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Abstract

We introduce a new ‘geometric realization’ of an (abstract) simplicial com-
plex, inspired by probability theory. This space (and its completion) is a metric
space, which has the right (weak) homotopy type, and which can be compared
with the usual geometric realization through a natural map, which has proba-
bilistic meaning: it associates to a random variable its probability mass function.
This ‘probability law’ map is proved to be a Serre fibration and an homotopy
equivalence.
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1 Introduction and main results

In this paper we consider a new ‘geometric realization’ of an (abstract) simplicial
complex, inspired by probability theory. This space is a metric space, which has
the right (weak) homotopy type, and can be compared with the usual geometric
realization through a map, which is very natural in probabilistic terms : it asso-
ciates to a random variable its probability mass function. This ‘probability law’
function is proved to be a (Serre) fibration and a (weak) homotopy equivalence. This
construction passes to the completion, and has nice functorial properties.

We specify the details now. Let S be a set, and Pf(S) the set of its finite subsets.
We set P ∗f (S) = Pf(S) \ {∅}. Recall that an (abstract) simplicial complex is a collection
of subsets K ⊂ P ∗f (S) with the property that, for all X ∈ K and Y ∈ P ∗f (S), Y ⊂ X⇒
Y ∈ K. The elements of K are called its faces, and the vertices of K are the union of
the elements of K.

We endow S with the discrete metric of diameter 1, and with the Borel σ -algebra
associated to this topology. We let Ω denote a nonatomic standard probability space
with measure λ. Recall that all such probability spaces are isomorphic and can
be identified in particular with any hypercube [0,1]n, n ≥ 1, endowed with the
Lebesgue measure. We define L(Ω,S) as the set of random variables Ω→ S, that is
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the set of measurable maps Ω→ S modulo the equivalence relation f ≡ g if f and g
agree almost everywhere, that is λ({x;f (x) = g(x)}) = 0. We consider it as a metric
space, endowed with the metric

d(f ,g) =
∫
Ω

d(f (t), g(t))dt = λ ({x ∈Ω;f (x) , g(x)}) .

We define L(Ω,K) as the subset of L(Ω,S) made of the (equivalence classes of)
measurable maps f : Ω→ S such that {s ∈ S |λ(f −1({s})) > 0} ∈ K.

Recall that the (usual) ‘geometric’ realization of K is defined as

|K| =
{
t : S→ [0,1]

∣∣∣∣ {s ∈ S; ts > 0} ∈ K &
∑
s∈S

ts = 1
}

and that its topology is given by the direct limit of the [0,1]A for A ∈ Pf(S). There is
a natural map L(Ω,K)→ |K| which associates to f : Ω→K the element t : S→ [0,1]
defined by ts = λ(f −1({s})). In probabilistic terms, it associates to the random
variable f its probability law, or probability mass function. We denote |K|1 the same
set as |K|, but with the topology defined by the metric |α−β|1 =

∑
s∈S |α(s)−β(s)|. We

denote |K|1 its completion as a metric space.
It is easily checked that, unless S is finite, L(Ω,K) is not in general closed in

L(Ω,S), and therefore not complete. We denote L̄(Ω,K) its closure inside L(Ω,S).
The ‘probability law’ map Ψ : L(Ω,K)→ |K|1 is actually continuous, and can be
extended to a map Ψ : L̄(Ω,K)→ |K|1. Keane’s Theorem about the contractibility
of Aut(Ω) (see Keane 1970) easily implies that these maps have contractible fibers.
The goal of this note is to specify the homotopy-theoretic features of them. We get
the following results.

Theorem 1 –

1. The map L(Ω,K)→ L(Ω,K) is a weak homotopy equivalence.

2. The ‘probability law’ map L(Ω,K)→ |K|1 is a Serre fibration and an homotopy
equivalence. It admits a continuous global section.

3. The ‘probability law’ map L̄(Ω,K)→ |K|1 is a Serre fibration and an homotopy
equivalence. It admits a continuous global section.

4. L(Ω,K) and L̄(Ω,K) have the same weak homotopy type as the ‘geometric realiza-
tion’ |K| of K.

In particular, in the commutative diagram below, the vertical maps are Serre
fibrations, and all the maps involved are weak homotopy equivalences. When
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2. Simplicial properties and completion

K is finite, L(Ω,K) = L̄(Ω,K) and we prove in addition that the map ΨK = Ψ K is
a Hurewicz fibration (see Theorem 2).

L(Ω,K) L̄(Ω,K)

|K| |K|1 |K|1

ΨK Ψ̄K

We now comment on the functorial properties of this construction. By definition,
a morphism ϕ :K1→K2 between simplicial complexes is a map from the set

⋃
K1

of vertices ofK1 to the set of vertices ofK2 with the property that ∀F ∈ K1 ϕ(F) ∈ K2.
We denote Simp the corresponding category of simplicial complexes. For such an
abstract simplicial complex K, our space L(Ω,K) has for ambient space L(Ω,S) with
S =

⋃
K the set of vertices of K.

Let Set denote the category of sets and Met1 denote the full subcategory of the
category of metric spaces and contracting maps made of the spaces of diameter
at most 1. Here a map f : X→ Y between two metric spaces is called contracting
if ∀a,b ∈ X d(f (a), f (b)) ≤ d(a,b). Let CMet1 be the full subcategory of Met1 made
of complete metric spaces. There is a completion functor Comp : Met1→ CMet1
which associates to each metric space its completion. Then L(Ω, · ) : X { L(Ω,X)
defines a functor Set→ CMet1 (see Marin 2017). It can be decomposed as L(Ω, · ) =
Comp ◦Lf(Ω, · ) where Lf(Ω,S) is the subspace of L(Ω,S) made of the (equivalence
classes of) functions f : Ω→ S of essentially finite image, that is such that there
exists S0 ⊂ S finite such that

∑
s∈S0

λ(f −1({s})) = 1.
We prove in Section 2.1 below that our simplicial constructions have similar

functorial properties, which can be summed up as follows.

Proposition 1 – L(Ω, · ) and L̄(Ω, · ) define functorsSimp→Met1 andSimp→ CMet1,
with the property that L̄(Ω, · ) = Comp ◦L(Ω, · ).

2 Simplicial properties and completion

In this section we prove part (1) of Theorem 1. We start by proving the functorial
properties stated in the introduction.

2.1 Functorial properties

We denote, as in the previous section, L̄(Ω,K) the closure of L(Ω,K) inside L(Ω,S).
As a closed subset of a complete metric space, it is a complete metric space. For any
f ∈ L(Ω,S), we denote

f (Ω) = {s ∈ S |λ(f −1({s})) > 0}

the essential image of an arbitrary measurable map Ω→ S representing f .
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Lemma 1 – Let f ∈ L(Ω,S). Then f ∈ L(Ω,K) if and only if every nonempty finite
subset of f (Ω) belongs to K.

Proof. Assume f ∈ L̄(Ω,K) and let F ⊂ f (Ω) be a nonempty finite subset as in the
statement. We set m = min{λ(f −1({s})) |s ∈ F}. We have m > 0. Since f ∈ L̄(Ω,K),
there exists f0 ∈ L(Ω,K) such that d(f , f0) < m. We then have F ⊂ f0(Ω). Indeed,
there would otherwise exist s ∈ F \ f0(Ω), and then d(f , f0) ≥ λ(f −1({s})) ≥m, a con-
tradiction. From this we get F ∈ K. Conversely, assume that every nonempty
finite subset of f (Ω) belongs to K. From Marin (2017, Proposition 3.3) we know
that f (Ω) ⊂ S is countable. If f (Ω) is finite we have f (Ω) ∈ K by assumption
and f ∈ L(Ω,K). Otherwise, let us fix a bijection N→ f (Ω), n 7→ xn and define
fn ∈ L(Ω,S) by fn(t) = f (t) if f (t) ∈ {x0, . . . ,xn}, and fn(t) = x0 otherwise. Clearly
fn(Ω) ⊂ f (Ω) is nonempty finite hence belongs to K, and fn ∈ L(Ω,K). On the
other hand, d(fn, f ) ≤

∑
k>nλ(f −1({xk}))→ 0, hence f ∈ L̄(Ω,K) and this proves the

claim. □

We prove that, as announced in the introduction, L̄(Ω, · ) provides a functor
Simp→ CMet1 that can be decomposed as Comp ◦ L(Ω, · ), where L(Ω, · ) is itself
a functor Simp→Met1.

