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Abstract

We give a new proof of the existence of a surjective symbol whose associated
composition operator on H?(ID) is in all Schatten classes, with the improvement
that its approximation numbers can be, in some sense, arbitrarily small. We
show, as an application, that, contrary to the 1-dimensional case, for N > 2,
the behavior of the approximation numbers a, = a,(Cg), or rather of fy; =

l/nl/N

. . /N .
liminf,_,.[a;] or [j’;(] = l1msupn_)oo[an]1/" , of composition operators

on HZ(IDN) cannot be determined by the image of the symbol.
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1 Introduction

We start by recalling some notations and facts.

Let ID be the open unit disk, H? the Hardy space on D, and ¢: ID — ID a non-
constant analytic self-map. It is well known* that ¢ induces a composition operator
Cy: H? — H? by the formula:

C(p(f):fo(P'

and the connection between the “symbol” ¢ and the properties of the operator
Cy: H? — H?, in particular its compactness, can be further studied>.
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We also recall that the nth approximation number 4,(T), n = 1,2,..., of an
operator T: Hy — H,, between Hilbert spaces H; and H,, is defined as the distance
of T to operators of rank < n, for the operator-norm:

ay(T)=_inf |IT—R]. (1)

rank R<n

The p-Schatten class S,(Hj, H,), p > 0 consists of all T: Hy — H, such that
(an(T))n € {P. The approximation numbers have the ideal property:

ay(ATB) <||Alla,(T)IB|.
Let now, for £ € T = JID and k> 0, the Carleson window S(&, ) be defined as:
S(&h)={zeD; |z—&[ < h}. (2)

For a symbol ¢, we define m, = ¢*(m) where m is the Haar measure of T and

@*: T — D the (almost everywhere defined) radial limit function associated with ¢,
namely:

P'(&) = lim ¢(r¢).
Finally, we set for i > 0:

Pe(h) = supmy,[S(&, h)]. (3)
EeT

It is known® that p,,(h) = O (h) and that C,” is compact if and only if p,(h) = o (h)
as h — 0. Simpler criteria® exist when ¢ is injective, or even p-valent, meaning that
for any w € ID, the equation ¢(z) = w has at most p solutions.

A measure p on D is called a-Carleson, a > 1, if sup -y p[S(&, h)] = O (h?).

B. MacCluer and J. Shapiro showed in MacCluer and H. Shapiro (1986, Exam-
ple 3.12) the following result, paradoxical at first glance.

Theorem 1 (MacCluer-Shapiro) — There exists a surjective and four-valent symbol
@: ID — ID such that the composition operator C: H? — H? is compact.

Observe that such a symbol ¢ cannot be one-valent (injective), because it would
be an automorphism of D, and C, would be invertible and therefore not compact.
In Lefevre et al. (2012, Theorem 4.1), we gave the following improved statement.

6]. Shapiro, 1993, Composition operators and classical function theory.
7MacCluer, 1984, “Spectra of compact composition operators on HP (By)”.
8]. Shapiro, 1993, Composition operators and classical function theors.



2. Background and preliminary results

Theorem 2 — For every non-decreasing function o: (0,1) — (0, 1), there exists a two-
valent symbol and nearly surjective (i.e. (D) =1ID\ {0}) symbol ¢, and 0 < hy <1, such
that:

m({zeT; |¢p*(z)| =1 —-h}) <6(h) for 0<h<hy. (4)

As a consequence, there exists a surjective and four-valent symbol 1: ID — ID such that
the composition operator Cy,: H? — H? is in every Schatten class SP(HZ), p>0.

Our proof was rather technical and complicated, and based on arguments of
barriers and harmonic measures.

The goal of this paper is to give a more precise statement of Theorem 2 in terms of
approximation numbers a,(C,), and not only in terms of Schatten classes, and with

a simpler proof. We then apply this result to show that for the polydisk DV, N > 2,
the nature (boundedness, compactness, asymptotic behavior of approximation
numbers) of the composition operator cannot be determined by the geometry of the
image ¢(IDV) of its symbol ¢. For certain asymptotic behavior of approximation
numbers, this is contrary to the 1-dimensional case (see Li, Queffélec, and Rodriguez-
Piazza 2015, Theorem 3.1 and Theorem 3.14).

