

Simplicial random variables

Ivan Marin¹

Received: April 4, 2017/Accepted: October 23, 2020/Online: November 19, 2020

Abstract

We introduce a new 'geometric realization' of an (abstract) simplicial complex, inspired by probability theory. This space (and its completion) is a metric space, which has the right (weak) homotopy type, and which can be compared with the usual geometric realization through a natural map, which has probabilistic meaning: it associates to a random variable its probability mass function. This 'probability law' map is proved to be a Serre fibration and an homotopy equivalence.

Keywords: Geometric realization, random variables, simplicial complexes.

msc: 55P10, 60A99.

1 Introduction and main results

In this paper we consider a new 'geometric realization' of an (abstract) simplicial complex, inspired by probability theory. This space is a metric space, which has the right (weak) homotopy type, and can be compared with the usual geometric realization through a map, which is very natural in probabilistic terms : it associates to a random variable its probability mass function. This 'probability law' function is proved to be a (Serre) fibration and a (weak) homotopy equivalence. This construction passes to the completion, and has nice functorial properties.

We specify the details now. Let *S* be a set, and $P_f(S)$ the set of its finite subsets. We set $\mathcal{P}_{\mathrm{f}}^{\frac{1}{2}}$ $\widehat{f}_f^*(S) = \mathcal{P}_f(S) \setminus \{\emptyset\}$. Recall that an (abstract) simplicial complex is a collection of subsets $K \subset \mathcal{P}_{f}^{*}(S)$ with the property that, for all $X \in \mathcal{K}$ and $Y \in \mathcal{P}_{f}^{*}(S)$, $Y \subset X \Rightarrow$ *Y* ∈ K. The elements of K are called its faces, and the vertices of K are the union of the elements of K .

We endow *S* with the discrete metric of diameter 1, and with the Borel *σ*-algebra associated to this topology. We let Ω denote a nonatomic standard probability space with measure λ . Recall that all such probability spaces are isomorphic and can be identified in particular with any hypercube $[0,1]^n$, $n \ge 1$, endowed with the Lebesgue measure. We define $L(\Omega, S)$ as the set of random variables $\Omega \rightarrow S$, that is

¹LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, Amiens, France

the set of measurable maps $\Omega \rightarrow S$ modulo the equivalence relation $f \equiv g$ if f and g agree almost everywhere, that is $\lambda({x; f(x) = g(x)}) = 0$. We consider it as a metric space, endowed with the metric

$$
d(f,g) = \int_{\Omega} d(f(t), g(t)) dt = \lambda (\{x \in \Omega; f(x) \neq g(x)\}).
$$

We define $L(\Omega,\mathcal{K})$ as the subset of $L(\Omega,S)$ made of the (equivalence classes of) $\text{measurable maps } f : \Omega \to S \text{ such that } \{ s \in S \, | \, \lambda(f^{-1}(\{ s \})) > 0 \} \in K.$

Recall that the (usual) 'geometric' realization of K is defined as

$$
|\mathcal{K}| = \left\{ t : S \to [0,1] \; \middle| \; \{ s \in S; t_s > 0 \} \in \mathcal{K} \; \& \; \sum_{s \in S} t_s = 1 \right\}
$$

and that its topology is given by the direct limit of the $[0,1]^A$ for $A \in \mathcal{P}_f(S)$. There is a natural map $L(\Omega, K) \to |K|$ which associates to $f : \Omega \to K$ the element $t : S \to [0,1]$ defined by $t_s = \lambda(f^{-1}(\{s\}))$. In probabilistic terms, it associates to the random variable *f* its probability law, or probability mass function. We denote $|K|_1$ the same set as $|K|$, but with the topology defined by the metric $|a - \beta|_1 = \sum_{s \in S} |a(s) - \beta(s)|$. We denote $\overline{K|_1}$ its completion as a metric space.

It is easily checked that, unless *S* is finite, *L*(Ω*,*K) is not in general closed in *L*(Ω *, S*), and therefore not complete. We denote $\bar{L}(\Omega,\mathcal{K})$ its closure inside *L*(Ω *, S*). The 'probability law' map $\Psi : L(\Omega,\mathcal{K}) \to |\mathcal{K}|_1$ is actually continuous, and can be extended to a map $\overline{\Psi}:\bar{L}(\Omega,\mathcal{K})\to\overline{|\mathcal{K}|}_1$. Keane's Theorem about the contractibility of Aut(Ω) (see Keane [1970\)](#page-21-0) easily implies that these maps have contractible fibers. The goal of this note is to specify the homotopy-theoretic features of them. We get the following results.

Theorem 1 –

- *1. The map* $L(\Omega, \mathcal{K}) \to \overline{L}(\Omega, \mathcal{K})$ *is a weak homotopy equivalence.*
- *2. The 'probability law' map* $L(\Omega, K) \rightarrow |K|_1$ *is a Serre fibration and an homotopy equivalence. It admits a continuous global section.*
- *3. The 'probability law' map* $\overline{L}(\Omega,\mathcal{K}) \to |\overline{\mathcal{K}|_1}$ *is a Serre fibration and an homotopy equivalence. It admits a continuous global section.*
- *4.* $L(\Omega, K)$ and $\overline{L}(\Omega, K)$ have the same weak homotopy type as the 'geometric realiza*tion'* $|K|$ *of* K *.*

In particular, in the commutative diagram below, the vertical maps are Serre fibrations, and all the maps involved are weak homotopy equivalences. When

2. Simplicial properties and completion

K is finite, $L(\Omega,K) = \bar{L}(\Omega,K)$ and we prove in addition that the map $\Psi_K = \overline{\Psi}_K$ is a Hurewicz fibration (see Theorem [2\)](#page-20-0).

We now comment on the functorial properties of this construction. By definition, a morphism $\varphi:\mathcal{K}_1\to\mathcal{K}_2$ between simplicial complexes is a map from the set $\bigcup \mathcal{K}_1$ of vertices of K_1 to the set of vertices of K_2 with the property that $\forall F \in K_1$ $\varphi(F) \in K_2$. We denote **Simp** the corresponding category of simplicial complexes. For such an abstract simplicial complex K, our space $L(\Omega, K)$ has for ambient space $L(\Omega, S)$ with *S* = \bigcup *K* the set of vertices of *K*.

Let Set denote the category of sets and Met_1 denote the full subcategory of the category of metric spaces and contracting maps made of the spaces of diameter at most 1. Here a map $f: X \to Y$ between two metric spaces is called contracting if $∀a, b ∈ X d(f(a), f(b)) ≤ d(a, b)$. Let **CMet**₁ be the full subcategory of **Met**₁ made of complete metric spaces. There is a completion functor Comp : $Met_1 \rightarrow CMet_1$ which associates to each metric space its completion. Then $L(\Omega, \cdot): X \to L(\Omega, X)$ defines a functor Set \rightarrow CMet₁ (see Marin [2017\)](#page-21-1). It can be decomposed as $L(\Omega, \cdot)$ = Comp \circ *L*_f(Ω ,·) where *L*_f(Ω , *S*) is the subspace of *L*(Ω , *S*) made of the (equivalence classes of) functions $f : \Omega \to S$ of essentially finite image, that is such that there exists *S*₀ ⊂ *S* finite such that $\sum_{s \in S_0} \lambda(f^{-1}(\{s\})) = 1$.

We prove in Section [2.1](#page-3-0) below that our simplicial constructions have similar functorial properties, which can be summed up as follows.

Proposition 1 – $L(\Omega, \cdot)$ *and* $L(\Omega, \cdot)$ *define functors* **Simp** \rightarrow **Met**₁ *and* **Simp** \rightarrow **CMet**₁*, with the property that* $\overline{L}(\Omega, \cdot) = \text{Comp} \circ L(\Omega, \cdot)$ *.*

2 Simplicial properties and completion

In this section we prove part (1) of Theorem [1.](#page-1-0) We start by proving the functorial properties stated in the introduction.

2.1 Functorial properties

We denote, as in the previous section, $\bar{L}(\Omega,\mathcal{K})$ the closure of $L(\Omega,\mathcal{K})$ inside $L(\Omega, S)$. As a closed subset of a complete metric space, it is a complete metric space. For any $f \in L(\Omega, S)$, we denote

$$
f(\Omega) = \{ s \in S \, | \, \lambda(f^{-1}(\{s\})) > 0 \}
$$

the essential image of an arbitrary measurable map $\Omega \rightarrow S$ representing *f*.

Proof. Assume $f \in \bar{L}(\Omega,\mathcal{K})$ and let $F \subset f(\Omega)$ be a nonempty finite subset as in the statement. We set $m = \min{\lambda(f^{-1}(\{s\})) | s \in F\}$. We have $m > 0$. Since $f \in \bar{L}(\Omega, \mathcal{K})$, there exists $f_0 \in L(\Omega,\mathcal{K})$ such that $d(f, f_0) < m$. We then have $F \subset f_0(\Omega)$. Indeed, there would otherwise exist $s \in F \setminus f_0(\Omega)$, and then $d(f, f_0) \geq \lambda(f^{-1}(\{s\})) \geq m$, a contradiction. From this we get $F \in K$. Conversely, assume that every nonempty finite subset of $f(\Omega)$ belongs to K. From Marin [\(2017,](#page-21-1) Proposition 3.3) we know that *f* (Ω) ⊂ *S* is countable. If *f* (Ω) is finite we have *f* (Ω) ∈ K by assumption and $f \in L(\Omega,\mathcal{K})$. Otherwise, let us fix a bijection $\mathbb{N} \to f(\Omega)$, $n \mapsto x_n$ and define $f_n \in L(\Omega, S)$ by $f_n(t) = f(t)$ if $f(t) \in \{x_0, \ldots, x_n\}$, and $f_n(t) = x_0$ otherwise. Clearly *f_n*(Ω) ⊂ *f*(Ω) is nonempty finite hence belongs to K , and *f_n* ∈ *L*(Ω , K). On the other hand, $d(f_n, f) \le \sum_{k>n} \lambda(f^{-1}(\{x_k\})) \to 0$, hence $f \in \bar{L}(\Omega, K)$ and this proves the claim. \Box

We prove that, as announced in the introduction, $\bar{L}(\Omega, \cdot)$ provides a functor Simp → CMet₁ that can be decomposed as Comp \circ *L*(Ω *,*·), where *L*(Ω *,*·) is itself a functor $Simp \rightarrow Met_1$.

Let $\varphi \in \text{Hom}_{\text{Simp}}(\mathcal{K}_1, \mathcal{K}_2)$ that is $\varphi: \bigcup \mathcal{K}_1 \to \bigcup \mathcal{K}_2$ such that $\varphi(F) \in \mathcal{K}_2$ for all $F \in$ K₁. If $f \in L(\Omega, K_1)$, $g = L(\Omega, \varphi)(f) = \varphi \circ f$ is a measurable map and $g(\Omega) = \varphi(f(\Omega))$. Since $f(\Omega) \in \mathcal{K}_1$ and φ is simplicial we get that $\varphi(f(\Omega)) \in \mathcal{K}_2$ hence $g \in L(\Omega, \mathcal{K}_2)$. From this one gets immediately that $L(\Omega, \cdot)$ indeed defines a functor $Simp \rightarrow Met_1$.

