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Abstract

We give a new proof of the existence of a surjective symbol whose associated
composition operator on H2(D) is in all Schatten classes, with the improvement
that its approximation numbers can be, in some sense, arbitrarily small. We
show, as an application, that, contrary to the 1-dimensional case, for N ≥ 2,
the behavior of the approximation numbers an = an(Cφ), or rather of β−N =

liminfn→∞[an]1/n
1/N

or β+
N = limsupn→∞[an]1/n

1/N
, of composition operators

on H2(DN ) cannot be determined by the image of the symbol.

Keywords: Approximation numbers, cusp map, composition operator, Hardy space,
lens map, polydisk.
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1 Introduction

We start by recalling some notations and facts.
Let D be the open unit disk, H2 the Hardy space on D, and ϕ : D→D a non-

constant analytic self-map. It is well known4 that ϕ induces a composition operator
Cϕ : H2→H2 by the formula:

Cϕ(f ) = f ◦ϕ ,

and the connection between the “symbol” ϕ and the properties of the operator
Cϕ : H2→H2, in particular its compactness, can be further studied5.
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We also recall that the nth approximation number an(T ), n = 1,2, . . ., of an
operator T : H1→H2, between Hilbert spaces H1 and H2, is defined as the distance
of T to operators of rank < n, for the operator-norm:

an(T ) = inf
rankR<n

∥T −R∥ . (1)

The p-Schatten class Sp(H1,H2), p > 0 consists of all T : H1 → H2 such that(
an(T )

)
n
∈ ℓp. The approximation numbers have the ideal property:

an(ATB) ≤ ∥A∥an(T )∥B∥ .

Let now, for ξ ∈ T = ∂D and h > 0, the Carleson window S(ξ,h) be defined as:

S(ξ,h) = {z ∈D ; |z − ξ | ≤ h} . (2)

For a symbol ϕ, we define mϕ = ϕ∗(m) where m is the Haar measure of T and
ϕ∗ : T →D the (almost everywhere defined) radial limit function associated with ϕ,
namely:

ϕ∗(ξ) = lim
r→1−

ϕ(rξ) .

Finally, we set for h > 0:

ρϕ(h) = sup
ξ∈T

mϕ[S(ξ,h)] . (3)

It is known6 that ρϕ(h) = O(h) and that Cϕ7 is compact if and only if ρϕ(h) = o(h)
as h→ 0. Simpler criteria8 exist when ϕ is injective, or even p-valent, meaning that
for any w ∈D, the equation ϕ(z) = w has at most p solutions.

A measure µ on D is called α-Carleson, α ≥ 1, if sup|ξ |=1µ[S(ξ,h)] = O(hα).

B. MacCluer and J. Shapiro showed in MacCluer and H. Shapiro (1986, Exam-
ple 3.12) the following result, paradoxical at first glance.

Theorem 1 (MacCluer-Shapiro) – There exists a surjective and four-valent symbol
ϕ : D→D such that the composition operator Cϕ : H2→H2 is compact.

Observe that such a symbol ϕ cannot be one-valent (injective), because it would
be an automorphism of D, and Cϕ would be invertible and therefore not compact.
In Lefèvre et al. (2012, Theorem 4.1), we gave the following improved statement.

6J. Shapiro, 1993, Composition operators and classical function theory.
7MacCluer, 1984, “Spectra of compact composition operators on Hp(BN )”.
8J. Shapiro, 1993, Composition operators and classical function theory.
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2. Background and preliminary results

Theorem 2 – For every non-decreasing function δ : (0,1)→ (0,1), there exists a two-
valent symbol and nearly surjective (i.e. ϕ(D) = D \ {0}) symbol φ, and 0 < h0 < 1, such
that:

m({z ∈ T ; |φ∗(z)| ≥ 1− h}) ≤ δ(h) for 0 < h ≤ h0 . (4)

As a consequence, there exists a surjective and four-valent symbol ψ : D→D such that
the composition operator Cψ : H2→H2 is in every Schatten class Sp(H2), p > 0.

Our proof was rather technical and complicated, and based on arguments of
barriers and harmonic measures.

The goal of this paper is to give a more precise statement of Theorem 2 in terms of
approximation numbers an(Cϕ), and not only in terms of Schatten classes, and with
a simpler proof. We then apply this result to show that for the polydisk D

N , N ≥ 2,
the nature (boundedness, compactness, asymptotic behavior of approximation
numbers) of the composition operator cannot be determined by the geometry of the
image φ(DN ) of its symbol φ. For certain asymptotic behavior of approximation
numbers, this is contrary to the 1-dimensional case (see Li, Queffélec, and Rodríguez-
Piazza 2015, Theorem 3.1 and Theorem 3.14).

The notation A ≲ B means that A ≤ CB for some positive constant C, and A ≈ B
that A ≲ B and B ≲ A.

