
North-Western European Journal of Mathematics

W N

M

E J

A characteristic of gyroisometries
in Möbius gyrovector spaces

Oğuzhan Demırel1

Received: October 18, 2019/Accepted: January 30, 2019/Online: March 1, 2020

Abstract

Steinhaus (1966a,b) has asked whether inside each acute angled triangle
there is a point from which perpendiculars to the sides divide the triangle
into three parts of equal areas. In this paper, we prove that f : D → D is
a gyroisometry (hyperbolic isometry) if, and only if it is a continuous mapping
that preserves the partition of a gyrotriangle (hyperbolic triangle) asked by Hugo
Steinhaus.
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1 Introduction

A Möbius transformation f : C ∪ {∞} → C ∪ {∞} is a mapping of the form w =
(az + b)/(cz + d) satisfying ad − bc , 0, where a,b,c,d ∈ C. The set of all Möbius
transformations Möb(C∪ {∞}) is a group with respect to the composition and any
f ∈Möb(C∪ {∞}) is conformal, i.e. it preserves angles. Let us define

Ω = {S ⊂C∪ {∞} : S is an Euclidean circle or a Euclidean line ∪∞}.

It is well known that if C ∈Ω and f ∈Möb(C∪ {∞}), then f (C) ∈Ω. There are well-
known elementary proofs that if f is a continuous injective map of the extended
complex plane C∪ {∞} that maps circles into circles, then f is Möbius. In addition
to this a map is Möbius if, and only if it preserves cross ratios. In function theory,
it is known that a function f is Möbius if, and only if the Schwarzian derivative
of f vanishes when f ′(z) , 0. Using this differential criterion, Haruki and Rassias2

proved that if f is meromorphic and preserves Apollonius quadrilaterals, then f is
Möbius.

1Department of Mathematics, Faculty of Science and Arts, ANS Campus, Afyon Kocatepe University,
03200 Afyonkarahisar, Turkey

2Haruki and Rassias, 1998, “A new characteristic of Möbius transformations by use of Apollonius
quadrilaterals”.
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The Möbius invariant property is also naturally related to hyperbolic geometry.
For instance, in the hyperbolic plane, Möbius transformations can be characterized
by Lambert (and Saccheri) quadrilaterals, i.e., a continuous bijection which maps
Lambert quadrilaterals to Lambert quadrilaterals (or Saccheri quadrilaterals to
Saccheri quadrilaterals) must be Möbius, see Yang and Fang (2006a), Yang and
Fang (2006b). Moreover, in literature there are many characterizations of Möbius
transformations by using of triangular domains3, regular hyperbolic polygons4,
hyperbolic regular star polygons5, polygons having type A6, and others.

2 Möbius transformations of the Disc, Möbius
Addition and Möbius Gyrovector Spaces

Let us denote the complex open unit disc (centered at origin) in C by D and z0 be
an element of C. Clearly the mapping

f (z) = eiθ
z0 + z

1 + z0z
, θ ∈R

is a Möbius transformation satisfying f (D) = D. Ahlfors7 proved that the most
general Möbius transformation of D is given by the polar decomposition

z→ eiθ
z0 + z

1 + z0z
= eiθ(z0 ⊕ z).

It induces the Möbius addition “⊕” in the disc, allowing the Möbius transformation
of the disc to be viewed as Möbius left gyrotranslation

z→ z0 ⊕ z =
z0 + z

1 + z0z

followed by rotation. Here θ ∈R, z0 ∈D and Möbius substraction “⊖” is defined by
a⊖z = a⊕(−z). Clearly z⊖z = 0 and ⊖z = −z. The groupoid (D,⊕) is not a group since
the groupoid operation “⊕” is not associative. In addition to this the commutative
property does not hold. However, the groupoid (D,⊕) has a group-like structure.

The breakdown of commutativity in Möbius addition is “repaired” by the intro-
duction of gyration,

gyr : D×D→ Aut(D,⊕)

3Li and Wang, 2009, “A new characterization for isometries by triangles”.
4Demirel and Seyrantepe, 2011.
5Demirel, 2013, “A characterization of Möbius transformations by use of hyperbolic regular star

polygons”.
6Liu, 2006, “A new characteristic of Möbius transformations by use of polygons having type A”.
7Ahlfors, 1978, Complex analysis: An introduction to the theory of analytic functions of one complex

variable.
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given by the equation

gyr[a,b] =
a⊕ b
b⊕ a

=
1 + ab
1 + ab

(1)

where Aut(D,⊕) is the automorphism group of the groupoid (D,⊕). Therefore, the
gyrocommutative law of Möbius addition ⊕ follows from the definition of gyration
in (1),

a⊕ b = gyr[a,b](b⊕ a). (2)

Coincidentally, the gyration gyr[a,b] that repairs the breakdown of the commutative
law of ⊕ in (2), repairs the breakdown of the associative law of ⊕ as well, giving rise
to the respective left and right gyroassociative laws

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a,b]c

(a⊕ b)⊕ c = a⊕ (b⊕ gyr[b,a]c)

for all a,b,c ∈D.