Similarly, if $f \in \bar{L}(\Omega,\mathcal{K}_1)$ and $g = \varphi \circ f = L(\Omega,\varphi)(f) \in L(\Omega,S)$, then again $g(\Omega) =$ $\varphi(f(\Omega))$. But, for any finite set $F \subset g(\Omega) = \varphi(f(\Omega))$ there exists $F' \subset f(\Omega)$ finite and with the property that $F = \varphi(F')$. Now $f \in \overline{L}(\Omega, \mathcal{K}_1) \Rightarrow F' \in \mathcal{K}_1$, by Lemma [1,](#page-2-0) hence *F* ∈ K₂ because φ is a simplicial morphism. By Lemma [1](#page-2-0) one gets $g \in \bar{L}(\Omega, K_2)$, hence *L*(Ω ,·) defines a functor **Simp** \rightarrow **CMet**₁. We checks immediately that *L*(Ω ,·) = Comp \circ *L*(Ω , ·), and this proves Proposition [1.](#page-2-1)

2.2 Technical preliminaries

We denote by 2 in the notation $L(\Omega, 2)$ a set with two elements. When needed, we will also assume that this set is pointed, that is contains a special point called 0, so that *f* ∈ *L*(Ω, 2) can be identified with {*t* ∈ Ω; *f*(*t*) ≠ 0}, up to a set of measure 0. Note that these conventions agree with the set-theoretic definition of $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}.$

Lemma 2 – Let *F* be a set. The map $f \mapsto \{t \in \Omega; f(t) \notin F\}$ is uniformly continuous $L(\Omega, S) \rightarrow L(\Omega, 2)$ *, and even contracting.*

Proof. Let $f_1, f_2 \in L(\Omega, S)$, and $\Psi : L(\Omega, S) \to L(\Omega, 2)$ the map defined by the statement. Then $\Psi(f_1)(t) \neq \Psi(f_2)(t) \Rightarrow f_1(t) \neq f_2(t)$, hence $d(\Psi(f_1)(t), \Psi(f_2)(t)) \leq$ $d(f_1(t), f_2(t))$ for all $t \in \Omega$ and finally $d(\Psi(f_1), \Psi(f_2)) \leq d(f_1, f_2)$, whence Ψ is contracting and uniformly continuous. □

2. Simplicial properties and completion

Lemma 3 − *Let* $a, b, c, d \in \mathbb{R}$ *with* $a ≤ b$ *and* $c ≤ d$ *. Then*

 λ ([a, b] \ |c, d[) \leq |a – c| + |b – d|.

Proof. There are six possible relative positions of $c \le d$ with respect to $a \le b$ to consider, which are depicted as follows:

In three of them, namely $a \le b \le c \le d$, $c \le d \le a \le b$, and $c \le a \le b \le d$, we have $\lambda([a,b] \setminus [c,d]) = 0$. In case $c \le a \le d \le b$, we have $\lambda([a,b] \setminus [c,d]) = \lambda([d,b]) = |b-d| \le$ $|a-c| + |b-d|$. In case $a \le c \le b \le d$, we have $\lambda([a,b] \setminus [c,d]) = \lambda([a,c]) = |a-c| \le$ $|a-c|$ + $|b-d|$. Finally, when $a \le c \le d \le b$, we have $\lambda([a,b] \setminus [c,d]) = \lambda([a,c] \sqcup [d,b])$ = $|a - c| + |b - d|$, and this proves the claim. □

Lemma 4 – Let $\Delta^r = {\alpha_1, \ldots, \alpha_r} \in \mathbb{R}_+^r | \alpha_1 + \cdots + \alpha_r = 1$ *denote the r-dimensional simplex.* The map $\Delta^r \to L(\Omega, \{1, ..., r\})$ *defined by* $\underline{\alpha} \mapsto f_{\underline{\alpha}}$ *where* $f_{\underline{\alpha}}(t) = i$ *iff* $t \in$ $[\alpha_1 + \cdots + \alpha_{i-1}, \alpha_1 + \cdots + \alpha_i]$ is continuous. More precisely it is 2*r*-Lipschitz if Δ^r is *equipped with the metric* $d(\underline{\alpha}, \underline{\alpha'}) = \sum_i |\alpha_i - \alpha'_i|$ *i* |*.*

Proof. We fix an identification $\Omega \simeq [0,1]$. Let $\underline{\alpha}, \underline{\alpha'} \in \Delta^r$. We denote $\beta_i = \alpha_1 + \cdots + \alpha_i$, $\beta_0 = 0$, and we similarly define the β_i^j $\overrightarrow{n_i}$. We have $\beta_i - \beta_{i-1} = \alpha_i$ hence β_i $\sum_{i}^{\prime} - \beta_i$ | ≤ $\sum_{k\leq i}^{\infty} |\alpha'_k\rangle$ α_k and finally $\sum_i |\beta_i|$ $\sum_{i}^{'} - \beta_i \leq r \sum_{i} |\alpha_i^{'}|$ $\beta_i - \alpha_i$. Now, for $t \in [\beta_i, \beta_{i+1}]$ we have $f_{\underline{\alpha}}(t) = f_{\underline{\alpha'}}(t)$ unless $t \notin [\beta_i']$ $\sum_{i}^{7} P_{i+1}^{7}$ [. From this and Lemma [3](#page-3-1) we get that $d(f_{\alpha}, f_{\alpha'})$ is no greater than

$$
\sum_{i=1}^{r} \lambda \left([\beta_i, \beta_{i+1}] \setminus [\beta'_i, \beta'_{i+1}] \right) \leq \sum_{i=1}^{r} |\beta_i - \beta'_i| + |\beta_{i+1} - \beta'_{i+1}|
$$

$$
\leq 2 \sum_{i=1}^{r} |\beta_i - \beta'_i| \leq 2r \sum_{i=1}^{r} |\alpha_i - \alpha'_i|
$$

and this proves the claim. \Box

Lemma 5 – Let K be a simplicial complex and X a topological space, and $A \subset X$. If $\gamma_0, \gamma_1 : X \to L(\Omega, \mathcal{K})$ *are two continuous maps such that* $\forall x \in X$ $\gamma_0(x)(\Omega) \subset \gamma_1(x)(\Omega)$ *, and* $(\gamma_0)_{A} = (\gamma_1)_{A}$ *, then* γ_0 *and* γ_1 *are homotopic relative to A. Moreover, if* γ_0 *and* γ_1 *take value inside* $L(\Omega, \mathcal{K})$ *, then the homotopy takes values inside* $L(\Omega, \mathcal{K})$ *.*

Proof. We fix an identification $\Omega \simeq [0,1]$. We define $H : [0,1] \times X \rightarrow L(\Omega, S)$ by *H*(*u*, *x*)(*t*) = $\gamma_0(x)(t)$ if $t \ge u$ and $H(u, x)(t) = \gamma_1(x)(t)$ if $t < u$. We have $H(0, \cdot) = \gamma_0$ and $H(1,\cdot) = \gamma_1$.

We first check that *H* is indeed a (set-theoretic) map $[0,1] \times X \rightarrow \overline{L}(\Omega,\mathcal{K})$. For all $u \in [0,1]$ and $x \in X$ we have $H(u,x)(\Omega) \subset \gamma_0(x)(\Omega) \cup \gamma_1(x)(\Omega) = \gamma_1(x)(\Omega)$. Therefore $H(u, x)(\Omega) \in K$ if $\gamma_1(x) \in L(\Omega, K)$, and all nonempty finite subsets of $H(u, x)(\Omega) \subset$ *γ*₁(*x*)(Ω) belong to *K* if *γ*₁(*x*) $\in \bar{L}(\Omega, K)$. From this, by Lemma [1](#page-2-0) we get that *H* takes values inside $\bar{L}(\Omega,\mathcal{K})$, and even inside $L(\Omega,\mathcal{K})$ if $\gamma_1 : X \to L(\Omega,\mathcal{K})$.

Now, we check that *H* is continuous over $[0,1] \times X$. We have $d(H(u,x),H(v,x)) \le$ |*u* − *v*| for all *u, v* ∈ [0*,*1] and, for all *x,y* ∈ *X* and *u* ∈ [0*,*1], we have

$$
d(H(u, x), H(u, y)) = \int_0^u d(\gamma_1(x)(t), \gamma_1(y)(t)) dt + \int_u^1 d(\gamma_0(x)(t), \gamma_0(y)(t)) dt
$$

\n
$$
\leq \int_0^1 d(\gamma_1(x)(t), \gamma_1(y)(t)) dt + \int_0^1 d(\gamma_0(x)(t), \gamma_0(y)(t)) dt
$$

\n
$$
= d(\gamma_1(x), \gamma_1(y)) + d(\gamma_0(x), \gamma_0(y))
$$

from which we get $d(H(u, x), H(v, y)) \leq |u - v| + d(\gamma_1(x), \gamma_1(y)) + d(\gamma_0(x), \gamma_0(y))$ for all *x,y* ∈ *X* and *u,v* ∈ [0,1]. For any given (u, x) ∈ [0,1] × *X* this proves that *H* is continuous at (u, x) . Indeed, given $\varepsilon > 0$, from the continuity of γ_0, γ_1 we get that, for some open neighborhood *V* of *x* we have *d*(*γ*0(*x*)*,γ*0(*y*)) ≤ *ε/*3 and *d*(*γ*1(*x*)*,γ*1(*y*)) ≤ *ε/*3 for all $\psi \in V$. This proves that $d(H(u, x), H(v, \psi)) \leq \varepsilon$ for all $(v, \psi) \in [u - \varepsilon/3, u + \varepsilon/3] \times V$ and this proves the continuity of *H*.

Finally, it is clear that $\gamma_0(x) = \gamma_1(x)$ implies $H(u, x) = \gamma_0(x) = \gamma_1(x)$ for all $u \in$ [0*,*1], therefore the homotopy indeed fixes *A*. □

2.3 Weak homotopy equivalence

We now prove part (1) of the main theorem, through a series of propositions, which might be of independent interest.

