorem 8 – *Let* (*n^k*) *be an increasing sequence of positive integers. The following are equivalent:*

- *1. The sequence* (*n^k*) *is a Jamison sequence.*
- 2. For every uncountable subset K of S^1 , the metric space $(K, d_{(n_k)})$ is non separable.
- *3. For every uncountable subset K of S* 1 *there exists a positive ϵ such that K contains* an uncountable ϵ -separated family for the distance $d_{(n_k)}$.
- **4.** There exists a positive ϵ such that every uncountable subset K of S¹ contains an uncountable ϵ -separated family for the distance $d_{(n_k)}$.
- *5. There exists an* $\epsilon > 0$ *such that any two distinct points* $\lambda, \mu \in S^1$ *are* ϵ *-separated* for the distance $d_{(n_k)}$.

We now introduce some notation that will be used in what follows. For a fixed sequence (n_k) and $\epsilon > 0$ we define the following subset of S^1 :

$$
\Lambda_{\epsilon}^{(n_k)} := \left\{ \lambda \in S^1 : \sup_k |\lambda^{n_k} - 1| < \epsilon \right\}
$$

As a consequence of Theorem [8,](#page-5-1) one can characterize a given increasing sequence of positive integers (n_k) in terms of the cardinality of the sets $\Lambda^{(n_k)}_\epsilon.$ The following result appears in Badea and Grivaux [\(2007\)](#page-10-0) (Corollary 2.11).

Theorem 9 – Let (n_k) be an increasing sequence of positive integers. Then, (n_k) is a Jamison sequence if and only if there is some ϵ > 0 such that $\Lambda_\epsilon^{(n_k)}$ is countable.

3. Characterization of Jamison sequences

Proof. Suppose that (n_k) is Jamison. By Theorem [8\(](#page-5-1)5) there is some ϵ such that $\Lambda_{\epsilon}^{(n_k)} = \{1\}.$ Conversely, suppose that there is some $\delta > 0$ such that $\Lambda_{\delta}^{(n_k)}$ δ ^{(*i*}_{*k*})</sub> is countable and let $T \in \mathcal{L}(X)$ be such that $\sup_k \|T^{n_k}\| < \infty$. Then, the set *E* in Lemma [3](#page-3-1) (for instance for $\epsilon = \frac{\delta}{2}$) is countable and thus, $\sigma_p(T) \cap S^1$ is countable, from where it follows that (n_k) is a Jamison sequence. □

It follows from Theorem [9](#page-5-2) that we have a relatively practical way to check if a sequence is Jamison or not. The following result will be heavily used in the rest of this paper. It is a slight reformulation of some remarks that appear in Badea and Grivaux [\(2007\)](#page-10-0), after Corollary 2.11. We simply present it here in a more convenient way and include a proof for the sake of completeness.

Lemma 5 – *Let* (*n^k*) *be any increasing sequence of positive integers. Then,* (*n^k*) *is* a non-Jamison sequence if and only if for each $\epsilon > 0$ one has that $\Lambda^{(n_k)}_\epsilon \neq \{1\}.$

Proof. If there is some $\epsilon > 0$ such that $\Lambda_{\epsilon}^{(n_k)} = \{1\}$, then it follows immediately from Theorem [9](#page-5-2) that (n_k) is a Jamison sequence. Conversely, suppose that each $\Lambda_\epsilon^{(n_k)}$ has at least two elements. If there is any δ > 0 such that $\Lambda_{\delta}^{(n_k)}$ δ ^{*iki*} is countable, by Theorem [9](#page-5-2) we have that (n_k) is a Jamison sequence. But this is impossible, since by Theorem [8\(](#page-5-1)5) there is some $\epsilon > 0$ such that $\Lambda_{\epsilon}^{(n_k)}$ has only one element. $□$

In order to illustrate that there is a strong relation between the growth of a sequence (n_k) and whether or not (n_k) is Jamison, we provide some examples. Henceforth, (*n^k*) is an increasing sequence of positive integers:

- (1) If $\sup_k \left(\frac{n_{k+1}}{n_k} \right)$ $\binom{n_k}{n_k}$ < ∞ , then (n_k) is Jamison. In particular, $(n_k) = (k)$ is a Jamison sequence. This was firstly proven in Ransford and Roginskaya [\(2006\)](#page-10-4) (Theorem 1.5) and can be seen as a consequence of Theorem [8](#page-5-1) (see example 2.3 in Badea and Grivaux [2007\)](#page-10-0).
- (2) If $\lim_{n} \frac{n_{k+1}}{n_k}$ $\frac{k+1}{n_k} = \infty$, then (n_k) is non Jamison (see example 2.13 in Badea and Grivaux [2007\)](#page-10-0).
- (3) If (n_k) contains blocks of arbitrary length, then (n_k) is Jamison (see example 2.5 in Badea and Grivaux [2007\)](#page-10-0).
- (4) If (n_k) is a set of positive upper density, then (n_k) is Jamison (see example 2.6) in Badea and Grivaux [2007\)](#page-10-0). However, if (n_k) is of zero upper density, then (n_k) can be either Jamison $((n_k) = (k^2)$, using (1)) or non Jamison $((n_k) = (k!)$, using (2)).
- (5) By Szemeredi's Theorem, any set of positive upper density contains arbitrarily long arithmetic progressions. Thus, in view of example (3) it is natural to ask whether a sequence (*n^k*) containing arbitrarily long arithmetic progressions is