The notation A < B means that A < C B for some positive constant C, and A ~ B
that A < Band B < A.

2 Background and preliminary results

We initiated the study of approximation numbers of composition operators on H? in
Li, Queffélec, and Rodriguez-Piazza (2012), and proved the following basic results:

Theorem 3 — If @ is any symbol, then, for some 6 >0 and r >0, or a > 0:
a,(Cy) 201" =0e™".

Moreover, as soon as ||@||., = 1, there exists some sequence &, tending to 0 such that:

We also proved in Li, Queffélec, and Rodriguez-Piazza (2012, Theorem 5.1) that:

Proposition 1 — For any symbol ¢, we have:

o)

a,(C,) < inf
n( (p) 0<h<1

h
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We also recall (see Li, Queffélec, and Rodriguez-Piazza 2012) that, for y > -1,
the weighted Bergman space B, is the space of functions f(z) = } 72 a,2" such that:

2
12 = Z('L <oo. (5)

y+1
= (n+ 1)

Equivalently, B, is the space of analytic functions f: ID — C such that:

fD @Ry + 1)(1 - |2P) dA(z) < o, ©)
where dA is the normalized area measure on D, and then:
[ 1F@ grs 11 -1y s~ )

The case y = 0 corresponds to the usual Bergman space 32, and the limiting case
y = -1 to the Hardy space H?. We wish to note in passing (we will make use of that
elsewhere) that the proof of Theorem 5.1 in Li, Queffélec, and Rodriguez-Piazza
(2012) easily gives the following result.

Proposition 2 - Let y > -1 and ¢ a symbol inducing a bounded composition operator
Cy: By — H?. Then:

t
0(Cpi B, — HY) 5 inf [(n+ 0024 sup |22 ).
0<h<1 P t2+7

Proof. Take E = z"B,; this is a subspace of B,, of codimension <n. Let f € E with

llf1l, = 1. Writing f = z"g with llgll2 < (n+1)7*! and splitting the integral into two
parts, we have, for 0 <h < 1:

IC fI,s = f P dmy < (1 —h)znf g dm, +f £ dmy.
D D

(1-h) D\(1-h)D

For the first integral, we have:

de Sf zd}’l’l =C 2 <|IC 2 2‘ g
J(l_hm|g| o< [ 1P dmy =1Cogll <ICAIR sl ®)

For the second integral, we have:

J P dmy <1 B, — LGP,
D\(1-h)D



2. Background and preliminary results

where p, is the restriction of m,, to the annulus {z€ ID; 1-h <|z[ < 1} and ] the
canonical injection of B, into L%(uy). Hence Stegenga’s version of the Carleson
embedding theorem for B, (Stegenga 1980, Theorem 1.2; see Hastings 1975 for the
unweighted case; see also Duren and Schuster 2004, p. 62 or Zhu 2007, p. 167) gives
us:

Po(1)
IfI>dmy < su : (9)
le\(l—h)lD / ¢ 0<t£)h 2y

Putting (8) and (9) together, that gives:

p(/)(t)

t2+)/ ’

ICy fll2 < €(n+ 1)V 4 sup
0<t<h

In other terms, using the Gelfand numbers cy:

Cn+1 (C(/J : B)/ — H2) <(n+ 1)(7*1)/2 e M 4 sup
As a,.1 =c¢,,1 and as we can ignore the difference between a,, and a,,,1, that finishes
the proof. -

As an application, we mention the following result. We refer to Li, Queffélec, and
Rodriguez-Piazza (2013, Section 4.1) for the definition of the cusp map, denoted y.

Theorem 4 — Let x: ID — ID be the cusp map and ®: DN — DN the diagonal map
defined by:

D(z1,22,...,2x) = (x(21), X (21)s- . X (21) ). (10)
Then, the composition operator Cq, maps H>(IDN) to itself and:
an(Co) S eV (11)

where d is a positive constant depending only on N.

Remark 1 - We have to compare with Bayart et al. (2018, Theorem 6.2) where, for:

W(zy,...,28) = (X(Zl);--n)((zN)):
it is shown that, for constants b > a > 0 depending only on N:

1/N 1/N
e—b(n /1nn) San(CW)Se_a(H /lnn).