2 Background and preliminary results

We initiated the study of approximation numbers of composition operators onH2 in
Li, Queffélec, and Rodríguez-Piazza (2012), and proved the following basic results:

Theorem 3 – If ϕ is any symbol, then, for some δ > 0 and r > 0, or a > 0:

an(Cϕ) ≥ δrn = δ e−an .

Moreover, as soon as ∥ϕ∥∞ = 1, there exists some sequence εn tending to 0 such that:

an(Cϕ) ≥ δ e−nεn .

We also proved in Li, Queffélec, and Rodríguez-Piazza (2012, Theorem 5.1) that:

Proposition 1 – For any symbol ϕ, we have:

an(Cϕ) ≲ inf
0<h<1

[
e−nh +

√
ρϕ(h)

h

]
.
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We also recall (see Li, Queffélec, and Rodríguez-Piazza 2012) that, for γ > −1,
the weighted Bergman space Bγ is the space of functions f (z) =

∑∞
n=0 anz

n such that:

∥f ∥2γ :=
∞∑
n=0

|an|2

(n+ 1)γ+1 <∞ . (5)

Equivalently, Bγ is the space of analytic functions f : D→C such that:∫
D

|f (z)|2 (γ + 1)(1− |z|2)γ dA(z) <∞ , (6)

where dA is the normalized area measure on D, and then:∫
D

|f (z)|2 (γ + 1)(1− |z|2)γ dA(z) ≈ ∥f ∥2γ . (7)

The case γ = 0 corresponds to the usual Bergman space B2, and the limiting case
γ = −1 to the Hardy space H2. We wish to note in passing (we will make use of that
elsewhere) that the proof of Theorem 5.1 in Li, Queffélec, and Rodríguez-Piazza
(2012) easily gives the following result.

Proposition 2 – Let γ > −1 and ϕ a symbol inducing a bounded composition operator
Cϕ : Bγ →H2. Then:

an(Cϕ : Bγ →H2) ≲ inf
0<h<1

(n+ 1)(γ+1)/2 e−nh + sup
0<t≤h

√
ρφ(t)

t2+γ

 ·
Proof. Take E = znBγ ; this is a subspace of Bγ of codimension ≤ n. Let f ∈ E with
∥f ∥γ = 1. Writing f = zng with ∥g∥2γ ≤ (n+ 1)γ+1 and splitting the integral into two
parts, we have, for 0 < h < 1:

∥Cϕf ∥2H2 =
∫
D

|f |2 dmφ ≤ (1− h)2n
∫

(1−h)D
|g |2 dmφ +

∫
D\(1−h)D

|f |2 dmφ .

For the first integral, we have:∫
(1−h)D

|g |2 dmφ ≤
∫
D

|g |2 dmφ = ∥Cφ g∥2H2 ≤ ∥Cφ∥2Bγ→H2∥g∥2γ . (8)

For the second integral, we have:∫
D\(1−h)D

|f |2 dmφ ≤ ∥J : Bγ → L2(µh)∥2 ,
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2. Background and preliminary results

where µh is the restriction of mϕ to the annulus {z ∈ D ; 1 − h < |z| < 1} and J the
canonical injection of Bγ into L2(µh). Hence Stegenga’s version of the Carleson
embedding theorem for Bγ (Stegenga 1980, Theorem 1.2; see Hastings 1975 for the
unweighted case; see also Duren and Schuster 2004, p. 62 or Zhu 2007, p. 167) gives
us: ∫

D\(1−h)D
|f |2 dmφ ≲ sup

0<t≤h

ρφ(t)

t2+γ · (9)

Putting (8) and (9) together, that gives:

∥Cϕf ∥H2 ≲ e−nh(n+ 1)(γ+1)/2 + sup
0<t≤h

√
ρφ(t)

t2+γ ·

In other terms, using the Gelfand numbers ck :

cn+1(Cφ : Bγ →H2) ≲ (n+ 1)(γ+1)/2 e−nh + sup
0<t≤h

√
ρφ(t)

t2+γ ·

As an+1 = cn+1 and as we can ignore the difference between an and an+1, that finishes
the proof. □

As an application, we mention the following result. We refer to Li, Queffélec, and
Rodríguez-Piazza (2013, Section 4.1) for the definition of the cusp map, denoted χ.

Theorem 4 – Let χ : D→ D be the cusp map and Φ : DN → D
N the diagonal map

defined by:

Φ(z1, z2, . . . , zN ) =
(
χ(z1),χ(z1), . . . ,χ(z1)

)
. (10)

Then, the composition operator CΦ maps H2(DN ) to itself and:

an(CΦ ) ≲ e−d
√
n (11)

where d is a positive constant depending only on N .

Remark 1 – We have to compare with Bayart et al. (2018, Theorem 6.2) where, for:

Ψ (z1, . . . , zN ) =
(
χ(z1), . . . ,χ(zN )

)
,

it is shown that, for constants b ≥ a > 0 depending only on N :

e−b (n1/N / lnn) ≲ an(CΨ ) ≲ e−a (n1/N / lnn) .

