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Abstract

An increasing sequence of positive integers (nk) is said to be Jamison if
whenever T is a linear bounded operator on a complex separable Banach space,
the following holds:

sup
k
∥T nk ∥ <∞⇒ σp(T )∩ S1 is countable

In this paper, we study certain perturbations on the set of Jamison sequences
and prove a stability result.
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msc: 47A10, 54A99.

1 Introduction

Throughout this paper, unless otherwise stated, X is a complex separable Banach
space and L(X) is the Banach algebra of bounded linear operators on X. Furthemore,
we denote the unit circle in C, as S1 = {z ∈C : |z| = 1}.

Definition 1 – Let (nk) be an increasing sequence of positive integers and let
T ∈ L(X). We say that T is partially power bounded (with respect to (nk)) if:

sup
k
∥T nk ∥ <∞

In particular, if T is partially power bounded with respect to (nk) = (k), then T is
said to be power bounded.

Definition 2 – Let (nk) be an increasing sequence of positive integers. We say that
(nk) is a Jamison sequence if whenever an operator T ∈ L(X) is partially power
bounded with respect to (nk), then σp(T )∩ S1 is countable. Here, σp(T ) denotes the
point spectrum of T , i.e σp(T ) = {λ ∈C : ker(T −λ) , {0}}.

1Chalmers University of Technology, Department of Mathematical Sciences, Chalmers Tvärgata 3,
412 96 Göteborg
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Remark 1 – If a sequence (nk) is not a Jamison sequence, we say that (nk) is a non-
Jamison sequence.

Notation 1 – Let (tk) and (nk) be two increasing sequences of positive integers. We
define another sequence (rk) tk

nk

, as follows ([ · ] denotes the closest integer):

rk :=

∣∣∣∣∣∣tk −
[
tk
nk

]
nk

∣∣∣∣∣∣
In this paper we prove that the set of Jamison sequences is stable under certain

perturbations. More concretely, our main result in its full generality is as follows
(Corollary 4):

Theorem 1 – Let (tk) be a (non) Jamison sequence and suppose that (nk) is an increasing
sequence of positive integers. Then, if one of the following conditions hold, (nk) is also
a (non) Jamison sequence:

1. supk

(
tk
nk

)
<∞ and supk(rk) tk

nk

<∞

2. supk

(
nk
tk

)
<∞ and supk(rk) nk

tk
<∞

The proof of our main result relies on a characterization of Jamison sequences
proved in Badea and Grivaux (2007). This characterization has as a central tool,
the introduction of a metric d(nk ) in S1 associated to each increasing sequence of
positive integers (nk).

In section 2, we present a brief overview of previous results on Jamison sequences.
Some of these results will be used further in this paper and others should illustrate
the relation between the size of σp(T ) ∩ S1 and the growth rate of the sequence
(∥T nk ∥).

In section 3, we prove that (S1,d(nk )) is never compact (Corollary 1) and after
introducing all the remaining necessary results, we provide a short list of examples.

Finally, in section 4, we prove our main result.

2 Overview

In this section, we present a brief overview of previous results on Jamison sequences.
The starting point is the following result by Jamison, which we slightly reformulate
as follows2:

Theorem 2 – The sequence (nk) = (k) is a Jamison sequence.

2Jamison, 1965, “Eigenvalues of modulus 1”.
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2. Overview

Proof. We start by introducing an equivalence relation in S1: for z,w ∈ S1, z ∼ w if
and only if there are integers i, j such that ziwj = 1. It is a well known fact that if z
and w are not equivalent, then the subset {(zn,wn) : n ∈N} is dense in S1 ×S13. This
fact together with the following lemma, implies our result.

