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Abstract

In this paper, we consider the space of entire functions with normal type
growth for a given proximate order and a continuous linear operator from such
space into itself which is defined by a partial differential operator of infinite
order. We will study corresponding partial differential equations with variable
coefficients in the cases of regular singular type and of Korobeı̆nik type.
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1 Introduction

A linear operator acting continuously and locally on the holomorphic functions is
represented as a partial differential operator of infinite order, more precisely a con-
tinuous morphism of the sheaf of holomorphic functions on a complex domain or
complex manifold is characterized by a local partial differential operator of infinite
order with the symbol being of minimal type with respect to the differential vari-
able3, so in the complex framework, it is quite natural to consider the infinite order
PDE. Commenced first by Bernard4 and then by André5, many people studied the
infinite order PDE with constant coefficients and its generalization, the convolution

1Chiba University (Professor Emeritus), Japan
2Graduate School of Science, Course of Mathematics and Informatics, Chiba University, Japan
3Ishimura, 1978, “Homomorphismes du faisceau des germes de fonctions holomorphes dans lui-

même et opérateurs différentiels”;
Ishimura, 1980, “Homomorphismes du faisceau des germes de fonctions holomorphes dans lui-

même et opérateurs différentiels II”.
4Malgrange, 1956, “Existence et approximation des solutions des équations aux dérivées partielles

et des équations de convolution”.
5Martineau, 1967, “Équations différentielles d’ordre infini”.
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equation in each situation (for example Sébbar 1971, Morzhakov 1974, Berenstein
and Struppa 1987, Ishimura and Okada 1994, Abanin, Ishimura, and Le Hai Khoi
2012). Nevertheless there are not so many results concerning the variable coefficient
PDE of infinite order (see Korobeinik 1959, Korobeinik 1962, Steen 1971, Ishimura
1985, Aoki 1988).

In the preceding paper Ishimura (2007), we proved that any continuous linear
operator from the space of entire functions of normal type with respect to a proxi-
mate order in itself is represented by a partial differential operator of infinite order.
Recently Aoki, T., Ishimura, R., Okada, Y., Uchida, S., and Struppa, D. C. gave
the complete characterization of such operator by partial differential operator as
a growth condition of its symbol (arXiv:1805.00663). There we characterized also
the continuous linear operator of the space of minimal type entire functions in itself
as partial differential operator of infinite order.

In the present paper, we will consider infinite order partial differential equations
in the space of entire functions of normal type with respect to a proximate order.
We will give solvability conditions for the cases of differential equations of regular
singular type and for the higher order case, of Korobeı̆nik type.

2 Notations and recall

In this paper, we employ same notations as the preceding paper Ishimura (2007):
for a point z = (z1, z2, . . . , zn) ∈ Cn and setting N := {0,1,2,3, . . . }, for multi-indices
α = (α1,α2, . . . ,αn) and β = (β1,β2, . . . ,βn) ∈Nn, we set:

|z| :=
√
|z1|2 + |z2|2 + · · ·+ |zn|2, |α| := α1 +α2 + · · ·+αn,

#»

|z| :=
(
|z1|, |z2|, . . . , |zn|

)
, α! := α1!α2! · · ·αn!,

Dα = Dα
z :=

∂|α|

∂zα1
1 ∂zα1

2 · · ·∂z
αn
n

,

(
α
β

)
:=

α!
(α − β)!β!

.

In the sequel, we will sometimes denote
#»

|z| ⩽ r instead of
#»

|z| ⩽ (r, . . . , r).
We recall several notions and properties concerning the spaces of entire functions

with growth order: principally, we will follow Lelong and Gruman6. Let w(z) be
any real-valued continuous function defined on C

n and consider the space of entire
functions with growth with respect to w:

Bw :=
{
f ∈ O(Cn)

∣∣∣∣∣∣ ∥f ∥w := sup
z∈C

∣∣∣f (z)e−w(z)
∣∣∣ < +∞

}
.

6Lelong and Gruman, 1986, Entire functions of several complex variables.
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3. The space Eρ(r)

This is a Banach space with the norm ∥ ·∥w. In this article, we will make use of the
notion of proximate order introduced by Valiron (1923): a differentiable function
ρ(r) ⩾ 0 defined for r ⩾ 0 is said to be a proximate order if it satisfies

(i) lim
r→+∞

ρ(r) = ρ,

(ii) lim
r→+∞

ρ′(r)r lnr = 0.

