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Abstract

We establish necessary and sufficient conditions for boundedness of compo-
sition operators on the most general class of Hilbert spaces of entire Dirichlet
series with real frequencies. Depending on whether or not the space being
considered contains any nonzero constant function, different criteria for bound-
edness are developed. Thus, we complete the characterization of bounded
composition operators on all known Hilbert spaces of entire Dirichlet series of
one variable.
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1 Introduction

Suppose Λ = (λn)∞n=1 is a sequence of real numbers that satisfies λn ↑ +∞ (i.e., Λ is
unbounded and strictly increasing). Consider a Dirichlet series with real frequencies

∞∑
n=1

ane
−λnz = a1e

−λ1z + a2e
−λ2z + a3e

−λ3z + . . . , (1)

where z ∈ C and (an) ⊂ C. The series (1) is also called a generalized Dirichlet series.
When λn = logn, it becomes a classical (or ordinary) Dirichlet series, which has
various important applications in number theory and complex analysis. If λn = n,
with the change of variable ζ = e−z, then (1) becomes the usual power series in ζ.

The classical Dirichlet series and their important role in analytic number theory
are studied in the book by Apostol (1976), and the theory of generalized Dirichlet

1Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA
2Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Techno-

logical University (NTU), 637371 Singapore

91



Composition operators on entire Dirichlet series M. L. Doan and L. H. Khoi

series is presented in the excellent monograph by Hardy and Riesz (1915). One
important result from the monograph states that the region of convergence of
a general Dirichlet series (if exists) is a half-plane (and for entire series, the region
is the whole complex plane). Furthermore, the representation (1) is unique and
holomorphic on that region of convergence.

For entire Dirichlet series, Ritt (1928) investigated their growth and convergence,
based on which Reddy (1966) defined and formulated logarithmic orders. In the
second half of the last century, Leont’ev (1983) developed theory of representation
for entire functions by Dirichlet series with complex frequencies. Such series are
of the form (1) but with complex λn’s. As uniqueness no longer holds for this
representation, we will not consider complex frequencies in the present article.

It is clear that only finitely many elements of Λ are negative, but there is no
agreement on further restriction on the sequence. Hardy and Riesz allowed some
terms λ′ns to be negative. Mandelbrojt (1969) supposed that all terms of Λ are
strictly positive, so nonzero constants are not representable in the form (1). Ritt
(1928) allowed the possibility for free constants by adding a term a0 to the series.
Whether or not constants are representable by (1) affects our results in this paper,
so in order to be consistent with the notations of both Mandelbrojt and Ritt, we
follow the convention that λ1 ≥ 0, i.e., all terms of Λ are nonnegative.

In functional analysis and operator theory, construction of Hilbert spaces of
Dirichlet series and action of composition operators on them have been attractive
topics for mathematicians.

In the general context, let H be some Hilbert space whose members are holo-
morphic functions on a domain G of the complex plane that are representable by
Dirichlet series, and ϕ be a holomorphic self-map on G. The composition operator Cϕ
acting on H induced by ϕ is defined by the rule Cϕf = f ◦ϕ, for f ∈H . Researchers
are interested in the relation between the function-theoretic properties of ϕ and
the operator-theoretic properties of Cϕ . Typical problems in this topic include
the invariance of Cϕ (i.e., Cϕ(H ) ⊆H ), the boundedness and compactness of Cϕ ,
computation of its norm and essential norms, etc.

Many studies have been done on composition operators on Hilbert spaces of
classical Dirichlet series. Gordon and Hedenmalm (1999) considered the bounded-
ness of such operators on space of classical series with square summable coefficients.
There were studies on numerical ranges by Finet and Queffélec (2004) and com-
pactness by Finet, Queffélec, and Volberg (2004). Recently, complex symmetric
composition operators have been investigated3.