Note also that for N = 1, the estimate of Theorem 4 is very crude.
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Proof (Proof of Theorem 4 on the previous page). Take γ =N −2. As in Li, Queffélec,
and Rodríguez-Piazza (n.d.[a], Section 4), we have thanks to the Cauchy-Schwarz
inequality, and the fact that

∑
|α|=n1 ≈ (n+ 1)N−1, a factorization:

CΦ = JCχM ,

where M : H2(DN )→Bγ is defined by Mf = g with:

g(z) = f (z,z, . . . , z) =
∞∑
n=0

 ∑
|α|=n

aα

zn , z ∈D , (12)

for

f (z1, z2, . . . , zN ) =
∑
α

aαz
α1
1 · · ·z

αN
N ,

and where J : H2(D)→H2(DN ) is the canonical injection given by:

(Jh)(z1, z2, . . . , zN ) = h(z1) . (13)

This corresponds to a diagram:

H2(DN )
M−→Bγ

Cχ−→H2(D)
J
−→H2(DN ) , (14)

where Cχ : Bγ = BN−2→H2(D) is a bounded operator. Indeed, we have the behav-
ior9:

|1−χ∗(eiθ)| ≈ 1
ln(1/ |θ|)

,

and this implies, with c an absolute constant:

mχ[S(ξ,h)] ≲mχ[S(1,h)] =m({|χ∗(eiθ)− 1| < h)

≲m[{c/ ln(1/ |θ|) < h}] ≤ e−c/h ;
(15)

in particular ρχ(h) ≤ e−c/h = O(hN ), so mχ is an N -Carleson measure and the
Stegenga-Carleson theorem10 says that the operator Cχ : BN−2→H2(D) is bounded.

Now Proposition 2 on p. 4 with (15) give:

an(Cχ : Bγ →H2) ≲ inf
0<h<1

[
(n+ 1)(N−1)/2 e−nh + e−c/hh−N/2

]
.

Adjusting h = 1/
√
n, we get an(Cχ : Bγ →H2) ≲ e−d

√
n for some positive constant d.

Finally, the factorization CΦ = JCχM and the ideal property of approximation
numbers give the result. □
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2. Background and preliminary results

In the case of lens maps, Proposition 2 on p. 4 gives very poor estimates. We
avoid using this theorem in Li, Queffélec, and Rodríguez-Piazza (n.d.[a], Section 4),
when N = 2, using the semi-group property of those lens maps. The same proof
gives for arbitrary N ≥ 2 the following result.

Theorem 5 – Let λθ the lens map with parameter θ, 0 < θ < 1, and let Φ : DN →D
N

be the diagonal map defined by:

Φ(z1, z2, . . . , zN ) =
(
λθ(z1),λθ(z1), . . . ,λθ(z1)

)
. (16)

Then:

1) if θ > 1/N , CΦ is unbounded on H2(DN );

2) if θ = 1/N , CΦ is bounded and not compact on H2(DN );

3) if θ < 1/N , CΦ is compact on H2(DN ) and moreover:

an(CΦ ) ≲ e−d
√
n (17)

for a constant d > 0 depending only on θ and N .

Remark 2 – In Bayart et al. (2018, Theorem 6.1), it is shown that, for:

Ψ (z1, . . . , zN ) =
(
λθ(z1), . . . ,λθ(zN )

)
,

we have, for constants b ≥ a > 0, depending only on θ and N :

e−bn
1/(2N )

≲ an(CΨ ) ≲ e−an
1/(2N )

.

Proof (Proof of Theorem 5). That had been proved, for N = 2 in Li, Queffélec, and
Rodríguez-Piazza (n.d.[a], Theorem 4.2 and Theorem 4.4). For convenience of the
reader, we sketch the proof.

Assume first θ ≤ 1/N , and write λθ = λNθ ◦λ1/N , where we set, for convenience,
λ1(z) = z, so Cλ1

= Id. As in the proof of Theorem 4 on p. 5 (see Li, Queffélec, and
Rodríguez-Piazza n.d.(a), Section 4), we have a factorization:

CΦ = JCλNθCλ1/N
M ,

where M and J are defined in (12) and (13).

9Li, Queffélec, and Rodríguez-Piazza, 2013, “Estimates for approximation numbers of some classes
of composition operators on the Hardy space”, Lemma 4.2.

10Stegenga, 1980, “Multipliers of the Dirichlet space”, Theorem 1.2.
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This corresponds to a diagram (recall that γ =N − 2):

H2(DN )
M−→Bγ

Cλ1/N−→ H2(D)
CλNθ−→ H2(D)

J
−→H2(DN ) .

The second arrow is bounded, since we know11 that the pullback measure mλ1/N
is

N -Carleson, so thatCλ1/N
maps BN−2 toH2(D) by the Stegenga-Carleson embedding

theorem12.