It is well-known that in the case where ρ > 0, there exists r0 > 1 such that for r > r0,
the function rρ(r) is strictly increasing (tending to +∞), and if ρ > 1, rρ(r)−1 is also
strictly increasing (tending to +∞). We have

d
dr

rρ(r) = rρ(r)−1
(
ρ′(r)r lnr + ρ(r)

)
.

We fix a differentiable function r = ϕ(t) defined for t ⩾ 0 being the inverse function
of t = rρ(r) for large t and for any q ∈N, we set

Aq := Aρ,q :=
(
ϕ(q)ρ

eρ

) q
ρ

. (1)

As in Ishimura and Miyake (2007), setting wσ (z) := σ |z|ρ(|z|) for σ ⩾ 0, we define
the locally convex space of entire functions of type at most σ ⩾ 0 with respect to
a proximate order ρ(r)

E
ρ(r)
σ := lim

←−
ε>0

Bwσ+ε

which is (by taking a decreasing sequence (εj ) tending to 0 instead of all ε > 0)
a (FS)-space as the following asserts:

Lemma 1 – If s2 > s1 > 0, the inclusion map Bws1
↪→ Bws2

is compact.

Lemma is proven for example, as same as Martineau (1967, Lemma 1).

3 The space Eρ(r)

In this article, we consider the space of entire functions of normal type with respect
to the proximate order ρ(r):

Definition 1 –

Eρ(r) := lim−−→
σ>0

Bwσ

which is a (DFS)-space.
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For any function f =
∑

α∈Nn fαz
α ∈ O(Cn), we set

Hq(f ) = Hq := sup
|z|⩽1

∣∣∣Pq(z)
∣∣∣ with Pq(z) :=

∑
|α|=q

fαz
α .

We recall Lelong and Gruman (1986, Theorem 1.23):

Theorem 1 – Let f be an entire function of finite order ρ > 0 and of proximate order ρ(r).
Then its type σ with respect to ρ(r) is given by

1
ρ

lnσ = limsup
q→+∞

(
1
q

lnHq + lnϕ(q)
)
− 1
ρ
−

lnρ

ρ
.

Using the Theorem 1, we have:

Lemma 2 – An entire function f (z) =
∑

α fαz
α belongs to E

ρ(r)
σ if and only if

limsup
q→∞

(
HqAρ,q

) ρ
q
⩽ σ. (2)

Proof. In fact, f ∈ Eρ(r)
σ is equivalent to saying for any ε > 0, there exists Dε > 0 such

that we have

|f (z)| ⩽Dε · ewσ+ε(z) = Dε · e(σ+ε)|z|ρ(|z|)

for all z ∈Cn, that is, setting Mf (r) := sup|z|⩽r ln|f (z)|, we have

limsup
r→+∞

Mf (r)

rρ(r)
⩽ limsup

r→+∞

lnDε + (σ + ε)rρ(r)

rρ(r)
= σ.

In view of Theorem 1, this is also equivalent to say that we have

limsup
q→+∞

(
ρ

q
lnHq + ρ lnϕ(q)

)
− ln(eρ) ⩽ lnσ :

this means (2). □

Corollary 1 – In the hypothesis of Lemma 2, we have:

limsup
q→∞

(
max
|α|=q
|fα |Aρ,q

) ρ
q

⩽
√
n
ρ
σ (3)

Conversely if we assume this inequality, we have f (z) ∈ Eρ(r)
√
n
ρ
σ

.
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3. The space Eρ(r)

Proof. By using Cauchy’s inequality, we have

|fα | =
1
α!

∣∣∣∂αPq(0)
∣∣∣ ⩽ r−q sup

#»

|z|⩽r

∣∣∣Pq(z)
∣∣∣ = sup

#»

|z|⩽1

∣∣∣Pq(z)
∣∣∣,

here we denoted (r, . . . , r) simply by r. As
#»

|z| ⩽ r implies |z| ⩽
√
n r for any r > 0,

setting v := z/
√
n, we can continue

sup
#»

|z|⩽1

∣∣∣Pq(z)
∣∣∣ ⩽ sup
|z|⩽
√
n

∣∣∣Pq(z)
∣∣∣ = sup
|v|⩽1

∣∣∣∣Pq(√nv)∣∣∣∣ =
√
n
q

sup
|z|⩽1

∣∣∣Pq(z)
∣∣∣ =
√
n
q
Hq.