Let ϕ ∈HomSimp(K1,K2) that is ϕ :
⋃
K1→

⋃
K2 such that ϕ(F) ∈ K2 for all F ∈

K1. If f ∈ L(Ω,K1), g = L(Ω,ϕ)(f ) = ϕ ◦ f is a measurable map and g(Ω) = ϕ(f (Ω)).
Since f (Ω) ∈ K1 and ϕ is simplicial we get that ϕ(f (Ω)) ∈ K2 hence g ∈ L(Ω,K2).
From this one gets immediately that L(Ω, · ) indeed defines a functor Simp→Met1.

Similarly, if f ∈ L̄(Ω,K1) and g = ϕ ◦ f = L(Ω,ϕ)(f ) ∈ L(Ω,S), then again g(Ω) =
ϕ(f (Ω)). But, for any finite set F ⊂ g(Ω) = ϕ(f (Ω)) there exists F′ ⊂ f (Ω) finite and
with the property that F = ϕ(F′). Now f ∈ L̄(Ω,K1)⇒ F′ ∈ K1, by Lemma 1, hence
F ∈ K2 because ϕ is a simplicial morphism. By Lemma 1 one gets g ∈ L̄(Ω,K2), hence
L̄(Ω, · ) defines a functor Simp → CMet1. We checks immediately that L̄(Ω, · ) =
Comp ◦L(Ω, · ), and this proves Proposition 1.

2.2 Technical preliminaries

We denote by 2 in the notation L(Ω,2) a set with two elements. When needed, we
will also assume that this set is pointed, that is contains a special point called 0, so
that f ∈ L(Ω,2) can be identified with {t ∈Ω;f (t) , 0}, up to a set of measure 0. Note
that these conventions agree with the set-theoretic definition of 2 = {0,1} = {∅, {∅}}.

Lemma 2 – Let F be a set. The map f 7→ {t ∈ Ω;f (t) < F} is uniformly continuous
L(Ω,S)→ L(Ω,2), and even contracting.

Proof. Let f1, f2 ∈ L(Ω,S), and Ψ : L(Ω,S) → L(Ω,2) the map defined by the
statement. Then Ψ (f1)(t) , Ψ (f2)(t) ⇒ f1(t) , f2(t), hence d(Ψ (f1)(t),Ψ (f2)(t)) ≤
d(f1(t), f2(t)) for all t ∈ Ω and finally d(Ψ (f1),Ψ (f2)) ≤ d(f1, f2), whence Ψ is con-
tracting and uniformly continuous. □
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2. Simplicial properties and completion

Lemma 3 – Let a,b,c,d ∈R with a ≤ b and c ≤ d. Then

λ ([a,b] \ ]c,d[) ⩽ |a− c|+ |b − d|.

Proof. There are six possible relative positions of c ≤ d with respect to a ≤ b to
consider, which are depicted as follows:

•
a

•
b

•
c

•
d

•
c

•
d

•
c

•
d

•
c

•
d
•
c

•
d

•
c

•
d

In three of them, namely a ≤ b ≤ c ≤ d, c ≤ d ≤ a ≤ b, and c ≤ a ≤ b ≤ d, we have
λ ([a,b] \ ]c,d[) = 0. In case c ≤ a ≤ d ≤ b, we have λ ([a,b] \ ]c,d[) = λ([d,b]) = |b−d| ≤
|a − c| + |b − d|. In case a ≤ c ≤ b ≤ d, we have λ ([a,b] \ ]c,d[) = λ([a,c]) = |a − c| ≤
|a− c|+ |b−d|. Finally, when a ≤ c ≤ d ≤ b, we have λ ([a,b] \ ]c,d[) = λ([a,c]⊔ [d,b]) =
|a− c|+ |b − d|, and this proves the claim. □

Lemma 4 – Let ∆r = {α = (α1, . . . ,αr ) ∈Rr+ |α1 + · · ·+αr = 1} denote the r-dimensional
simplex. The map ∆r → L(Ω, {1, . . . , r}) defined by α 7→ fα where fα(t) = i iff t ∈
[α1 + · · · + αi−1,α1 + · · · + αi[ is continuous. More precisely it is 2r-Lipschitz if ∆r is
equipped with the metric d(α,α′) =

∑
i |αi −α′i |.

Proof. We fix an identification Ω ≃ [0,1]. Let α,α′ ∈ ∆r . We denote βi = α1 + · · ·+αi ,
β0 = 0, and we similarly define the β′i . We have βi − βi−1 = αi hence |β′i − βi | ≤∑
k≤i |α′k − αk | and finally

∑
i |β′i − βi | ≤ r

∑
i |α′i − αi |. Now, for t ∈ [βi ,βi+1[ we have

fα(t) = fα′ (t) unless t < [β′i ,β
′
i+1[. From this and Lemma 3 we get that d(fα , fα′ ) is no

greater than

r∑
i=1

λ
(
[βi ,βi+1[ \ [β′i ,β

′
i+1[

)
⩽

r∑
i=1

|βi − β′i |+ |βi+1 − β′i+1|

⩽ 2
r∑
i=1

|βi − β′i | ⩽ 2r
r∑
i=1

|αi −α′i |

and this proves the claim. □

Lemma 5 – Let K be a simplicial complex and X a topological space, and A ⊂ X. If
γ0,γ1 : X → L̄(Ω,K) are two continuous maps such that ∀x ∈ X γ0(x)(Ω) ⊂ γ1(x)(Ω),
and (γ0)|A = (γ1)|A, then γ0 and γ1 are homotopic relative to A. Moreover, if γ0 and γ1
take value inside L(Ω,K), then the homotopy takes values inside L(Ω,K).

Proof. We fix an identification Ω ≃ [0,1]. We define H : [0,1] × X → L(Ω,S) by
H(u,x)(t) = γ0(x)(t) if t ≥ u and H(u,x)(t) = γ1(x)(t) if t < u. We have H(0, · ) = γ0
and H(1, · ) = γ1.
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We first check that H is indeed a (set-theoretic) map [0,1]×X→ L̄(Ω,K). For all
u ∈ [0,1] and x ∈ X we have H(u,x)(Ω) ⊂ γ0(x)(Ω)∪γ1(x)(Ω) = γ1(x)(Ω). Therefore
H(u,x)(Ω) ∈ K if γ1(x) ∈ L(Ω,K), and all nonempty finite subsets of H(u,x)(Ω) ⊂
γ1(x)(Ω) belong to K if γ1(x) ∈ L̄(Ω,K). From this, by Lemma 1 we get that H takes
values inside L̄(Ω,K), and even inside L(Ω,K) if γ1 : X→ L(Ω,K).

Now, we check that H is continuous over [0,1]×X. We have d(H(u,x),H(v,x)) ≤
|u − v| for all u,v ∈ [0,1] and, for all x,y ∈ X and u ∈ [0,1], we have

d(H(u,x),H(u,y)) =
∫ u

0
d(γ1(x)(t),γ1(y)(t))dt +

∫ 1

u
d(γ0(x)(t),γ0(y)(t))dt

⩽

∫ 1

0
d(γ1(x)(t),γ1(y)(t))dt +

∫ 1

0
d(γ0(x)(t),γ0(y)(t))dt

= d(γ1(x),γ1(y)) + d(γ0(x),γ0(y))

from which we get d(H(u,x),H(v,y)) ≤ |u −v|+d(γ1(x),γ1(y)) +d(γ0(x),γ0(y)) for all
x,y ∈ X and u,v ∈ [0,1]. For any given (u,x) ∈ [0,1]×X this proves that H is continu-
ous at (u,x). Indeed, given ε > 0, from the continuity of γ0,γ1 we get that, for some
open neighborhood V of x we have d(γ0(x),γ0(y)) ≤ ε/3 and d(γ1(x),γ1(y)) ≤ ε/3 for
all y ∈ V . This proves that d(H(u,x),H(v,y)) ≤ ε for all (v,y) ∈ ]u − ε/3,u + ε/3[×V
and this proves the continuity of H .