Note also that for N = 1, the estimate of Theorem 4 is very crude.
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Proof (Proof of Theorem 4 on the previous page). Take y = N —2. As in Li, Queffélec,
and Rodriguez-Piazza (n.d.[a], Section 4), we have thanks to the Cauchy-Schwarz
inequality, and the fact that Z|a|:n 1~(n+ 1)N’1, a factorization:

Co = JC M,
where M: H?(DY) — B,, is defined by Mf = g with:
g(z):f(z,z,...,z):Z[Zua]z”, zeD, (12)
n=0\|al=n

for

f(z1,20,...,2n) = Zaaz‘fl ez,
o

and where J: H?(ID) — H?(ID) is the canonical injection given by:
(Jh)(z1,22,.-.,2n) = h(z1). (13)

This corresponds to a diagram:

C
H2(DN) % B, =5 H2 (D)L H2(DY), (14)
where C,: B, = By_, — H?(ID) is a bounded operator. Indeed, we have the behav-
ior?:
, 1
1-x*(e'?) ~ _
=N~ e

and this implies, with ¢ an absolute constant:

m[S(E,h)] < my[S(1,h)] = m({lx*(e'?) — 1| < h)

(15)
< m[{c/In(1/]6]) < h}] < e™;
in particular p,(h) < e=/" = O(hN), so m, is an N-Carleson measure and the
Stegenga-Carleson theorem!? says that the operator C,: By_, — H?(ID) is bounded.
Now Proposition 2 on p. 4 with (15) give:

ay(Cy: By - Hz) < Oi<1;11£1 (n+ 1)(N_1)/2 ey e_c/hh_N/z],

Adjusting h = 1/+/n, we get a,,(C,: B, — H?) < e~V for some positive constant d.
Finally, the factorization Cgp = JC, M and the ideal property of approximation
numbers give the result. O



2. Background and preliminary results

In the case of lens maps, Proposition 2 on p. 4 gives very poor estimates. We
avoid using this theorem in Li, Queffélec, and Rodriguez-Piazza (n.d.[a], Section 4),
when N = 2, using the semi-group property of those lens maps. The same proof
gives for arbitrary N > 2 the following result.

Theorem 5 — Let Ay the lens map with parameter 6, 0 <0 < 1, and let O: DN - DN
be the diagonal map defined by:

©(21,25,..,2n) = (Ao(21), Ag(21), -, Ao(21)). (16)
Then:
1) if 6 > 1/N, Co is unbounded on H*(DN);
2) if 0 = 1/N, Cg is bounded and not compact on H>(IDN);
3) if @ <1/N, Cg is compact on H*>(IDN) and moreover:
an(Cop) s e V" (17)
for a constant d > 0 depending only on 6 and N.

Remark 2 — In Bayart et al. (2018, Theorem 6.1), it is shown that, for:

W(zy,...,2n) = (Ao (1), Ao(zn)),

we have, for constants b > a > 0, depending only on 6 and N:

e_bnl/(ZN) 1/(2N)

< an(C\I’) < e "

Proof (Proof of Theorem 5). That had been proved, for N = 2 in Li, Queffélec, and
Rodriguez-Piazza (n.d.[a], Theorem 4.2 and Theorem 4.4). For convenience of the
reader, we sketch the proof.

Assume first 6 < 1/N, and write 1g = Ayg o A1/n, where we set, for convenience,
A1(z) = z,50 Cy, =1d. As in the proof of Theorem 4 on p. 5 (see Li, Queffélec, and
Rodriguez-Piazza n.d.(a), Section 4), we have a factorization:

Co =JChye Carn M,

where M and | are defined in (12) and (13).

9Li, Queffélec, and Rodriguez-Piazza, 2013, “Estimates for approximation numbers of some classes
of composition operators on the Hardy space”, Lemma 4.2.