Definition 1 – A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies the
following axioms

(G1) For each a ∈ G, there is an element 0 ∈ G such that 0⊕ a = a.

(G2) For each a ∈ G, there is an element b ∈ G such that b⊕ a = 0.

(G3) For all a,b ∈ G, there is an automorphism gyr[a,b] ∈ Aut(G,⊕) such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a,b]c

(G4) For all a,b ∈ G, gyr[a,b] = gyr[a⊕ b,b].

Additionally, if the binary operation “⊕” obeys the gyrocommutative law G5, then
(G,⊕) is called a gyrocommutative gyrogroup.

(G5) For all a,b ∈ G, a⊕ b = gyr[a,b](b⊕ a).

Clearly, with these properties, one can now readily check that the Möbius
complex disc groupoid (D,⊕) is a gyrocommutative gyrogroup. We refer readers to
Ungar (2001, 2008) for more details about gyrogroups.

Identifying complex numbers of the complex plane C with vectors of the Eu-
clidean plane R

2 in the usual way:

C ∋ u = u1 + iu2 = (u1,u2) = u ∈R2.
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Then the equations

u · v = Re(uv)

∥u∥ = |u|.
(3)

give the inner product and the norm in R
2, so that Möbius addition in the disc D of

C becomes Möbius addition in the disc R
2
1 = {v ∈R2 : ∥v∥ < 1} of R2. In fact we get

from (3)

u ⊕ v =
u + v

1 + ūv

=
(1 +uv̄)(u + v)

(1 + ūv)(1 +uv̄)

=
(1 + ūv +uv̄ + |v|2)u + (1− |u|2)v

1 + ūv +uv̄ + |u|2|v|2

=
(1 + 2u · v + ∥v∥2)u + (1− ∥u∥2)v

1 + 2u · v + ∥u∥2∥v∥2

= u⊕ v (4)

for all u,v ∈D and all u,v ∈R2
1.

Let V = (V ,+, ·) be any inner-product space and

Vs = {v ∈ V : ∥v∥ < s}

be the open ball of V with radius s > 0. Möbius addition in Vs is motivated by (4)
and it is given by the equation

u⊕ v =
(1 + (2/s2)u · v + (1/s2)∥v∥2)u + (1− (1/s2)∥u∥2)v

1 + (2/s2)u · v + (1/s4)∥u∥2∥v∥2
(5)

where · and ∥ ·∥ are the inner product and norm that the ball Vs inherits from its
space V . Without loss of generality, we may assume that s = 1 in (5). However we
prefer to keep s as a free positive parameter in order to exhibit the results that in the
limit as s→∞, the ball Vs expands to the whole of its real inner product space V ,
and Möbius addition ⊕ reduces to vector addition + in V , i.e.,

lim
s−→∞

u⊕ v = u + v

and

lims→∞Vs = V .

Möbius scalar multiplication “⊗” is given by the equation

r ⊗ v = s tanh(r tanh−1 ∥v∥/s) v
∥v∥

(6)
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where r ∈ R, u,v ∈ Vs , v , 0 and r ⊗ 0 = 0. Möbius scalar multiplication possesses
the following properties:

(P1) n⊗ v = v⊕ v⊕ · · · ⊕ v (n-term)

(P2) (r1 + r2)⊗ v = r1 ⊗ v⊕ r2 ⊗ v scalar distribute law

(P3) (r1r2)⊗ v = r1 ⊗ (r2 ⊗ v) scalar associative law

(P4) r ⊗ (r1 ⊗ v⊕ r2 ⊗ v) = r ⊗ (r1 ⊗ v)⊕ r ⊗ (r2 ⊗ v) monodistribute law

(P5) ∥r ⊗ v∥ = |r | ⊗ ∥v∥ homogenity property

(P6) |r |⊗v
∥r⊗v∥ = v

∥v∥ scaling property

(P7) gyr[a,b](r ⊗ v) = r ⊗ gyr[a,b]v gyroautomorphism property

(P8) 1⊗ v = v multiplicative unit property

Definition 2 (Möbius gyrovector spaces) – Let (Vs,⊕) be a Möbius gyrogroup
equipped with scalar multiplication ⊗. The triple (Vs,⊕,⊗) is called a Möbius
gyrovector space.