Finally, it is clear that γ0(x) = γ1(x) implies H(u,x) = γ0(x) = γ1(x) for all u ∈
[0,1], therefore the homotopy indeed fixes A. □

2.3 Weak homotopy equivalence

We now prove part (1) of the main theorem, through a series of propositions, which
might be of independent interest.

Proposition 2 – Let C be a compact subspace of L̄(Ω,K) and C0 ⊂ C ∩L(Ω,K) a (pos-
sibly empty) subset such that

⋃
c∈C0

c(Ω) is finite. Then there exists a continuous map
p : C→ L(Ω,K) such that p(c) = c for all c ∈ C0. Moreover, p(c)(Ω) ⊂ c(Ω) for all c ∈ C
and

⋃
c∈C p(c)(Ω) is finite.

Proof. For any s ∈ S and n ∈N∗ = N \ {0} we denote Os,n = {f ∈ L(Ω,S) |λ(f −1({s})) >
1/n}. It is an open subset of L(Ω,S), hence Cs,n = C ∩Os,n is an open subset of C.
Now, for every c ∈ C there exists s ∈ S such that λ(c−1({s})) > 0 hence c ∈ Cs,n for
some n. Then C is compact and covered by the Cs,n hence there exists s1, . . . , sr ∈ S
and n1, . . . ,nr ∈ N

∗ such that C ⊂
⋃r
i=1Osi ,ni . Up to replacing the ni ’s by their

maximum, we may suppose n1 = · · · = nr = n0. Let then F′ =
⋃
c∈C0

c(Ω) ⊂ S. We set
F = {s1, . . . , sr } ∪F′ . For any i ∈ {1, . . . , r} we set Oi =Osi ,n0

.
For any c ∈ C, we set Ωc = {t ∈Ω;c(t) < F}, and

αi(c) =
d(c, cOi)∑
j d(c, cOj )
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2. Simplicial properties and completion

and βi(c) =
∑
k≤i αk(c), where cX denotes the complement of X. These define contin-

uous maps C→R+. We fix an identification Ω ≃ [0,1], so that intervals make sense
inside Ω. We then set

p(c)(t) =

c(t) if c(t) ∈ F, i.e. t <Ωc

si if t ∈Ωc ∩ [βi−1(c),βi(c)[

Let c1, c2 ∈ C and αs, s = 1,2 the corresponding r-tuples αs = (αs1, . . . ,α
s
r ) ∈ ∆r

given by αsi = αi(cs). When t <Ωc1 ∪Ωc2 we have p(cs)(t) = cs(t), hence∫
Ω\(Ωc1∪Ωc2 )

d(p(c1)(t),p(c2)(t))dt ⩽
∫
Ω

d(c1(t), c2(t))dt = d(c1, c2)

and we have∫
Ωc1∪Ωc2

d(p(c1)(t),p(c2)(t))dt ⩽ λ(Ωc1 ∆Ωc2 ) +
∫
Ωc1∩Ωc2

d(p(c1)(t),p(c2)(t))dt.

Since we know that λ(Ωc1 ∆Ωc2 ) ≤ d(c1, c2) by Lemma 2, we get

d(p(c1),p(c2)) ≤ 2d(c1, c2) +
∫
Ωc1∩Ωc2

d(p(c1)(t),p(c2)(t))dt

and there only remains to check that the term
∫
Ωc1∩Ωc2

d(p(c1)(t),p(c2)(t))dt is con-

tinuous. But, by Lemma 4, we have∫
Ωc1∩Ωc2

d(p(c1)(t),p(c2)(t))dt =
∫
Ωc1∩Ωc2

d(fα1(t), fα2(t))dt

≤ d(fα1 , fα2 ) ≤ 2r |α1 −α2|

whence the conclusion, by continuity of c 7→ α.
We must now check that p takes values inside L(Ω,K). Let c ∈ C. We know that

p(c)(Ω) ⊂ F is finite, and

p(c)(Ω) ⊂ c(Ω)∪ {si ;c ∈Oi}. □

But c ∈ Oi implies that si ∈ c(Ω) hence p(c)(Ω) is nonempty finite subset of c(Ω).
Since c ∈ L̄(Ω,K), by Lemma 1 this proves p(c)(Ω) ∈ K and p(c) ∈ L(Ω,K).

Finally, we have p(c) = c for all c ∈ C0 since F ⊃ F′ .

We immediately get the following corollary, by letting C0 = {c0
1, . . . , c

0
k }.

Corollary 1 – Let C be a compact subset of L̄(Ω,K) and c0
1, . . . , c

0
k ∈ C ∩L(Ω,K). Then

there exists a continuous map p : C→ L(Ω,K) such that p(c0
i ) = c0

i for all i ∈ {1, . . . , k}.
Moreover, p(c)(Ω) ⊂ c(Ω) for all c ∈ C and

⋃
c∈C p(c)(Ω) is finite.
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Proposition 3 – Let C be a compact space, and x0 ∈ C. For any simplicial com-
plex K, and any continuous map γ : C → L(Ω,K), there exists a continuous map
γ̂ : (C,x0)→ (L(Ω,K),γ(x0)) which is homotopic to γ relative to ({x0}, {γ(x0)}), and such
that

⋃
x∈C γ̂(x)(Ω) is finite.

Proof. Let C′ = γ(C) ⊂ L(Ω,K). It is compact, hence applying Corollary 1 to it and
to {c0

1} = {γ(x0)} we get a continuous map p : C′→ L(Ω,K) such that
⋃
c∈C′ p(c)(Ω) is

finite, and p(c)(Ω) ⊂ c(Ω) for all c ∈ C′. Therefore, letting γ̂ = p ◦γ : C→ L(Ω,K),
we get that

⋃
x∈C γ̂(x)(Ω) is finite. Since γ̂(x)(Ω) ⊂ γ(x)(Ω) for all x ∈ C, we get from

Lemma 5 that γ and γ̂ are homotopic, hence the conclusion.

Proposition 4 – Let C be a compact space (and x0 ∈ C), K a simplicial complex, and
a pair of continuous maps γ0,γ1 : C → L(Ω,K) (with γ0(x0) = γ1(x0)). If γ0 and γ1
are homotopic as maps in L̄(Ω,K) (relative to ({x0}, {γ0(x0)})), then they are homotopic
inside L(Ω,K) (relative to ({x0}, {γ0(x0)})).

Proof. After Proposition 3, there exists γ̂0, γ̂1 : C → L(Ω,K) such that γ̂i is homo-
topic to γi with the property that

⋃
x∈C γ̂i(x)(Ω) is finite, for all i ∈ {0,1}. Without

loss of generality, one can therefore assume that
⋃
x∈C γi(x)(Ω) is finite, for all

i ∈ {0,1}. Let H : C × [0,1] → L̄(Ω,K) be an homotopy between γ0 and γ1. Let
C′ = H(C × [0,1]) and C0 = γ0(C) ∪ γ1(C). These are two compact spaces which
satisfy the assumptions of Proposition 2. If p : C′→ L(Ω,K) is the continuous map
afforded by this proposition, then Ĥ = p◦H provides a homotopy between γ0 and γ1
inside L(Ω,K). The ‘relative’ version of the statement is proved similarly. □

In particular, when C is equal to the n-sphere Sn, this proves that the natural
map [Sn,L(Ω,K)]∗ → [Sn, L̄(Ω,K)]∗ between sets of pointed homotopy classes is
injective. In order to prove Theorem 1 (1), we need to prove that it is surjective. Let
us consider a continuous map γ : Sn→ L̄(Ω,K) and set C = γ(Sn). It is a compact
subspace of L̄(Ω,K). Applying Proposition 2 with C0 = ∅ we get p : C → L(Ω,K)
such that p(c)(Ω) ⊂ c(Ω) for any c ∈ C. Let then γ̂ = p ◦ γ : Sn → L(Ω,K). From
Lemma 5 we deduce that γ̂ and γ are homotopic inside L̄(Ω,K), and this concludes
the proof of part (1) of Theorem 1.