Proposition 2 – *Let C be a compact subspace of* $\overline{L}(\Omega,\mathcal{K})$ *and* $C_0 \subset C \cap L(\Omega,\mathcal{K})$ *a (pos* s *ibly empty) subset such that* $\bigcup_{c \in C_0} c(\Omega)$ *is finite. Then there exists a continuous map* $p: C \to L(\Omega, K)$ *such that* $p(c) = c$ *for all* $c \in C_0$ *. Moreover,* $p(c)(\Omega) \subset c(\Omega)$ *for all* $c \in C$ $and \cup_{c \in C} p(c)(\Omega)$ *is finite.*

Proof. For any $s \in S$ and $n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$ we denote $O_{s,n} = \{f \in L(\Omega, S) | \lambda(f^{-1}(\{s\})) >$ 1/*n*}. It is an open subset of *L*(Ω*, S*), hence $C_{s,n}$ = *C* ∩ $O_{s,n}$ is an open subset of *C*. Now, for every $c \in C$ there exists $s \in S$ such that $\lambda(c^{-1}(\{s\})) > 0$ hence $c \in C_{s,n}$ for some *n*. Then *C* is compact and covered by the $C_{s,n}$ hence there exists $s_1, \ldots, s_r \in S$ and $n_1, ..., n_r \in \mathbb{N}^*$ such that $C \subset \bigcup_{i=1}^r O_{s_i, n_i}$. Up to replacing the n_i 's by their maximum, we may suppose $n_1 = \cdots = n_r = n_0$. Let then $F' = \bigcup_{c \in C_0} c(\Omega) \subset S$. We set $F = \{s_1, \ldots, s_r\} \cup F'$. For any $i \in \{1, \ldots, r\}$ we set $O_i = O_{s_i, n_0}$.

For any $c \in C$, we set $\Omega_c = \{t \in \Omega; c(t) \notin F\}$, and

$$
\alpha_i(c) = \frac{d(c, {^cO_i})}{\sum_j d(c, {^cO_j})}
$$

2. Simplicial properties and completion

and $\beta_i(c) = \sum_{k \leq i} \alpha_k(c)$, where ^{*c*}*X* denotes the complement of *X*. These define continuous maps $C \to \mathbb{R}_+$. We fix an identification $\Omega \simeq [0,1]$, so that intervals make sense inside $Ω$. We then set

$$
p(c)(t) = \begin{cases} c(t) & \text{if } c(t) \in F, \text{ i.e. } t \notin \Omega_c \\ s_i & \text{if } t \in \Omega_c \cap [\beta_{i-1}(c), \beta_i(c)] \end{cases}
$$

Let $c_1, c_2 \in C$ and $\underline{\alpha}^s$, $s = 1, 2$ the corresponding *r*-tuples $\underline{\alpha}^s = (\alpha_1^s, \dots, \alpha_r^s) \in \Delta^r$ given by $\alpha_i^s = \alpha_i(c_s)$. When $t \notin \Omega_{c_1} \cup \Omega_{c_2}$ we have $p(c_s)(t) = c_s(t)$, hence

$$
\int_{\Omega \setminus (\Omega_{c_1} \cup \Omega_{c_2})} d(p(c_1)(t), p(c_2)(t)) dt \le \int_{\Omega} d(c_1(t), c_2(t)) dt = d(c_1, c_2)
$$

and we have

$$
\int_{\Omega_{c_1}\cup\Omega_{c_2}} d(p(c_1)(t), p(c_2)(t))dt \leq \lambda(\Omega_{c_1}\Delta\Omega_{c_2}) + \int_{\Omega_{c_1}\cap\Omega_{c_2}} d(p(c_1)(t), p(c_2)(t))dt.
$$

Since we know that $\lambda(\Omega_{c_1} \Delta \Omega_{c_2}) \leq d(c_1, c_2)$ by Lemma [2,](#page-3-2) we get

$$
d(p(c_1), p(c_2)) \le 2d(c_1, c_2) + \int_{\Omega_{c_1} \cap \Omega_{c_2}} d(p(c_1)(t), p(c_2)(t)) dt
$$

and there only remains to check that the term $\int_{\Omega_{c_1} \cap \Omega_{c_2}} d(p(c_1)(t), p(c_2)(t)) dt$ is continuous. But, by Lemma [4,](#page-4-0) we have

$$
\int_{\Omega_{c_1}\cap\Omega_{c_2}} d(p(c_1)(t), p(c_2)(t))dt = \int_{\Omega_{c_1}\cap\Omega_{c_2}} d(f_{\underline{\alpha}^1}(t), f_{\underline{\alpha}^2}(t))dt
$$

$$
\leq d(f_{\underline{\alpha}^1}, f_{\underline{\alpha}^2}) \leq 2r|\underline{\alpha}^1 - \underline{\alpha}^2|
$$

whence the conclusion, by continuity of $c \mapsto \alpha$.

We must now check that *p* takes values inside $L(\Omega, K)$. Let $c \in C$. We know that $p(c)(Ω) ⊂ F$ is finite, and

$$
p(c)(\Omega) \subset c(\Omega) \cup \{s_i; c \in O_i\}.
$$

But *c* \in *O*_{*i*} implies that *s*_{*i*} \in *c*(Ω) hence *p*(*c*)(Ω) is nonempty finite subset of *c*(Ω). Since *c* ∈ $\bar{L}(\Omega, K)$, by Lemma [1](#page-2-0) this proves $p(c)(\Omega) \in K$ and $p(c) \in L(\Omega, K)$.

Finally, we have $p(c) = c$ for all $c \in C_0$ since $F \supset F'$.

We immediately get the following corollary, by letting $C_0 = \{c_1^0, \ldots, c_k^0\}$.

Corollary 1 – Let C be a compact subset of $\bar{L}(\Omega,\mathcal{K})$ and $c_1^0,\ldots,c_k^0 \in C \cap L(\Omega,\mathcal{K})$. Then *there exists a continuous map* $p: C \to L(\Omega, K)$ *such that* $p(c_i^0) = c_i^0$ *for all* $i \in \{1, ..., k\}$ *. Moreover,* $p(c)(\Omega) \subset c(\Omega)$ *for all* $c \in C$ *and* $\bigcup_{c \in C} p(c)(\Omega)$ *is finite.*

Proposition 3 – Let C be a compact space, and $x_0 \in C$. For any simplicial com*plex* K, and any continuous map γ : C \rightarrow L(Ω , K), there exists a continuous map $\hat{\gamma}: (C, x_0) \to (L(\Omega, \mathcal{K}), \gamma(x_0))$ *which is homotopic to* γ *relative to* $(\{x_0\}, \{\gamma(x_0)\})$ *, and such that* $\bigcup_{x \in C} \hat{\gamma}(x)$ (Ω) *is finite.*

Proof. Let $C' = \gamma(C) \subset L(\Omega, \mathcal{K})$. It is compact, hence applying Corollary [1](#page-6-0) to it and to $\{c_1^0\} = \{\gamma(x_0)\}\$ we get a continuous map $p: C' \to L(\Omega, \mathcal{K})$ such that $\bigcup_{c \in C'} p(c)(\Omega)$ is finite, and $p(c)(\Omega) \subset c(\Omega)$ for all $c \in C'$. Therefore, letting $\hat{\gamma} = p \circ \gamma : C \to L(\Omega, \mathcal{K})$, \forall *we get that* $\bigcup_{x \in C} \hat{\gamma}(x)$ (Ω) is finite. Since $\hat{\gamma}(x)$ (Ω) ⊂ $\gamma(x)$ (Ω) for all *x* ∈ *C*, we get from Lemma [5](#page-4-1) that *γ* and *γ*ˆ are homotopic, hence the conclusion.

Proposition 4 – Let C be a compact space (and $x_0 \in C$), K a simplicial complex, and *a pair of continuous maps* $\gamma_0, \gamma_1 : C \to L(\Omega, \mathcal{K})$ *(with* $\gamma_0(x_0) = \gamma_1(x_0)$ *). If* γ_0 *and* γ_1 *are homotopic as maps in* $\bar{L}(\Omega,\mathcal{K})$ (relative to $({x_0},({y_0(x_0)}))$ *, then they are homotopic inside* $L(\Omega, \mathcal{K})$ (*relative to* $({x_0}, {y_0(x_0)}).$

Proof. After Proposition [3,](#page-7-0) there exists $\hat{\gamma}_0$, $\hat{\gamma}_1$: $C \rightarrow L(\Omega, \mathcal{K})$ such that $\hat{\gamma}_i$ is homotopic to γ_i with the property that $\bigcup_{x \in C} \hat{\gamma}_i(x)$ (Ω) is finite, for all $i \in \{0, 1\}$. Without loss of generality, one can therefore assume that $\bigcup_{x \in C} \gamma_i(x)(\Omega)$ is finite, for all $i \in \{0,1\}$. Let $H: C \times [0,1] \rightarrow \overline{L}(\Omega,\mathcal{K})$ be an homotopy between γ_0 and γ_1 . Let $C' = H(C \times [0,1])$ and $C_0 = \gamma_0(C) \cup \gamma_1(C)$. These are two compact spaces which satisfy the assumptions of Proposition [2.](#page-5-0) If $p: C' \to L(\Omega,\mathcal{K})$ is the continuous map afforded by this proposition, then $H = p \circ H$ provides a homotopy between γ_0 and γ_1 inside $L(Ω, K)$. The 'relative' version of the statement is proved similarly. □

In particular, when *C* is equal to the *n*-sphere *S n* , this proves that the natural $\min_{\sigma} \left[S^n, L(\Omega, \mathcal{K}) \right]_* \to \left[S^n, \overline{L}(\Omega, \mathcal{K}) \right]_*$ between sets of pointed homotopy classes is injective. In order to prove Theorem [1](#page-1-0) (1), we need to prove that it is surjective. Let us consider a continuous map $\gamma : S^n \to \bar{L}(\Omega,\mathcal{K})$ and set $C = \gamma(S^n)$. It is a compact subspace of $\bar{L}(\Omega,\mathcal{K})$. Applying Proposition [2](#page-5-0) with $C_0 = \emptyset$ we get $p : C \to L(\Omega,\mathcal{K})$ such that $p(c)(\Omega) \subset c(\Omega)$ for any $c \in C$. Let then $\hat{\gamma} = p \circ \gamma : S^n \to L(\Omega, \mathcal{K})$. From Lemma [5](#page-4-1) we deduce that $\hat{\gamma}$ and γ are homotopic inside $\bar{L}(\Omega,\mathcal{K})$, and this concludes the proof of part (1) of Theorem [1.](#page-1-0)

3 Homotopies inside $L(\Omega, \{0, 1\})$

In this section we denote $L(2) = L(\Omega, 2) = L(\Omega, \{0, 1\})$, with $d(0, 1) = 1$. Since we are going to use Lipschitz properties of maps, we specify our conventions on metrics. When (X, d_X) and (Y, d_Y) are two metric spaces, we endow $X \times Y$ with the metric $d_X + d_Y$, and the space $C^0([0,1],X)$ of continuous maps $[0,1] \rightarrow X$ with the metric of uniform convergence $d(\alpha, \beta) = ||\alpha - \beta||_{\infty} = \sup_{t \in I} |\alpha(t) - \beta(t)|$. Recall that the topology on $C^0([0,1],X)$ induced by this metric is the compact-open topology. For short we set $C^0(X) = C^0([0, 1], X)$.