Although entire Dirichlet series have been studied in many details, not until re-
cently has the theory of composition operators on Banach spaces of entire Dirichlet
series been developed. Hou, Hu, and L. Khoi (2013) proposed the construction of
the general Hilbert spaces H(E,β) of entire Dirichlet series by the use of weighted
sequence spaces. Amongst the many subclasses ofH(E,β), several properties of com-

3Yao, 2017, “Complex symmetric composition operators on a Hilbert space of Dirichlet series”.
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1. Introduction

position operators on them were explored, including the boundedness, compactness
and compact difference, on the most specific case, namely the spacesH(E,βS ). Later,
some results on essential norms of such operators4, their Fredholmness, Hilbert–
Schmidtness, cyclicity and norm computation via reproducing kernels5 onH(E,βS )
were obtained.

Specifically, the aforementioned authors study H(E,β) with the following condi-
tion on the weights β = (βn) :

∃ α > 0: liminf
n→∞

logβn
λ1+α
n

= +∞. (S)

It should be noted that Condition (S) imposed on the spaces H(E,β) is a very
strict assumption because only a small class of spaces satisfy these weights. Yet this
condition is crucial in the study of boundedness of Cϕ , since it makes elements of
the spaces H(E,β) have finite logarithmic orders, so that by applying a lemma by
Pólya (1926), the symbol ϕ has to be a polynomial. On the other hand, the proof
given in the original paper is only applicable ifH(E,β) contains no nonzero constant
function (in particular, λ1 > 0 must hold), while no proof was provided when λ1 = 0,
even though constant functions ϕ clearly induce a bounded operator in this case.

Recently, in M. Doan, Mau, and L. Khoi (2019), a boundedness of composition
operators Cϕ for spaces H(E,βS ) in the case λ1 = 0 has been studied, on which
a complex symmetry of Cϕ is developed. However, the proof still depends strongly
Condition (S).

Therefore, two natural questions can be asked are: (1) Can we study boundedness
Cϕ when (S) reduces to a weaker condition, and in particular, using different
technique other than Pólya’s lemma?, and (2) Are there differences between the case
λ1 = 0 and λ1 > 0 for the boundedness of Cϕ?

The aim of this research article is to answer positively to both of the proposed
questions. We in fact work with the spaces H(E,β), the most general class of Hilbert
spaces of entire Dirichlet series that we know up to now. Thus, we provide a complete
characterization of the boundedness of composition operators Cϕ . As we will see later,
Pólya’s lemma fails to be applied to the general spaces H(E,β). Hence, we propose
different techniques of proofs from those of M. Doan, Mau, and L. Khoi (2019) and
Hou, Hu, and L. Khoi (2013), which covers both cases λ1 = 0 and λ1 > 0. We note
that the criteria in those cases are not identical, and their proofs are not trivial
applications of each other.

The structure of the paper is as follows. We provide in Section 2 a summary of
known results about Hilbert spaces of entire Dirichlet series, most importantly the
construction of spaces H(E,β). Section 3 presents important notions of reproducing

4Hu and L. Khoi, 2012, “Numerical range of composition operators on Hilbert spaces of entire
Dirichlet series”.

5Wang and Yao, 2015, “Some properties of composition operators on Hilbert spaces of Dirichlet
series”.
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kernels on spaces H(E,β), which is helpful for subsequent sections. In Section 4,
we deal with boundedness of composition operators. In particular, we first propose
a sufficient condition in Proposition 2, and later prove that this condition is also
necessary. In Subsections 4.1 and 4.2, boundedness of Cϕ for the most general class
H(E,β) is studied, in both cases when a space H(E,β) does not contain nonzero
constants (Theorem 2) and when it does (Theorem 3). A summary of our results
and some concluding remarks are given in Section 5.

2 Hilbert spacesH(E,β) of entire Dirichlet series

For a given sequence Λ = (λn)∞n=1 with 0 ≤ λn ↑ +∞, define the following constant L,

L := limsup
n→∞

logn
λn

.

We associate to each Dirichlet series (1) the following quantity,

D =D((an)∞n=1) := limsup
n→∞

log |an|
λn

.

It is well-known that L is the upper bound of the distance between the abscissa
of convergence and the abscissa of absolute convergence of the series (1). We refer
the reader to Hardy and Riesz (1915) for the basic properties of these abscissas. If
L < +∞, then the Dirichlet series (1) represents (uniquely) an entire function if and
only if D = −∞ (see, e.g., Hou and L. Khoi 2012; Mandelbrojt 1969).

Convention 1 – Throughout this paper, the condition L < +∞ is always supposed to
hold.