Lemma 1 – Let T ∈ L(X) be such that supk ∥T k∥ = M <∞ and suppose that λ1,λ2 ∈
σp(T )∩ S1 are not equivalent, with norm one eigenvectors x1 and x2, respectively. Then:

∥x1 − x2∥ ≥
2

M + 1

Proof. Since λ1 and λ2 are not equivalent, we can pick a sequence (nk) such that
(λnk

1 ,λ
nk
2 )→ (−1,1). By triangular inequality, one has that:

∥x1 −λ
nk
1 x1∥ ≤ ∥x1 − x2∥+ ∥x2 −λ

nk
2 x2∥+ ∥λnk

2 x2 −λ
nk
1 x1∥

The left hand side converges to ∥2x1∥ = 2 and, on the other hand one has that
∥x2 −λ

nk
2 x2∥ → 0 and that ∥λnk

2 x2 −λ
nk
1 x1∥ ≤M∥x1 − x2∥. □

Now, suppose that supk ∥T k∥ <∞ and that, by contradiction, σp(T )∩ S1 is un-
countable. By Lemma 1, there is an uncountable and mutually disjoint collection of
open balls {B(x, 1

M+1 )}, which contradicts the separability of X. □

Remark 2 – The previous result does not hold if one drops the separability con-
dition on X. Indeed, consider X = l2(I) for some uncountable index set I and let
T ∈ L(X) be such that T (xi) := (λixi) for any uncountable subset {λi}i∈I ⊂ S1. It is
clear that ∥T n∥ = 1 however, by definition, σp(T )∩ S1 is uncountable.

It follows from Theorem 2 that if σp(T )∩ S1 is uncountable, then one has that
supk ∥T k∥ =∞. In this context, the following question is quite natural:

Let σp(T )∩ S1 be uncountable. Does this imply that lim
k
∥T k∥ =∞?

Under some extra hypothesis, the answer is positive. Indeed, in the following two
theorems, we relate measure theoretic, topological and set theoretic properties of
σp(T )∩S1 with the growth of {∥T k∥}. A proof of these results was given in Ransford
(2005).

Theorem 3 – Let T ∈ L(X). Suppose that, either σp(T ) ∩ S1 has positive Lebesgue
measure or that σp(T ) ∩ S1 is of second Baire category in S1. Then, one has that
limk ∥T k∥ =∞.

3Pontrjagin, 1939, Topological Groups, p. 150.
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Theorem 4 – Let T ∈ L(X) and suppose that σp(T )∩ S1 is uncountable. Then, there is
a subset Z ⊂N of density zero such that

lim
k<Z
∥T k∥ =∞

However, it turns out that the answer to our initial question (in its full generality)
is negative. This was established in Ransford and Roginskaya (2006):

Theorem 5 – Let B > 1 and (γk) be a sequence such that γk →∞. Then, there exists
a separable Banach space X, an operator T ∈ L(X) and an increasing sequence of positive
integers (nk) such that limk ∥T nk ∥ ≤ B, nk+1

nk
≤ γk for sufficiently large k and yet, σp(T )∩

S1 is uncountable.

The next two lemmas are presented for further reference in this paper:

Lemma 2 – Let X be any Banach space, not necessarily separable and T ∈ L(X). Let
λ1,λ2 ∈ σp(T ) and suppose that x1 and x2 are norm one eigenvectors, corresponding
respectively to λ1 and λ2. Then, for any n ≥ 1 one has that:

|λn
1 −λ

n
2 | ≤ 2∥T n∥∥x1 − x2∥

Lemma 3 – Let X be a separable Banach space and let T ∈ L(X). Suppose that (nk) is
an increasing sequence of positive integers such that supk ∥T nk ∥ <∞. Then, given ϵ > 0,
there is a countable subset {µn} ⊂ S1 such that:

σp(T )∩ S1 ⊂
⋃
l

µlE

where

E =
⋂
k

{λ ∈ S1 : |λnk − 1| ≤ ϵ}

A proof of the latter result was given in Ransford and Roginskaya (2006). For
the sake of completeness, we finish this section with two more results that were
proven in Ransford and Roginskaya (2006).

Lemma 4 – Let (nk) be an increasing sequence of positive integers and let ϵ ∈ (0,1). For
each k ≥ 1, define:

Ek =
k⋂

j=1

{λ ∈ S1 : |λnj − 1| < ϵ}

Then, Ek is the union of Nk disjoint arcs, each of length at most πϵ
nk

and moreover,

Nk ≤ n1
∏k

j=2

⌊
1 + ϵ

nj
nj+1

⌋
.
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3. Characterization of Jamison sequences

Theorem 6 – Let (nk) be an increasing sequence of positive integers and let T ∈ L(X)
such that supk ∥T nk ∥ <∞. If the sequence {nk+1

nk
} is bounded, then σp(T )∩S1 is countable.