10Gtegenga, 1980, “Multipliers of the Dirichlet space”, Theorem 1.2.
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This corresponds to a diagram (recall that y = N - 2):

C

A oV) L, 1 20y Y g2y L (DY),

The second arrow is bounded, since we know!! that the pullback measure My, is
N-Carleson, so that C,, | maps By to H?(ID) by the Stegenga-Carleson embedding

theorem12,

For 6 < 1/N, we have NO < 1 and C)yp 1s compact and, for some constant
b =b(6), we have a,(C), ) < e~UVi13 Hence Cg is compact and 4,,(Cp) < e bV,

Now, for 8 > 1/N, we consider the reproducing kernels:

ZZ
,_.
;:al =

Kal,...,aN (Zl, XN ZN

-
Il
—_

We have:

2 _ |N| 1
||Ka17~"!aN “ - 1- | -|2
=1

and:

Co(Kay,.an) = Kagay),. 1g(a1)

SO:

N
1
C: (K 2~ | .

Since:
1-|Ag(ay)l* ~ 1 =|Ag(ay)l = (1= ay])?,

we see that [|Cg,(Ky, .y )Il/1IKg,.....ay |l is not bounded for 6 > 1/N, so Cy is then not
bounded; and it does not converge to 0 for 6 = 1/N, so Cy is then not compact. O

I efévre et al., 2013b, “Some new properties of composition operators associated with lens maps”,
Lemma 3.3.

125tegenga, 1980, “Multipliers of the Dirichlet space”, Theorem 1.2.

I3Lefévre et al., 2013b, “Some new properties of composition operators associated with lens maps”,
Theorem 2.1.



3. Surjectivity

3 Surjectivity
Let us come back to our surjectivity issues.
Let us first remark that Theorem 2 on p. 3 gives the following result.

Theorem 6 — For every non-decreasing function o: (0,1) — (0, 1), there exists a surjec-
tive and four-valent symbol 1, and 0 < hy < 1, such that, for 0 < h < hg:

m({z € T; |¢p*(z)| > 1 - h}) < 5(h). (18)

Proof. Just observe that the passage from “¢ two-valent and nearly surjective” to
“1p four-valent and surjective” is harmless: for this, consider the Blaschke product:

_ 2
B<z>=(z “),

1-az

where 0 < a < 1, and take 1) = Bo@; we observe that B(ID\{0}) = ID since a? = B(%),
and, for z € D:

1-az

= > ,
1-lzl = 1-]z2 1-az? ~ 4

1—|B(z)|>1—|2_a|2_ 1-a> _1-4°

so that:
m(|*|>1—h)=m(1-|Bo @' <h) <m(1-|p| < x.h),

with x, =4/(1 - az). Hence, this map 1 is surjective, four-valent, and satisfies (18),
as well, up to a change of 6(h) to 0(h/x,) for ¢ at the beginning. O
3.1 A more precise statement

Our new statement is as follows.

Theorem 7 — For every positive sequence (&), with limit 0, there exists a surjective
and four-valent symbol ¢ such that:

a,(Cyp) s e,

Consequently, there exists a surjective and four-valent symbol ¢: ID — ID such that the
composition operator C,,: H*> — H? is in every Schatten class S,(H?), p > 0.

Proof. Observe first that ||¢||, = 1 when @ is surjective, so that, in view of Theorem 3
on p. 3, we cannot dispense with the numbers ¢,,, even if they can tend to 0 arbitrarily
slowly.
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Now, we can choose 0: (0,1) — (0,1) non-decreasing such that o(e,) < e ™ for
all n, and then, using Theorem 6 on the previous page, we get a surjective and
four-valent symbol ¢, satisfying for all k small enough:

pp(h) <hd>(h).
Proposition 1 on p. 3 gives:

. —nh
ay(Cy) < inf [e +6(h)].

Adjusting h = ¢, we get a,,(Cy,) S e
To get the second part of the theorem, just take ¢, = n~1/2. O

3.2 A simplified proof of Theorem 2 on p. 3

We give here the announced simplified proof of Theorem 2 on p. 3. This proof is
based on the following key lemma, in which H(ID) denotes the set of holomorphic
functions on D.

Lemma 1 (Lefévre et al. 2013a, Lemma 2.11) — There exists a numerical constant C
such that, if f € H(ID) satisfies, for some a € R:

Tm[f(0)] <@
f(D)C{zeC; 0<Rez<m}U{zeC; Imz<a},

then:
m({Imf* >y}) < Ce*™?, fory>a.