Now, let β = (βn) be a sequence of (not necessarily distinct or monotonic) positive
numbers. We introduce the following weighted sequence space with weight β:

ℓ2
β =

{
a = (an)∞n=1 ⊂C : ∥a∥ℓ2

β
=

( ∞∑
n=1

|an|2β2
n

)1/2
< +∞

}
,

which is a Hilbert space with the inner product of any a = (an) and b = (bn) in ℓ2
β

given by

⟨a,b⟩ℓ2
β

=
∞∑
n=1

anbnβ
2
n .

The sequence spaces ℓ2
β play an important role in the construction of many

important Hilbert spaces by varying β, such as Hardy spaces, Bergman spaces,
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Dirichlet spaces, Fock spaces, etc. (see, e.g., the book by Cowen and MacCluer
1995).

Consider the following function space H(β) of entire Dirichlet series induced by
weight β:

H(β) =
{
f (z) =

∞∑
n=1

ane
−λnz entire : ∥f ∥H(β) := ∥(an)∥ℓ2

β
< +∞

}
. (2)

Here, when we write f (z) =
∑∞
n=1 ane

−λnz, we mean the entire function f is repre-
sented by the series on the right-hand side.

The space H(β) is an inner product space, where

⟨f ,g⟩H(β) =
∞∑
n=1

anbnβ
2
n ,

for any f (z) =
∑∞
n=1 ane

−λnz and g(z) =
∑∞
n=1 bne

−λnz in H(β).
Depending on β, the induced space H(β) may not be complete in its norm, and

so it is not necessarily a Hilbert space. The following theorem from Hou, Hu, and
L. Khoi (2013) provides a criterion of the weight β for H(β) to be complete.

Theorem 1 – The spaceH(β) of entire Dirichlet series induced by a sequence of positive
real numbers β = (βn), as defined in (2), is a Hilbert space if and only if the following
condition (E) holds,

liminf
n→∞

logβn
λn

= +∞. (E)

A direct consequence of this theorem is that if (E) holds, the space H(β) auto-
matically becomes a Hilbert space of entire functions, so we can drop the condition
"entire" in (2).

Note that when (E) holds, if 0 ∈Λ, i.e., λ1 = 0, then the space contains all nonzero
constants, while it contains no nonzero constants if λ1 > 0. Obviously, Theorem 1 is
unaffected regardless λ1 is 0 or not. Hence, we adopt the following convention.

Convention 2 – Unless otherwise stated, we assume condition (E) always holds. We
denote by H(E,β) the following Hilbert space of entire Dirichlet series

H(E,β) =
{
f (z) =

∞∑
n=1

ane
−λnz : ∥f ∥H(E,β) =

( ∞∑
n=1

|an|2β2
n

)1/2
< +∞

}
,

and without ambiguity, we denote the norm of any function f ∈ H(E,β) simply by ∥f ∥.

Remark 1 – One can easily see that Condition (E) is much weaker than Condi-
tion (S) in the Introduction.
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3 Reproducing kernel Hilbert spacesH(E,β)

A (complex) separable Hilbert space H of functions from a non-empty set G ⊆C to
C is called a reproducing kernel Hilbert space (RKHS) if for every y ∈ G, the evaluation
functional δy : f 7→ f (y) (f ∈H ) is bounded.

By Riesz Representation Theorem, there exists a unique element ky ∈ H such
that f (y) = ⟨f ,ky⟩H for every f ∈H . We call ky the reproducing kernel at the point y.

The function K : G ×G→C defined by

K(x,y) = ⟨ky , kx⟩H = ky(x), x,y ∈H ,

is called the reproducing kernel forH . It is well known that if a collection of elements
{ej }∞j=1 is an orthonormal basis for H , then

K(x,y) =
∞∑
j=1

ej (x)ej (y), (3)

where the convergence is pointwise for x,y ∈H (see the famous article by Aronszajn
1950).

We show in the following proposition that if all elements of H(E,β) are entire
Dirichlet series, i.e., if β satisfies (E), then H(E,β) is a reproducing kernel Hilbert
space.