3. Homotopies inside $L(\Omega, \{0, 1\})$

Identifying *L*(2) = *L*(Ω*,*2) with the space of measurable subsets of Ω (modulo subsets of measure 0) endowed with the metric $d(E, F) = \lambda(E \Delta F)$, where Δ is the symmetric difference operator, we have the following lemma. This lemma can be viewed as providing a continuous reparametrization by arc-length of natural geodesics inside the metric space *L*(2).

Lemma 6 – *The exists a continuous map* $\mathbf{g}: L(2) \times [0,1] \rightarrow L(2)$ *such that* $\mathbf{g}(A,0) = A$ *,* $\lambda(\mathbf{g}(A, u)) = \lambda(A)(1 - u)$ and $\mathbf{g}(A, u) \supset \mathbf{g}(A, v)$ for all A and $u \le v$. Moreover, it satisfies

 λ (g(*E*, *u*) Δ g(*F*, *v*)) $\leq 4\lambda$ (*E* Δ *F*) + |*v* − *u*|

for all $E, F \in L(2)$ *and* $u, v \in [0, 1]$ *.*

Proof. We fix an identification $\Omega \simeq [0,1]$. For $E \in L(2) \setminus \{\emptyset\}$ we define $\varphi_F(t) =$ $\lambda(E \cap [t,1])/\lambda(E)$. The map φ_E is obviously (weakly) decreasing and continuous $[0,1] \rightarrow [0,1]$, with $\varphi_F(0) = 1$ and $\varphi_F(1) = 0$. It is therefore surjective, and we can define a (weakly) decreasing map $\psi_E : [0,1] \to [0,1]$ by $\psi_E(u) = \inf \varphi_E^{-1}(\{u\})$. Since φ_F is continuous, we have $\varphi_F(\psi_F(u)) = u$.

One defines $g(E, u) = E \cap [\psi_E(1 - u), 1]$ if $\lambda(E) \neq 0$, and $g(\emptyset, u) = \emptyset$. We have $\lambda(\mathbf{g}(E, u)) = \lambda(E \cap [\psi_E(1 - u), 1]) = \varphi_E(\psi_E(1 - u))\lambda(E) = (1 - u)\lambda(E)$ when $\lambda(E) \neq 0$, and $\lambda(\mathbf{g}(\emptyset, u)) = 0 = \lambda(E)(1 - u)$ if $\lambda(E) = 0$. It is clear that $\mathbf{g}(E, u) \subset \mathbf{g}(E, v)$ for all $u \geq v$.

Moreover, clearly $g(E,0) = E$ since $E \cap [\psi_E(1),1] \subset E$ and $\lambda(E \cap [\psi_E(1),1]) =$ $\varphi_E(\psi_E(1))\lambda(E) = \lambda(E)$. It remains to prove that **g** is continuous.

Let $E, F \in L(2)$ and $u, v \in [0, 1]$. We first assume $\lambda(E)\lambda(F) > 0$. Without loss of generality we can assume $\psi_F(1 - u) \leq \psi_F(1 - v)$. Then $[\psi_E(1 - u), 1] \supset [\psi_F(1 - v), 1]$, and $\mathbf{g}(E, u) \Delta \mathbf{g}(F, v)$ can be decomposed as

$$
((E \setminus F) \cap [\psi_E(1-u),1]) \cup ((F \setminus E) \cap [\psi_F(1-v),1])
$$

$$
\cup ((E \cap F) \cap [\psi_E(1-u), \psi_F(1-v)]).
$$

Since the first two pieces are included inside $E \Delta F$, we get $\lambda(\mathbf{g}(E, u) \Delta \mathbf{g}(F, v)) \leq$ $\lambda(E \Delta F) + \lambda((E \cap F) \cap [\psi_E(1 - u), \psi_F(1 - v)]).$ Now $(E \cap F) \cap [\psi_E(1 - u), \psi_F(1 - v)] =$ $(E \cap F \cap [\psi_E(1 - u), 1]) \setminus (E \cap F \cap [\psi_F(1 - v), 1])$ hence

$$
\lambda ((E \cap F) \cap [\psi_E(1-u), \psi_F(1-v)])
$$

= $\lambda (E \cap F \cap [\psi_E(1-u), 1]) - \lambda (E \cap F \cap [\psi_F(1-v), 1])$
 $\leq \lambda (E \cap [\psi_E(1-u), 1]) - \lambda (E \cap F \cap [\psi_F(1-v), 1])$
 $\leq (1-u)\lambda (E) - \lambda (E \cap F \cap [\psi_F(1-v), 1])$

Now, since $F = (E \cap F) \sqcup (F \setminus E)$, we have $F \cap [\psi_F(1-v), 1] = ((E \cap F) \cap [\psi_F(1-v), 1]) \sqcup$ $((F \setminus E) \cap [\psi_F(1 - v), 1])$ hence

$$
(1-v)\lambda(F) = \lambda ((E \cap F) \cap [\psi_F(1-v), 1]) + \lambda ((F \setminus E) \cap [\psi_F(1-v), 1])
$$

\n
$$
\leq \lambda ((E \cap F) \cap [\psi_F(1-v), 1]) + \lambda (F \setminus E)
$$

\n
$$
\leq \lambda ((E \cap F) \cap [\psi_F(1-v), 1]) + \lambda (F \Delta E).
$$

It follows that −*λ*((*E* ∩*F*)∩[*ψF*(1 − *v*)*,*1]) ≤ *λ*(*F* ∆*E*) − (1 − *v*)*λ*(*F*) hence

$$
\lambda ((E \cap F) \cap [\psi_E(1-u), \psi_F(1-v)]) \leq (1-u)\lambda(E) + \lambda (F \Delta E) - (1-v)\lambda(F)
$$

and finally

$$
\lambda(\mathbf{g}(E, u) \Delta \mathbf{g}(F, v)) \le 2\lambda (E \Delta F) + (1 - u)\lambda(E) - (1 - v)\lambda(F)
$$

\n
$$
\le 2\lambda (E \Delta F) + (\lambda(E) - \lambda(F)) + (v - u)\lambda(E) + v(\lambda(F) - \lambda(E))
$$

\n
$$
\le 2\lambda (E \Delta F) + |\lambda(E) - \lambda(F)| + |v - u|\lambda(E) + v|\lambda(F) - \lambda(E)|
$$

\n
$$
\le 2\lambda (E \Delta F) + 2|\lambda(E) - \lambda(F)| + |v - u|
$$

\n
$$
\le 4\lambda (E \Delta F) + |v - u|.
$$

Therefore we get the inequality $\lambda(g(E, u) \Delta g(F, v)) \leq 4\lambda(E \Delta F) + |v - u|$, that we readily check to hold also when $\lambda(E)\lambda(F) = 0$. This proves that **g** is continuous, whence the claim. \Box

We provide a 2-dimensional illustration, with $\Omega = [0,1]^2.$ The map constructed in the proof depends on an identification $[0,1]^2 \approx [0,1]$ (up to a set of measure 0). An explicit one is given by the binary-digit identification

 $0.\varepsilon_1\varepsilon_2\varepsilon_3\cdots \mapsto (0.\varepsilon_1\varepsilon_3\varepsilon_5\ldots,0.\varepsilon_2\varepsilon_4\varepsilon_6\ldots)$

with the $\varepsilon_i \in \{0,1\}$. Then, when *A* is some (blue) rectangle, the map $u \mapsto g(A, u)$ looks as follows:

The above lemma is actually all what is needed to prove Theorem [1](#page-1-0) in the case of binary random variables, that is $S = \{0, 1\}$, as we will illustrate later (see Corollary [2\)](#page-19-0). In the general case however, we shall need a more powerful homotopy, provided by Proposition [5](#page-11-0) below. The next lemmas are preliminary technical steps in view of its proof.

Lemma 7 – *The map* $C^0(L(2)) \times L(2) \rightarrow C^0([0,1])$ *defined by* $(E, A) \rightarrow \alpha$ *where* $\alpha(u) =$ $\lambda(E_u \cap A)$, is 1-Lipschitz.

Proof. Let *α*, *β* denote the images of (*E*· *,A*) and (*F*· *,B*), respectively. Then, for all $u \in I$, we have

$$
|\alpha(u) - \beta(u)| = |\lambda(E_u \cap A) - \lambda(F_u \cap B)| \le \lambda((E_u \cap A) \Delta(F_u \cap B))
$$

From the general set-theoretic inequality $(X \cap A) \Delta (Y \cap B) \subset (X \Delta Y) \cup (A \Delta B)$ one gets

$$
\lambda ((E_u \cap A) \Delta (F_u \cap B)) \leq \lambda (E_u \Delta F_u) + \lambda (A \Delta B),
$$

hence $||α - β||_{∞} ≤ sup_u λ(E_u ΔF_u) + λ(A ΔB)$ and this proves the claim. □

3. Homotopies inside $L(\Omega, \{0, 1\})$

Lemma 8 − *A map* Φ _− : $C^0([0,1]) \times C^0(L(2)) \times L(2)$ → $C^0(L(2))$ *is defined as follows.* To $(a, E, A) \in C^0([0, 1]) \times C^0(L(2)) \times L(2) \to C^0(L(2))$ one associates the map

$$
\Phi_{-}(a, E, A): u \mapsto \mathbf{g}\left(E_u \cap A, 1 - \frac{\min(a(u)\lambda(E_u), \alpha(u))}{\alpha(u)}\right)
$$

if $\alpha(u) \neq 0$, and otherwise $u \mapsto \emptyset$, where $\alpha(u) = \lambda(A \cap E_u)$. Then, the map Φ ₋ is *continuous.*

Proof. Let us fix $(a, E, A) \in C^0([0, 1]) \times C^0(L(2)) \times L(2)$, and let $\varepsilon > 0$. Consider \hat{m} : $[0,1] \times [\varepsilon/12,1] \rightarrow [0,1]$ be defined by $\hat{m}(x,y) = \min(x,y)/y$. It is clearly continuous on the compact space $[0,1] \times [\varepsilon/12,1]$, hence unformly continuous, hence there exists $\eta > 0$ such that max $(|x_1 - x_2|, |y_1 - y_2|) < \eta \Rightarrow |\hat{m}(x_1, y_1) - \hat{m}(x_2, y_2)| \le \varepsilon/6$. Clearly one can assume *η* ≤ *ε/*6 as well.