By the Lemma 2 on the preceding page, for any ε > 0, if q = |α| > 0 is large enough,
we have(

|fα |Aρ,q

) ρ
q
⩽
√
n
ρ
(
HqAρ,q

) ρ
q
<
√
n
ρ
(σ + ε)

so we have (3).
Conversely if we have (3), for any ε > 0, there exists C > 0 such that for

|α| = q≫ 1, taking into account the fact

Hn
q :=

(
n+ q − 1

q

)
=

(
1 +

q

n− 1

)(
1 +

q

n− 2

)
· · ·

(
1 +

q

1

)
⩽ (q+ 1)n−1,

we have

Hq = sup
|z|⩽1

∣∣∣Pq(z)
∣∣∣ ⩽ sup
|z|⩽1

∑
|α|=q
|fα ||z|q

⩽
(√

n
ρ
σ + ε

) q
ρ
·
Hn
q

Aρ,q
⩽

(√
n
ρ
σ + ε

) q
ρ
·

(q+ 1)n−1

Aρ,q

i.e. limsupq→∞
(
HqAρ,q

) ρ
q ⩽ n

ρ
2 σ as limsupq→∞((q+ 1)n−1)

ρ
q = 1 and so we have

f (z) ∈ Eρ(r)
√
n
ρ
σ

. □

By this Corollary, we obtain the following result:

Proposition 1 – An entire function f =
∑

α fαz
α belongs to Eρ(r) if and only if we have

limsup
q→+∞

(
max
|α|=q
|fα |Aρ,q

) 1
q

< +∞. (4)

As for the norm of Bwσ
, we have

Proposition 2 – For f =
∑

α fαz
α ∈ Bwσ

, there exist C,D > 0 such that we have

∥f ∥wσ
⩽ C

∑
q∈N

(∑
|α|=q
|fα |DqAq

)
.
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and for any α ∈Nn,

C−1D−|α|A|α||fα | ⩽ ∥f ∥wσ
. (5)

Proof. Ishimura and Miyake (2007, Lemma 1) assures that there exist C,D > 0 such
that for any α, we have

∥zα∥wσ
⩽ CDqAq (|α| = q)

and so

∥f ∥wσ
⩽

∑
α∈Nn

|fα |∥zα∥wσ
⩽ C

∑
q∈N

(∑
|α|=q
|fα |DqAq

)
.

As in the proof of Lelong and Gruman (1986, Lemma 9.2), by Cauchy’s formula in
one variable λ ∈C, for any q, we have

Pq(z) =
1

2πi

∮
|λ|=1

f (λz)
λq+1 dλ :

so for any r > 0, we have

sup
|z|=r

∣∣∣Pq(z)
∣∣∣

|z|q
⩽ sup
|z|=r

∣∣∣f (z)e−wσ (z)
∣∣∣eσrρ(r)

rq


and then for any r > 0, we have

sup
|z|=r

∣∣∣Pq(z)
∣∣∣

|z|q
⩽ ∥f ∥wσ

eσr
ρ(r)

rq
:

as in the proof of Lelong and Gruman (1986, Lemma 9.2), the function eσr
ρ(r)

rq of
r attains its minimum which, by choosing C,D > 0 large enough, is estimated by
CDq/Aq: therefore we have the inequality

C−1D−qAq sup
z

∣∣∣Pq(z)
∣∣∣

|z|q
⩽ ∥f ∥wσ

.

As by the proof of Corollary 1 on p. 72, setting q = |α|, we have

|fα | ⩽
√
n
q

sup
|z|=1

∣∣∣Pq(z)
∣∣∣ =
√
n
q

sup
z

∣∣∣Pq(z)
∣∣∣

|z|q
,

taking C,D > 0 large enough, we have (5). □
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4. Duality between the spaces Eρ(r) and E
ρ∗(s)
0

4 Duality between the spaces Eρ(r) and E
ρ∗(s)
0

In this section, we will study the dual space of Eρ(r) (c.f. Lelong and Gruman 1986,
Theorem 9.5 and Theorem 9.16). In the rest of this section, we will suppose ρ > 1:
in this case, the equation s = rρ(r)−1 has the unique solution r = λ(s) for any s large
enough. A proximate order ρ∗(s) is said to be a conjugate proximate order of ρ(r) if it
satisfied for large s (so for large r)

ρ∗(s) :=
ρ(r)

ρ(r)− 1
i.e.

1
ρ(r)

+
1

ρ∗(s)
= 1. (6)

It is easy to see that any differentiable function ρ∗(s) satisfying (6) for large s is in
fact a proximate order (see for example Lelong and Gruman 1986, Prop. 9.4). In this
section, we will take a conjugate proximate order ρ∗(s). Set ρ∗ := lims→∞ρ∗(s) > 1.