Proposition 1 – Let β = (βn) satisfy condition (E). Then the spaceH(E,β) induced by β
is a complex reproducing kernel Hilbert space with the reproducing kernel K : C×C→C

given by

K(z,w) = kw(z) =
∞∑
n=0

e−λn(w+z)

β2
n

. (4)

The convergence is uniform on compact subsets of C×C.

There are many ways to prove this classical result. One can, for instance, adapt
the proof in Hou, Hu, and L. Khoi (2013), keeping in mind that β = (βn) satisfies (E)
instead of (S). Here we provide the reader with a shorter proof.

Proof. Apply Cauchy–Schwarz inequality, we have

|f (z)|2 =
∣∣∣∣∣ ∞∑
n=1

ane
−λnz

∣∣∣∣∣2 ≤ ( ∞∑
n=1

e−2λnRe(z)

β2
n

)( ∞∑
n=1

|an|2β2
n

)
:=Mz∥f ∥2.

It suffices to show that the series Mz is convergent absolutely for any z ∈ C. The
conditions L < +∞ and (E) imply that there is a constant C1 > 0 such that logn

λn
≤ C1,
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and for all C2 > 0 there exists n0 ∈N such that logβn
λn
≥ C2 for all n ≥ n0. This gives

e−λnRe(z)

βn
≤ n−Re(z)/C1−λnC2/ logn ≤ n−(Re(z)+C2)/C1 . We can choose C2 (depending on z

and C1) such that Re(z) +C2 > C1, so that e−2λnRe(z)

β2
n

< n−2. The convergence of Mz

then follows comparison test. □

Remark 2 – (a) In the proof above, we can easily see that for any w ∈C,

∥kw∥2 = K(w,w) =
∞∑
n=1

e−2λnRe(w)

β2
n

.

(b) By a consequence of closed graph theorem, if a composition operator Cϕ is
invariant, that is, if Cϕ(H ) ⊆H , then it is automatically bounded. Thus, we
don’t have to deal with invariance and boundedness separately, since the two
properties are equivalent for Cϕ acting on RKHSs.

4 Main results

In the sequel, we fix a sequence β = (βn) that satisfies (E) and let H(E,β) be the
corresponding Hilbert space of Dirichlet series.

We remind an important point, which is seen later, that the criteria for bound-
edness of Cϕ for the case λ1 > 0 and for the case λ1 = 0 are different. Recall that if
λ1 = 0, the space H(E,β) also includes all constants, and that the space contains no
nonzero constants if λ1 > 0. The proof of the necessary condition in the latter case
is also more sophisticated than the former, even though the idea used in the two
proofs are similar. This fact is reflected in Propositions 3 and 4.

4.1 Sufficient conditions

We can easily obtain the following sufficiency for the boundedness of Cϕ on H(E,β).

Proposition 2 – Let ϕ be an entire function. Consider the statements below.

(C1) ϕ is a constant function,

(C2) ϕ(z) = z+ b for some b ∈C, Re(b) ≥ 0.

The following are true:

1. Suppose λ1 = 0. If either (C1) or (C2) holds, then Cϕ is bounded.

2. Suppose λ1 > 0. If (C2) holds, then Cϕ is bounded.
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Proof. Note that the difference between 1. and 2. is that the case "ϕ is a constant
function" is not included when λ1 > 0. This can be seen as follows. Take, for
instance, f (z) = e−λ1z ∈ H(E,β). If ϕ(z) = z0 for some z0 ∈ C, then Cϕf (z) = e−λ1z0 ,
which is a nonzero constant, and thus not representable in H(E,β) if λ1 > 0.

Suppose λ1 = 0. Clearly if (C1) happens, i.e., ϕ(z) = z0 for some z0 ∈C, then

∥Cϕf ∥ = ∥f (z0)∥ = |f (z0)|β1 ≤ β1∥kz0
∥∥f ∥,

by Cauchy–Schwarz inequality. Hence, Cϕ is bounded in this case.
We will use the following argument to prove that (C2) implies "Cϕ is bounded"

in both cases λ1 > 0 and λ1 = 0.
Suppose (C2) holds, we have

Cϕf (z) =
∞∑
n=1

ane
−λn(z+b) =

∞∑
n=1

ane
−λnbe−λnz,

for any f (z) =
∑∞
n=1 ane

−λnz ∈ H(E,β). Since Re(b) ≥ 0 and (λn) is increasing, we have

∥Cϕf ∥2 =
∞∑
n=1

|an|2e−2λnRe(b)β2
n ≤ e−2λ1Re(b)

∞∑
n=1

|an|2β2
n = e−2λ1Re(b)∥f ∥. (5)

This shows Cϕ is bounded. The proof is complete. □

4.2 Necessary conditions

The sufficient conditions in Proposition 2 turn out to be necessary as well. Our aim
is to establish the proof for this necessity.