Let us then consider $(b, F, B) \in C^0([0,1]) \times C^0(L(2)) \times L(2)$ such that $\|a - b\|_{\infty} +$ sup*^u ^λ*(*E^u* [∆]*Fu*) +*λ*(*^A* [∆]*B*) [≤] *^η*. From Lemma [7,](#page-9-0) we get [∥]*^α* [−]*β*∥[∞] [≤] *^η*. Let us consider $I_0 = \{u \in [0,1] | \alpha(u) \leq \varepsilon/3\}$. We have by definition $\alpha([0,1] \setminus I_0) \subset \varepsilon/3, 1] \subset \varepsilon/12, 1$ and, since $||\alpha - \beta||_{\infty} \leq \varepsilon/6$, we have $\beta([0,1] \setminus I_0) \subset \varepsilon/6, 1] \subset \varepsilon/12, 1$. Moreover, since

$$
|a(u)\lambda(E_u) - b(u)\lambda(F_u)| \le |a(u) - b(u)|\lambda(E_u) + b(u)|\lambda(E_u) - \lambda(F_u)|
$$

\n
$$
\le |a(u) - b(u)| + \lambda(E_u \Delta F_u) \le \eta
$$

we get that, for all $u \notin I_0$, we have $|\hat{m}(a(u)\lambda(E_u))$, $\alpha(u) - \hat{m}(b(u)\lambda(F_u), \beta(u))| \leq \varepsilon/6$. Moreover, since in particular $\alpha(u)\beta(u) \neq 0$, we get from the general inequality $\lambda(\mathbf{g}(X, x) \Delta \mathbf{g}(Y, y)) \leq 4\lambda(X \Delta Y) + |x - y|$ of Lemma [6](#page-8-0) that, for all $u \notin I_0$,

$$
d (\Phi_{-}(a, E, A)(u), \Phi_{-}(b, F, B)(u)) \le 4\lambda((E_u \cap A) \Delta (F_u \cap B))
$$

+
$$
|\hat{m}(a(u)\lambda(E_u), \alpha(u)) - \hat{m}(b(u)\lambda(F_u), \beta(u))|
$$

$$
\le 4(\lambda(E_u \Delta F_u) + \lambda(A \Delta B)) + \varepsilon/6
$$

$$
\le 4\varepsilon/6 + \varepsilon/6
$$

$$
< \varepsilon
$$

Now, if $u \in I_0$, then $\Phi_-(a, E, A)(u) \subset E_u \cap A$ hence $\lambda(\Phi_-(a, E, A)(u)) \leq \lambda(E_u \cap A) =$ $\alpha(u) \leq \varepsilon/3$ and $\lambda(\Phi_-(b, F, B)(u)) \leq \lambda(F_u \cap B) = \beta(u) \leq \varepsilon/3 + \varepsilon/6 = \varepsilon/2$, whence

$$
d\left(\Phi_{-}(a,E,A)(u),\Phi_{-}(b,F,B)(u)\right) \leq \lambda(\Phi_{-}(a,E,A)(u)) + \lambda(\Phi_{-}(b,F,B)(u))
$$

$$
\leq 5\varepsilon/6 < \varepsilon.
$$

It follows that $d(\Phi_-(a, E, A), \Phi_-(b, F, B)) \leq \varepsilon$ and Φ_- is continuous at (a, E, A) , which proves the claim. □

We use the convention $g(X, t) = X$ for $t \le 0$ and $g(X, t) = \emptyset$ for $t > 1$, so that **g** is extended to a continuous map $L(2) \times \mathbb{R} \rightarrow L(2)$. The notation ^{*c*}*A* denotes the complement inside $Ω$ of the set *A*, identified with an element of $L(Ω, 2)$.

Lemma 9 – *A map* Φ_+ : $C^0([0,1]) \times C^0(L(2)) \times L(2) \to C^0(L(2))$ *is defined as follows.* To $(a, E, A) \in C^0([0, 1]) \times C^0(L(2)) \times L(2) \to C^0(L(2))$ one associates the map

$$
\Phi_{+}(a, E, A): u \mapsto \mathbf{g}\bigg(E_u \cap {^cA}), 1 - \frac{\max(0, a(u)\lambda(E_u) - \alpha(u))}{\lambda(E_u) - \alpha(u)}\bigg)
$$

if $\alpha(u) \neq \lambda(E_u)$, and otherwise $u \mapsto \emptyset$, where $\alpha(u) = \lambda(A \cap E_u)$. Then, the map Φ_+ is *continuous.*

The proof is similar to the one of the previous lemma, and left to the reader.

Lemma 10 – *The map* $(f, g) \mapsto (t \mapsto f(t) \cup g(t))$ *is continuous* $C^0(L(2))^2 \to C^0(L(2))$ *, and even 1-Lipschitz.*

Proof. The map $(X, Y) \mapsto X \cup Y$ is 1-Lipschitz because of the general set-theoretic fact $(X_1 \cup Y_1) \Delta(X_2 \cup Y_2) \subset (X_1 \Delta X_2) \cup (Y_1 \Delta Y_2)$ from which we deduce $\lambda((X_1 \cup Y_1) \Delta(X_2 \cup Y_2))$ $(X_2 \cup Y_2) \leq \lambda (X_1 \Delta X_2) + \lambda (Y_1 \Delta Y_2)$, which proves that $(X, Y) \mapsto X \cup Y$ is 1-Lipschitz *L*(2)² → *L*(2). It follows that the induced map $C^0(L(2)^2) = C^0(L(2))^2 \rightarrow C^0(L(2))$ is 1-Lipschitz and thus continuous, too. □

The following proposition informally says that, when $E \in C^0(L(2))$ is a path inside *L*(2) with $A \subset E_0$, then we can find another path $\Phi \in C^0(L(2))$ such that $\Phi_u \subset E_u$ for all *u*, and the ratio $\lambda(\Phi)/\lambda(E_\cdot)$ follows any previously specified variation starting at $\lambda(A)/\lambda(E_0)$ – and, moreover, that this can be done continuously.

Proposition 5 – *There exists a continuous map* $\Phi : C^0([0,1]) \times C^0(L(2)) \times L(2) \rightarrow$ $C^0(L(2))$ *having the following properties.*

- *for all* $(a, E, A) \in C^0([0, 1]) \times C^0(L(2)) \times L(2)$ *such that* $A \subset E_0$ *and* $a(0) \lambda(E_0) = \lambda(A)$ *,* $we \; have \; \Phi(a, E, A)(0) = A$
- \bullet *for all u* ∈ [0, 1], Φ (*a*, *E*., *A*)(*u*) ⊂ *E*_{*u*} *and* λ (Φ (*a*, *E*., *A*)(*u*)) = *a*(*u*) λ (*E*_{*u*})
- *if a and E. are constant maps, then so is* $\Phi(a, E, A)$ *.*

Proof. We define $\Phi(a, E, A)(u) = \Phi_-(a, E, A)(u) \cup \Phi_+(a, E, A)(u)$. By the definition of Φ_+ in Lemmas [8](#page-9-1) and [9,](#page-10-0) the last property is clear. By combining Lemmas [8,](#page-9-1) [9](#page-10-0) and [10](#page-11-1) we get that Φ is continuous. Moreover, $\Phi_{-}(a, E, A)(u) \subset E_u \cap A$ and $\Phi_+(a, E, A)(u) \subset E_u \cap (^cA)$ hence $\Phi(a, E, A)(u) = \Phi_-(a, E, A)(u) \sqcup \Phi_+(a, E, A)(u) \subset E_u$ with $\lambda(\Phi(a, E, A)(u)) = \lambda(\Phi_-(a, E, A)(u)) + \lambda(\Phi_+(a, E, A)(u))$. Letting $\alpha(u) = \lambda(E_u \cap A)$, again by Lemmas [8](#page-9-1) and [9](#page-10-0) we get

$$
\lambda(\Phi_{-}(a, E, A)(u)) = \lambda \left(\mathbf{g}\left(E_u \cap A, 1 - \frac{\min(a(u)\lambda(E_u), \alpha(u))}{\alpha(u)}\right) \right)
$$

$$
= \min(a(u)\lambda(E_u), \alpha(u))
$$

4. Probability law

and, since $\lambda(E_u) - \alpha(u) = \lambda(E_u) - \lambda(A \cap E_u) = \lambda(({}^cA) \cap E_u)$, $\lambda(\Phi_+(a, E, A)(u))$ is equal to

$$
\lambda\left(\mathbf{g}\left(E_u \cap (^c A), 1-\frac{\max(0, a(u)\lambda(E_u)-\alpha(u))}{\lambda((^c A) \cap E_u)}\right)\right)=\max(0, a(u)\lambda(E_u)-\alpha(u)).
$$

Therefore we get $\lambda(\Phi(a, E, A)(u)) = \max(0, a(u)\lambda(E_u) - \alpha(u)) + \min(a(u)\lambda(E_u), \alpha(u)) =$ $a(u)\lambda(E_u)$ for all $u \in [0,1]$. Finally, since $A \subset E_0$ and $\alpha(0) = \lambda(E_0 \cap A) = \lambda(A)$ *λ*(*E*₀)*a*(0), we get that Φ (*a*, *E*, *A*)(0) = **g**(*E*₀ ∩ *A*, 0)∪**g**(*E*₀ ∩ (^c*A*), 1) = *A* ∪ ∅ = *A*, and this proves the claim. □

As before, we provide an illustration, when $A \subset \Omega$ is the same (blue) rectangle, and *E*. associates continuously to any $u \in [0,1]$ some rectangle, whose boundary is dashed and in red. In this example, the map *a* is taken to be affine, from $\lambda(A)/\lambda(E_0)$ to 0. The first row depicts the map $u \mapsto E_u$, and the second row superposes it with the map $u \mapsto \Phi(a, E, A)(u)$, depicted in blue.

4 Probability law

4.1 The law maps

Recall from Spanier [\(1966\)](#page-21-2) that the weak (or coherent) topology on $|K|$ is the topology such that *U* is open in |K| iff $U \cap |F|$ is open for every $F \in K$, where $|F| = {\alpha : F \rightarrow [0,1] \mid \sum_{s \in F} \alpha(s) = 1}$ is given the topology induced from the product topology of $[0,1]^F$. For each $p \ge 1$, we can put a metric topology on the same set, in order to define a metric space $|\mathcal{K}|_{d_p}$ by the metric $d_p(\alpha, \beta) = \sqrt[p]{\sum_{s \in S} |\alpha(s) - \beta(s)|^p}$. The map $|{\cal K}| \to |{\cal K}|_{d_p}$ is continuous, and it is an homeomorphism iff $|{\cal K}|$ is metrizable iff it is satisfies the first axiom of countability, iff K is locally finite (see Spanier [1966,](#page-21-2) p. 119, ch. 3, sec. 2, Theorem 8 for the case $p = 2$, but the proof works for $p \neq 2$ as well).