Definition 3 – The Möbius gyrodistance between the points A,B in Möbius gy-
rovector space (Vs,⊕) is given by the equation

d(A,B) = ∥A⊖B∥.

The Möbius gyrodistance function, in general gyrodistance function, gives rise
to a gyrotriangle inequality which involves a gyroaddition ⊕. In contrast, the
familiar hyperbolic distance function in the literature is designed so as to give rise
to a triangle inequality which involves the addition +. The connection between the
gyrodistance function and the standard hyperbolic distance function is described in
Ungar (1999).

Definition 4 – A map φ : (Vs,⊕)→ (Vs,⊕) is a gyroisometry of (Vs,⊕) if it preserves
the gyrodistance between any two points of (Vs,⊕), that is, if

d(φ(A),φ(B)) = d(A,B)

for all A,B ∈ Vs, see Ungar (2005).

Ungar8 proved that a map φ defined from Einstein gyrovector space (Rn
s ,⊕) to

itself is a gyroisometry if and only if the map φ is of the form

φ(X) = A⊕R(X)

where R ∈O(n) is an n×n orthogonal matrix A = φ(0) ∈Rn
s , 0 being the origin of Rn

s .
This theorem is also valid in Möbius gyrovector space.

8Ungar, 2014, An introduction to hyperbolic barycentric coordinates and their applications.
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3 Möbius Gyroline and Möbius Gyrotriangle

In full analogy with straight lines in the standard vector space approach to Euclidean
geometry, a Möbius gyroline (briefly a gyroline) passing through the point P and
has a directional vector u in the ball V1, is represented by

α(t) = P ⊕ (u⊗ t).

For more details about gyrovectors, we refer to Ungar (2005). A gyroline passing
through the points K and L is represented by

αKL(t) = K ⊕ (⊖K ⊕L)⊗ t

as expected, in full analogy with Euclidean geometry.

M

K

L

Figure 1 – A gyroline passing through the points K and L is a circular arc that
intersect the disc D orthogonally. The gyrolines passing through the center of the
disc are also correspond to chords of the disc.

A Möbius gyrotriangle ∆KLM (briefly a gyrotriangle) in the ball V1 is shown
in Fig. 2. It has vertices K ,L,M ∈ V1, sides k, l,m ∈ V1 and side gyrolengths
−1 < k, l,m < 1,

a = ⊖L⊕M, a = ∥a∥
b = ⊖M ⊕K , b = ∥b∥
c = ⊖K ⊕L, c = ∥c∥

The following equations allow us to find the gyroangle measures α,β and γ of
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3. Möbius Gyroline and Möbius Gyrotriangle

the gyroangles at the vertices of the gyrotriangle ∆KLM:

cosα =
⊖K ⊕L
∥⊖K ⊕L∥

· ⊖K ⊕M
∥⊖K ⊕M∥

cosβ =
⊖L⊕K
∥⊖L⊕K∥

· ⊖L⊕M
∥⊖L⊕M∥

cosγ =
⊖M ⊕K
∥⊖M ⊕K∥

· ⊖M ⊕L
∥⊖M ⊕L∥

A most important advantage of studying hyperbolic geometry is the fact that
the gyrotriangle gyroangles determine uniquely its side gyrolengths as follows:

Theorem 1 – Let ∆KLM be gyrotriangle in a Möbius gyrovector space (V1,⊕,⊗) with
vertices K ,L,M, corresponding gyroangles α,β,γ and side gyrolengths k, l,m, as shown
in Fig. 2. Then the following equations hold:

k2 =
cosα + cos(β +γ)
cosα + cos(β −γ)

l2 =
cosβ + cos(α +γ)
cosβ + cos(α −γ)

m2 =
cosγ + cos(α + β)
cosγ + cos(α − β)

For more details, we refer to Ungar (2005).

α
β

γ

K

M

L

Figure 2 – A Möbius gyrotriangle in the unit disc D.
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The gyroarea ∆(ABC) of gyrotriangle ABC is given by

∆(ABC) =
1
2

tan
δ
2

where δ is called the defect of gyrotriangle ABC defined by δ = π − (α + β +γ), see
Ungar (2005). Similarly the gyroarea ∆(ABCD) of gyroquadrilateral ABCD with
∠DAB = α1, ∠ABC = α2, ∠BCD = α3, ∠CDA = α4 is given by

∆(ABCD) =
1
2

tan
δ
2

where δ is called the defect of gyroquadrilateral ABCD defined by

δ = 2π − (α1 +α2 +α3 +α4).