The following lemma is needed for next results. An outline of proof is given in
Ritt (1928), but we also provide a proof here for the sake of completeness.

Lemma 1 – Suppose f ∈ H(E,β) has the representation

f (z) =
∞∑
n=1

ane
−λnz (an, z ∈C).

Then for any σ ∈R, for any n ≥ 1,

an = lim
t→+∞

1
2ti

∫ σ+ti

σ−ti
f (z)eλnzdz, (6)

where the integral is taken on the line segment from σ − ti to σ + ti.
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Proof. Fix a particular n. Define µk = λn −λk . Multiply both sides of f by eλnz, we
have

f (z)eλnz = a1e
µ1z + a2e

µ2z + a3e
µ3z + . . . (7)

For any σ ∈R and t > 0, we integrate both sides of (7) on the line segment from
σ − ti to σ + ti. Since f (z)eλnz is uniformly convergence for all z, we can integrate
term by term on the right-hand side to obtain∫ σ+ti

σ−ti
f (z)eλnzdz =

∞∑
k=0

an

∫ σ+ti

σ−ti
eµkzdz. (8)

Note that for any µ ∈R,

1
2ti

∫ σ+ti

σ−ti
eµzdz =


1 if µ = 0,
eµσ

µt
sin(µt) if µ , 0.

Thus, (8) is equivalent to

1
2ti

∫ σ+ti

σ−ti
f (z)eλnzdz = an +

∑
k,n

ak
eµkσ

µkt
sin(µkt).

Letting t→∞ on both sides, and taking into account the uniform convergence
of the series on the right-hand side, we obtain (6). □

We also need the following familiar fact.

Lemma 2 – Suppose a composition operator Cϕ , induced by an entire function ϕ, maps
H(E,β) to itself. Then the adjoint operator C∗ϕ of Cϕ satisfies

C∗ϕkw = kϕ(w), ∀w ∈C,

where kw is the reproducing kernel at w as defined in (4).

Case λ1 > 0

We have the following necessary condition:

Proposition 3 – Suppose λ1 > 0. Let ϕ be an entire function and Cϕ be the induced
composition operator. If Cϕ is bounded on H(E,β), then

ϕ(z) = z+ b, with b ∈C, Re(b) ≥ 0.
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Proof. Suppose Cϕ is bounded on H(E,β), then its adjoint operator C∗ϕ is also
bounded. That is, there is a constant B > 0 such that

∥C∗ϕf ∥2 ≤ B∥f ∥2, ∀f ∈ H(E,β). (9)

Without the loss of generality, we may assume B > 1.
In particular, for f = kw where w is an arbitrary complex number, we note that

C∗ϕkw = kϕ(w), so together with Remark 2 (a), the inequality (9) becomes

∞∑
n=1

β−2
n e−2λnRe(ϕ(w)) ≤ B

∞∑
n=1

β−2
n e−2λnRe(w), ∀w ∈C. (10)

Claim 1: We have ϕ(z) = z+ b for some b ∈C.
Assume ψ(z) := z−ϕ(z) is a non-constant entire function, we show the contradic-

tion by finding some w ∈C such that inequality (10) does not hold.
Since ψ is not a constant function, the function F(w) = eλ1ψ(w) is also a non-

constant entire function. By Liouville’s theorem, F is not bounded, so we can choose
a fixed w = w0 ∈C so that

|F(w0)|2 = e2λ1Re(ψ(w0)) ≥ 2B > 1.