For θ < 1/N , we have Nθ < 1 and CλNθ is compact and, for some constant

b = b(θ), we have an(CλNθ ) ≲ e−b
√
n13. Hence CΦ is compact and an(CΦ ) ≲ e−b

√
n.

Now, for θ ≥ 1/N , we consider the reproducing kernels:

Ka1,...,aN (z1, . . . , zN ) =
N∏
j=1

1
1− ajzj

·

We have:

∥Ka1,...,aN ∥
2 =

N∏
j=1

1
1− |aj |2

and:

C∗Φ (Ka1,...,aN ) = Kλθ(a1),...,λθ(a1) ,

so:

∥C∗Φ (Ka1,...,aN )∥2 =
(

1
1− |λθ(a1)|2

)N
·

Since:

1− |λθ(a1)|2 ≈ 1− |λθ(a1)| ≈ (1− |a1|)θ ,

we see that ∥C∗
Φ

(Ka1,...,aN )∥/∥Ka1,...,aN ∥ is not bounded for θ > 1/N , so Cφ is then not
bounded; and it does not converge to 0 for θ = 1/N , so CΦ is then not compact. □

11Lefèvre et al., 2013b, “Some new properties of composition operators associated with lens maps”,
Lemma 3.3.

12Stegenga, 1980, “Multipliers of the Dirichlet space”, Theorem 1.2.
13Lefèvre et al., 2013b, “Some new properties of composition operators associated with lens maps”,

Theorem 2.1.
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3. Surjectivity

3 Surjectivity

Let us come back to our surjectivity issues.

Let us first remark that Theorem 2 on p. 3 gives the following result.

Theorem 6 – For every non-decreasing function δ : (0,1)→ (0,1), there exists a surjec-
tive and four-valent symbol ψ, and 0 < h0 < 1, such that, for 0 < h ≤ h0:

m({z ∈ T ; |φ∗(z)| ≥ 1− h}) ≤ δ(h) . (18)

Proof. Just observe that the passage from “ϕ two-valent and nearly surjective” to
“ψ four-valent and surjective” is harmless: for this, consider the Blaschke product:

B(z) =
(
z − a

1− az

)2

,

where 0 < a < 1, and take ψ = B◦ϕ; we observe that B(D\{0}) = D since a2 = B
(

2a
1+a2

)
,

and, for z ∈D:

1− |B(z)|
1− |z|

≥
1− | z−a1−az |

2

1− |z|2
=

1− a2

|1− az|2
≥ 1− a2

4
,

so that:

m(|ψ∗| > 1− h) =m(1− |B ◦ϕ∗| < h) ≤m
(
1− |ϕ∗| ≤ κah

)
,

with κa = 4/(1− a2). Hence, this map ψ is surjective, four-valent, and satisfies (18),
as well, up to a change of δ(h) to δ(h/κa) for ϕ at the beginning. □

3.1 A more precise statement

Our new statement is as follows.

Theorem 7 – For every positive sequence (εn)n with limit 0, there exists a surjective
and four-valent symbol ϕ such that:

an(Cϕ) ≲ e−nεn .

Consequently, there exists a surjective and four-valent symbol ϕ : D→D such that the
composition operator Cϕ : H2→H2 is in every Schatten class Sp(H2), p > 0.

Proof. Observe first that ∥ϕ∥∞ = 1 whenϕ is surjective, so that, in view of Theorem 3
on p. 3, we cannot dispense with the numbers εn, even if they can tend to 0 arbitrarily
slowly.

9
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Now, we can choose δ : (0,1)→ (0,1) non-decreasing such that δ(εn) ≤ e−nεn for
all n, and then, using Theorem 6 on the previous page, we get a surjective and
four-valent symbol ϕ, satisfying for all h small enough:

ρϕ(h) ≤ hδ2(h) .

Proposition 1 on p. 3 gives:

an(Cϕ) ≲ inf
0<h<1

[
e−nh + δ(h)

]
.

Adjusting h = εn, we get an(Cϕ) ≲ e−nεn .
To get the second part of the theorem, just take εn = n−1/2. □

3.2 A simplified proof of Theorem 2 on p. 3

We give here the announced simplified proof of Theorem 2 on p. 3. This proof is
based on the following key lemma, in which H(D) denotes the set of holomorphic
functions on D.

Lemma 1 (Lefèvre et al. 2013a, Lemma 2.11) – There exists a numerical constant C
such that, if f ∈ H(D) satisfies, for some α ∈R:{

ℑ[f (0)] < α

f (D) ⊆ {z ∈C ; 0 <ℜz < π} ∪ {z ∈C ; ℑz < α} ,

then:

m({ℑf ∗ > y}) ≤ C eα−y , for y ≥ α .

Proof (Proof of Theorem 2 on p. 3). Let g : (0,∞)→ (0,∞) be a continuous decreasing
function such that:

lim
t→0+

g(t) = +∞ , g(π) = π, lim
t→+∞

g(t) = 0 .