3 Homotopies inside L(Ω, {0,1})
In this section we denote L(2) = L(Ω,2) = L(Ω, {0,1}), with d(0,1) = 1. Since we are
going to use Lipschitz properties of maps, we specify our conventions on metrics.
When (X,dX) and (Y ,dY ) are two metric spaces, we endow X × Y with the metric
dX +dY , and the space C0([0,1],X) of continuous maps [0,1]→ X with the metric of
uniform convergence d(α,β) = ∥α−β∥∞ = supt∈I |α(t)−β(t)|. Recall that the topology
on C0([0,1],X) induced by this metric is the compact-open topology. For short we
set C0(X) = C0([0,1],X).
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3. Homotopies inside L(Ω, {0,1})

Identifying L(2) = L(Ω,2) with the space of measurable subsets of Ω (modulo
subsets of measure 0) endowed with the metric d(E,F) = λ(E ∆ F), where ∆ is the
symmetric difference operator, we have the following lemma. This lemma can
be viewed as providing a continuous reparametrization by arc-length of natural
geodesics inside the metric space L(2).

Lemma 6 – The exists a continuous map g : L(2)× [0,1]→ L(2) such that g(A,0) = A,
λ(g(A,u)) = λ(A)(1−u) and g(A,u) ⊃ g(A,v) for all A and u ≤ v. Moreover, it satisfies

λ (g(E,u)∆ g(F,v)) ≤ 4λ(E ∆F) + |v −u|

for all E,F ∈ L(2) and u,v ∈ [0,1].

Proof. We fix an identification Ω ≃ [0,1]. For E ∈ L(2) \ {∅} we define ϕE(t) =
λ(E ∩ [t,1])/λ(E). The map ϕE is obviously (weakly) decreasing and continuous
[0,1]→ [0,1], with ϕE(0) = 1 and ϕE(1) = 0. It is therefore surjective, and we can
define a (weakly) decreasing map ψE : [0,1]→ [0,1] by ψE(u) = infϕ−1

E ({u}). Since
ϕE is continuous, we have ϕE(ψE(u)) = u.

One defines g(E,u) = E ∩ [ψE(1 − u),1] if λ(E) , 0, and g(∅,u) = ∅. We have
λ(g(E,u)) = λ(E∩[ψE(1−u),1]) = ϕE(ψE(1−u))λ(E) = (1−u)λ(E) when λ(E) , 0, and
λ(g(∅,u)) = 0 = λ(E)(1−u) if λ(E) = 0. It is clear that g(E,u) ⊂ g(E,v) for all u ≥ v.

Moreover, clearly g(E,0) = E since E ∩ [ψE(1),1] ⊂ E and λ(E ∩ [ψE(1),1]) =
ϕE(ψE(1))λ(E) = λ(E). It remains to prove that g is continuous.

Let E,F ∈ L(2) and u,v ∈ [0,1]. We first assume λ(E)λ(F) > 0. Without loss of
generality we can assume ψE(1−u) ≤ ψF(1− v). Then [ψE(1−u),1] ⊃ [ψF(1− v),1],
and g(E,u)∆ g(F,v) can be decomposed as

((E \F)∩ [ψE(1−u),1])∪ ((F \E)∩ [ψF(1− v),1])

∪ ((E ∩F)∩ [ψE(1−u),ψF(1− v)]) .

Since the first two pieces are included inside E ∆ F, we get λ(g(E,u) ∆ g(F,v)) ≤
λ(E ∆ F) + λ ((E ∩F)∩ [ψE(1−u),ψF(1− v)]). Now (E ∩ F)∩ [ψE(1 − u),ψF(1 − v)] =
(E ∩F ∩ [ψE(1−u),1]) \ (E ∩F ∩ [ψF(1− v),1]) hence

λ ((E ∩F)∩ [ψE(1−u),ψF(1− v)])

= λ (E ∩F ∩ [ψE(1−u),1])−λ (E ∩F ∩ [ψF(1− v),1])

≤ λ (E ∩ [ψE(1−u),1])−λ (E ∩F ∩ [ψF(1− v),1])

≤ (1−u)λ(E)−λ (E ∩F ∩ [ψF(1− v),1])

Now, since F = (E∩F)⊔ (F \E), we have F∩ [ψF(1−v),1] = ((E ∩F)∩ [ψF(1− v),1])⊔
((F \E)∩ [ψF(1− v),1]) hence

(1− v)λ(F) = λ ((E ∩F)∩ [ψF(1− v),1]) +λ ((F \E)∩ [ψF(1− v),1])

≤ λ ((E ∩F)∩ [ψF(1− v),1]) +λ(F \E)

≤ λ ((E ∩F)∩ [ψF(1− v),1]) +λ(F ∆E).
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It follows that −λ ((E ∩F)∩ [ψF(1− v),1]) ≤ λ(F ∆E)− (1− v)λ(F) hence

λ ((E ∩F)∩ [ψE(1−u),ψF(1− v)]) ⩽ (1−u)λ(E) +λ(F ∆E)− (1− v)λ(F)

and finally

λ(g(E,u)∆ g(F,v)) ≤ 2λ(E ∆F) + (1−u)λ(E)− (1− v)λ(F)

≤ 2λ(E ∆F) + (λ(E)−λ(F)) + (v −u)λ(E) + v(λ(F)−λ(E))

≤ 2λ(E ∆F) + |λ(E)−λ(F)|+ |v −u|λ(E) + v|λ(F)−λ(E)|
≤ 2λ(E ∆F) + 2|λ(E)−λ(F)|+ |v −u|
≤ 4λ(E ∆F) + |v −u|.

Therefore we get the inequality λ(g(E,u)∆g(F,v)) ≤ 4λ(E∆F)+ |v−u|, that we readily
check to hold also when λ(E)λ(F) = 0. This proves that g is continuous, whence the
claim. □

We provide a 2-dimensional illustration, with Ω = [0,1]2. The map constructed
in the proof depends on an identification [0,1]2 ≃ [0,1] (up to a set of measure 0).
An explicit one is given by the binary-digit identification

0.ε1ε2ε3 · · · 7→ (0.ε1ε3ε5 . . . ,0.ε2ε4ε6 . . . )

with the εi ∈ {0,1}. Then, when A is some (blue) rectangle, the map u 7→ g(A,u)
looks as follows:

u ∼ 0.0 u ∼ 0.1 u ∼ 0.2 u ∼ 0.3 u ∼ 0.4 u ∼ 0.5 u ∼ 0.6 u ∼ 0.7 u ∼ 0.8 u ∼ 0.9

The above lemma is actually all what is needed to prove Theorem 1 in the case of
binary random variables, that is S = {0,1}, as we will illustrate later (see Corollary 2).
In the general case however, we shall need a more powerful homotopy, provided by
Proposition 5 below. The next lemmas are preliminary technical steps in view of its
proof.

Lemma 7 – The map C0(L(2))×L(2)→ C0([0,1]) defined by (E·,A)→ α where α(u) =
λ(Eu ∩A), is 1-Lipschitz.

Proof. Let α, β denote the images of (E·,A) and (F·,B), respectively. Then, for all
u ∈ I , we have

|α(u)− β(u)| = |λ(Eu ∩A)−λ(Fu ∩B)| ≤ λ ((Eu ∩A)∆ (Fu ∩B))

From the general set-theoretic inequality (X ∩A)∆ (Y ∩B) ⊂ (X ∆Y )∪ (A∆B) one
gets

λ ((Eu ∩A)∆ (Fu ∩B)) ≤ λ(Eu ∆Fu) +λ(A∆B),

hence ∥α − β∥∞ ≤ supu λ(Eu ∆Fu) +λ(A∆B) and this proves the claim. □
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Lemma 8 – A map Φ− : C0([0,1])×C0(L(2))×L(2)→ C0(L(2)) is defined as follows. To
(a,E·,A) ∈ C0([0,1])×C0(L(2))×L(2)→ C0(L(2)) one associates the map

Φ−(a,E·,A) : u 7→ g
(
Eu ∩A ,1−

min(a(u)λ(Eu),α(u))
α(u)

)
if α(u) , 0, and otherwise u 7→ ∅, where α(u) = λ(A ∩ Eu). Then, the map Φ− is
continuous.