This implicitly means Re(ψ(w0)) > 0. Noting that (λn) is increasing, from Re-
mark 2 (a), we have

∥kϕ(w0)∥2 =
∞∑
n=1

β−2
n e−2λnRe(ϕ(w0)) =

∞∑
n=1

e2λnRe(ψ(w0))β−2
n e−2λnRe(w0)

≥ |F(w0)|2
∞∑
n=1

β−2
n e−2λnRe(w0) ≥ 2B

∞∑
n=1

β−2
n e−2λnRe(w0) > B∥kw0

∥2, (11)

which clearly contradicts the inequality (10). Thus, ϕ(z) = z+ b for some b ∈C.

Claim 2: We have Re(b) ≥ 0.
Consider the probe functions qk(z) = β−1

k e−λkz (k ≥ 1). Since Cϕ is bounded
and ∥qk∥ = 1, the sequence (∥Cϕqk∥)k must be bounded. We note that Cϕqk(z) =
β−1
k e−λk(z+b), so

∥Cϕqk(z)∥ = e−λkRe(b). (12)

Since λk ↑ +∞, it is necessary that −Re(b) ≤ 0, i.e., Re(b) ≥ 0. The proof is
complete. □

Remark 3 – Proposition 3 is similar to the necessity of Hou, Hu, and L. Khoi
(2013, Thm 4.9). To obtain this result, the authors first proved that the function ϕ
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necessarily has the form az+ b, then derived two other lemmas, before eventually
showed that a = 1. This proof strongly depends on the Lemma of Pólya and long.
Our approach is much simpler, which is applicable to the general spaces H(E,β)
and only utilizes fundamental results of functional analysis.

Now we obtain the following criterion for the bounded composition operators
in the case λ1 > 0.

Theorem 2 (Boundedness in case λ1 > 0) – Let ϕ be an entire function and Cϕ be
the induced composition operator. Suppose λ1 > 0. Then the composition operator Cϕ is
bounded on H(E,β) if and only if

ϕ(z) = z+ b, for some b ∈C with Re(b) ≥ 0.

Moreover, the operator norm is given by ∥Cϕ∥ = e−λ1Re(b).

Proof. The necessary condition is proved in Proposition 3, while the sufficiency is
shown in Proposition 2. Thus, Cϕ is bounded if and only if ϕ(z) = z + b for some
b ∈C with nonnegative real part.

To compute the norm of Cϕ , note that (12) implies

∥Cϕ∥ ≥ ∥Cϕq1∥ = e−λ1Re(b). (13)

From (5) and (13), we obtain ∥Cϕ∥ = e−λ1Re(b). □

Since the spacesH(E,βS ) are special cases of the spacesH(E,β), we easily recover
the boundedness by M. Doan, Mau, and L. Khoi (2019) and Hou, Hu, and L. Khoi
(2013).

Case λ1 = 0

In order to establish the necessity for the boundedness of composition operators
on H(E,β), we again use the adjoint operator C∗ϕ , but it turns out that the proof
is more complicated than that of Theorem 2. The difference comes the fact that
if λ1 = 0, then F(w) ≡ 1 in the proof of Proposition 3, and so we do not have the
second inequality of (11). One might attempt to adjust F(w) = eλ2ψ(w), but then the
first inequality of (11) is not true. Hence, a nontrivial modification to the proof is
needed.

Proposition 4 – Suppose λ1 = 0. Let ϕ be an entire function and Cϕ be the induced
composition operator. If the operator Cϕ is bounded on H(E,β), then exactly one of the
following possibilities happens:

1. ϕ is a constant function, or

2. ϕ(z) = z+ b, for some b ∈C with Re(b) ≥ 0.
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Proof. Suppose Cϕ is bounded. Since λ1 = 0, we have λ2 > 0.
If ϕ(z) = z+ b for some b ∈C, we obtain condition Re(b) ≥ 0 in the same way as

in Claim 2 of Theorem 2.
If ϕ is not of the form z + b, we prove that ϕ must be constant. Since Cϕ is

bounded, so is the adjoint operator C∗ϕ . Hence, there is a constant B > 1 such that

∥C∗ϕf ∥ ≤ B∥f ∥ ∀f ∈ H(E,β).