Then let Ω be the simply connected region defined by:

Ω = {x+ iy ; x > 0 , g(x) < y < g(x) + 4π} ,

and f : D→Ω be a Riemann map such that f (0) = π + 3iπ. Observe that we can
apply Lemma 1 to f with α = 5π sinceℑf (0) = 3π and if f (z) = x+ iy with x ≥ π;
hence:

ℑf (z) = y < g(x) + 4π ≤ g(π) + 4π = 5π.

10



3. Surjectivity

Finally, consider the symbol ϕ = e−f . It is nearly surjective: φ(D) = D \ {0}, and
two-valent, as easily checked.

For 0 < h ≤ 1/2, we have for ξ ∈ T and |φ∗(ξ)| > 1− h:

e−2h ≤ 1− h < |φ∗(ξ)| = exp
(
−ℜf ∗(ξ)

)
;

henceℜf ∗(ξ) < 2h.
But if 2h > x = ℜf ∗(ξ), we have g(x) > g(2h). As f ∗(ξ) = x + iy ∈ Ω, we get

ℑf ∗(ξ) = y ≥ g(x) > g(2h). Lemma 1 on the preceding page now gives:

m({ξ ; |ϕ∗(ξ)| > 1− h}) ≤m({ξ ; ℑf ∗(ξ) > g(2h)}) ≤ C e5π−g(2h) . (19)

It is now enough to adjust g so as to have eg(t) ≥ C e5π/δ(t/2) for t small enough to
get (4) from (19). □

For sake of completeness, we give the proof of Lemma 1 on the preceding page.

Proof (Proof of Lemma 1 on the preceding page). We now prove Lemma 1 on the pre-
ceding page. If ey−α < 2, there is nothing to prove, since then:

m(ℑf ∗ > y) ≤ 1 ≤ 2eα−y .

We can hence assume that ey−α ≥ 2. First, we make a comment. If the Riemann
mapping theorem is very general and flexible, it gives very few informations on the
parametrization t 7→ f ∗(eit) when f : D→Ω is a conformal map, except in some
specific cases (lens maps, cusps, etc.: see Li, Queffélec, and Rodríguez-Piazza 2013).
Here, the Kolmogorov weak type inequality provides a substitute. Write:

f = u + iv

and set:

f1 = −if + i
π
2
−α = v −α + i

(
π
2
−u

)
and:

F1 = 1 + ef1 = (1 + ev−α sinu) + iev−α cosu .

If v < α, thenℜF1 > 1− |sinu| ≥ 0. If v ≥ α, then 0 < u < π andℜF1 ≥ 1. Hence
F1 maps D to the right half-plane C0 = {z ; ℜz > 0}. Finally, let F =U + iV : D→C0
be defined by:

F = F1 − iℑF1(0) ,

11



Composition operators with surjective symbol D. Li et al.

so that V (0) = 0. By the Kolmogorov inequality for the conjugation mapU 7→ V , and
the harmonicity of U , we have, for all λ > 0 (a designating an absolute constant):

m(|F∗| > λ) ≤ a
λ
∥U ∗∥1 =

a
λ

∫
T

U ∗ dm =
a
λ
U (0) . (20)

Next, we claim that:

|ℑF1(0)| < 1 and U (0) < 2 . (21)

Indeed, v(0) < α by hypothesis, so that |ℑF1(0)| = ev(0)−α |cosu(0)| < 1, and U (0) =
1 + ev(0)−α sinu(0) < 2. Suppose now that, for some y > α and z ∈ D, we have
v(z) > y. Then, 0 < u(z) < π by our second assumption, and this impliesℜef1(z) =
ev(z)−α sinu(z) > 0, so that, using |1 +w| ≥ |w| ifℜw > 0 and (21), and remembering
that ey−α ≥ 2:

|F(z)| =
∣∣∣1 + ef1(z) − iℑF1(0)

∣∣∣ ≥ ∣∣∣1 + ef1(z)
∣∣∣− 1

≥
∣∣∣ef1(z)

∣∣∣− 1 = ev(z)−α − 1 > ey−α − 1 ≥ 1
2

ey−α .

Taking radial limits and using (20) and (21), we get:

m(ℑf ∗ > y) ≤m(|F∗| > ey−α/2) ≤ 4aeα−y .

This ends the proof of Lemma 1 on p. 10 with C = max(2,4a). □

4 Application to the multidimensional case

In this section, we apply Theorem 6 on p. 9 and Theorem 7 on p. 9 to show that,
for N ≥ 2, the image of the symbol cannot determine the behavior of the approx-
imation numbers, or rather of βN (Cφ), of the associated composition operator
Cφ : H2(DN )→H2(DN ).

Recall that for an operator T : H1→H2, we set:

β−N (T ) = liminf
n→∞

[an(T )]1/n1/N
and β+

N (T ) = limsup
n→∞

[an(T )]1/n1/N
, (22)

and write βN (T ) when β−N (T ) = β+
N (T ).