Jamison or not. However, example 2.14 in Badea and Grivaux [\(2007\)](#page-10-0) provides a counter-example.

(6) If (n_k) is a sequence such that $n_k | n_{k+1}$, then (n_k) is a Jamison sequence if and only if $\sup_k \left(\frac{n_{k+1}}{n_k} \right)$ $\binom{k+1}{n_k}$ < ∞ . This is Corollary 2.16 in Badea and Grivaux [\(2007\)](#page-10-0).

4 Main Results

We start this section with the following observation:

Lemma 6 – If $\lambda \in \Lambda_{\epsilon}^{(n_k)}$, then $\sup_k |\lambda^{n_k} - 1| \leq \epsilon$.

Furthermore, we have the following:

Lemma 7 – Suppose (n_k) is a non Jamison sequence and let $\epsilon > 0$. Then, $1 \in \Lambda_{\epsilon}^{(n_k)} \setminus \{1\}$.

Proof. Since (n_k) is non Jamison, it follows by Lemma [5](#page-6-0) that each $\Lambda_\epsilon^{(n_k)}\setminus\{1\}$ is non empty. Moreover, since $\Lambda_\epsilon^{(n_k)}\subseteq \Lambda_\delta^{(n_k)}$ $\delta_{\delta}^{(n_k)}$ for $\epsilon < \delta$, one has that $\{\Lambda_{\epsilon}^{(n_k)} \setminus \{1\}\}_{\epsilon > 0}$ is a family of closed non empty subsets of *S* ¹ with the finite intersection property. It follows by compactness of S^1 that there is some $z \in \bigcap_{\epsilon > 0} \Lambda_\epsilon^{(n_k)} \setminus \{1\}$. Thus, by Lemma [6](#page-7-1) one has that for each $\epsilon > 0$, $|z - 1| \leq \epsilon$. Hence, $z = 1 \in \bigcap_{\epsilon > 0} \Lambda_{\epsilon}^{(n_{k})} \setminus \{1\}$.

Theorem 10 – *Let* (*n^k*) *be a non Jamison sequence and suppose that* (*t^k*) *is an increasing sequence of positive integers such that* $\sup_k |t_k - n_k| < \infty$. Then, (t_k) *is non Jamison.*

Proof. Let $\sup_k |t_k - n_k| = M < \infty$ and fix some small $\epsilon > 0$. By Lemma [5](#page-6-0) it is enough to prove that $\Lambda_{\epsilon}^{(t_k)}$ ≠ {1}. Since (n_k) is non Jamison, using Lemma [7](#page-7-2) we can pick some $z = e^{i\theta}$ such that $z \neq 1$, $z \in \Lambda_{\frac{\epsilon}{3}}^{(n_k)}$ and with θ small enough so that $\frac{M\theta}{2\pi} < \frac{\epsilon}{3}$. Then, for any *k*:

$$
|z^{t_k}-1| \leq |z^{t_k}-z^{n_k}|+|z^{n_k}-1| < \frac{2\epsilon}{3} < \epsilon
$$

Hence, $\Lambda_{\epsilon}^{(t_k)} \neq \{1\}$ and thus, (t_k) is non Jamison.

Corollary 2 – *Let* (*n^k*) *be a (non) Jamison sequence and suppose that* (*t^k*) *is an increasing sequence of positive integers such that* $\sup_k |t_k - n_k| < \infty$. Then, (t_k) *is (non) Jamison.*

Let $\mathcal{I} \subset \mathbb{N}^{\mathbb{N}}$ be the set of increasing sequences of positive integers. Let \mathcal{G} be the topology on *I* generated by the subbasis consisting of subsets of the form $U(x)$ = ${y \in \mathcal{I}: sup_k |x_k - y_k| \leq N}$, for some $x \in \mathcal{I}$ and $N \in \mathbb{N}$. It follows from Corollary [2](#page-7-3) that the subsets of Jamison and non Jamison sequences are open. Moreover, we have seen that these subsets are non empty and thus we can conclude the following:

Corollary 3 – (I*,*G) *is a disconnected topological space.*

4. Main Results

In what follows, it is useful to note the following remarks:

Remark 3 – Suppose that (n_k) is non Jamison and that (t_k) is any subsequence. Then, (t_k) is also an increasing sequence of positive integers and clearly, $\Lambda_\epsilon^{(n_k)}\subseteq \Lambda_\epsilon^{(t_k)}.$ Hence, by Lemma [5](#page-6-0) it follows that (t_k) is also non Jamison.