Proof (Proof of Theorem 2 on p. 3). Let g: (0,00) — (0, 00) be a continuous decreasing
function such that:

lim g(t) =400, g(m)=m, lim g(t)=0.

t—0* t—+00

Then let Q) be the simply connected region defined by:

Q={x+iy; x>0, g(x) <y < g(x)+4n},
and f: D — Q be a Riemann map such that f(0) = 7+ 3in. Observe that we can
apply Lemma 1 to f with a = 57 since Imf(0) = 37w and if f(z) = x +iy with x > 7t;

hence:

Imf(z) =y < g(x)+4n < g(n) + 4 = 57.

10



3. Surjectivity

Finally, consider the symbol ¢ = e~f. It is nearly surjective: ¢(ID) = D\ {0}, and
two-valent, as easily checked.
For 0 <h <1/2, we have for £ € T and [p*(&)[ > 1—h:

e <1-h<|p*(E) =exp(—Ref(8));

hence Ref*(&) < 2h.
But if 21 > x = Ref*(&), we have g(x) > g(2h). As f*(&) = x+iy € Q, we get
Imf*(&) =y = g(x) > g(2h). Lemma 1 on the preceding page now gives:

m({&; | (&) > 1-h)) < m({&; Imf*(&) > g(2h)}) < Ce>™ 8N, (19)

It is now enough to adjust g so as to have e8(*) > Ce>/5(t/2) for t small enough to
get (4) from (19). |

For sake of completeness, we give the proof of Lemma 1 on the preceding page.

Proof (Proof of Lemma 1 on the preceding page). We now prove Lemma 1 on the pre-
ceding page. If e¥~® < 2, there is nothing to prove, since then:

m(Imf*>y)<1<2e*7.

We can hence assume that e?~% > 2. First, we make a comment. If the Riemann
mapping theorem is very general and flexible, it gives very few informations on the
parametrization t — f*(e’f) when f: ID — Q is a conformal map, except in some
specific cases (lens maps, cusps, etc.: see Li, Queffélec, and Rodriguez-Piazza 2013).
Here, the Kolmogorov weak type inequality provides a substitute. Write:

f=u+iv
and set:

fi :—if+i%—a:v—a+i(%—u)
and:

Fi=1+ell =(1+e" ¥sinu)+ie’ % cosu.

If v <@, then ReF; >1—|sinu|>0. If v > a, then 0 <u <7 and ReF; > 1. Hence

F1 maps D to the right half-plane Cy = {z; Rez > 0}. Finally,let F=U+iV: D — C,
be defined by:

F = F1 - iImFl(O),

11
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so that V(0) = 0. By the Kolmogorov inequality for the conjugation map U + V, and
the harmonicity of U, we have, for all A >0 (4 designating an absolute constant):

a a a
F* <—|Uy== | U'dm=-=U(0). 2
wF1> 0 T = | Unam=$uto) (20)
Next, we claim that:
IImF;(0)/<1 and U(0)<2. (21)

Indeed, v(0) < a by hypothesis, so that [ImF;(0)| = e?(0-2|cosu(0)| < 1, and U(0) =
1+ e?(0)-a sinu(0) < 2. Suppose now that, for some y > a and z € ID, we have
v(z) > y. Then, 0 < u(z) < 7 by our second assumption, and this implies Ree/1?) =
e'?~%sinu(z) > 0, so that, using |1 + w| > [w| if Rew > 0 and (21), and remembering
that e?=* > 2:

|F(Z)| = |1 +ef1(z) —1ImF1(O)) > |1 +efl(z)‘ -1

2 [h] 1= 150t 1z Lo

Taking radial limits and using (20) and (21), we get:
m(Imf* >y) <m(|F|>e?"%/2) < 4ae®?.

This ends the proof of Lemma 1 on p. 10 with C = max(2, 44). O

4 Application to the multidimensional case

In this section, we apply Theorem 6 on p. 9 and Theorem 7 on p. 9 to show that,
for N > 2, the image of the symbol cannot determine the behavior of the approx-
imation numbers, or rather of By (Cy), of the associated composition operator
Cy: H*(DN) — H*(DV).