Proof. Since {nk+1
nk
} is bounded, one can choose some ϵ > 1 such that for all k, ϵnk+1

nk
< 1.

By Lemma 4 it follows that Ek is the union of Nk arcs of length at most πϵ
nk

, with

Nk ≤ n1

k∏
j=2

⌊
1 + ϵ

nj
nj+1

⌋

It follows that E has at most n1 points and thus, by Lemma 3, σp(T )∩ S1 is count-
able. □

The previous result shows that there is a relation between the growth of (nk) and
the size of σp(T )∩ S1, as a set. It is precisely this interplay that is explored in the
next two sections and that motivated our main result.

3 Characterization of Jamison sequences

Henceforth, and without loss of generality, we will consider increasing sequences of
positive integers (nk) such that n1 = 1.

To any such sequence, one can define a metric on S1 by

d(nk )(λ,µ) := sup
k
|λnk −µnk | (λ,µ ∈ S1)

Note that it is always the case that d ≤ d(nk ), where d is the usual Euclidean distance.
Hence, T ⊂ T (nk ), if T is the usual topology on S1 inherited as a subspace of R2 and
if T (nk ) is the topology on S1 induced by d(nk ). A natural question one may ask is if
there is some sequence (nk) such that T = T (nk ).

Theorem 7 – There is no sequence (nk) such that T = T (nk ).

Proof. It is enough to prove that 1S1 : (S1,T )→ (S1,T (nk )) is not continuous, where
1S1 is the identity map on S1. Let p = (0,1) ∈ S1 and let ϵ > 0 be small enough so
that if y ∈ Bd(nk )

(p,ϵ), then y = eiτ is such that |τ | < π
10 . Suppose that there is some

δ > 0 such that Bd(p,δ) ⊆ Bd(nk )
(p,ϵ) and pick some z = eiθ with θ small enough so

that z ∈ Bd(p,δ). Since (nk) is increasing, choose some nk such that π
2 > nkθ > π

10 .
Then:

d(nk )(z,1) ≥ |znk − 1| > ϵ

Thus, such δ does not exist which proves that 1S1 is not continuous. □
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We conclude that, for any sequence (nk), T is strictly coarser than T (nk ). Another
natural question one could ask is if there is any sequence (nk) such that S1, when
endowed with T (nk ), is compact.

In this context it is useful to recall that a compact and Hausdorff topology is
a minimal element in the partial order of Hausdorff topologies (in a given set) with
respect to inclusion.

Corollary 1 – There is no sequence (nk) such that (S1,T (nk )) is compact.

Proof. Suppose that there is some sequence (nk) such that (S1,T (nk )) is compact.
Since T ⊆ T (nk ) this would imply that T = T (nk ) for some sequence (nk), contradict-
ing Theorem 7. □

The next result is of cornerstone importance. It was proven in Badea and Grivaux
(2007) (Theorem 2.8) and it provides a characterization of Jamison sequences on
which the proof of the main results will heavily rely.

Theorem 8 – Let (nk) be an increasing sequence of positive integers. The following are
equivalent:

1. The sequence (nk) is a Jamison sequence.

2. For every uncountable subset K of S1, the metric space (K,d(nk )) is non separable.

3. For every uncountable subset K of S1 there exists a positive ϵ such that K contains
an uncountable ϵ-separated family for the distance d(nk ).

4. There exists a positive ϵ such that every uncountable subset K of S1 contains an
uncountable ϵ-separated family for the distance d(nk ).