As the case of r = ϕ(t), let s = ϕ∗(u) be a differentiable function being the inverse
function of u = sρ

∗(s) when u is large enough. We set also

A∗q = Aρ∗,q :=
(
ϕ∗(q)ρ

∗

eρ∗

) q
ρ∗

. (7)

Now consider the space E
ρ∗(s)
0 of entire functions of minimal type with respect to

ρ∗(s), which is an (FS)-space: we will show that it is the dual space of Eρ(r).
The function z 7→ ez·ζ is in Eρ(r) if ρ ⩾ 1: for any T ∈ (Eρ(r))′, we denote its

Fourier-Borel transform by

T̂ (ζ) = Tz(e
z·ζ).

Proposition 3 – Suppose ρ > 1. The map

T 7→ T̂ : (Eρ(r))′
∼→ E

ρ∗(s)
0 (8)

is a continuous bijection of Fréchet spaces so it is an isomorphism.

Proof. For r > 0 large enough, we will find the upper bound of the function

h(r) = h(r,ζ) := sup
|z|=r

(
Rez · ζ −wσ (z)

)
= r |ζ| − σrρ(r)

For this, we remark that for large |ζ|, the equation

h′(r) = |ζ| − σrρ(r)−1
(
ρ′(r)r lnr + ρ(r)

)
= 0 (9)
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has unique solution r0 = r(ζ) (≫ 1): in general, it is not possible to know its exact
value, but for any δ > 0, if |ζ| is large enough, we have∣∣∣∣(ρ′(r0)r0 lnr0 + ρ(r0)

)
− ρ

∣∣∣∣ < δ

so by the (9), we have

|ζ|
σ (ρ+ δ)

< r0
ρ(r0)−1 <

|ζ|
σ (ρ − δ)

.

Therefore for some c > 0, we have

h(r,ζ) ⩽ h(r0,ζ) = r0|ζ| − σr0
ρ(r0)

<

(
|ζ|

σ (ρ − δ)

) 1
ρ(r0)−1

|ζ| −
(
|ζ|

σ (ρ+ δ)

) ρ(r0)
ρ(r0)−1

=


(

1
σ (ρ − δ)

) 1
ρ(r0)−1

−
(

1
σ (ρ+ δ)

) ρ(r0)
ρ(r0)−1

 |ζ| ρ(r0)
ρ(r0)−1

<


(

1
σρ

) 1
ρ(r0)−1

−
(

1
σρ

) ρ(r0)
ρ(r0)−1

+ cδ

 |ζ| ρ(r0)
ρ(r0)−1

=

(σρ − 1)
(

1
σρ

) ρ(r0)
ρ(r0)−1

+ cδ

 |ζ| ρ(r0)
ρ(r0)−1

as (
1

σ (ρ ± δ)

) 1
ρ(r0)−1

=
(

1
σρ

) 1
ρ(r0)−1

+O(δ) :

we may replace δ by c−1(σρ − 1)
(

1
σρ

) ρ(r0)
ρ(r0)−1 δ and then we continue

< (1 + δ)(σρ − 1)
(

1
σρ

) ρ(r0)
ρ(r0)−1

|ζ|
ρ(r0)

ρ(r0)−1 = (1 + δ)(σρ − 1)
(
|ζ|
σρ

) ρ(r0)
ρ(r0)−1

.

As for large |ζ| (so r0≫ 1), setting s0 := r0
ρ(r0)−1, we have

0 = h′(r0) = |ζ| − σr0
ρ(r0)−1

(
ρ′(r0)r0 lnr0 + ρ(r0)

)
< |ζ| − σs0(ρ − δ)

and

0 = h′(r0) = |ζ| − σr0
ρ(r0)−1

(
ρ′(r0)r0 lnr0 + ρ(r0)

)
> |ζ| − σs0(ρ+ δ),
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0

we have

|ζ|
σ (ρ+ δ)

< s0 <
|ζ|

σ (ρ − δ)
i.e.

∣∣∣∣∣ |ζ|σρ
− s0

∣∣∣∣∣ < s0δ
ρ

.

As ρ∗(s) is a proximate order, with some θ such that 0 < θ < 1, we have

ρ∗(s0) = ρ∗
(
|ζ|
σρ

)
+ ρ∗

(
s0 +θ ·

(
|ζ|
σρ
− s0

))′
·
(
|ζ|
σρ
− s0

)
< ρ∗

(
|ζ|
σρ

)
+

1(
s0 −

s0δ
ρ

)
ln

(
s0 −

s0δ
ρ

) · s0δ
ρ

= ρ∗
(
|ζ|
σρ

)
+

δ

(ρ − δ) ln
(
s0

(
1− δ

ρ

)) < ρ∗
(
|ζ|
σρ

)
+

δ

ln
(
|ζ|

σ (ρ+δ)