Theorem 8 – For N ≥ 2, there exist pairs of symbols Φ1,Φ2 : DN → D
N , such that

Φ1(DN ) = Φ2(DN ) and:

1) CΦ1
is not bounded, but CΦ2

is compact, and even βN (CΦ2
) = 0;

2) CΦ1
is bounded but not compact, so βN (CΦ1

) = 1, and CΦ2
is compact, with

βN (CΦ2
) = 0;

12
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3) CΦ1
is compact, with β−N (CΦ1

) > 0 and β+
N (CΦ1

) < 1, and CΦ2
is compact, with

βN (CΦ2
) = 0;

4) CΦ1
is compact, with βN (CΦ1

) = 1, and CΦ2
is compact, but with βN (CΦ2

) = 0.

Proof. Let σ : D→ D be a surjective symbol such that ρσ (h) ≤ hN e−2/h2
given by

Theorem 6 on p. 9. By Proposition 2 on p. 4, we have, with γ =N − 2:

an(Cσ : Bγ →H2) ≲ inf
0<h<1

(n(N−1)/2e−nh + e−1/h2
) ,

and, with h = 1/n1/3, we get an(Cσ : Bγ →H2) ≲ e−d n
2/3

.
We choose the exponent 2/3 for fixing the ideas, but every exponent α > 1/2,

with α < 1, (i.e. an(Cσ : Bγ →H2) ≲ e−d n
α
) would be suitable.

1) We take Φ1(z1, z2, z3, . . . , zN ) = (z1, z1, . . . , z1). The composition operator CΦ1

is not bounded because if fn(z1, . . . , zN ) =
(
z1+z2

2

)n
, then ∥fn∥22 = 4−n

∑n
k=0

(n
k

)2 =

4−n
(2n
n

)
≈ 1/
√
n, though (CΦ1

fn)(z1, . . . , zN ) = zn1 and ∥CΦ1
fn∥2 = 1.

We define Φ2 by:

Φ2(z1, z2, . . . , zN ) =
(
σ (z1),σ (z1), . . . ,σ (z1)

)
.

Since σ is surjective, we have Φ2(DN ) = Φ1(DN ). Now, as in the proof of Theorem 4
on p. 5, we have CΦ2

= JCσM, so:

an(CΦ2
) ≤ an(Cσ : BN−2→H2) ≲ e−d n

2/3
,

by the ideal property. Hence [an(CΦ2
)]1/n1/N

≲ e−d n
2
3 −

1
N and therefore βN (CΦ2

) = 0
since 2

3 −
1
N > 0.

2) We consider the lens map λ = λ1/N of parameter 1/N . We define:Φ1(z1, . . . , zN ) =
(
λ(z1),λ(z1), . . . ,λ(z1)

)
Φ2(z1, . . . , zN ) =

(
λ[σ (z1)],λ[σ (z1)], . . . ,λ[σ (z1)]

)
.

Since σ is surjective, we have Φ1(DN ) = Φ2(DN ) and we saw in Theorem 5 on p. 7
that CΦ1

is bounded but not compact.
On the other hand, we have the factorization CΦ2

= JCσCλM. Hence CΦ2
is

compact, and, as in 1), βN (CΦ2
) = 0.

3) For this item, the map σ does not suffice, and we will use another surjective
symbol s : D→D. By Theorem 6 on p. 9, there exists such a map s with:

ρs(t) ≤ t2e−2/t2 (23)

13
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and

ρs(t) ≤ t δ2(t) (24)

for t small enough, where δ : (0,1)→ (0,1) is a non-decreasing function such that
δ(εn) ≤ e−nεn and:

εn = n−
1

4N−7 . (25)

By the proof of Theorem 7 on p. 9, (24) implies that:

an(Cs) ≤ e−nεn . (26)

We also consider a lens map λ = λθ , with parameter θ < 1/N , and we set:
Φ1(z1, . . . , zN ) =

(
λ(z1),λ(z1),

z3

2
, . . . ,

zN
2

)
Φ2(z1, . . . , zN ) =

(
λ[s(z1)],λ[s(z1)],

s(z3)
2

, . . . ,
s(zN )

2

)
.

Since s is surjective, we have Φ1(DN ) = Φ2(DN ).
a) Let us prove that β−N (CΦ1

) > 0 and β+
N (CΦ1

) < 1.
Note that:

CΦ1
= Cu ⊗Cv3

⊗ · · · ⊗CvN ,

where u : D2→D
2 is defined by u(z1, z2) =

(
λ(z1),λ(z1)

)
and vj : D→D is defined

by vj (zj ) = zj /2. In fact, if f ∈H2(D2) and gj ∈H2(D), 3 ≤ j ≤N , we have:

[CΦ1
(f ⊗ g3 ⊗ · · · ⊗ gN )](z1, z2, z3, . . . , zN )

= (f ⊗ g3 ⊗ · · · ⊗ gN )
(
u(z1, z2),v3(z3), . . . , vN (zN )