5. There exists an ϵ > 0 such that any two distinct points λ,µ ∈ S1 are ϵ-separated
for the distance d(nk ).

We now introduce some notation that will be used in what follows. For a fixed
sequence (nk) and ϵ > 0 we define the following subset of S1:

Λ
(nk )
ϵ :=

{
λ ∈ S1 : sup

k
|λnk − 1| < ϵ

}
As a consequence of Theorem 8, one can characterize a given increasing sequence

of positive integers (nk) in terms of the cardinality of the sets Λ(nk )
ϵ . The following

result appears in Badea and Grivaux (2007) (Corollary 2.11).

Theorem 9 – Let (nk) be an increasing sequence of positive integers. Then, (nk) is
a Jamison sequence if and only if there is some ϵ > 0 such that Λ(nk )

ϵ is countable.
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3. Characterization of Jamison sequences

Proof. Suppose that (nk) is Jamison. By Theorem 8(5) there is some ϵ such that

Λ
(nk )
ϵ = {1}. Conversely, suppose that there is some δ > 0 such that Λ(nk )

δ is countable
and let T ∈ L(X) be such that supk ∥T nk ∥ < ∞. Then, the set E in Lemma 3 (for
instance for ϵ = δ

2 ) is countable and thus, σp(T )∩ S1 is countable, from where it
follows that (nk) is a Jamison sequence. □

It follows from Theorem 9 that we have a relatively practical way to check if
a sequence is Jamison or not. The following result will be heavily used in the rest of
this paper. It is a slight reformulation of some remarks that appear in Badea and
Grivaux (2007), after Corollary 2.11. We simply present it here in a more convenient
way and include a proof for the sake of completeness.

Lemma 5 – Let (nk) be any increasing sequence of positive integers. Then, (nk) is
a non-Jamison sequence if and only if for each ϵ > 0 one has that Λ(nk )

ϵ , {1}.

Proof. If there is some ϵ > 0 such that Λ(nk )
ϵ = {1}, then it follows immediately from

Theorem 9 that (nk) is a Jamison sequence. Conversely, suppose that each Λ
(nk )
ϵ has

at least two elements. If there is any δ > 0 such that Λ(nk )
δ is countable, by Theorem

9 we have that (nk) is a Jamison sequence. But this is impossible, since by Theorem

8(5) there is some ϵ > 0 such that Λ(nk )
ϵ has only one element. □

In order to illustrate that there is a strong relation between the growth of
a sequence (nk) and whether or not (nk) is Jamison, we provide some examples.
Henceforth, (nk) is an increasing sequence of positive integers:

(1) If supk

(
nk+1
nk

)
<∞, then (nk) is Jamison. In particular, (nk) = (k) is a Jamison se-

quence. This was firstly proven in Ransford and Roginskaya (2006) (Theorem
1.5) and can be seen as a consequence of Theorem 8 (see example 2.3 in Badea
and Grivaux 2007).

(2) If limn
nk+1
nk

= ∞, then (nk) is non Jamison (see example 2.13 in Badea and
Grivaux 2007).

(3) If (nk) contains blocks of arbitrary length, then (nk) is Jamison (see example
2.5 in Badea and Grivaux 2007).

(4) If (nk) is a set of positive upper density, then (nk) is Jamison (see example 2.6
in Badea and Grivaux 2007). However, if (nk) is of zero upper density, then
(nk) can be either Jamison ((nk) = (k2), using (1)) or non Jamison ((nk) = (k!),
using (2)).

(5) By Szemeredi’s Theorem, any set of positive upper density contains arbitrarily
long arithmetic progressions. Thus, in view of example (3) it is natural to ask
whether a sequence (nk) containing arbitrarily long arithmetic progressions is
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Jamison or not. However, example 2.14 in Badea and Grivaux (2007) provides
a counter-example.

(6) If (nk) is a sequence such that nk |nk+1, then (nk) is a Jamison sequence if and
only if supk

(
nk+1
nk

)
<∞. This is Corollary 2.16 in Badea and Grivaux (2007).

4 Main Results

We start this section with the following observation:

Lemma 6 – If λ ∈Λ(nk )
ϵ , then supk |λnk − 1| ≤ ϵ.

Furthermore, we have the following:

Lemma 7 – Suppose (nk) is a non Jamison sequence and let ϵ > 0. Then, 1 ∈Λ(nk )
ϵ \ {1}.