Proof. Let us fix (a,E·,A) ∈ C0([0,1]) ×C0(L(2)) × L(2), and let ε > 0. Consider m̂ :
[0,1]× [ε/12,1]→ [0,1] be defined by m̂(x,y) = min(x,y)/y. It is clearly continuous
on the compact space [0,1]×[ε/12,1], hence unformly continuous, hence there exists
η > 0 such that max(|x1 − x2|, |y1 − y2|) < η⇒ |m̂(x1, y1)− m̂(x2, y2)| ≤ ε/6. Clearly one
can assume η ≤ ε/6 as well.

Let us then consider (b,F·,B) ∈ C0([0,1]) ×C0(L(2)) × L(2) such that ∥a − b∥∞ +
supu λ(Eu ∆Fu) +λ(A∆B) ≤ η. From Lemma 7, we get ∥α −β∥∞ ≤ η. Let us consider
I0 = {u ∈ [0,1] |α(u) ≤ ε/3}. We have by definition α([0,1] \ I0) ⊂]ε/3,1] ⊂ [ε/12,1]
and, since ∥α − β∥∞ ≤ ε/6, we have β([0,1] \ I0) ⊂]ε/6,1] ⊂ [ε/12,1]. Moreover, since

|a(u)λ(Eu)− b(u)λ(Fu)| ≤ |a(u)− b(u)|λ(Eu) + b(u)|λ(Eu)−λ(Fu)|
≤ |a(u)− b(u)|+λ(Eu ∆Fu) ≤ η

we get that, for all u < I0, we have |m̂(a(u)λ(Eu)),α(u)) − m̂(b(u)λ(Fu),β(u))| ≤ ε/6.
Moreover, since in particular α(u)β(u) , 0, we get from the general inequality
λ(g(X,x)∆ g(Y ,y)) ≤ 4λ(X ∆Y ) + |x − y| of Lemma 6 that, for all u < I0,

d (Φ−(a,E·,A)(u),Φ−(b,F·,B)(u)) ≤ 4λ((Eu ∩A)∆ (Fu ∩B))

+ |m̂(a(u)λ(Eu),α(u))− m̂(b(u)λ(Fu),β(u))|
≤ 4(λ(Eu ∆Fu) +λ(A∆B)) + ε/6

≤ 4ε/6 + ε/6

< ε

Now, if u ∈ I0, then Φ−(a,E·,A)(u) ⊂ Eu ∩A hence λ(Φ−(a,E·,A)(u)) ≤ λ(Eu ∩A) =
α(u) ≤ ε/3 and λ(Φ−(b,F·,B)(u)) ≤ λ(Fu ∩B) = β(u) ≤ ε/3 + ε/6 = ε/2, whence

d (Φ−(a,E·,A)(u),Φ−(b,F·,B)(u)) ⩽ λ(Φ−(a,E·,A)(u)) +λ(Φ−(b,F·,B)(u))

⩽ 5ε/6 < ε.

It follows that d (Φ−(a,E·,A),Φ−(b,F·,B)) ≤ ε and Φ− is continuous at (a,E·,A), which
proves the claim. □

We use the convention g(X,t) = X for t ≤ 0 and g(X,t) = ∅ for t > 1, so that
g is extended to a continuous map L(2) ×R→ L(2). The notation cA denotes the
complement inside Ω of the set A, identified with an element of L(Ω,2).
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Lemma 9 – A map Φ+ : C0([0,1])×C0(L(2))×L(2)→ C0(L(2)) is defined as follows. To
(a,E·,A) ∈ C0([0,1])×C0(L(2))×L(2)→ C0(L(2)) one associates the map

Φ+(a,E·,A) : u 7→ g
(
Eu ∩ (cA),1− max(0, a(u)λ(Eu)−α(u))

λ(Eu)−α(u)

)
if α(u) , λ(Eu), and otherwise u 7→ ∅, where α(u) = λ(A∩ Eu). Then, the map Φ+ is
continuous.

The proof is similar to the one of the previous lemma, and left to the reader.

Lemma 10 – The map (f ,g) 7→ (t 7→ f (t)∪ g(t)) is continuous C0(L(2))2→ C0(L(2)),
and even 1-Lipschitz.

Proof. The map (X,Y ) 7→ X ∪Y is 1-Lipschitz because of the general set-theoretic
fact (X1∪Y1)∆ (X2∪Y2) ⊂ (X1 ∆X2)∪ (Y1 ∆Y2) from which we deduce λ((X1∪Y1)∆
(X2∪Y2)) ≤ λ(X1 ∆X2) +λ(Y1 ∆Y2), which proves that (X,Y ) 7→ X ∪Y is 1-Lipschitz
L(2)2→ L(2). It follows that the induced map C0(L(2)2) = C0(L(2))2→ C0(L(2)) is
1-Lipschitz and thus continuous, too. □

The following proposition informally says that, when E· ∈ C0(L(2)) is a path
inside L(2) with A ⊂ E0, then we can find another path Φ· ∈ C0(L(2)) such that
Φu ⊂ Eu for all u, and the ratio λ(Φ·)/λ(E·) follows any previously specified variation
starting at λ(A)/λ(E0) – and, moreover, that this can be done continuously.

Proposition 5 – There exists a continuous map Φ : C0([0,1]) × C0(L(2)) × L(2) →
C0(L(2)) having the following properties.

• for all (a,E·,A) ∈ C0([0,1])×C0(L(2))×L(2) such thatA ⊂ E0 and a(0)λ(E0) = λ(A),
we have Φ(a,E·,A)(0) = A

• for all u ∈ [0,1], Φ(a,E·,A)(u) ⊂ Eu and λ(Φ(a,E·,A)(u)) = a(u)λ(Eu)

• if a and E· are constant maps, then so is Φ(a,E·,A).

Proof. We define Φ(a,E·,A)(u) = Φ−(a,E·,A)(u) ∪Φ+(a,E·,A)(u). By the definition
of Φ± in Lemmas 8 and 9, the last property is clear. By combining Lemmas 8,
9 and 10 we get that Φ is continuous. Moreover, Φ−(a,E·,A)(u) ⊂ Eu ∩ A and
Φ+(a,E·,A)(u) ⊂ Eu ∩ (cA) hence Φ(a,E·,A)(u) = Φ−(a,E·,A)(u)⊔Φ+(a,E·,A)(u) ⊂ Eu ,
with λ(Φ(a,E·,A)(u)) = λ(Φ−(a,E·,A)(u))+λ(Φ+(a,E·,A)(u)). Letting α(u) = λ(Eu∩A),
again by Lemmas 8 and 9 we get

λ(Φ−(a,E·,A)(u)) = λ
(
g
(
Eu ∩A ,1−

min(a(u)λ(Eu),α(u))
α(u)

))
= min(a(u)λ(Eu),α(u))
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and, since λ(Eu)−α(u) = λ(Eu)−λ(A∩Eu) = λ((cA)∩Eu), λ(Φ+(a,E·,A)(u)) is equal
to

λ

(
g
(
Eu ∩ (cA),1− max(0, a(u)λ(Eu)−α(u))

λ((cA)∩Eu)

))
= max(0, a(u)λ(Eu)−α(u)).