For α : *S* \rightarrow [0,1], we denote the *support* of α by $supp(\alpha) = \{s \in S | \alpha(s) \neq 0\}$. We let $\Psi_0: L(\Omega,\mathcal{K}) \to |\mathcal{K}|$ be defined by associating to a random variable $f \in L(\Omega,\mathcal{K})$ its probability law $s \mapsto \lambda(f^{-1}(\{s\})).$

4.2 Non-continuity of Ψ_0

We first prove that Ψ_0 is *not* continous in general, by providing an example. Let us consider $S = \mathbb{N} = \mathbb{Z}_{\geq 0}$, and $\mathcal{K} = \mathcal{P}_{f}^{*}$ $P_f^*(N)$. We introduce

$$
U = \left\{ \alpha \in |\mathcal{K}| \mid \forall s \neq 0 \text{ } \alpha(s) < \frac{1}{\#\mathrm{supp}(\alpha)} \right\}.
$$

We note that *U* is open in $|K|$. Indeed, if $F \in K$ we have

$$
U \cap |F| = \left\{ \alpha : F \to [0,1] \mid \sum_{s \in F} \alpha(s) = 1 \text{ & } \forall s \neq 0 \mid \alpha(s) < \frac{1}{\# \operatorname{supp}(\alpha)} \right\}
$$

which is equal to

$$
\bigcup_{G \subset F \setminus \{0\}} \left\{ \alpha : G \to [0,1] \mid \alpha(0) + \sum_{s \in G} \alpha(s) = 1 \& \forall s \in G \mid 0 < \alpha(s) < \frac{1}{\#G + 1} \right\}
$$

and it is open as the union of a finite collection of open sets. Now consider $\Psi_0^{-1}(U)$, and let $f_0 \in L(\Omega, \mathcal{K})$ be the constant map $t \mapsto 0$. Clearly $\alpha_0 = \Psi_0(f_0)$ is the map $0 \mapsto 1$, $k \mapsto 0$ for $k \ge 1$, and $\alpha_0 \in U$. If $\Psi_0^{-1}(U)$ is open, there exists $\varepsilon > 0$ such that it contains the open ball centered at f_0 with radius *ε*. Let *n* be such that $1/n < ε/3$, and define *f* ∈ *L*([0,1], K) by *f*(*t*) = 0 for *t* ∈ [0,1 − 2/*n*[, *f*(*t*) = *k* for *t* ∈ [1 − $\frac{2}{n}$ + $\frac{k-1}{n^3}$ $\frac{n^2-1}{n^3}$, 1 – $\frac{2}{n}$ + $\frac{k}{n^3}$ $\frac{\kappa}{n^3}$ [and $1 \le k \le n^2$, and finally $f(t) = n^2 + 1$ for $t \in [1 - \frac{1}{n}, 1]$. The graph of f for $n = 3$ is depicted below.

We have $d(f, f_0) = 2/n < 2\varepsilon/3 < \varepsilon$ hence we should have $\alpha = \Psi_0(f) \in U$. But the support of *α* has cardinality $n^2 + 2$, and $\alpha(n^2 + 1) = 1/n > 1/(n^2 + 2)$, contradicting $\alpha \in U$. This proves that Ψ_0 is not continuous.

4.3 Continuity of Ψ and existence of global sections

For short, we now denote $|K|_p = |K|_{d_p}$. We consider the same 'law' map $\Psi : L(\Omega, \mathcal{K}) \to$ $|K|_1$. We prove that it is uniformly continuous (and actually 2-Lipschitz). Indeed, if $f, g \in L(\Omega, \mathcal{K})$, and $\alpha = \Psi(f), \beta = \Psi(g)$, then

$$
d_1(\alpha, \beta) = \sum_{s \in S} |\alpha(s) - \beta(s)| = \sum_{s \in S} |\lambda(f^{-1}(s)) - \lambda(g^{-1}(s))|
$$

and $|\lambda(f^{-1}(s)) - \lambda(g^{-1}(s))| \le \lambda(f^{-1}(s) \Delta g^{-1}(s))$. But $f^{-1}(s) \Delta g^{-1}(s) = \{t \in f^{-1}(s) | f(t) \neq 0\}$ *g*(*t*)} ∪ {*t* ∈ *g*⁻¹(*s*)|*f*(*t*) ≠ *g*(*t*)} whence

$$
d_1(\alpha, \beta) \le \sum_{s \in S} \int_{f^{-1}(s)} d(f(t), g(t)) dt + \sum_{s \in S} \int_{g^{-1}(s)} d(f(t), g(t)) dt
$$

=
$$
2 \int_{\Omega} d(f(t), g(t)) dt
$$

whence $d_1(\alpha, \beta) \leq 2d(f, g)$. It follows that it induces a continuous map $\bar{L}(\Omega, \mathcal{K}) \to$ $|\mathcal{K}|_1$, where

$$
\overline{|\mathcal{K}|_1} = \{ \alpha : S \to [0,1] | \mathcal{P}_f^*(\text{supp}(\alpha)) \subset \mathcal{K} \text{ \& } \sum_{s \in S} \alpha(s) = 1 \}
$$

endowed with the metric $d(\alpha, \beta) = \sum_{s \in S} |\alpha(s) - \beta(s)|$ is the completion of $|K|_1$. This map associates to $f \in \bar{L}(\Omega,\mathcal{K})$ the map $\alpha(s) = \lambda(f^{-1}(s))$. Notice that the condition $\sum_{s} \alpha(s) = 1 < \infty$ implies that the support supp(α) of α is finite.

The fact that $|K|_1$ has the same homotopy type than $|K|$ has originally been proved by Dowker^{[2](#page-14-0)} in a more general context, and another proof was subsequently provided by Milnor^{[3](#page-14-1)}.

It is clear that every mass distribution on the discrete set *S* is realizable by some random variable. We first show that it is possible to do this *continuously*. In topological terms, this proves the following statement.

Proposition 6 – *The maps* Ψ *and* $\overline{\Psi}$ *admit global (continuous) sections.*

Proof. We fix some (total) ordering \leq on *S* and some identification $\Omega \approx [0,1]$. We define $\sigma : |\overline{K|_1} \to \overline{L}(\Omega,\mathcal{K})$ as follows. For any $\alpha \in |\overline{K|_1}$, $S_\alpha = \text{supp}(\alpha) \subset S$ is countable. Let A_{\pm} : $S \to \mathbb{R}_+$ denote the associated cumulative mass functions $A_+(s) = \sum_{u \le s} \alpha(u)$ and $\overline{A}_-(s) = \sum_{u < s} \alpha(u)$. They induce increasing injections $(S_\alpha, \leq) \to [0, 1]$. The map *σ*(*α*) is defined by *σ*(*α*)(*t*) = *a* if *A*[−](*a*) ≤ *t* < *A*₊(*a*). We have *σ*(*α*)(Ω) = *S*_{*α*}. Since $\alpha \in |K|_1$ every non-empty finite subset of S_α belongs to K hence $\sigma(\alpha) \in \bar{L}(\Omega,\mathcal{K})$, and $\sigma(\alpha) \in L(\Omega,\mathcal{K})$ as soon as $\alpha \in |\mathcal{K}|_1$.

²[Dowker, 1952,](#page-21-3) "Topology of Metric Complexes".

³[Milnor, 1959,](#page-21-4) "On Spaces having the homotopy type of a CW-complex".

Clearly $\bar{\Psi} \circ \sigma$ is the identity. We prove now that σ is continuous at any $\alpha \in |\overline{\mathcal{K}|_1}$. Let $\varepsilon > 0$. There exists $S_\alpha^0 \subset S_\alpha$ finite (and non-empty) such that $\sum_{s \in S_\alpha \setminus S_\alpha^0} \alpha(s) \leq \varepsilon/3$. Let $n = |S_{\alpha}^0| > 0$. We set $\eta = \varepsilon/3n$. Let $\beta \in |\mathcal{K}|_1$ with $|\alpha - \beta|_1 \le \eta$, and set $B_+(s) =$ $\sum_{u \leq s} \beta(u)$ and $B_-(s) = \sum_{u \leq s} \beta(u)$. We have

$$
d(\sigma(\alpha), \sigma(\beta)) \le \varepsilon/3 + \sum_{a \in S_{\alpha}^0} \int_{A_{-}(a)}^{A^{+}(a)} d(\sigma(\alpha)(t), \sigma(\beta)(t)) dt
$$

Now note that $|A_{\pm}(a) - B_{\pm}(a)| \leq |a - \beta|_1 \leq \varepsilon/3n$ for each *a* ∈ *S*⁰_{*α*} hence

$$
\int_{A_{-}(a)}^{A^{+}(a)} d(\sigma(\alpha)(t), \sigma(\beta)(t)) dt \leq \frac{2\varepsilon}{3n} + \int_{\max(A_{-}(a), B_{-}(a))}^{\min(A_{+}(a), B_{+}(a))} d(\sigma(\alpha)(t), \sigma(\beta)(t)) dt = \frac{2\varepsilon}{3n}
$$

since $\sigma(\alpha)(t) = \sigma(\beta)(t)$ for each $t \in [\max(A_{-}(a), B_{-}(a)), \min(A_{+}(a), B_{+}(a))]$, and this *yields* $d(σ(α), σ(β)) ≤ ε$ *. This proves that <i>σ* is continuous at any *α* ∈ $\overline{L}(Ω, K)$. Therefore σ provides a continuous global section of Ψ , which obviously restricts to a continuous global section of Ψ . \Box

4.4 Homotopy lifting properties

Let $\Psi_{\mathcal{K}}: L(\Omega,\mathcal{K}) \to |\mathcal{K}|_1$ and $\Psi_{\mathcal{K}}: \bar{L}(\Omega,\mathcal{K}) \to |\overline{\mathcal{K}|_1}$ denote the law maps. If α is a cardinal, we let Ψ_α (resp. $\bar\Psi_\alpha$) denote the map associated to the simplicial complex P ∗ $f_f^*(\alpha)$. Recall that a continuous map $p: E \to B$ is said to have the homotopy lifting property (HLP) with respect to some topological space *X* if, for any (continuous) maps $H: X \times [0,1] \rightarrow B$ and $h: X \rightarrow E$ such that $p \circ h = H(\cdot,0)$, there exists a map $\tilde{H} = X \times [0,1] \rightarrow E$ such that $p \circ \tilde{H} = H$ and $\tilde{H}(\cdot,0) = h$.

A Hurewicz fibration is a map having the HLP w.r.t. arbitrary topological spaces. A Serre fibration is a map having the HLP w.r.t. all *n*-spheres, and this is equivalent to having the HLP w.r.t. any CW-complex.

Lemma 11 – If Ψ_{α} (resp. $\bar{\Psi}_{\alpha}$) has the HLP w.r.t. the space X, then the map $\Psi_{\mathcal{K}}$ (resp. $\bar{\Psi}_{K}$) has the HLP w.r.t. the space X for every simplicial complex whose vertex set has *cardinality α.*

Proof. This is a straightforward consequence of the fact that, by definition, the following natural square diagrams are cartesian, where $S = \bigcup \mathcal{K}$ is the vertex set of K .

$$
L(\Omega, \mathcal{K}) \longrightarrow L_{f}(\Omega, S) \qquad \qquad \bar{L}(\Omega, \mathcal{K}) \longrightarrow L(\Omega, S)
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
|\mathcal{K}|_{1} \longrightarrow |\mathcal{P}_{f}^{*}(S)|_{1} \qquad \qquad \overline{|\mathcal{K}|_{1}} \longrightarrow \overline{|\mathcal{P}_{f}^{*}(S)|_{1}} \qquad \qquad \Box
$$

Notice that the following lemma applies in particular to every compact metrizable space (e.g. the *n*-spheres). Recall that \aleph_0 denotes the cardinality of N.