Proof. Since (nk) is non Jamison, it follows by Lemma 5 that each Λ
(nk )
ϵ \ {1} is non

empty. Moreover, since Λ
(nk )
ϵ ⊆Λ

(nk )
δ for ϵ < δ, one has that {Λ(nk )

ϵ \ {1}}ϵ>0 is a family
of closed non empty subsets of S1 with the finite intersection property. It follows by

compactness of S1 that there is some z ∈
⋂

ϵ>0Λ
(nk )
ϵ \ {1}. Thus, by Lemma 6 one has

that for each ϵ > 0, |z − 1| ≤ ϵ. Hence, z = 1 ∈
⋂

ϵ>0Λ
(nk )
ϵ \ {1}. □

Theorem 10 – Let (nk) be a non Jamison sequence and suppose that (tk) is an increasing
sequence of positive integers such that supk |tk −nk | <∞. Then, (tk) is non Jamison.

Proof. Let supk |tk −nk | = M <∞ and fix some small ϵ > 0. By Lemma 5 it is enough

to prove that Λ(tk )
ϵ , {1}. Since (nk) is non Jamison, using Lemma 7 we can pick some

z = eiθ such that z , 1, z ∈Λ(nk )
ϵ
3

and with θ small enough so that Mθ
2π < ϵ

3 . Then, for
any k:

|ztk − 1| ≤ |ztk − znk |+ |znk − 1| < 2ϵ
3

< ϵ

Hence, Λ(tk )
ϵ , {1} and thus, (tk) is non Jamison. □

Corollary 2 – Let (nk) be a (non) Jamison sequence and suppose that (tk) is an increasing
sequence of positive integers such that supk |tk −nk | <∞. Then, (tk) is (non) Jamison.

Let I ⊂N
N be the set of increasing sequences of positive integers. Let G be the

topology on I generated by the subbasis consisting of subsets of the form U (x) =
{y ∈ I : supk |xk − yk | ≤ N }, for some x ∈ I and N ∈N. It follows from Corollary 2
that the subsets of Jamison and non Jamison sequences are open. Moreover, we have
seen that these subsets are non empty and thus we can conclude the following:

Corollary 3 – (I ,G) is a disconnected topological space.
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4. Main Results

In what follows, it is useful to note the following remarks:

Remark 3 – Suppose that (nk) is non Jamison and that (tk) is any subsequence.

Then, (tk) is also an increasing sequence of positive integers and clearly, Λ(nk )
ϵ ⊆Λ

(tk )
ϵ .

Hence, by Lemma 5 it follows that (tk) is also non Jamison.

Remark 4 – Let λ ∈ S1. Then:

|λn − 1| = |λ(λn−1 − 1) +λ− 1| ≤ |λn−1 − 1|+ |λ− 1|

It follows by induction that |λn − 1| ≤ n|λ− 1|.

Remark 5 – Let (nk) be a (non) Jamison sequence. If (tk) is an increasing sequence
of positive integers such that {k : tk , nk} is finite, then (tk) is also (non) Jamison.

Lemma 8 – Let c be any positive integer. Then, (cnk) is non Jamison if and only if (nk)
is non Jamison.

Proof. Suppose that (cnk) is non Jamison and fix some ϵ > 0. We prove that

Λ
(nk )
ϵ , {1}, from where it follows that (nk) is non Jamison by Lemma 5. By Lemma 7,

there is some sequence (λn) ⊆ Λ
(cnk )
ϵ \ {1} such that λ→ 1. We pick any element

from this sequence, say λk := λ. Then, λ , 1 and supk |λcnk − 1| < ϵ. If λc , 1, then

λc ∈Λ(nk )
ϵ \ {1} and we are done. Otherwise, suppose that λc = 1 and note that any

other cth-root of unity µ is such that |λ−µ| ≥ 2π
c . Since (λn) is a Cauchy sequence, let

µ = λm be such that |µ−λ| < 2π
c . It is clear that µc , 1 and since µ ∈Λ(cnk )

ϵ , it follows

that µc ∈Λ(nk )
ϵ \ {1}.