Therefore we get λ(Φ(a,E·,A)(u)) = max(0, a(u)λ(Eu)−α(u))+min(a(u)λ(Eu),α(u)) =
a(u)λ(Eu) for all u ∈ [0,1]. Finally, since A ⊂ E0 and α(0) = λ(E0 ∩ A) = λ(A) =
λ(E0)a(0), we get that Φ(a,E·,A)(0) = g(E0 ∩A,0)∪ g(E0 ∩ (cA),1) = A ∪∅ = A, and
this proves the claim. □

As before, we provide an illustration, when A ⊂Ω is the same (blue) rectangle,
and E· associates continuously to any u ∈ [0,1] some rectangle, whose boundary is
dashed and in red. In this example, the map a is taken to be affine, from λ(A)/λ(E0)
to 0. The first row depicts the map u 7→ Eu , and the second row superposes it with
the map u 7→ Φ(a,E·,A)(u), depicted in blue.

u ∼ 0.0 u ∼ 0.1 u ∼ 0.2 u ∼ 0.3 u ∼ 0.4 u ∼ 0.5 u ∼ 0.6 u ∼ 0.7 u ∼ 0.8 u ∼ 0.9

u ∼ 0.0 u ∼ 0.1 u ∼ 0.2 u ∼ 0.3 u ∼ 0.4 u ∼ 0.5 u ∼ 0.6 u ∼ 0.7 u ∼ 0.8 u ∼ 0.9

4 Probability law

4.1 The law maps

Recall from Spanier (1966) that the weak (or coherent) topology on |K| is the
topology such that U is open in |K| iff U ∩ |F| is open for every F ∈ K, where
|F| = {α : F→ [0,1] |

∑
s∈F α(s) = 1} is given the topology induced from the product

topology of [0,1]F . For each p ≥ 1, we can put a metric topology on the same set, in
order to define a metric space |K|dp by the metric dp(α,β) = p

√∑
s∈S |α(s)− β(s)|p. The

map |K| → |K|dp is continuous, and it is an homeomorphism iff |K| is metrizable iff
it is satisfies the first axiom of countability, iff K is locally finite (see Spanier 1966,
p. 119, ch. 3, sec. 2, Theorem 8 for the case p = 2, but the proof works for p , 2 as
well).

For α : S → [0,1], we denote the support of α by supp(α) = {s ∈ S |α(s) , 0}. We
let Ψ0 : L(Ω,K)→ |K| be defined by associating to a random variable f ∈ L(Ω,K) its
probability law s 7→ λ(f −1({s})).

213



Simplicial random variables I. Marin

4.2 Non-continuity of Ψ0

We first prove that Ψ0 is not continous in general, by providing an example. Let us
consider S = N = Z≥0, and K = P ∗f (N). We introduce

U =
{
α ∈ |K|

∣∣∣∣∣ ∀s , 0 α(s) <
1

#supp(α)

}
.

We note that U is open in |K|. Indeed, if F ∈ K we have

U ∩ |F| =
{
α : F→ [0,1]

∣∣∣∣∣ ∑
s∈F

α(s) = 1 & ∀s , 0 |α(s) <
1

#supp(α)

}
which is equal to⋃

G⊂F\{0}

{
α : G→ [0,1]

∣∣∣∣∣ α(0) +
∑
s∈G

α(s) = 1 & ∀s ∈ G |0 < α(s) <
1

#G+ 1

}

and it is open as the union of a finite collection of open sets. Now consider Ψ −1
0 (U ),

and let f0 ∈ L(Ω,K) be the constant map t 7→ 0. Clearly α0 = Ψ0(f0) is the map 0 7→ 1,
k 7→ 0 for k ≥ 1, and α0 ∈U . If Ψ −1

0 (U ) is open, there exists ε > 0 such that it contains
the open ball centered at f0 with radius ε. Let n be such that 1/n < ε/3, and define
f ∈ L([0,1],K) by f (t) = 0 for t ∈ [0,1− 2/n[, f (t) = k for t ∈ [1− 2

n + k−1
n3 ,1− 2

n + k
n3 [

and 1 ≤ k ≤ n2, and finally f (t) = n2 + 1 for t ∈ [1− 1
n ,1]. The graph of f for n = 3 is

depicted below.

0
• • • •

1− 2
3 1− 1

3 1

1
2
3
4
5
6
7
8
9

10

We have d(f , f0) = 2/n < 2ε/3 < ε hence we should have α = Ψ0(f ) ∈ U . But the
support of α has cardinality n2 + 2, and α(n2 + 1) = 1/n > 1/(n2 + 2), contradicting
α ∈U . This proves that Ψ0 is not continuous.
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4.3 Continuity of Ψ and existence of global sections

For short, we now denote |K|p = |K|dp . We consider the same ‘law’ map Ψ : L(Ω,K)→
|K|1. We prove that it is uniformly continuous (and actually 2-Lipschitz). Indeed, if
f ,g ∈ L(Ω,K), and α = Ψ (f ), β = Ψ (g), then

d1(α,β) =
∑
s∈S
|α(s)− β(s)| =

∑
s∈S
|λ(f −1(s))−λ(g−1(s))|

and |λ(f −1(s))−λ(g−1(s))| ≤ λ(f −1(s)∆ g−1(s)). But f −1(s)∆ g−1(s) = {t ∈ f −1(s) |f (t) ,
g(t)} ∪ {t ∈ g−1(s) |f (t) , g(t)} whence

d1(α,β) ⩽
∑
s∈S

∫
f −1(s)

d(f (t), g(t))dt +
∑
s∈S

∫
g−1(s)

d(f (t), g(t))dt

= 2
∫
Ω

d(f (t), g(t))dt

whence d1(α,β) ≤ 2d(f ,g). It follows that it induces a continuous map L̄(Ω,K)→
|K|1, where

|K|1 = {α : S→ [0,1] |P ∗f (supp(α)) ⊂ K &
∑
s∈S

α(s) = 1}

endowed with the metric d(α,β) =
∑
s∈S |α(s)− β(s)| is the completion of |K|1. This

map associates to f ∈ L̄(Ω,K) the map α(s) = λ(f −1(s)). Notice that the condition∑
sα(s) = 1 <∞ implies that the support supp(α) of α is finite.

The fact that |K|1 has the same homotopy type than |K| has originally been
proved by Dowker2 in a more general context, and another proof was subsequently
provided by Milnor3.

It is clear that every mass distribution on the discrete set S is realizable by
some random variable. We first show that it is possible to do this continuously. In
topological terms, this proves the following statement.

Proposition 6 – The maps Ψ and Ψ admit global (continuous) sections.

Proof. We fix some (total) ordering ≤ on S and some identification Ω ≃ [0,1]. We
define σ : |K|1→ L̄(Ω,K) as follows. For any α ∈ |K|1, Sα = supp(α) ⊂ S is countable.
Let A± : S→R+ denote the associated cumulative mass functions A+(s) =

∑
u≤sα(u)

and A−(s) =
∑
u<sα(u). They induce increasing injections (Sα ,≤)→ [0,1]. The map

σ (α) is defined by σ (α)(t) = a if A−(a) ≤ t < A+(a). We have σ (α)(Ω) = Sα . Since
α ∈ |K|1 every non-empty finite subset of Sα belongs to K hence σ (α) ∈ L̄(Ω,K), and
σ (α) ∈ L(Ω,K) as soon as α ∈ |K|1.

2Dowker, 1952, “Topology of Metric Complexes”.
3Milnor, 1959, “On Spaces having the homotopy type of a CW-complex”.
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Clearly Ψ̄ ◦ σ is the identity. We prove now that σ is continuous at any α ∈ |K|1.
Let ε > 0. There exists S0

α ⊂ Sα finite (and non-empty) such that
∑
s∈Sα\S0

α
α(s) ≤ ε/3.

Let n = |S0
α | > 0. We set η = ε/3n. Let β ∈ |K|1 with |α − β|1 ≤ η, and set B+(s) =∑

u≤s β(u) and B−(s) =
∑
u<s β(u). We have

d(σ (α),σ (β)) ≤ ε/3 +
∑
a∈S0

α

∫ A+(a)

A−(a)
d(σ (α)(t),σ (β)(t))dt

Now note that |A±(a)−B±(a)| ≤ |α − β|1 ≤ ε/3n for each a ∈ S0
α hence∫ A+(a)

A−(a)
d(σ (α)(t),σ (β)(t))dt ≤ 2ε

3n
+
∫ min(A+(a),B+(a))

max(A−(a),B−(a))
d(σ (α)(t),σ (β)(t))dt =

2ε
3n

since σ (α)(t) = σ (β)(t) for each t ∈ [max(A−(a),B−(a)),min(A+(a),B+(a))], and this
yields d(σ (α),σ (β)) ≤ ε. This proves that σ is continuous at any α ∈ L̄(Ω,K). There-
fore σ provides a continuous global section of Ψ̄ , which obviously restricts to
a continuous global section of Ψ . □

4.4 Homotopy lifting properties

Let ΨK : L(Ω,K) → |K|1 and Ψ̄K : L̄(Ω,K) → |K|1 denote the law maps. If α is
a cardinal, we let Ψα (resp. Ψ̄α) denote the map associated to the simplicial complex
P ∗f (α). Recall that a continuous map p : E→ B is said to have the homotopy lifting
property (HLP) with respect to some topological space X if, for any (continuous)
maps H : X × [0,1]→ B and h : X → E such that p ◦ h = H( · ,0), there exists a map
H̃ = X × [0,1]→ E such that p ◦ H̃ =H and H̃( · ,0) = h.