4 A Characteristic of Gyroisometries in Möbius
Gyrovector Spaces

Theorem 2 (Kuratowski and Steinhaus9) – Let T ⊆ R2 be a bounded measurable set,
and let |T | be the measure of T . Let θ1,θ2,θ3 be the angles determined by three rays
emanating from a point, and let θ1 < π,θ2 < π,θ3 < π. Let r1,r2,r3 be nonnegative
numbers such that r1 + r2 + r3 = |T | Then there exists a translation f : R2→R

2 such that
|f (T )∩θ1| = r1, |f (T )∩θ2| = r2, |f (T )∩θ3| = r3.

H. Steinhaus asked whether inside each acute angled triangle there is a point
from which perpendiculars to the sides divide the triangle into three parts with
equal areas, see Steinhaus (1966a,b). For the solution of this problem, we refer to
Tyszka (2007).

Naturally, one may wonder whether the solution of this problem exists in hyper-
bolic geometry. In Demirel (2018), O. Demirel solved this problem in the Poincaré
disc model of hyperbolic geometry. Now, we try to get a characteristic of gyroisome-
tries by use of the partition of a gyrotriangle asked by Hugo Steinhaus.

Example 1 – Let ABC be an equilateral gyrotriangle in Möbius gyrovector space
(D,⊕,⊗) with vertices A,B,C satisfying ∠ABC = ∠BCA = ∠CAB = α and |A⊖ B| =
|B⊖C| = |C⊖A| = p. Let us denote the gyromidpoints of the segments AB,AC,BC by
MAB,MAC ,MBC , respectively and D be the gyrocentroid of ABC. Since ∠DMABB =
∠DMBCC = ∠DMCAA = π

2 , then it is clear that

∆(AMABDMAC) = ∆(BMBCDMAB) = ∆(CMACDMBC).

9Kuratowski and Steinhaus, 1985, Une application géométrique du théoréme de Brouwer sur les points
invariants.
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Notice that if ABC is an acute angled isosceles gyrotriangle satisfying d(A,B) =
d(A,C), then one can easily see that there exists a point on [A,H], where H is the
midpoint of B and C, such that

∆(AMABDMAC) = ∆(BMBCDMAB) = ∆(CMACDMBC)

holds.
Throughout the paper, we denote by X ′ the image of X under f , by [P ,Q] the

geodesic segment between points P and Q, by PQ the gyroline through points P
and Q. If we say f preserves the Steinhaus partition of gyrotriangles, this means
that for all acute angled gyrotriangles ABC in (D,⊕,⊗), if P divides ABC into three
parts of equal gyroareas by the perpendiculars drawn from P to the sides of ABC
satisfying

∆(AM1PM3) = ∆(BM2PM1) = ∆(CM3PM2),

then P ′ divides A′B′C′ into three parts of equal gyroareas by the perpendiculars
drawn from P ′ to the sides of A′B′C′ satisfying

∆(A′M ′1P
′M ′3) = ∆(B′M ′2P

′M ′1) = ∆(C′M ′3P
′M ′2).

Notice that the points P and P ′ must be interior points of the gyrotriangles ABC
and A′B′C′ , respectively.

Naturally, one may wonder whether the solution of the Steinhaus problem for
an arbitrary acute angled hyperbolic triangle exists? For the affirmative answer of
this question we refer to Demirel (2018).

Lemma 1 – Let f : D→ D be a mapping which preserves the Steinhaus partition of
gyrotriangles, then f is injective.

Proof. Let us take two distinct points K ,L in D. Then there exists a point M in D

such that KLM is an equilateral gyrotriangle. By Example 1 on the preceding page,
the gyrocentroid of KLM, say P , divides KLM into three parts of equal gyroareas.
Therefore, P ′ divides K ′L′M ′ into three parts of equal gyroareas which implies
K ′ , L′ . Therefore, f is injective. □

Lemma 2 – Let f : D→ D be a mapping which preserves the Steinhaus partition of
gyrotriangles. If K ,L,M1 are three gyrocollinear points in D such that d(K ,M1) =
d(M1,L) then the points K ′ ,L′ ,M ′1 are gyrocollinear.