(
1− δ

ρ

))
= ρ∗

(
|ζ|
σρ

)
+

δ

ln
( |ζ|
σρ

ρ−δ
ρ+δ

) < ρ∗
(
|ζ|
σρ

)
+

δ

ln
(
|ζ|
σρ (1− 2δ)

)
< ρ∗

(
|ζ|
σρ

)
+

δ

ln |ζ|σρ − 3δ

if |ζ| large enough and if ρ − δ > 1 and ln(1− 2δ) > −3δ: so we have

sup
|z|=r

(
Rez · ζ −wσ (z)

)
= h(r,ζ) < (1 + δ)(σρ − 1)

(
|ζ|
σρ

) ρ(r0)
ρ(r0)−1

= (1 + δ)(σρ − 1)
(
|ζ|
σρ

)ρ∗(s0)

< (1 + δ)(σρ − 1)
(
|ζ|
σρ

)ρ∗( |ζ|σρ

)
+ δ

ln |ζ|σρ −3δ
. (10)

Setting t := |ζ|
σρ , for 0 < δ≪ 1, if t > 0 is large enough, we have

ln
h(r,ζ)

(1 + δ)(σρ − 1)
< ln tρ

∗(t)+ 2δ
ln t−3δ =

(
ρ∗(t) +

2δ
ln t − 3δ

)
ln t

< ρ∗(t) ln t + 3δ = ln tρ
∗(t) + 3δ < ln tρ

∗(σρt) + 4δ

as by, for example, Lelong and Gruman (1986, Theorem 1.18), we have tρ
∗(t)

tρ
∗((σρ)t) < eδ:

thus we have

h(r,ζ)
(1 + δ)(σρ − 1)

< e4δtρ
∗((σρ)t).
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Therefore for large |ζ|, continuing (10), we have

sup
z

(
Rez · ζ −wσ (z)

)
= h(r,ζ) < (1 + δ)(σρ − 1)e4δ

(
|ζ|
σρ

)ρ∗(|ζ|)
= (1 + δ)e4δσ ∗|ζ|ρ

∗(|ζ|) = (1 + δ)e4δσ ∗w∗(ζ) (11)

here we set σ ∗ := σρ−1
(σρ)ρ∗

(which is decreasing as a function of σ ⩾ 1 and tending to 0

if σ tends to∞). Thus for any ε > 0, there exists a constant C = Cε > 0 such that we
have ∣∣∣T̂ (ζ)

∣∣∣ =
∣∣∣Tz(ez·ζ)

∣∣∣ ⩽ ∥T ∥(Bwσ )′ ·
∥∥∥ez·ζ

∥∥∥
wσ

= ∥T ∥(Bwσ )′ · sup
z

exp
(
Rez · ζ −wσ (z)

)
⩽ C∥T ∥(Bwσ )′ · exp

(
(σ ∗ + ε)w∗(ζ)

)
where ∥T ∥(Bwσ )′ := sup∥f ∥wσ =1|T (f )| is the operator norm of T in (Bwσ

)′ : so T 7→ T̂ is

a continuous map (Eρ(r))′→ E
ρ∗(s)
0 which is evidently injective.

Conversely taking into account of Corollary 1 on p. 72 for ρ∗ instead of ρ and in

the case σ = 0, an entire function F(ζ) =
∑
Fαζ

α belongs to E
ρ∗(s)
0 if and only if we

have

limsup
q→∞

(
max
|α|=q
|Fα |Aρ∗,q

) 1
q

= 0 :

by (7), for any ε > 0, there exists C > 0 such that for any q ⩾ 0, we have

max
|α|=q
|Fα | ⩽ C

εq

ϕ∗(q)q
.

Now take any F(ζ) =
∑
Fαζ

α ∈ Eρ∗(s)
0 and set for any f (z) =

∑
fαz

α ∈ Eρ(r),

T f :=
∑
α∈Nn

α!fαFα : (12)

we prove that this is in fact convergent and so well-defined. By Proposition 1 on
p. 73, taking into account (1), there exist C′ > 0 and D > 0 such that for any q ⩾ 0,
we have

max
|α|=q
|fα | ⩽ C′

Dq

ϕ(q)q
.

Set r = rq = ϕ(q) and s = sq = ϕ∗(q) i.e. q
1

ρ(r) = r,q
1

ρ∗(s) = s, then for any α with |α| = q,
we have

α!
ϕ(q)qϕ∗(q)q

⩽
qq

(rs)q
= 1
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and thus (12) is convergent, that is T is in fact, an element of (Eρ(r))′ and we have

T̂ (ζ) = Tz(e
z·ζ) = T

( ∑
α∈Nn

1
α!