E E

X B X × [0,1] B

p ph

p◦h H

H̃

A Hurewicz fibration is a map having the HLP w.r.t. arbitrary topological spaces.
A Serre fibration is a map having the HLP w.r.t. all n-spheres, and this is equivalent
to having the HLP w.r.t. any CW-complex.

Lemma 11 – If Ψα (resp. Ψ̄α) has the HLP w.r.t. the space X, then the map ΨK (resp.
Ψ̄K) has the HLP w.r.t. the space X for every simplicial complex whose vertex set has
cardinality α.
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Proof. This is a straightforward consequence of the fact that, by definition, the
following natural square diagrams are cartesian, where S =

⋃
K is the vertex set

of K.

L(Ω,K) Lf(Ω,S) L̄(Ω,K) L(Ω,S)

|K|1 |P ∗f (S)|1 |K|1 |P ∗f (S)|1 □

Notice that the following lemma applies in particular to every compact metriz-
able space (e.g. the n-spheres). Recall that ℵ0 denotes the cardinality of N.

Lemma 12 – Let X be a separable space. If Ψℵ0
(resp. Ψ̄ℵ0

) has the HLP w.r.t. the space
X then, for every infinite cardinal γ , the map Ψγ (resp. Ψ̄γ ) has the HLP w.r.t. the
space X.

Proof. Let S be a set of cardinality γ , H : X × [0,1]→ |P ∗f (S)|1 (resp. H̄ : X × [0,1]→
|P ∗f (S)|1) and h : X→ Lf(Ω,S) (resp. h̄ : X→ L(Ω,S)) be continuous maps such that
ΨS ◦h =H( · ,0) (resp. Ψ̄S ◦h̄ = H̄( · ,0)). Since X is separable, X×[0,1] is also separable
and so areH(X×[0,1]) and H̄(X×[0,1]). Let (xn)n∈N be a dense sequence of elements
of H(X × [0,1]) (resp. H̄(X × [0,1])). Each supp(xn) ⊂ S is countable, and therefore
so is D =

⋃
n supp(xn).

We first claim that, for any α ∈ H(X × [0,1]) (resp. α ∈ H̄(X × [0,1])) we have
supp(α) ⊂ D. Indeed, if α(s0) , 0 for some s0 < D, then there exists xn such
that d(xn,α) < α(s0). But since d(xn,α) =

∑
s∈S |α(s) − xn(s)|, this condition im-

plies xn(s0) , 0, contradicting supp(xn) ⊂ D. Therefore supp(α) ⊂ D for all α ∈
H(X × [0,1]) (resp. α ∈ H̄(X × [0,1])), and H (resp. H̄) factorizes through a map
HD : X × [0,1]→ |P ∗f (D)|1 (resp. H̄D : X × [0,1]→ |P ∗f (D)|1) and the natural inclusion
|P ∗f (D)|1 ⊂ |P ∗f (S)|1 (resp. |P ∗f (D)|1 ⊂ |P ∗f (S)|1).

Notice that this implies that h (resp. h̄) takes values in Lf(Ω,D) (resp. L(Ω,D)),
too. By assumption, there exists H̃D : X × [0,1]→ Lf(Ω,D) (resp. H̃D : X × [0,1]→
L(Ω,D)) such that ΨD ◦ H̃D =HD and with H̃D( · ,0) = h (respectively, ˜̄HD( · ,0) = h̄).
Composing H̃D (resp. ˜̄HD ) with the natural injection Lf(Ω,D) ↪→ Lf(Ω,S) (resp.
L(Ω,D) ↪→ L(Ω,S)) we get the lifting H̃ (resp. ˜̄H) we want, and this proves the
claim.

Lf(Ω,D) Lf(Ω,S)

X × [0,1] |P ∗f (S)|1

|P ∗f (D)|1

ΨD
ΨS

HD

H̃D

H

□
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Proposition 7 – Let X be a topological space and γ a countable cardinal. Then Ψγ has
the HLP property w.r.t. X as soon as γ is finite or X is compact. Moreover Ψ̄γ has the
HLP w.r.t. X as soon as X is compact.

Proof. Let X be an arbitrary topological space. Our cardinal γ is the cardinal
of some initial segment S ⊂ N = Z≥0 that is, either S = [0,m] for some m, or
S = N. Let H : X × [0,1]→ |P ∗f (S)|1 and h : X → Lf(Ω,S) such that H( · ,0) = ΨS ◦ h.
For (x,u) ∈ X × [0,1], the element H(x,u) ∈ |P ∗f (S)|1 is of the form (H(x,u)s)s∈S ,
with

∑
s∈SH(x,u)s = 1. Since, for each s ∈ S, the map |P ∗f (S)|1 → [0,1] given by

α 7→ α(s) is 1-Lipschitz, the composite map (x,u) 7→H(x,u)s defines a continuous
map X × [0,1]→ [0,1].

Let us choose x ∈ X. We set, with the convention 0/0 = 0,

an(x,u) =
H(x,u)n

1−
∑
k<nH(x,u)k

∈ [0,1], An(x) = h(x)−1({n}) ∈ L(2)

and we construct recursively, for each n ∈N,

• maps Ωn(x, · ) : [0,1]→ L(2)

• maps E(n)
x,· : [0,1]→ L(2)

by letting

E
(n)
x,u = Ω \

⋃
k<n

Ωk(x,u), Ωn(x,u) = Φ
(
an(x, · ),E(n)

x,· ,An(x)
)
(u)

where Φ is the map afforded by Proposition 5.

In order for this to be defined at any given n, one needs to check that An(x) ⊂ E(n)
x,0

and an(x,0)λ(E(n)
x,0) = λ(An(x)). This is easily checked by induction because, if Ωk ,E

(k)

are defined for k < n, then

Ωk(x,0) = Φ
(
an(x, · ),E(n)

x,· ,An(x)
)
(0) = An(x) = h(x)−1({n})

hence

E
(n)
x,0 = Ω \

⋃
k<n

Ak(x) = h(x)−1(S \ [0,n[) ⊃ h(x)−1({n}) = An(x)

and moreover λ(An(x)) = λ(h(x)−1({n})) = H(x,0)n = a(x,0)λ(E(n)
x,0). Therefore these

maps are well-defined.
From their definitions and the properties of Φ one gets immediately by induction

that

an(x,u)λ(E(n)
x,u) =H(x,u)n = λ(Ωn(x,u))

for all (x,u) ∈ X × [0,1].
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For a given (x,u), the sets Ωn(x,u) are essentially disjoint, since Ωn(x,u) ⊂
E

(n)
x,u = Ω \

⋃
k<nΩk(x,u), and moreover

⋃
nΩn(x,u) = Ω since

∑
nλ(Ωn(x,u)) =∑

nH(x,u)n = 1. Therefore, we can define a map H̃ : X × [0,1] → Lf(S) by set-
ting H̃(x,u)(t) = n if t ∈Ωn(x,u). Clearly (ΨS ◦ H̃(x,u))n = λ(Ωn(x,u)) =H(x,u)n for
all n, hence ΨS ◦ H̃ = H . Moreover H̃(x,0)n = Ωn(x,0) = An(x) = h(x)−1({n} hence
H̃(x,0) = h(x) for all x ∈ X.

Therefore it only remains to prove that H̃ : X × [0,1]→ Lf(Ω,S) is continuous.
Let us define the auxiliary maps H̃n : X × [0,1]→ L(Ω, {0, . . . ,n}) by H̃n(x,u)(t) =

H̃(x,u)(t) if H̃(x,u)(t) < n, and H̃n(x,u)(t) = n if H̃(x,u)(t) ≥ n – that is, H̃n(x,u)(t) =
min(n,H̃(x,u)(t)).