)
= f [λ(z1),λ(z1)]g3[v3(z3)] · · ·gN [vN (zN )]

= (Cuf )(z1, z2) (Cv3
g3)(z3) · · · (CvN gN )(zN )

= [(Cu ⊗Cv3
⊗ · · · ⊗CvN )(f ⊗ g3 ⊗ · · · ⊗ gN )](z1, z2, z3, . . . , zN ) ,

hence the result sinceH2(D2)⊗H2(D)⊗· · ·⊗H2(D) is dense inH2(DN ). That proves
in particular that CΦ1

is compact since Cu and Cv3
, . . . ,CvN are (by Theorem 5 on

p. 7 for Cu).
By the supermultiplicativity of singular numbers of tensor products (see Li,

Queffélec, and Rodríguez-Piazza n.d.(a), Lemma 3.2), it ensues that:

anN (CΦ1
) ≥ an2(Cu)

N∏
j=3

an(Cvj ) = an2(Cu)
(1

2

)n(N−2)
.

14
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By Li, Queffélec, and Rodríguez-Piazza (n.d.[a], Remark at the end of Section 4), we
have an2(Cu) ≳ e−bn for some positive constant b = b(θ). Indeed, if J = J2 : H2(D)→
H2(D2) is the canonical injection defined by (Jh)(z1, z2) = h(z1) and Q : H2(D2)→
H2(D) is defined by (Qf )(z1) = f (z1,0), we have Cλ = QCuJ . Hence ak(Cu) ≳
ak(Cλ) ≳ e−b

√
k .

Therefore we get:

anN (CΦ1
) ≳ e−cn

for some positive constant depending only on θ and N . It follows that β−N (CΦ1
) > 0.

To see that β+
N (CΦ1

) < 1, we need the following lemma, whose proof is postponed.

Lemma 2 – Let S : H1→H1 and T : H2→H2 be two operators between Hilbert spaces
and A,B a pair of positive numbers. Then, whenever:

a[nA](S) ≤ e−cn and a[nB](T ) ≤ e−cn ,

where [ . ] stands for the integer part, we have, for some constant integerM =M(A,B) > 0:

aM [nA+B](S ⊗ T ) ≤ e−cn .

Let S = Cu and T = Cv3
⊗ · · · ⊗ CvN . For c small enough, we have anN−2(T ) ≤

C (1/2)n ≤ e−cn and, using (17), an2(S) ≤ e−dn ≤ e−cn. Hence, with A = 2, B = N − 2,
Lemma 2 gives:

aMnN (CΦ1
) ≲ e−cn .

Therefore β+
N (CΦ1

) ≤ e−c/M
1/N

< 1.

b) Define Ψ : DN →D
N by:

Ψ (z1, z2, z3, . . . , zN ) =
(
s(z1), s(z1), s(z3), . . . , s(zN )

)
.

If τ1 : D2→D
2 is defined by τ1(z1, z2) =

(
s(z1), s(z1)

)
and the map τ2 : DN−2→

D
N−2 by τ2(z3, . . . , zN ) =

(
s(z3), . . . , s(zN )

)
, we have:

CΨ = Cτ1
⊗Cτ2

.

As in the proof of Theorem 4 on p. 5, we have the factorization:

τ1 : H2(D2)
M−→B0 = B2 Cs−→H2(D)

J
−→H2(D2) .

Hence an(Cτ1
) ≤ ∥M∥∥J∥an(Cs : B2→H2).

15
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By Proposition 2 on p. 4, we have:

an(Cs : B2→H2) ≲ inf
0<h<1

(√
ne−nh + sup

0<t≤h

√
ρs(t)
t2

)
;

so (23) implies that an(Cs : B2 → H2) ≲ inf0<h<1(
√
ne−nh + e−1/h2

) and, taking
h = n−1/3, we get, with some c small enough:

an(Cs : B2→H2) ≲ e−cn
2/3
.

It follows that an(Cτ1
) ≲ e−cn

2/3
and hence:

a[n3/2](Cτ1
) ≲ e−cn . (27)

On the other hand, Bayart et al. (2018, Theorem 5.5) says that:

an(Cτ2
) ≤ 2N−3∥Cs∥N−2 inf

n3···nN≤n

(
an3

(Cs) + · · ·+ anN (Cs)
)
.

Taking n3 = · · · = nN = n
1

N−2 , we get, using (26):

an(Cτ2
) ≤ KNN exp

(
−n

1
N−2 ε

n
1

N−2

)
.

Using (25), that gives:

an(Cτ2
) ≲ exp

(
−n

1
N−2 (1− 1

4N−7 )
)

= exp
(
−n

4
4N−7

)
,

or:

a[
nN−

7
4
](Cτ2

) ≲ e−n ≤ e−cn . (28)

Now, (27) and (28) allow to use Lemma 2 on the previous page with A = 3/2 and
B =N − 7/4, and we get:

a
M

[
nN−

1
4
](CΨ ) ≲ e−cn .