ζαzα
)

=
∑
α∈Nn

ζαFα = F(ζ)

and thus T 7→ T̂ : (Eρ(r))′→ E
ρ∗(s)
0 is a continuous bijection and so by a Theorem of

Banach, it is in fact an isomorphism of Fréchet spaces. □

5 Partial differential equations of infinite order in Eρ(r)

We proved that any continuous linear operator from Eρ(r) into itself is represented
by an infinite order partial differential operator of the form

P = P (z,Dz) =
∑
α∈Nn

aα(z)Dα
z

such as with a σ > 1,
∑

α∈Nn∥aα∥wσ
α!1−

1
ρ ζα is holomorphic at 0.7 We call

P (z,ζ) :=
∞∑
|α|=0

aα(z)ζα

the symbol of P : Expanding each coefficient

aα(z) :=
∑
β∈Nn

a
β
αz

β ,

we define at least formally the transpose of P = P (ζ,Dζ):

tP := tP (ζ,Dζ) :=
∑
β∈Nn

( ∑
α∈Nn

a
β
αζ

α

)
D

β
ζ .

For a formal power series f (z) :=
∑

ν fνz
ν ∈C[[z]], we see formally

P (z,Dz)f (z) =
∑
µ∈Nn

 ∑
ν∈Nn

( ∑
λ⩽µ,ν

ν!
λ!

a
µ−λ
ν−λ

)
fν

zµ :

7Ishimura and Miyake, 2007, “Endomorphisms of the space of entire functions with proximate order
and infinite order differential operators”.
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thus by the identification f 7→ (fγ ) : C[[z]]
∼→ C

N
n
, the operator P : C[[z]]→ C[[z]] is

identified with the infinite matrix which we call its characteristic matrix

CP :=
(
c
µ
ν

)
µ,ν

:=
( ∑
λ⩽µ,ν

ν!
λ!

a
µ−λ
ν−λ

)
µ,ν

: CN
n
→C

N
n
. (13)

Similarly for F(ζ) =
∑

ν Fνζ
ν ∈C[[ζ]], we have

tP (ζ,Dζ)F(ζ) =
∑
µ∈Nn

 ∑
ν∈Nn

( ∑
λ⩽µ,ν

ν!
λ!

aν−λµ−λ

)
Fν

ζµ :

so we have

CtP =
( ∑
λ⩽µ,ν

ν!
λ!

aν−λµ−λ

)
µ,ν

=
(
ν!
µ!
cνµ

)
µ,ν

. (14)

Now we will consider the partial differential equation in Eρ(r):

P (z,Dz)f =
∞∑
|α|=0

aα(z)Dα
z f (z) = g.

By (13), expanding f =
∑

ν∈Nn fνz
ν , g =

∑
µ∈Nn gµz

µ, this means formally∑
ν∈Nn

c
µ
νfν ≡

∑
ν∈Nn

(∑
λ⩽ν
λ⩽µ

ν!
λ!

a
µ−λ
ν−λ

)
fν = gµ (for any µ ∈Nn). (15)

In this article, as in Ishimura (2007), we will study the following two cases: partial
differential operator of infinite order P =

∑∞
|α|=0 aα(z)Dα of

(I) regular singular type, that is, each aα(z) is divisible by zα

aα(z) =
∑
α⩽β

a
β
αz

β :

(II) Korobeı̆nik type, namely, each aα(z) is a polynomial of order ⩽ α

aα(z) =
∑
β⩽α

a
β
αz

β .

This second type operator was first studied by Korobeinik (1959) in one variable
case; we remark also Korobeinik (1962) and van der Steen (1971) studied the
operators of first type, always in one variable case.
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(O) We will call P an operator of Euler type if it is regular singular type and
Korobeı̆nik type at the same time i.e. with a constant aα ∈C, P has the form

P =
∞∑
|α|=0

aαz
αDα

z .

Theorem 2 – Let a continuous linear operator P : Eρ(r)→ Eρ(r) be of regular singular
type as differential operator. Suppose the following conditions hold: there exist C,R,κ > 0
such that

1. for all µ ∈Nn, we have

C−1κ|µ| <

∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣,
2. whenever ν < µ, we have∣∣∣∣∑λ⩽ν

ν!
λ!a

µ−λ
ν−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
µ!
λ!a

µ−λ
µ−λ

∣∣∣∣ ⩽ C ·
A|ν|
A|µ|

R|µ−ν|.

Then P : Eρ(r)→Eρ(r) is surjective; so is an isomorphism of Fréchet spaces.