We first prove that each H̃n is continuous. Let (x0,u0), (x,u) ∈ X × [0,1]. We have

d(H̃n(x,u), H̃n(x0,u0)) =
n∑
k=0

∫
Ωk(x0,u0)

d((H̃n(x,u)(t), H̃n(x0,u0)(t))dt

hence

d(H̃n(x,u), H̃n(x0,u0)) ⩽
n∑
k=0

λ (Ωk(x0,u0) \Ωk(x,u))

⩽
n∑
k=0

λ(Ωk(x0,u0)∆Ωk(x,u))

and therefore it remains to prove that the maps (x,u) 7→Ωn(x,u) are continuous for
each n ∈N.

We thus want to prove that Ωn( · , · ) ∈ C0(X × [0,1],L(2)), which we identify with
the space C0(X,C0([0,1],L(2))) = C0(X,C0(L(2))) since [0,1] is (locally) compact.
Recall that Φ is continuous C0([0,1]) ×C0(L(2)) × L(2)→ C0(L(2)). Moreover, for
arbitrary spaces Y ,Z and a map g ∈ C0(Y ,Z), the induced map C0(X,Y )→ C0(X,Z)
given by f 7→ g ◦ f is continuous. Letting Y = C0([0,1]) × C0(L(2)) × L(2) and
Z = C0(L(2)), we deduce from Φ : Y → Z a continuous map Φ̂ : C0(X,Y )→ C0(X,Z),
that is

C0(X,C0([0,1])×C0(L(2)))×L(2)) C0(X,C0(L(2))

C0(X × [0,1], [0,1])×C0(X × [0,1],L(2))×C0(X,L(2)) C0(X × [0,1],L(2))

Φ̂

By induction and because the maps an,An are clearly continuous for any n, we get
that all the maps involved are continuous, through the recursive identities

• Ωn = Φ̂(an,E
(n)
·,· ,An( · ))

• E
(n)
x,u = Ω \

⋃
k<nΩk(x,u)

and this proves the continuity of H̃n.
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If S is finite this proves that H̃ is continuous, because H̃ = H̃n for n large enough
in this case. Let us now assume that S = N and X is compact. We want to prove that
the sequence H̃n converges uniformly to H̃ . Since each H̃n is continuous this will
prove that H̃ is continuous. Let ε > 0. Let Un = {(x,u) ∈ X × [0,1] |

∑
k≤nH(x,u)k >

1− ε}. Since H is continuous this defines a collection of open subsets in the compact
space X × [0,1], and since

∑
k≤nH(x,u)→ 1 when n→∞ for any (x,u) ∈ X × [0,1],

this collection is an open covering of X × [0,1]. By compactness, and because this
collection is a filtration, we have X × [0,1] =Un0

for some n0 ∈N. But then, for any
(x,u) ∈ X × [0,1] and n ≥ n0 we have

d(H̃n(x,u), H̃(x,u)) = λ

⋃
k>n

Ωk(x,u)

 =
∑
k>n

H(x,u)k ⩽ ε □

and this proves the claim.

Remark 1 – We notice that the liftings constructed in the above proof have the
following additional property that, whenever H(x, · ) is a constant map for some
x ∈ X, then so is the map H̃(x, · ). This follows from the fact that the maps ar(x, · )
are constant as soon as H(x, · ) is constant, and then one gets by induction on n that

Ωn(x,u) = Φ(an(x, · ),E(n)
x,· ,An(x)) is constant in u by the last item of Proposition 5,

and thus so is E(n)
x,u .

Since it is far simpler in this case, we provide an alternative proof for the case of
binary random variables.

Corollary 2 – The map Ψ2 = Ψ{0,1} is a Hurewicz fibration.

Proof. (alternative proof) Let X be a space, and H : X × [0,1]→ |P ∗f (2)|1 and h : X→
L(Ω,2) such thatH( · ,0) = Ψ2◦h. Note that |P ∗f (2)|1 = {α : {0,1} →R+ |α(0)+α(1) = 1}
is isometric to [0,1] through the isometry j : α 7→ α(1), where the metric on [0,1] is
the Euclidean one. If α = Ψ2 ◦ h(x), we have α(0) = 1−λ(h(x)), j(Ψ2(h(x))) = α(1) =
λ(h(x)).

Using the map g of Lemma 6 we note that λ(cg(cA,u)) = u + (1−u)λ(A) = uλ(Ω) +
(1−u)λ(A) and we define, for A ∈ L(2) and a ∈ [0,1],

• g̃(A,a) = g(A,1− a/λ(A)) if a < λ(A),

• g̃(A,λ(A)) = A,

• g̃(A,a) = cg(cA, (a−λ(A))/(1−λ(A))) if a > λ(A).

We prove that g̃ : L(2)× [0,1]→ L(2) is continuous at each (A0, a0) ∈ L(2). The case
a0 , λ(A0) is clear from the continuity of g, as there is an open neighborhood of
(A0, a0) on which a−λ(A) has constant sign. Thus we can assume a0 = λ(A0). Then

d(g̃(A,a), g̃(A0, a0)) = d(g̃(A,a),A0) ⩽ d(g̃(A,a),A) + d(A,A0)
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But, if a < λ(A) we have by the inequality of Lemma 6

d(g̃(A,a),A) = d
(
g
(
A,1− a

λ(A)

)
,g(A,0)

)
⩽

∣∣∣∣∣1− a
λ(A)

∣∣∣∣∣
and, if a > λ(A), we have, noticing that A 7→ cA is an isometry of L(2) (as A∆ B =
(cA)∆ (cB)),

d(g̃(A,a),A) = d
(
cg

(
cA,

a−λ(A)
1−λ(A)

)
,A

)
= d

(
g
(
cA,

a−λ(A)
1−λ(A)

)
, (cA)

)
⩽

∣∣∣∣∣ a−λ(A)
1−λ(A)

∣∣∣∣∣
which altogether imply

d(g̃(A,a), g̃(A0, a0)) ⩽ d(A,A0) + max
(∣∣∣∣∣1− a

λ(A)

∣∣∣∣∣ , ∣∣∣∣∣ a−λ(A)
1−λ(A)

∣∣∣∣∣)
Since the RHS is continuous with value 0 at (A0, a0) with a0 = λ(A0), this proves the
continuity of g̃.

It is readily checked that λ(g̃(A,a)) = a for all A,a. We then define H̃ : X ×
[0,1]→ L(Ω,2) by H̃(x,u) = g̃(h(x), j(H(x,u))). We have λ(H̃(x,u)) = j(H(x,u)) hence
Ψ2 ◦ H̃ = H , and H̃(x,0) = h(x) for all x ∈ X, therefore H̃ provides the lifting we
want. □

Altogether, these statements imply the following result, which completes the
proof of Theorem 1.

Theorem 2 – For an arbitrary simplicial complex K, the maps ΨK and Ψ K are Serre
fibrations and (strong) homotopy equivalences. If K is finite, then ΨK and Ψ K are
Hurewicz fibrations.

Proof. Let K be an arbitrary simplicial complex. We first prove that ΨK and Ψ K
are Serre fibrations. By Lemmas 11 and 12, and since the n-spheres are separable
spaces, we can restrict ourselves to proving the same statement for Ψγ and Ψ γ
when γ ≤ ℵ0, and this is true in this case because the n-spheres are compact, by
Proposition 7. If K is a finite simplicial complex, by Lemma 11 and Proposition 7
we get that ΨK and Ψ K are Hurewicz fibrations.

Now, by Proposition 6 we know that ΨK and Ψ K admit global sections. We
denote them σK and σK, respectively. In order to prove that these are homotopy
inverses for ΨK and Ψ K, we need to check that σK ◦ΨK and σK ◦Ψ K are homotopic
to the identity map. Taking γ1 : X = L(Ω,K)→ L(Ω,K) to be σK ◦ΨK and γ0 = IdX ,
one checks easily that, for all f ∈ L(Ω,K), γ1(f )(Ω) is equal to

σK ◦ΨK(f )(Ω) = supp(ΨK ◦ σK ◦ΨK(f )) = supp(ΨK(f )) = f (Ω)

which is equal to γ0(f )(Ω). Therefore we can apply Lemma 5 (with A = ∅) and get
that γ0,γ1 are homotopic. The proof for σK ◦Ψ K is similar. □
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