Recall that for an operator T: H; — H;, we set:
N

B(T) =liminf[a,(T)]""" and  {(T) = limsup[a,(T)]""", (22)
and write Bn(T) when B (T) = B (T).

Theorem 8 — For N > 2, there exist pairs of symbols Oy, D,: DN - DN, such that
@, (DN) = ®(DVN) and:

1) Cg, is not bounded, but Cg, is compact, and even pn(Cop,) = 0;

2) Co, is bounded but not compact, so pN(Co,) = 1, and Cq, is compact, with
Bn(Co,) = 0;

12
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3) Co, is compact, with By (Cg,) > 0 and B{(Co,) < 1, and Cq, is compact, with
BN (Co,) = 0;
4) Cg, is compact, with pn(Co,) = 1, and Cg, is compact, but with fn(Ce,) = 0.

Proof. Let o: ID — ID be a surjective symbol such that p,(h) < hN e 2 given by
Theorem 6 on p. 9. By Proposition 2 on p. 4, we have, with y = N —2:

. _ _ _ 2
a,(Cy: B, —>H2)$01rhlf1(n(N D2l | o=1/1%)
<n<

and, with h = 1/n'/3, we get a,(C,: By - H2) < e—dn??

We choose the exponent 2/3 for fixing the ideas, but every exponent a > 1/2,
with a <1, (i.e. a,(C,: B, — H?) < e™™") would be suitable.

1) We take ®;(zy,2y,23,...,2N) = (21,21,-..,21). The composition operator Cg,
. . n _
is not bounded because if f,(zq,...,25) = (%) , then |If,l5 = 47" Y], (Z)2 =
47(%") ~ 1/+/n, though (Co, f,)(21,---,2x) = 2} and ||Co, full = 1.

We define @, by:

Dy(21,23,.,2n) = (0(21),0(21), ., 0 (21)).

Since o is surjective, we have @,(IDV) = @, (D). Now, as in the proof of Theorem 4
on p. 5, we have Cg, = JC;M, so:

a,(Co,) < a,(Cy: By_p — HZ) < e_d”m,
2 1

by the ideal property. Hence [an(Ccpz)]l/”l/N <e @7 N and therefore Bn(Cop,) =0

. 2 1
smceg—ﬁ>0.

2) We consider the lens map A = A;/y of parameter 1/N. We define:

{cpl (21,-,28) = (Mz1), Alz1) -0 Alz1)

Dy(21,...,2x5) = (Alo(z1)] Alo(21)),..., Alo(z1)]).

Since o is surjective, we have @, (D) = ®,(IDV) and we saw in Theorem 5 on p. 7
that Cg, is bounded but not compact.

On the other hand, we have the factorization Cg, = JC,C,M. Hence Cg, is
compact, and, as in 1), By (Cop,) = 0.

3) For this item, the map o does not suffice, and we will use another surjective
symbol s: ID — ID. By Theorem 6 on p. 9, there exists such a map s with:

ps(t) < t2e~ 1 (23)

13
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and
ps(t) < tS3(t) (24)

for t small enough, where 6: (0,1) — (0, 1) is a non-decreasing function such that
o(e,) < e ™n and:

&, = N (25)
By the proof of Theorem 7 on p. 9, (24) implies that:
a,(Cy) <e (26)
We also consider a lens map A = Ay, with parameter 6 < 1/N, and we set:
Dy (z1,...,23) = (A(zl),A(zl),%,...,%N)
Dy(z1,...,2n) = (A[S(zl)]r/\[s(zl)]l @,---,

s(zn) )
> )
Since s is surjective, we have @, (IDV) = ®,(IDV).
a) Let us prove that 5 (Cp,) > 0 and B3, (Cp,) < 1.
Note that:
Cop, =Cy®Cy,®--®Cy,,

where u: ID? — ID? is defined by u(z;,2,) = ()\(zl),/\(zl)) and v;: ID — DD is defined
by vj(z;) =z;/2. In fact, if f € H?(ID?) and g € H?(ID), 3<j <N, we have:

[Co, (f®g® - ®gN)I(21,22,23,---,2N)
= (fog® - ®gy)(u(z1,22),v3(23),..., vn(2n))
= flMz1), Az1)]g3[v3(23)] - gn[vw (2w)]
= (Cuf)(21,22) (Cpy83)(23) -+ (Cop &N ) (2N)
=[(Cy®Cy;®--®Cy )(f ®g3® - ®gN)](21,22,23,---,2N),

hence the result since H(ID?)® H*(ID)®---®@ H?(ID) is dense in H?(IDV). That proves
in particular that Co, is compact since C,, and C,,,...,C,, are (by Theorem 5 on
p. 7 for C,).