Remark 4 – Let $\lambda \in S^1$. Then:

 $|\lambda^n - 1| = |\lambda(\lambda^{n-1} - 1) + \lambda - 1| \leq |\lambda^{n-1} - 1| + |\lambda - 1|$

It follows by induction that $|\lambda^n - 1| \le n|\lambda - 1|$.

Remark 5 – Let (n_k) be a (non) Jamison sequence. If (t_k) is an increasing sequence of positive integers such that $\{k : t_k \neq n_k\}$ is finite, then (t_k) is also (non) Jamison.

Lemma 8 – Let c be any positive integer. Then, (cn_k) is non Jamison if and only if (n_k) *is non Jamison.*

Proof. Suppose that (cn_k) is non Jamison and fix some $\epsilon > 0$. We prove that $\Lambda_{\epsilon}^{(n_k)}$ ≠ {1}, from where it follows that (n_k) is non Jamison by Lemma [5.](#page-6-0) By Lemma [7,](#page-7-2) there is some sequence $(\lambda_n) \subseteq \Lambda_{\epsilon}^{(cn_k)} \setminus \{1\}$ such that $\lambda \to 1$. We pick any element from this sequence, say $\lambda_k := \lambda$. Then, $\lambda \neq 1$ and $\sup_k |\lambda^{cn_k} - 1| < \epsilon$. If $\lambda^c \neq 1$, then $\lambda^c \in \Lambda_{\epsilon}^{(n_k)} \setminus \{1\}$ and we are done. Otherwise, suppose that $\lambda^c = 1$ and note that any other cth-root of unity μ is such that $|\lambda - \mu| \ge \frac{2\pi}{c}$. Since (λ_n) is a Cauchy sequence, let $\mu = \lambda_m$ be such that $|\mu - \lambda| < \frac{2\pi}{c}$. It is clear that $\mu^c \neq 1$ and since $\mu \in \Lambda_{\epsilon}^{(cn_k)}$, it follows that $\mu^c \in \Lambda_{\epsilon}^{(n_k)} \setminus \{1\}.$

Conversely, let (*cn^k*) be a Jamison sequence and suppose that for some operator *T* ∈ $\mathcal{L}(X)$ one has that $\sup_k ||T^{n_k}|| = M < \infty$. For any *k*:

∥*T cn^k* ∥ ≤ *c*∥*T ⁿ^k* ∥ ≤ *cM <* ∞

Hence, $\sup_k ||T^{cn_k}|| < \infty$. By assumption, (cn_k) is Jamison and thus $\sigma_p(T) \cap S^1$ is \Box countable. \Box

The next result can be seen as a generalization of Lemma [8.](#page-8-0) We consider two increasing sequences of positive integers, (n_k) and (t_k) such that there is a sequence of positive integers (a_k) such that for each k , $t_k = a_k n_k$. Lemma [8](#page-8-0) was simply the case with (*a^k*) a constant sequence.

Lemma 9 – *Let* (*t^k*) *and* (*n^k*) *be increasing sequences of positive integers such that* $(t_k) = (a_k n_k)$, for some sequence (a_k) of positive integers such that $\sup_k (a_k) = A < \infty$. *Then,* (*t^k*) *is non Jamison if and only if* (*n^k*) *is non Jamison.*

Proof. Suppose that (t_k) is non Jamison. Since $\sup_k(a_k) = A$ one has that $a_k \in$ {1*,...,A*}. Without loss of generality, and appealing to Remark [5](#page-8-1) we can assume that for each $j \le A$ the subset $I_j := \{k \in \mathbb{N} : a_k = j\}$ is either infinite or empty. Moreover, we will see that it is enough to consider the case when each $I_j \neq \emptyset$. Fix any $\epsilon > 0$ and let $P := \prod_{i=1}^A i < \infty$.