Lemma 12 – Let *X* be a separable space. If Ψ_{N_0} (resp. $\bar{\Psi}_{N_0}$) has the HLP w.r.t. the space *X* then, for every infinite cardinal $γ$, the map $Ψ_γ$ (resp. $Ψ_γ$) has the HLP w.r.t. the *space X.*

Proof. Let *S* be a set of cardinality γ , $H : X \times [0,1] \rightarrow |\mathcal{P}_{f}^{*}(S)|_{1}$ (resp. $\bar{H} : X \times [0,1] \rightarrow$ $\overline{P_f^*(S)|_1}$ and $h: X \to L_f(\Omega, S)$ (resp. $\bar{h}: X \to L(\Omega, S)$) be continuous maps such that $\Psi_S \circ h = H(\cdot, 0)$ (resp. $\bar{\Psi}_S \circ \bar{h} = \bar{H}(\cdot, 0)$). Since *X* is separable, $X \times [0, 1]$ is also separable and so are $H(X\times[0,1])$ and $\bar{H}(X\times[0,1])$. Let $(x_n)_{n\in\mathbb{N}}$ be a dense sequence of elements of $H(X \times [0,1])$ (resp. $\overline{H}(X \times [0,1])$). Each supp $(x_n) \subset S$ is countable, and therefore so is $D = \bigcup_{n} \text{supp}(x_n)$.

We first claim that, for any $\alpha \in H(X \times [0,1])$ (resp. $\alpha \in \overline{H}(X \times [0,1])$) we have $supp(a) \subset D$. Indeed, if $\alpha(s_0) \neq 0$ for some $s_0 \notin D$, then there exists x_n such that $d(x_n, \alpha) < \alpha(s_0)$. But since $d(x_n, \alpha) = \sum_{s \in S} |\alpha(s) - x_n(s)|$, this condition implies $x_n(s_0) \neq 0$, contradicting supp(x_n) ⊂ *D*. Therefore supp(α) ⊂ *D* for all $\alpha \in$ *H*(*X* × [0,1]) (resp. $\alpha \in \overline{H}(X \times [0,1])$), and *H* (resp. \overline{H}) factorizes through a map $H_D: X \times [0,1] \to |P_f^*(D)|_1$ (resp. $\bar{H}_D: X \times [0,1] \to |\overline{P_f^*(D)|_1}$) and the natural inclusion $|\mathcal{P}_{f}^{*}(D)|_{1} \subset |\mathcal{P}_{f}^{*}(S)|_{1}$ (resp. $\overline{|\mathcal{P}_{f}^{*}(D)|_{1}} \subset \overline{|\mathcal{P}_{f}^{*}(S)|_{1}}$).

Notice that this implies that *h* (resp. \bar{h}) takes values in *L*_f(Ω, *D*) (resp. *L*(Ω, *D*)), too. By assumption, there exists $\tilde{H}_D: X \times [0,1] \to L_f(\Omega,D)$ (resp. $\tilde{\overline{H}}_D: X \times [0,1] \to$ $L(\Omega, D)$) such that $\Psi_D \circ \tilde{H}_D = H_D$ and with $\tilde{H}_D(\cdot, 0) = h$ (respectively, $\tilde{H}_D(\cdot, 0) = \bar{h}$). Composing \tilde{H}_D (resp. \tilde{H}_D) with the natural injection $L_f(\Omega, D) \hookrightarrow L_f(\Omega, S)$ (resp. $L(\Omega, D) \hookrightarrow L(\Omega, S)$ we get the lifting \tilde{H} (resp. \tilde{H}) we want, and this proves the claim.

□

Proposition 7 – *Let X be a topological space and γ a countable cardinal. Then* Ψ*^γ has* t he HLP property w.r.t. X as soon as γ is finite or X is compact. Moreover $\bar{\Psi}_{\gamma}$ has the *HLP w.r.t. X as soon as X is compact.*

Proof. Let *X* be an arbitrary topological space. Our cardinal γ is the cardinal of some initial segment $S \subset \mathbb{N} = \mathbb{Z}_{\geq 0}$ that is, either $S = [0,m]$ for some *m*, or $S = \mathbb{N}$. Let $H: X \times [0,1] \rightarrow |\mathcal{P}_{f}^{*}(S)|_{1}$ and $h: X \rightarrow L_{f}(\Omega, S)$ such that $H(\cdot, 0) = \Psi_{S} \circ h$. For $(x, u) \in X \times [0, 1]$, the element $H(x, u) \in |\mathcal{P}_{f}^{*}(S)|_{1}$ is of the form $(H(x, u)_{s})_{s \in S}$, with $\sum_{s \in S} H(x, u)_s = 1$. Since, for each $s \in S$, the map $|\mathcal{P}_f^*(S)|_1 \to [0, 1]$ given by $\alpha \mapsto \alpha(s)$ is 1-Lipschitz, the composite map $(x, u) \mapsto H(x, u)$ _s defines a continuous $\text{map } X \times [0,1] \rightarrow [0,1].$

Let us choose $x \in X$. We set, with the convention $0/0 = 0$,

$$
a_n(x, u) = \frac{H(x, u)_n}{1 - \sum_{k < n} H(x, u)_k} \in [0, 1], \quad A_n(x) = h(x)^{-1}(\{n\}) \in L(2)
$$

and we construct recursively, for each $n \in \mathbb{N}$,

- maps $\Omega_n(x, \cdot) : [0, 1] \rightarrow L(2)$
- maps $E_{x}^{(n)} : [0,1] \to L(2)$

by letting

$$
E_{x,u}^{(n)} = \Omega \setminus \bigcup_{k < n} \Omega_k(x,u), \quad \Omega_n(x,u) = \Phi\big(a_n(x,\cdot), E_{x,\cdot}^{(n)}, A_n(x)\big)(u)
$$

where Φ is the map afforded by Proposition [5.](#page-11-0)

In order for this to be defined at any given *n*, one needs to check that $A_n(x) \subset E_{x,0}^{(n)}$ *x,*0 and $a_n(x,0)\lambda(E_{x,0}^{(n)})$ $\chi_{\alpha,0}^{(n)}$) = *λ*(*A_n*(*x*)). This is easily checked by induction because, if Ω_k , $E^{(k)}$ are defined for $k < n$, then

$$
\Omega_k(x,0) = \Phi\big(a_n(x,\cdot), E_{x,\cdot}^{(n)}, A_n(x)\big)(0) = A_n(x) = h(x)^{-1}(\{n\})
$$

hence

$$
E_{x,0}^{(n)} = \Omega \setminus \bigcup_{k < n} A_k(x) = h(x)^{-1} (S \setminus [0, n]) \supset h(x)^{-1} (\{n\}) = A_n(x)
$$

and moreover $\lambda(A_n(x)) = \lambda(h(x)^{-1}(\{n\})) = H(x, 0)_n = a(x, 0)\lambda(E_{x, 0}^{(n)})$ $x_{,0}^{(n)}$). Therefore these maps are well-defined.

From their definitions and the properties of Φ one gets immediately by induction that

$$
a_n(x, u)\lambda(E_{x,u}^{(n)}) = H(x, u)_n = \lambda(\Omega_n(x, u))
$$

for all $(x, u) \in X \times [0, 1]$.

4. Probability law

For a given (x, u) , the sets $\Omega_n(x, u)$ are essentially disjoint, since $\Omega_n(x, u)$ $E_{x,u}^{(n)} = \Omega \setminus \bigcup_{k \le n} \Omega_k(x,u)$, and moreover $\bigcup_n \Omega_n(x,u) = \Omega$ since $\sum_n \lambda(\Omega_n(x,u)) =$ $\sum_{n} H(x, u)_{n} = 1$. Therefore, we can define a map \tilde{H} : $X \times [0, 1] \rightarrow L_{f}(S)$ by set- $\lim_{x \to a} H(x, u)(t) = n$ if $t \in \Omega_n(x, u)$. Clearly $(\Psi_S \circ \tilde{H}(x, u))_n = \lambda(\Omega_n(x, u)) = H(x, u)_n$ for all *n*, hence $\Psi_S \circ \tilde{H} = H$. Moreover $\tilde{H}(x,0)_n = \Omega_n(x,0) = A_n(x) = h(x)^{-1}(\{n\})$ hence $\tilde{H}(x,0) = h(x)$ for all $x \in X$.

Therefore it only remains to prove that $\tilde{H}: X \times [0,1] \to L_f(\Omega, S)$ is continuous.

Let us define the auxiliary maps \tilde{H}_n : $X \times [0,1] \to L(\Omega, \{0,\ldots,n\})$ by $\tilde{H}_n(x, u)(t) =$ $\tilde{H}(x, u)(t)$ if $\tilde{H}(x, u)(t) < n$, and $\tilde{H}_n(x, u)(t) = n$ if $\tilde{H}(x, u)(t) \ge n$ – that is, $\tilde{H}_n(x, u)(t) =$ $min(n,\tilde{H}(x,u)(t)).$

We first prove that each \tilde{H}_n is continuous. Let (x_0, u_0) , $(x, u) \in X \times [0, 1]$. We have

$$
d(\tilde{H}_n(x, u), \tilde{H}_n(x_0, u_0)) = \sum_{k=0}^n \int_{\Omega_k(x_0, u_0)} d((\tilde{H}_n(x, u)(t), \tilde{H}_n(x_0, u_0)(t))dt
$$

hence

$$
d(\tilde{H}_n(x, u), \tilde{H}_n(x_0, u_0)) \le \sum_{k=0}^n \lambda(\Omega_k(x_0, u_0) \setminus \Omega_k(x, u))
$$

$$
\le \sum_{k=0}^n \lambda(\Omega_k(x_0, u_0) \Delta \Omega_k(x, u))
$$

and therefore it remains to prove that the maps $(x, u) \mapsto \Omega_n(x, u)$ are continuous for each $n \in \mathbb{N}$.

We thus want to prove that $\Omega_n(\cdot,\cdot) \in C^0(X \times [0,1], L(2))$, which we identify with the space $C^0(X, C^0([0,1], L(2))) = C^0(X, C^0(L(2)))$ since [0,1] is (locally) compact. Recall that Φ is continuous $C^0([0,1]) \times C^0(L(2)) \times L(2) \to C^0(L(2))$. Moreover, for arbitrary spaces *Y*, *Z* and a map $g \in C^0(Y,Z)$, the induced map $C^0(X,Y) \to C^0(X,Z)$ given by $\bar{f} \mapsto g \circ f$ is continuous. Letting $Y = C^0([0,1]) \times C^0(L(2)) \times L(2)$ and $Z = C^0(L(2))$, we deduce from $\Phi: Y \to Z$ a continuous map $\hat{\Phi}: C^0(X,Y) \to C^0(X,Z)$, that is

$$
C^{0}(X, C^{0}([0,1]) \times C^{0}(L(2))) \times L(2)) \longrightarrow C^{0}(X, C^{0}(L(2))
$$

\n
$$
\parallel \qquad \qquad \parallel
$$

\n
$$
C^{0}(X \times [0,1], [0,1]) \times C^{0}(X \times [0,1], L(2)) \times C^{0}(X, L(2)) \qquad C^{0}(X \times [0,1], L(2))
$$

By induction and because the maps a_n , A_n are clearly continuous for any n , we get that all the maps involved are continuous, through the recursive identities

• $\Omega_n = \hat{\Phi}(a_n, E^{(n)}_n, A_n(\cdot))$

•
$$
E_{x,u}^{(n)} = \Omega \setminus \bigcup_{k < n} \Omega_k(x, u)
$$

and this proves the continuity of \tilde{H}_n .