By the supermultiplicativity of singular numbers of tensor products (see Li,
Queffélec, and Rodriguez-Piazza n.d.(a), Lemma 3.2), it ensues that:

N 1 )n(N—Z)

unN(C(DI) 2 anz(cu)l_[an(cvj) = anz(cu)(z
j=3
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4. Application to the multidimensional case

By Li, Queffélec, and Rodriguez-Piazza (n.d.[a], Remark at the end of Section 4), we
have a,2(C,) 2 e?" for some positive constant b = b(0). Indeed, if J = J,: H*(ID) —
H?(ID?) is the canonical injection defined by (Jh)(z;,2;) = h(z1) and Q: H?(ID?) —
H*(D) is defined by (Qf)(z1) = f(z1,0), we have C; = QC,J. Hence a;(C,) 2
ar(Cy) z ek,

Therefore we get:

a,N (qul )= e "
for some positive constant depending only on 6 and N. It follows that ;(Cg, ) > 0.
To see that B (Co, ) < 1, we need the following lemma, whose proof is postponed.

Lemma 2 - Let S: Hy — Hy and T: Hy, — H, be two operators between Hilbert spaces
and A, B a pair of positive numbers. Then, whenever:

apa)(S)<e™ ™ and app)(T)<e ",
where [ .] stands for the integer part, we have, for some constant integer M = M (A, B) > 0:
aM[nA+B](S ® T) < e ",

Let §=C,and T = C, ®---® Cp. For ¢ small enough, we have a,n-2(T) <
C(1/2)" <e " and, using (17), a,2(S) < e " < e~ Hence, with A=2, B=N -2,
Lemma 2 gives:

apaN (Co,) Se™".
Therefore B (Co, ) < e /M
b) Define W: DN — DV by:

W(z,29,23,...,2N) = (s(zl),s(zl ),5(23),...,5(2N)).

If 7, : D? — ID? is defined by 7,(z,25) = (s(zl ),s(zl)) and the map 7,: DVN-2 —

DN-2 by 1(23,...,25) = (5(23), .., 5(2n) ), we have:
Cy =Cp ®Cy,.
As in the proof of Theorem 4 on p. 5, we have the factorization:

c,
7, : HA(D) 2L B, = B2 5 H2(D) - H2(D?).
Hence a,(Cy,) < [IMl[/lla,(Cs: B> — H?).

15



Composition operators with surjective symbol D. Lietal.

By Proposition 2 on p. 4, we have:

t
a,(Cs: B? —>H2) < inf (\/ﬁe_”h+ sup sl ));
0<h<1 O<t<h t

so (23) implies that a,(Cy: B2 — H?) < infoepe; (Ve + e1/7*) and, taking
h=n"13, we get, with some ¢ small enough:

a,(Cy: B2 = H?) e~

2/3
and hence:

It follows that a,(C,,) <e™"
a[n3/2](CT1) Se . (27)
On the other hand, Bayart et al. (2018, Theorem 5.5) says that:

an(Cr) S2VICINT? nf  (a(Co)+ -+ any (o)),

Taking nz =---=ny = nﬁ, we get, using (26):

1
a,(Cq,) < KNN exp(—nl\P2 € i )
Using (25), that gives:
a,(Cq,) < exp(— nm(l_‘m}ﬁ)) = exp( - nﬁ),

or:

4

@ 77(Ce) s e, (28)
[~

Now, (27) and (28) allow to use Lemma 2 on the previous page with A = 3/2 and
B =N -7/4, and we get:

aM[nN—i](C‘l/) se .
Equivalently:

ar(Cy) < exp( - c'kﬁﬂl)
and:

)l/kl/N

(ak(C\I/) Sexp(—C’k‘U\%_%):exp(—c'km),

16



4. Application to the multidimensional case

which gives S5 (Cy) = 0.