Proof. Assume that P f = g ∈ Eρ(r) and expand f =
∑

ν fνz
ν , g =

∑
µ gµz

µ: taking into

account that in this case, (15) is just
∑

ν∈Nn

(∑
λ⩽ν

ν!
λ!a

µ−λ
ν−λ

)
fν =

∑
ν⩽µ c

µ
νfν = gµ, the

condition (1) assures that the coefficients (fµ) are determined uniquely from (gµ)
and so, in view of Proposition 1 on p. 73, it suffices to show that there exist D,K > 0
such that for all µ ∈Nn, we have∣∣∣fµ∣∣∣ ⩽D · K

|µ|

A|µ|
: (16)

we argue by induction on q := |µ|. First we remark, by the condition (1) and
Proposition 1 on p. 73, there exist D0,L > 0 such that for all µ ∈Nn, we have∣∣∣gµ∣∣∣∣∣∣cµµ∣∣∣ ⩽D0

L|µ|

A|µ|
. (17)

Assuming the condition (2), take any K > max(L,R,C) and D > D0 so that for all
µ ∈Nn, we have

D0

D

( L
K

)|µ|
+C ·

(
Kn

(K −R)n
− 1

)
< 1.
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For q = |µ|, we have

1∣∣∣cµµ∣∣∣
∑
ν<µ

∣∣∣cµνfν ∣∣∣ ⩽∑
ν<µ

C ·
A|ν|
Aq

R|µ−ν| ·D · K
|ν|

A|ν|
=
CD
Aq

Rq
∑
ν⩽µ

(K
R

)|ν|
−Kq


=
CD
Aq

Rq
∑
ν1⩽µ1

(K
R

)ν1

· · ·
∑
νn⩽µn

(K
R

)νn
−Kq


=
CD
Aq

Rq ·

(
K
R

)µ1+1
− 1

K
R − 1

· · ·

(
K
R

)µn+1
− 1

K
R − 1

−Kq


⩽

CD
Aq

Rq ·

(
K
R

)q+n(
K
R − 1

)n −Kq


=
CD
Aq

(
Kq+n

(K −R)n
−Kq

)
= CD · K

q

Aq

(
Kn

(K −R)n
− 1

)
.

Therefore, by (17), we have

∣∣∣fµ∣∣∣ ⩽
∣∣∣gµ∣∣∣∣∣∣cµµ∣∣∣ +

1∣∣∣cµµ∣∣∣
∑
ν<µ

∣∣∣cµνfν ∣∣∣
⩽D0 ·

Lq

Aq
+CD · K

q

Aq

(
Kn

(K −R)n
− 1

)
< D · K

q

Aq
,

that is (16) as desired. □

In particular, when P is of Euler type, we have:

Corollary 2 – If P is of Euler type, then P : Eρ(r)→Eρ(r) is an isomorphism if and only
if there exist C,κ > 0 such that for any µ ∈Nn, we have

C−1κ|µ| <

∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣.
Proof. We need only to prove the "only if" part: in fact, taking g =

∑
µ

1
A|µ|

and

f := P −1g, by Proposition 1 on p. 73, with some C,κ > 0, we have

1∣∣∣cµµ∣∣∣ =
∣∣∣fµ∣∣∣A|µ| ⩽ Cκ−q. □
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Example 1 – Suppose n = 1, ρ > 1. In the following cases, P =
∑
aα(z)Dα satisfies

the condition of Theorem 2 on p. 81:

(i) with k > 0, set

a
β
α :=


kα

α!
β = α

(−k)α

α!
β = α + 1

0 otherwise

.

(ii) with k , −1, set

a
β
α :=



kα

α!
β = α

(−1)α

α!(β −α)!
β > α

0 otherwise

.

Theorem 3 – Suppose ρ > 1. Let a continuous linear operatorm P : Eρ(r)→Eρ(r) be of
Korobeı̆nik type as partial differential operator. Suppose the following conditions hold:

1. there exist C,κ > 0 such that for all µ ∈Nn, we have

C−1κ|µ| <

∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣,
2. for any δ > 0, there exists M = Mδ > 0 such that whenever |µ| ⩾M and ν < µ, we

have ∣∣∣∣∑λ⩽ν
1
λ!a

ν−λ
µ−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
1
λ!a

µ−λ
µ−λ

∣∣∣∣ ⩽
A∗|ν|
A∗|µ|

δ|µ−ν|.

Then P : Eρ(r)→Eρ(r) is surjective; so is an epimorphism of Fréchet spaces.