Conversely, let (cnk) be a Jamison sequence and suppose that for some operator
T ∈ L(X) one has that supk ∥T nk ∥ = M <∞. For any k:

∥T cnk ∥ ≤ c∥T nk ∥ ≤ cM <∞

Hence, supk ∥T cnk ∥ < ∞. By assumption, (cnk) is Jamison and thus σp(T ) ∩ S1 is
countable. □

The next result can be seen as a generalization of Lemma 8. We consider two
increasing sequences of positive integers, (nk) and (tk) such that there is a sequence
of positive integers (ak) such that for each k, tk = aknk . Lemma 8 was simply the
case with (ak) a constant sequence.

Lemma 9 – Let (tk) and (nk) be increasing sequences of positive integers such that
(tk) = (aknk), for some sequence (ak) of positive integers such that supk(ak) = A < ∞.
Then, (tk) is non Jamison if and only if (nk) is non Jamison.
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Proof. Suppose that (tk) is non Jamison. Since supk(ak) = A one has that ak ∈
{1, . . . ,A}. Without loss of generality, and appealing to Remark 5 we can assume that
for each j ≤ A the subset Ij := {k ∈N : ak = j} is either infinite or empty. Moreover,
we will see that it is enough to consider the case when each Ij , ∅. Fix any ϵ > 0 and
let P :=

∏A
i=1 i <∞.

Since (tk) is non Jamison, there is some λ ∈ Λ(tk )
ϵ
P

such that λ , 1. Note that by

Remark 3, for each j ≤ A one has that supk∈Ij |λ
jnk − 1| < ϵ

P . Our strategy is to use
Lemma 5 to prove that (P nk) is non Jamison and then, by Lemma 8 it follows that
(nk) is also non Jamison. We can assume that for any k there is some j ≤ A such that
k ∈ Ij and using Remark 4.2 it follows that:

|λP nk − 1| ≤
( A∏
i,j

i
)
|λjnk − 1| <

( A∏
i,j

i
) ϵ
P

=
ϵ
j
< ϵ

Conversely, suppose that (tk) is Jamison. Suppose that T ∈ L(X) is such that
supk ∥T nk ∥ = M <∞. Then:

∥T tk ∥ = ∥T aknk ∥ ≤ ak∥T nk ∥ ≤ AM <∞

By assmption, (tk) is Jamison and thus, σp(T )∩ S1 is countable. □

Before proving the main result, it is convenient to recall the notation that was
previously introduced: Given two increasing sequences of positive integers (tk) and
(nk), we define another sequence (rk) tk

nk

to be such that:

rk :=

∣∣∣∣∣∣tk −
[
tk
nk

]
nk

∣∣∣∣∣∣
Here, [ · ] denotes the closest integer function.

Theorem 11 – Let (tk) be non Jamison and suppose that (nk) is an increasing sequence
of positive integers. Then, if one of the following conditions hold, (nk) is also non Jamison:

1. supk

(
tk
nk

)
<∞ and supk(rk) tk

nk

<∞

2. supk

(
nk
tk

)
<∞ and supk(rk) nk

tk
<∞

Proof. Suppose that 1. holds. Since supk(rk) < ∞, it follows by Theorem 10 that
[ tknk ]nk is non Jamison. Furthermore, since supk

(
tk
nk

)
<∞ it follows by Lemma 9 that

(nk) is non Jamison.
Now, suppose that 2. holds. Note that nk =

[
nk
tk

]
tk±rk for all k. Since supk

(
nk
tk

)
<∞,

it follows by Lemma 9 that
([

nk
tk

]
tk
)

is non Jamison and since supk(rk) <∞, it follows
by Theorem 10 that (nk) is non Jamison. □
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Corollary 4 – Let (tk) be (non) Jamison and suppose that (nk) is an increasing sequence
of positive integers. Then, if one of the following conditions hold, (nk) is also (non)
Jamison:

1. supk

(
tk
nk

)
<∞ and supk(rk) tk

nk

<∞

2. supk

(
nk
tk

)
<∞ and supk(rk) nk

tk
<∞
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