To end the proof, it suffices to remark that Cp, = Cy o Cg,, since ©, =Dy o WV,
and hence B;(Co,) < B (Cw) = 0, s0 fn(Cop,) = 0.

4) We use a Shapiro-Taylor map. This one-parameter map ¢g, 6 > 0, was
introduced by J. Shapiro and P. Taylor in 1973* and was further studied, with
a slightly different definition, in Lefévre et al. (2008, Section 5). J. Shapiro and
P. Taylor proved that C.,: H?> — H? is always compact, but is Hilbert-Schmidt if
and only if 6 > 2. Let us recall their definition.

For 0 <e<1,weset V. ={ze€ C; Rez> 0and |z| < ¢}. For ¢ = ¢g > 0 small
enough, one can define:

fo(z) = z(~Inz)’,

for z € V,, where Inz will be the principal determination of the logarithm. Let
now gg be the conformal mapping from ID onto V,, which maps T = dDD onto 9V,
defined by gy(z) = € po(z), where ¢ is given by:

z—i\l/2
(iz—l) -

_i\12
—i(z 1) +1

$o(z) =

iz—1
Then, we define:
co = exp(—fo o gp)-

We proved in Li, Queffélec, and Rodriguez-Piazza (2013, Section 4.2) (though it
is not sharp) that:

1
an(cg@)z m (29)
We define @, : DY — DV as:
CDl(zl,zz,...,zN):(gg(zl),O,...,O). (30)

If] = Jy: H*(ID) — H?(IDV)is the canonical injection defined by (Jh)(z,...,zx) =
h(z;) and Q = Qn: H?(DN) — H?(ID) is defined by (Qf)(z1) = f(z1,0,...,0), then
Co, =JC.,Q; hence Co, is compact. On the other hand, we also have QCq, ] = Cepr

which implies that a,(Co, ) 2 2,(C¢,) 2 n~92 1t follows that:

B (Ca,) > lim (n=0/2)1/m ™ < 1,

n—oo

and hence fn(Co,) = 1.

17



Composition operators with surjective symbol D. Lietal.

Now, if:
Dy(z1,...,2N) = (gg[a(zl)], O,...,O),

since o is surjective, we have @;(IDN) = @,(IDVY). Moreover, we have Co, =

JCepoo Q =JCsCc,Q, s0 a,(Co,) < a,(Cy). Since p,(h) < pN+1 e‘Z/hz, Proposition 1

on p. 3 gives, with h = 1/n1/3:

_cn?/3
an(ca)se o ’

SO [an(Cq)z)]l/”]/N < exp(—c n%’ﬁ) and Bn(Cop,) = 0. O

Proof (Proof of Lemma 2 on p. 15). In Li, Queffélec, and Rodriguez-Piazza (n.d.[a]),
we observed that the singular numbers of S®T are the non-increasing rearrangement
of the numbers s;t, where s; and #; denote respectively the j-th and the k-th singular
number of S and T. We can assume s; = t; = 1. Using this observation, we will
majorize the number of pairs (j, k) such that s;t; >e™“". Let (j, k) be such a pair.
Sincesj <s; =1, we have t;, > e " so that k < [nB] < nB. Hence, for some 2 <1 <n,
we have (I - 1) < k < IB. Then, due to the assumption on T, t; < e “!~1) and
Sj = e*”’zf,:1 > e~""41) implying that j < (n—1+ 1)4, thanks to the assumption on
S. As a consequence, since the number of integers k such that (I -1)8 <k <18 is
dominated by 18-1, the number v,, of pairs (j, k) such that sjty > e " is dominated
by:
n 1
Z(n—l+ 1)AIB1 nf”BJ A1 -1)Bdt,

1=1 0
by a Riemann sum argument. Next, let M € IN big enough to have:

n
Z(n “I+1)AB T <Mn?*B o1, foralln.
I1=1

By definition, ayg,45)(S®T) < a, 1(S®T) <e™", giving the result. O
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