Proof. In the case, the characteristic matrix CtP =
(
ν!
µ! c

ν
µ

)
µ,ν

(see (14)) being "lower

diagonal", tP is injective: so by virtue of the closed range theorem, we only need

to show that tP
(
E
ρ∗(s)
0

)
is closed in E

ρ∗(s)
0 : let T̂ j ∈ Eρ∗(s)

0 be a sequence so that the

sequence Ŝj := tP (T̂ j ) is a Cauchy sequence in E
ρ∗(s)
0 . We will show that the se-

quence (T̂ j ) is a Cauchy sequence in E
ρ∗(s)
0 i.e. for any σ > 0 and any ε > 0, there

exists N > 0 such that for any i, j > N , we have
∥∥∥T̂ i − T̂ j

∥∥∥
wσ
⩽ ε. Now expanding

T̂ j(ζ) =
∑

µ∈Nn T̂
j
µζµ, and Ŝj(ζ) =

∑
µ∈Nn Ŝ

j
µζµ, taking into account of Proposition 2
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on p. 73, we will show by induction, that for any ε > 0, there exists N > 0 such that
for any i, j > N and any µ ∈Nn, we have∣∣∣∣T̂ i

µ − T̂
j
µ

∣∣∣∣ ⩽ ε|µ|+1

A∗|µ|
. (18)

Remark for any µ ∈Nn, inductively, we have

T̂ i
µ − T̂

j
µ =

1

c
µ
µ

((
Ŝ i
µ − Ŝ

j
µ

)
−
∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

))
:

by this, we first remark that for M = Mδ being fixed, there exists CM > 1 such that
whenever |µ| <M, we have∣∣∣∣T̂ i

µ − T̂
j
µ

∣∣∣∣ ⩽ CMε|µ|max
ν⩽µ

A∗|ν|
A∗|µ|

∣∣∣∣Ŝ i
ν − Ŝ

j
ν

∣∣∣∣.
The sequence (Ŝj ) being a Cauchy sequence, we may assume that taking N > 0 large
enough, for any i, j > N and µ ∈Nn, we have∣∣∣∣Ŝ i

µ − Ŝ
j
µ

∣∣∣∣ ⩽ ε
2CM

· (εκ)|µ|

A∗|µ|
, (19)

so by (1), for all i, j > N and µ ∈Nn, we have then

1∣∣∣cµµ∣∣∣
∣∣∣∣Ŝ i

µ − Ŝ
j
µ

∣∣∣∣ ⩽ ε|µ|+1

2CMA∗|µ|
<
ε|µ|+1

2A∗|µ|
. (20)

In the condition (1), we may of course assume 0 < κ < 1 and so from (19), if |µ| <M,
we have∣∣∣∣T̂ i

µ − T̂
j
µ

∣∣∣∣ ⩽ ε|µ|+1

2A∗|µ|
<
ε|µ|+1

A∗|µ|
(21)

thus we have (18) in the case |µ| <M. For the case |µ| ⩾M, remark the following

Lemma 3 – If µ ∈Nn, then∑
ν<µ

ν!
µ!
⩽ 2n.

For the proof, we only remark that in the case where n = 1, if µ = 0,1, it is evident
and if µ ⩾ 2, we have

µ∑
ν=0

ν!
µ!
⩽ 1 +

1
µ

+ (µ− 1)
1

µ(µ− 1)
= 1 +

2
µ
⩽ 2.
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In the hypothesis (2), take δ > 0 so that δ < ε/2n+1 and apply the Lemma: then for
q = |µ| ⩾M, we have∣∣∣∣∣∣∣ 1

c
µ
µ

∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

)∣∣∣∣∣∣∣ ⩽
q−1∑
|ν|=0

ν!
µ!
· δq−|ν| ·

A∗|ν|
A∗q
· ε
|ν|+1

A∗|ν|

=
εq+1

A∗q

q−1∑
|ν|=0

ν!
µ!

(δ
ε

)q−|ν|
⩽

εq+1

A∗q
· δ
ε

q−1∑
|ν|=0

ν!
µ!

<
εq+1

2A∗q
,

this and (21) for the case |µ| < M, combining with (20), imply the desired esti-
mate (18). □

Example 2 – Let n = 1, ρ > 1. In the following cases, P =
∑
aα(z)Dα satisfies the

condition of Theorem 3 on p. 83:

(i) with k > 0, define

a
β
α :=



kα

α!
β = α

(−k)α−1

(α − 1)!
β = α − 1

0 otherwise

.

(ii) with k , −1, define

a
β
α :=



kα

α!
β = α

(−1)β

β!

(
1

(α − β)!

)2

β < α

0 otherwise

.
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