Consequently, we can assume inequality (10) holds for the chosen B.
Since ϕ is not of the form z+b, the function ψ(z) = z−ϕ(z) is not constant. Thus,

the function Q(z) = eλ2ψ(z) is entire and not constant either. By Liouville’s theorem,
Q is not bounded, i.e., there exists (zk) ⊂ C such that |Q(zk)| → ∞ as k→∞. This
allows us to define the following nonempty set of sequences:

S :=
{
(zk)

∞
k=1 ⊂C : lim

k→∞
|Q(zk)| = +∞

}
From this point, our proof is divided into several claims as follows.

Claim 1: If (zk) ∈ S , then (Re(zk)) is not bounded above.
Assume there is a sequence (zk) ∈ S such that Re(zk) < T for some T > 0. We

have

β−2
1 + β−2

2 e−2λ2Re(ϕ(z))

β−2
1 + β−2

2 e−2λ2Re(z)
= 1 +

β2
1
β2

2

(
|Q(z)|2 − 1

)
e2λ2Re(z) + β2

1
β2

2

≥ 1 +

β2
1
β2

2
(|Q(z)|2 − 1)

e2T λ2 + β2
1
β2

2

=: CT (z).

and ∑
n≥3

β−2
n e−2λnRe(ϕ(z)) ≥ |Q(z)|2

∑
n≥3

β−2
n e−2λnRe(z).

Hence,

∥kϕ(z)∥2 ≥
(
CT (z)(β−2

1 + β−2
2 e−2λ2Re(z)) + |Q(z)|2

∑
n≥3

β−2
n e−2λnRe(z)

)
Since (zk) ∈ S , we can choose k so that |Q(zk)| is large enough and ∥kϕ(zk )∥2 >

B∥kzk ∥
2. Again, inequality (10) does not hold, and we obtain a contradiction. Thus,

every sequence (Re(zk)) ∈ S has no upper bound.

Claim 2: The function Q is bounded on the half-plane Re(z) < 0.
AssumeQ is unbounded on the half-plane Re(z) < 0, then there exists a sequence

(zk) ⊂C such that Re(zk) < 0 and |Q(zk)| →∞ as k→∞. Hence, (zk) ∈ S and (Re(zk))
is bounded above. This clearly contradicts Claim 1.
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Claim 3: We have the representation e−λ2ϕ(z) = a1 + a2e
−λ2z for some a1, a2 ∈C.

From Claim 2, there exists some M > 0 such that |Q(z)| <M, if Re(z) < 0. Substi-
tuting ϕ(z) = z −ψ(z), we have

|M−1e−λ2ϕ(z)| < e−λ2Re(z), for all z with Re(z) < 0. (14)

Consider the function f (z) = e−λ2z ∈ H(E,β). Since Cϕ maps H(E,β) to itself, we
have

Cϕf (z) = e−λ2ϕ(z) =
∞∑
n=1

ane
−λnz,

for some (an) ⊂C. Dividing each expression of the equality above by M, we obtain

g(z) =M−1e−λ2ϕ(z) = c1 + c2e
−λ2z + c3e

−λ3z + . . . , (15)

where cn = an/M.
From (14) and (15), it follows that |g(z)| < e−λ2Re(z) for all z with Re(z) < 0. For

any n > 2, we write z = σ + ti (σ,t ∈R) and apply Lemma 1 to get

|cn| =
∣∣∣∣∣∣ limt→∞

1
2ti

∫ σ+ti

σ−ti
g(z)eλnzdz

∣∣∣∣∣∣ ≤ eσ (λn−λ2).

As the inequality above is true for any σ ∈R, we have

|cn| = lim
σ→−∞

e(λn−λ2)σ = 0, for all n > 2.

Thus an = 0 for n > 2. From the uniqueness of the representation of e−λ2ϕ(z), we have

e−λ2ϕ(z) = a1 + a2e
−λ2z, ∀z ∈C. (16)

Claim 4: The function ϕ is constant.
With the same notation as in Claim 3, we have the following cases:

1. If a2 , 0 and a1 , 0: the right hand side of (16) is zero at

z = −λ−1
2

(
log

∣∣∣∣∣a1

a2

∣∣∣∣∣+ iArg
a1

a2
+ i(2k + 1)π

)
(k ∈Z),

while the left hand side function is never zero, so we obtain a contradiction.
This shows a1 and a2 cannot be both nonzero.