Proof. Let K and L be two distinct points in D and denote the gyromidpoint of these
points by M1. Firstly, there exists a point S in D such that KLS is an equilateral
gyrotriangle. Let C be the gyrocentroid of KLS and M2,M3 be the gyromidpoints of
[L,S], [S,K], respectively. By Example 1 on the preceding page, we have

∆(KM1CM3) = ∆(LM2CM1) = ∆(SM3CM2),
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and by the property of f , we get

∆(K ′M ′1C
′M ′3) = ∆(L′M ′2C

′M ′1) = ∆(S ′M ′3C
′M ′2).

Hence we obtain ∠C′M ′1L
′ = ∠C′M ′2S

′ = ∠C′M ′3K
′ = π

2 , which implies that K ′ ,M ′1,L′

are gyrocollinear points. □

Lemma 3 – Let f : D→ D be a mapping which preserves the Steinhaus partition of
gyrotriangles, then f preserves the right gyroangles.

Proof. Let l1 and l2 be two gyrolines in D such that l1 meets l2 perpendicularly.
Denote the common point of these gyrolines by M1. Let K and L be two points
on l1 such that M1 is the gyromidpoint of K and L. Then, there exists a point on
l2, say S, such that KLS is an equilateral gyrotriangle. As in Example 1 on p. 114,
the gyrocentroid of KLS, say C, divides KLS into three parts of equal gyroareas.
Hence, by the property of f , we get that C′ divides K ′L′S ′ into three parts of equal
gyroareas. By Lemma 2 on the previous page we get that ∠S ′M ′1K

′ = ∠S ′M ′1L
′ = π

2 .
This ends the proof. □

Lemma 4 – Let f : D→ D be a mapping which preserves the Steinhaus partition of
gyrotriangles, then f preserves the gyrolines.

Proof. Let l1 and l2 be two gyrolines in D such that l1 meets l2 perpendicularly.
Denote the common point of these gyrolines by M. Let A and B two points on l1
such that M is the gyromidpoint of A and B. Denote the common points of l2 with
∂(D) by C,D where ∂(D) is the boundary of D. Clearly there exists a point K on
[C,M] such that ABK is a right gyrotriangle with ∠BKA = π

2 . For each point Xi on
[C,K] for all i ∈ I ⊂ R, it is easy to see that the gyrotriangle BXiA is an isosceles
gyrotriangle. By Demirel (2018) the gyrotriangle BXiA has a Steinhaus partition for
appropriate points Yi ,Zi ,Wi such that

∆(AMYiZi) = ∆(BWiYiM) = ∆(WiXiZiYi)

where Yi ∈ [M,Xi],Zi ∈ [A,Xi],Wi ∈ [B,Xi] for all i ∈ I ⊂ R. By hypothesis there
exists a Steinhaus partition of the gyrotriangle B′X ′iA

′ such that

∆(A′M ′Y ′i Z
′
i ) = ∆(B′W ′i Y

′
i M
′) = ∆(W ′i X

′
iZ
′
iY
′
i )

holds. By Lemma 3, [M ′,Y ′i ] meets [A′,B′] perpendicularly for all i ∈ I ⊂ R. This
implies that the points Y ′i for i ∈ I ⊂ R are gyrocollinear. When the points A and
B are sufficiently close to point M, then the points Yi are close enough to point M.
Finally considering the point D as well as point C one can easily see that the image
of l2 must be a gyroline. □

The proof of the following results is clear from Lemma 4. So we omit it.
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Result 1 – Let f : D → D be a mapping which preserves the Steinhaus partition of
gyrotriangles, then f preserves the isosceles gyrotriangles.

Result 2 – Let f : D → D be a mapping which preserves the Steinhaus partition of
gyrotriangles, then f preserves the equilateral gyrotriangles.

Theorem 3 – Let f : D→D be a continuous mapping which preserves the Steinhaus
partition of gyrotriangles, then f is a gyroisometry.

Proof. Let K and L be two distinct points in D. Now construct a sequence consists
of equilateral gyrotriangles AiKAi+1 such that ∠AiKAi+1 = 2π

k , (1 ≤ i ≤ k,k ∈ Z).
Clearly we get Ak+1 = A1. Since f preserves all equilateral gyrotriangles by Result 2
we get that the gyrotriangles AiKAi+1 must be equilateral for all 1 ≤ i ≤ k and
A′1 = A′i+1. It is easy to see that ∠A′iK

′A′i+1 = 2π
k holds for all 1 ≤ i ≤ k. Clearly f

preserves mπ
k -valued angles at the vertex K , where m,k are integers. Because of the

fact that f is a continuous mapping and the set of rational numbers is dense in R,
it follows that f preserves all angles at the vertex K . Therefore, by Theorem 1 on
p. 113, we get dH (K ,L) = dH (K ′ ,L′). □
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