Since (t_k) is non Jamison, there is some $\lambda \in \Lambda_{\frac{\epsilon}{n}}^{(t_k)}$ such that $\lambda \neq 1$. Note that by β Remark [3,](#page-8-2) for each $j \le A$ one has that $\sup_{k \in I_j} |\lambda^{jn_k}-1| < \frac{\varepsilon}{P}$. Our strategy is to use Lemma [5](#page-6-0) to prove that (*P n^k*) is non Jamison and then, by Lemma [8](#page-8-0) it follows that (n_k) is also non Jamison. We can assume that for any *k* there is some $j \leq A$ such that $k \in I_j$ and using Remark 4.2 it follows that:

$$
|\lambda^{Pn_k} - 1| \le \left(\prod_{i \ne j}^A i\right) |\lambda^{j n_k} - 1| < \left(\prod_{i \ne j}^A i\right) \frac{\epsilon}{P} = \frac{\epsilon}{j} < \epsilon
$$

Conversely, suppose that (t_k) is Jamison. Suppose that $T \in \mathcal{L}(X)$ is such that $\sup_k ||T^{n_k}|| = M < \infty$. Then:

$$
||T^{t_k}|| = ||T^{a_k n_k}|| \le a_k ||T^{n_k}|| \le AM < \infty
$$

By assmption, (t_k) is Jamison and thus, $\sigma_p(T) \cap S^1$ is countable. □

Before proving the main result, it is convenient to recall the notation that was previously introduced: Given two increasing sequences of positive integers (*t^k*) and (n_k) , we define another sequence $(r_k)_{\frac{t_k}{k}}$ to be such that: *nk*

$$
r_k := \left| t_k - \left[\frac{t_k}{n_k} \right] n_k \right|
$$

Here, $\lceil \cdot \rceil$ denotes the closest integer function.

Theorem 11 – *Let* (*t^k*) *be non Jamison and suppose that* (*n^k*) *is an increasing sequence of positive integers. Then, if one of the following conditions hold,* (*n^k*) *is also non Jamison:*

1. $\sup_k \left(\frac{t_k}{n_k} \right)$ $\left(\frac{t_k}{n_k}\right)$ < ∞ and $\sup_k (r_k)_{\frac{t_k}{n_k}}$ < ∞ 2. $\sup_k \left(\frac{n_k}{t_k} \right)$ $\left(\frac{n_k}{t_k}\right)$ < ∞ and $\sup_k (r_k) \frac{n_k}{t_k}$ < ∞

Proof. Suppose that 1. holds. Since $\sup_k(r_k) < \infty$, it follows by Theorem [10](#page-7-4) that $\left[\frac{t_k}{n}\right]$ $\frac{t_k}{n_k}$] n_k is non Jamison. Furthermore, since $\sup_k \left(\frac{t_k}{n_k} \right)$ $\left(\frac{t_k}{n_k}\right)$ < ∞ it follows by Lemma [9](#page-8-3) that (*n^k*) is non Jamison.

Now, suppose that 2. holds. Note that $n_k = \left\lceil \frac{n_k}{t_k} \right\rceil$ $\frac{n_k}{t_k}$ $\left] t_k \pm r_k \right.$ for all *k*. Since $\sup_k \left(\frac{n_k}{t_k} \right)$ $\left(\frac{n_k}{t_k}\right) < \infty$, it follows by Lemma [9](#page-8-3) that $\left(\left[\frac{n_k}{t_k}\right]t_k\right)$ is non Jamison and since $\sup_k(r_k)<\infty$, it follows by Theorem [10](#page-7-4) that (n_k) is non Jamison. □

Corollary 4 – *Let* (*t^k*) *be (non) Jamison and suppose that* (*n^k*) *is an increasing sequence of positive integers. Then, if one of the following conditions hold,* (*n^k*) *is also (non) Jamison:*

- 1. $\sup_k \left(\frac{t_k}{n_k} \right)$ $\left(\frac{t_k}{n_k}\right)$ < ∞ and $\sup_k (r_k)_{\frac{t_k}{n_k}} < \infty$
- 2. $\sup_k \left(\frac{n_k}{t_k} \right)$ $\left(\frac{n_k}{t_k}\right)$ < ∞ and $\sup_k (r_k) \frac{n_k}{t_k}$ < ∞

References

- Badea, C. and S. Grivaux (2007). "Size of the peripheral point spectrum under power or resolvent growth conditions". *J. Funct. Anal. 246*, pp. 302–329 (cit. on pp. [88, 92–94\)](#page-0-0).
- Jamison, B. (1965). "Eigenvalues of modulus 1". *Proc. Amer. Math. Soc. 16*, pp. 375– 377 (cit. on p. [88\)](#page-0-0).
- Pontrjagin, L. (1939). *Topological Groups* (cit. on p. [89\)](#page-0-0).
- Ransford, T. (2005). "Eigenvalues and power growth". *Israel J. Math. 146*, pp. 93–110 (cit. on p. [89\)](#page-0-0).
- Ransford, T. and M. Roginskaya (2006). "Point spectra of partially power-bounded operators". *J. Funct. Anal. 230*, pp. 432–445 (cit. on pp. [90, 93\)](#page-0-0).

Contents

Contents