2. If a2 , 0 and a1 = 0: equation (16) implies

ϕ(z) = z −λ−1
2 (log |a2|+ i(Arg a2 + 2kπ)),

for some k ∈ Z, which contradicts the assumption ψ is not constant. This
shows a2 = 0.

3. If a2 = 0, then (16) implies a1 , 0. Clearly, ϕ is constant.

The proof is complete □
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We conclude this section with the following theorem, which provides a criterion
for a composition operator to be bounded on H(E,β) in case λ1 = 0.

Theorem 3 (Criterion for λ1 = 0) – Suppose λ1 = 0. Let ϕ is an entire function and
Cϕ be the induced composition operator. Then Cϕ is bounded on H(E,β) if and only if
one of the following cases happens:

(C1) ϕ is constant, or

(C2) ϕ(z) = z+ b, for some b ∈C with Re(b) ≥ 0.

Moreover, ∥Cϕ∥ ≥ 1 in Case (C1), and ∥Cϕ∥ = 1 in Case (C2).

Proof. The sufficiency is proved in Proposition 2, and Proposition 4 establishes the
necessity, so ϕ is either constant or of the affine form z + b with Re(b) ≥ 0. For
the norm estimation of Cϕ , following Claim 3 of Theorem 2, we obtain ∥Cϕ∥ ≥
∥Cϕq1∥ = 1. This is true for both cases (C1) and (C2). In addition, in Case (C2), if
f (z) =

∑∞
n=1 ane

−λnz ∈ H(E,β) is nonzero, as 0 ≤ λn ↑ +∞ and Re(b) ≥ 0, we have

∥Cϕf ∥2 =
∥∥∥∥∥ ∞∑
n=1

ane
−λn(z+b)

∥∥∥∥∥2

=
∞∑
n=1

|an|2β2
ne
−2λnRe(b) ≤

∞∑
n=1

|an|2β2
n = ∥f ∥2,

so ∥Cϕ∥ ≤ 1. Hence ∥Cϕ∥ = 1 for Case (C2). □

5 Concluding remarks

In the present paper, we study the relation between an entire function ϕ and the
boundedness of the induced composition operator Cϕ acting on spaces of entire
Dirichlet seriesH(E,β). We generalize the result of bounded operators Cϕ on spaces
H(E,βS ) and include the untreated case λ1 = 0.

The following theorem establishes the complete characterization of the bound-
edness of Cϕ , which shows that the criteria do not depend on whether the weight
sequence β = (βn) satisfies condition (E) or any condition stronger than (E), such
as (S).

Theorem 4 (Criterion for bounded Cϕ any spaceH(E,β)) – Let β be a sequence of
positive real number with condition (E), and ϕ be an entire function. Consider the
following statements.

(i) ϕ is constant,

(ii) ϕ(z) = z+ b for some b ∈C, Re(b) ≥ 0.
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The following are true about the boundedness of the composition operator Cϕ acting
on the induced Hilbert space H(E,β):

1. If λ1 = 0, then Cϕ is bounded if and only if exactly one of conditions (i) or (ii)
holds.

2. If λ1 > 0, then Cϕ is bounded if and only if (ii) holds.

Furthermore, in Case (ii), the operator norm is given by ∥Cϕ∥ = eλ1Re(b).

This theorem comes from Proposition 2, and Theorems 2 and 3.
Since the proofs of criteria for the compactness, compact difference, Hilbert–

Schmidtness, cyclicity, etc. of composition operators Cϕ acting onH(E,βS ) in Hou,
Hu, and L. Khoi (2013), Hu and L. Khoi (2012), and Wang and Yao (2015) do not
directly use condition (S) but the necessary condition ϕ(z) = z + b with Re(b) ≥ 0,
these result may still be true for the general spaces H(E,β), with the exception that
ϕ being constants is allowed for the case λ1 = 0.

Other findings, such as norm estimation through reproducing kernels in Wang
and Yao (2015), which directly uses (S) in their computation, need to be reconsidered
when working with condition (E). However, we hope that our discovery and method
may inspire readers to investigate further these problems in the future.
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