Equivalently:

ak(CΨ ) ≲ exp
(
− c′k

4
4N−1

)
and: (

ak(CΨ )
)1/k1/N

≲ exp
(
− c′k

4
4N−1−

1
N
)

= exp
(
− c′k

1
N (4N−1)

)
,
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4. Application to the multidimensional case

which gives βN (CΨ ) = 0.
To end the proof, it suffices to remark that CΦ2

= CΨ ◦CΦ1
, since Φ2 = Φ1 ◦Ψ ,

and hence β+
N (CΦ2

) ≤ β+
N (CΨ ) = 0, so βN (CΦ2

) = 0.

4) We use a Shapiro-Taylor map. This one-parameter map ςθ , θ > 0, was
introduced by J. Shapiro and P. Taylor in 197314 and was further studied, with
a slightly different definition, in Lefèvre et al. (2008, Section 5). J. Shapiro and
P. Taylor proved that Cςθ : H2 → H2 is always compact, but is Hilbert-Schmidt if
and only if θ > 2. Let us recall their definition.

For 0 < ε < 1, we set Vε = {z ∈ C ; ℜz > 0 and |z| < ε}. For ε = εθ > 0 small
enough, one can define:

fθ(z) = z(− lnz)θ ,

for z ∈ Vε, where lnz will be the principal determination of the logarithm. Let
now gθ be the conformal mapping from D onto Vε, which maps T = ∂D onto ∂Vε,
defined by gθ(z) = εφ0(z), where φ0 is given by:

φ0(z) =

( z − i
iz − 1

)1/2
− i

−i
( z − i
iz − 1

)1/2
+ 1
·

Then, we define:

ςθ = exp(−fθ ◦ gθ).

We proved in Li, Queffélec, and Rodríguez-Piazza (2013, Section 4.2) (though it
is not sharp) that:

an(Cςθ ) ≳
1
nθ/2

· (29)

We define Φ1 : DN →D
N as:

Φ1(z1, z2, . . . , zN ) =
(
ςθ(z1),0, . . . ,0

)
. (30)

If J = JN : H2(D)→H2(DN ) is the canonical injection defined by (Jh)(z1, . . . , zN ) =
h(z1) and Q = QN : H2(DN )→ H2(D) is defined by (Qf )(z1) = f (z1,0, . . . ,0), then
CΦ1

= JCςθQ; hence CΦ1
is compact. On the other hand, we also have QCΦ1

J = Cςθ ,
which implies that an(CΦ1

) ≳ an(Cςθ ) ≳ n−θ/2. It follows that:

βN (CΦ1
) ≥ lim

n→∞
(n−θ/2)1/n1/N

= 1 ,

and hence βN (CΦ1
) = 1.

17



Composition operators with surjective symbol D. Li et al.

Now, if:

Φ2(z1, . . . , zN ) =
(
ςθ[σ (z1)],0, . . . ,0

)
,

since σ is surjective, we have Φ1(DN ) = Φ2(DN ). Moreover, we have CΦ2
=

JCςθ◦σQ = JCσCςθQ, so an(CΦ2
) ≲ an(Cσ ). Since ρσ (h) ≤ hN+1 e−2/h2

, Proposition 1
on p. 3 gives, with h = 1/n1/3:

an(Cσ ) ≲ e−cn
2/3
,

so [an(CΦ2
)]1/n1/N

≲ exp(−cn
2
3−

1
N ) and βN (CΦ2

) = 0. □

Proof (Proof of Lemma 2 on p. 15). In Li, Queffélec, and Rodríguez-Piazza (n.d.[a]),
we observed that the singular numbers of S⊗T are the non-increasing rearrangement
of the numbers sjtk , where sj and tk denote respectively the j-th and the k-th singular
number of S and T . We can assume s1 = t1 = 1. Using this observation, we will
majorize the number of pairs (j,k) such that sjtk > e−cn. Let (j,k) be such a pair.
Since sj ≤ s1 = 1, we have tk ≥ e−cn so that k ≤ [nB] ≤ nB. Hence, for some 2 ≤ l ≤ n,
we have (l − 1)B < k ≤ lB. Then, due to the assumption on T , tk < e−c(l−1) and
sj ≥ e−cnt−1

k ≳ e−c(n−l+1), implying that j ≲ (n− l + 1)A, thanks to the assumption on
S. As a consequence, since the number of integers k such that (l − 1)B < k ≤ lB is
dominated by lB−1, the number νn of pairs (j,k) such that sjtk > e−cn is dominated
by:

n∑
l=1

(n− l + 1)AlB−1 ∼ nA+B
∫ 1

0
tA(1− t)B dt ,

by a Riemann sum argument. Next, let M ∈N big enough to have:

n∑
l=1

(n− l + 1)AlB−1 ≤MnA+B − 1 , for all n.

By definition, aM[nA+B](S ⊗ T ) ≤ aνn+1(S ⊗ T ) ≤ e−cn, giving the result. □
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