If *S* is finite this proves that \tilde{H} is continuous, because $\tilde{H} = \tilde{H}_n$ for *n* large enough in this case. Let us now assume that $S = \mathbb{N}$ and *X* is compact. We want to prove that the sequence \tilde{H}_n converges uniformly to \tilde{H} . Since each \tilde{H}_n is continuous this will prove that \tilde{H} is continuous. Let $\varepsilon > 0$. Let $U_n = \{(x, u) \in X \times [0, 1] | \sum_{k \le n} H(x, u)_k >$ 1− $ε$ }. Since *H* is continuous this defines a collection of open subsets in the compact space $X \times [0,1]$, and since $\sum_{k \le n} H(x, u) \to 1$ when $n \to \infty$ for any $(x, u) \in X \times [0,1]$, this collection is an open covering of $X \times [0,1]$. By compactness, and because this collection is a filtration, we have $X \times [0,1] = U_{n_0}$ for some $n_0 \in \mathbb{N}$. But then, for any (x, u) ∈ *X* × [0, 1] and *n* ≥ *n*₀ we have

$$
d(\tilde{H}_n(x, u), \tilde{H}(x, u)) = \lambda \left(\bigcup_{k > n} \Omega_k(x, u) \right) = \sum_{k > n} H(x, u)_k \le \varepsilon
$$

and this proves the claim.

Remark 1 – We notice that the liftings constructed in the above proof have the following additional property that, whenever $H(x, \cdot)$ is a constant map for some *x* ∈ *X*, then so is the map $\tilde{H}(x, \cdot)$. This follows from the fact that the maps $a_r(x, \cdot)$ are constant as soon as $H(x, \cdot)$ is constant, and then one gets by induction on *n* that $\Omega_n(x, u) = \Phi(a_n(x, \cdot), E_{x, \cdot}^{(n)}, A_n(x))$ is constant in *u* by the last item of Proposition [5,](#page-11-0) and thus so is $E_{x,u}^{(n)}$.

Since it is far simpler in this case, we provide an alternative proof for the case of binary random variables.

Corollary 2 – *The map* $\Psi_2 = \Psi_{\{0,1\}}$ *is a Hurewicz fibration.*

Proof. (alternative proof) Let *X* be a space, and $H : X \times [0,1] \rightarrow |\mathcal{P}_{f}^{*}(2)|_{1}$ and $h : X \rightarrow$ *L*(Ω , 2) such that $H(\cdot, 0) = \Psi_2 \circ h$. Note that $|\mathcal{P}_f^*(2)|_1 = {\alpha : \{0, 1\} \to \mathbb{R}_+ \mid \alpha(0) + \alpha(1) = 1}$ is isometric to [0,1] through the isometry $j : \alpha \mapsto \alpha(1)$, where the metric on [0,1] is the Euclidean one. If $\alpha = \Psi_2 \circ h(x)$, we have $\alpha(0) = 1 - \lambda(h(x))$, $j(\Psi_2(h(x))) = \alpha(1)$ $λ(h(x))$.

Using the map **g** of Lemma [6](#page-8-0) we note that λ (c **g**(c *A*, *u*)) = $u + (1 - u)\lambda(A) = u\lambda(\Omega) +$ $(1 - u)\lambda(A)$ and we define, for $A \in L(2)$ and $a \in [0, 1]$,

- $\tilde{g}(A, a) = g(A, 1 a/\lambda(A))$ if $a < \lambda(A)$,
- $\tilde{\mathbf{g}}(A, \lambda(A)) = A$,
- $\tilde{g}(A, a) = {^c}g({^c}A, (a \lambda(A))/(1 \lambda(A)))$ if $a > \lambda(A)$.

We prove that $\tilde{\mathbf{g}}$: $L(2) \times [0,1] \rightarrow L(2)$ is continuous at each $(A_0, a_0) \in L(2)$. The case $a_0 \neq \lambda(A_0)$ is clear from the continuity of **g**, as there is an open neighborhood of (A_0, a_0) on which $a - \lambda(A)$ has constant sign. Thus we can assume $a_0 = \lambda(A_0)$. Then

$$
d(\tilde{\mathbf{g}}(A,a),\tilde{\mathbf{g}}(A_0,a_0))=d(\tilde{\mathbf{g}}(A,a),A_0)\leq d(\tilde{\mathbf{g}}(A,a),A)+d(A,A_0)
$$

4. Probability law

But, if $a < \lambda(A)$ we have by the inequality of Lemma [6](#page-8-0)

$$
d(\tilde{\mathbf{g}}(A,a),A) = d\left(\mathbf{g}\left(A,1-\frac{a}{\lambda(A)}\right),\mathbf{g}(A,0)\right) \leqslant \left|1-\frac{a}{\lambda(A)}\right|
$$

and, if $a > \lambda(A)$, we have, noticing that $A \mapsto {}^c A$ is an isometry of $L(2)$ (as $A \Delta B =$ (*^cA*)∆(*^cB*)),

$$
d(\tilde{\mathbf{g}}(A,a),A) = d\left({}^{c}\mathbf{g}\left({}^{c}A, \frac{a-\lambda(A)}{1-\lambda(A)} \right), A \right) = d\left(\mathbf{g}\left({}^{c}A, \frac{a-\lambda(A)}{1-\lambda(A)} \right), ({}^{c}A) \right) \leq \left| \frac{a-\lambda(A)}{1-\lambda(A)} \right|
$$

which altogether imply

$$
d(\tilde{\mathbf{g}}(A,a),\tilde{\mathbf{g}}(A_0,a_0)) \leq d(A,A_0) + \max\left(\left|1 - \frac{a}{\lambda(A)}\right|, \left|\frac{a - \lambda(A)}{1 - \lambda(A)}\right|\right)
$$

Since the RHS is continuous with value 0 at (A_0, a_0) with $a_0 = \lambda(A_0)$, this proves the continuity of \tilde{g} .

It is readily checked that $\lambda(\tilde{\mathbf{g}}(A,a)) = a$ for all *A,a*. We then define \tilde{H} : *X* × $[0,1] \rightarrow L(\Omega, 2)$ by $\tilde{H}(x, u) = \tilde{\mathbf{g}}(h(x), i(H(x, u)))$. We have $\lambda(\tilde{H}(x, u)) = i(H(x, u))$ hence $Ψ₂ ∘ $\tilde{H} = H$, and $\tilde{H}(x, 0) = h(x)$ for all $x \in X$, therefore \tilde{H} provides the lifting we$ want. \Box

Altogether, these statements imply the following result, which completes the proof of Theorem [1.](#page-1-0)

Theorem 2 – *For an arbitrary simplicial complex K, the maps* Ψ_K *and* $\overline{\Psi}_K$ *are Serre fibrations and (strong) homotopy equivalences. If* K *is finite, then* Ψ_K *and* $\overline{\Psi}_K$ *are Hurewicz fibrations.*

Proof. Let K be an arbitrary simplicial complex. We first prove that Ψ_K and $\overline{\Psi}_K$ are Serre fibrations. By Lemmas [11](#page-15-0) and [12,](#page-16-0) and since the *n*-spheres are separable spaces, we can restrict ourselves to proving the same statement for Ψ_{γ} and Ψ_{γ} when $\gamma \leq \aleph_0$, and this is true in this case because the *n*-spheres are compact, by Proposition [7.](#page-17-0) If K is a finite simplicial complex, by Lemma [11](#page-15-0) and Proposition [7](#page-17-0) we get that Ψ_K and Ψ_K are Hurewicz fibrations.

Now, by Proposition [6](#page-14-2) we know that Ψ_K and $\overline{\Psi}_K$ admit global sections. We denote them σ_K and $\overline{\sigma}_K$, respectively. In order to prove that these are homotopy inverses for Ψ_K and $\overline{\Psi}_K$, we need to check that $\sigma_K \circ \Psi_K$ and $\overline{\sigma}_K \circ \overline{\Psi}_K$ are homotopic to the identity map. Taking $\gamma_1 : X = L(\Omega,\mathcal{K}) \to L(\Omega,\mathcal{K})$ to be $\sigma_{\mathcal{K}} \circ \Psi_{\mathcal{K}}$ and $\gamma_0 = \text{Id}_X$, one checks easily that, for all $f \in L(\Omega,\mathcal{K})$, $\gamma_1(f)(\Omega)$ is equal to

$$
\sigma_{\mathcal{K}} \circ \Psi_{\mathcal{K}}(f)(\Omega) = \operatorname{supp} \left(\Psi_{\mathcal{K}} \circ \sigma_{\mathcal{K}} \circ \Psi_{\mathcal{K}}(f) \right) = \operatorname{supp} \left(\Psi_{\mathcal{K}}(f) \right) = f(\Omega)
$$

which is equal to $\gamma_0(f)(\Omega)$. Therefore we can apply Lemma [5](#page-4-1) (with *A* = ∅) and get that γ_0 , γ_1 are homotopic. The proof for $\overline{\sigma}_k \circ \overline{\Psi}_k$ is similar. \Box

Acknowledgments

I thank D. Chataur and A. Rivière for discussions and references. I foremost thank an anonymous referee for a careful check.

References

- Dowker, C. (1952). "Topology of Metric Complexes". *American J. Math.* 74, pp. 555– 577 (cit. on p. [215\)](#page-0-0).
- Keane, M. (1970). "Contractibility of the automorphism group of a nonatomic measure space". *Proc. Amer. Math. Soc.* 26, pp. 420–422 (cit. on p. [202\)](#page-0-0).
- Marin, I. (Feb. 7, 2017). "Measure theory and classifying spaces". arXiv: [1702 .](https://arxiv.org/abs/1702.01889v1) [01889v1 \[math.AT\]](https://arxiv.org/abs/1702.01889v1) (cit. on pp. [203, 204\)](#page-0-0).
- Milnor, J. (1959). "On Spaces having the homotopy type of a CW-complex". *Trans. A.M.S.* 90, pp. 272–280 (cit. on p. [215\)](#page-0-0).

Spanier, E. (1966). *Algebraic Topology*. Springer-Verlag (cit. on p. [213\)](#page-0-0).

Contents

Contents

