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Abstract

We provide a tool how one can view a polynomial on the affine plane of
bidegree (a,b) – by which we mean that its Newton polygon lies in the triangle
spanned by (a,0), (0,b) and the origin – as a curve in a Hirzebruch surface having
nice geometric properties. As an application, we study maximal Ak-singularities
of curves of bidegree (3,b) and find the answer for b ≤ 12.
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1 Introduction

We study algebraic curves on the affine plane A
2(C) that have a singularity of type

Ak , which means that there is an analytical local isomorphism such that the curve is
given by y2 − xk+1 = 0 in a neighbourhood of the singular point (c.f. Definition 2).
We ask:

Question 1 – For d ≥ 1, what is the maximal k such that there exists a curve of degree
d that has an Ak-singularity?

We denote this by N (d) and can give answers for small d:

d 1 2 3 4 5 6 7 . . .

N (d) 0 1 3 7 12 19 ?
,

where an explicit equation for d = 5 can be found in Wall (1996), and the example
for d = 6 was found by Yoshihara (1979). Later, Yang (1996) gave a classification of
all simple singularities of sextic curves. (Note that the answers of N (2), N (3) and
N (4) differ if we only consider irreducible curves.) The difficulty of the question
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increases rapidly for larger values of d, so the asymptotic behaviour is studied and
bounds for

α = limsup
2N (d)
d2

are wanted, where we multiplied by 2 to obtain nicer numbers, as it is often done
in the literature. Gusein-Zade and Nekhoroshev (2000) found that 1.5 ≥ α ≥ 15

14 ≃
1.07142 and in the same year, Cassou-Nogues and Luengo (2000) refined the lower
bound to 8 − 4

√
3 ≃ 1.07179. A decade passed until Orevkov (2012) improved it

even further to 7
6 = 1.16.

Question 1 can also be approached through fixing a bidegree instead of the
degree. We say that a polynomial F (or equivalently, the curve in A

2(C) defined by
its zero set) has bidegree (a,b) if its Newton polygon lies in the triangle spanned by
(a,0), (0,0) and (0,b). Note that this differs from the usual definition of bidegree. In
particular, a polynomial is of bidegree (d,d) if and only if it is of degree at most d.
So we generalize Question 1:

Question 2 – For (a,b) ∈N2, what is the maximal k such that there is a curve in A
2(C)

of bidegree (a,b) with an Ak-singularity?

Similar to above, we denote this by N (a,b). For instance, one finds N (1,b) = 0 for all
b, and fixing a = 2 yields N (2,b) = b − 1 (c.f. Example 2 respectively Lemma 11). We
have studied the case where a = 3 and found the following values of N (3,b):

Theorem 1 – For small b, N (3,b) is given by the following table:

b 3 4 5 6 7 8 9 10 11 12

N (3,b) 3 5 7 8 10 12 13 15 17 18
.

Moreover, for b ≥ 4 there are irreducible polynomials that achieve the maximal singulari-
ties.

Studying polynomials of bidegree (a,b) is interesting on its own, however it could
also help to determine the asymptotical behaviour of N (d), thanks to the following
result.

Proposition 1 (Orevkov (2012)) – If N (a,b) + 1 ≥ k, then α ≥ 2k
ab .

And in fact, it does help: Luengo found N (4,6) ≥ 13, Orevkov applied this proposi-
tion and got α ≥ 7

6 . Initially, we hoped to improve this bound, but the best we get
with our results is N (3,11) = 17 yielding α ≥ 12

11 ≃ 1.09.
In fact, using N (3,b) it is not possible to obtain a better lower bound than

Orevkov’s α ≥ 7
6 : A result in knot theory by Feller (2016) about the existence of

algebraic cobordisms between the torus knots T2,k+1 and T3,b gives an upper bound
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2. Preliminaries

for N (3,b) if b is no multiple of 3 (namely 5b−4
3 , c.f. Lemma 37), which implies that

2(N (3,b)+1)
3b < 7

6 for all b > 13 (c.f. Lemma 38). Theorem 1 provides the result for
b ≤ 12.

In Section 3, we provide an algebro-geometric tool how to translate a polynomial
F on the affine plane of bidegree (a,b) into a curve C on a Hirzebruch surface Fm,
where m is the integer such that b = am − r for some 0 ≤ r < a. We will call C the
(a,am)-divisor of F (c.f. Definition 5). Lemma 7 gives, in particular, a geometric
description of C.

As an application of the discribed correspondence, we will extensively study
bidegree (3,b) in Sections 4, 5 and 6 and prove Theorem 1 in the end. Since
Theorem 1 is a question about the maximal k, its proof consists of two parts:
existence (Section 4) and non-existence (Section 5).

Both sections start with providing a “recipe” how one can translate the curve
C with a large Ak-singularity into a curve on F1 (or F0) that is (almost) smooth
(c.f. Section 5.1 and Remark 8), and vice versa (c.f. Section 4.1). This is achieved
with a chain of elementary links centered at the singularity (c.f. Definition 12),
respectively the inverse of this birational map (c.f. Definition 11).

In Section 4.2 we present “ingredients” in P
2 that we can blow-up to F1 and

then use the recipe to “cook” large singularities, giving a lower bound for N (3,b).
In Section 5.2, an upper bound for N (3,b) is given by showing that the “ingredi-

ents” that are required by the recipe do not exist if k is too large with respect to b.
However, the best upper bound is already given in the result by Feller mentioned
above, to which we give a short introduction in Section 6. This is the reason why we
only present the non-existence of configurations in the case where b is a multiple of
3, since the other computations do not add any value to this paper.

Theorem 1 stops at b = 12, because the computations are done case-by-case and
get more and more tedious. It would be interesting to have a family of curves of
bidegree (3,b) with increasing b that have maximal Ak-singularity.

Moreover, in Remark 6 we observe a connection to Weierstrass points on P
1×P1,

recently introduced in Maugesten and Moe (2018).

2 Preliminaries

In Section 2.1 we recall what a Hirzebruch surface is and fix our notation. Then,
we introduce singularities of type Ak in Section 2.2 and observe what happens
when blowing up such a singularity. We continue to provide some easy bounds in
Section 2.3. To conclude the preliminaries, we introduce in Section 2.4 the notions
“p-link” and “cofiberedness” on a Hirzebruch surface and explain why these are of
interest in our setting.

45



Plane curves of fixed bidegree and their Ak-singularities J. Schneider

2.1 Hirzebruch surfaces

Let m ≥ 0 be an integer. The m-th Hirzebruch surface Fm is defined to be the quotient

of
(
A

2 \ {(0,0)}
)2

modulo the following equivalence relation on it: The two points

((x0,x1), (y0, y1)) and
(
(x′0,x

′
1), (y′0, y

′
1)
)

are equivalent if there are λ,µ ∈C∗ such that

((x0,x1), (y0, y1)) = ((µx′0,λ
−mµx′1), (λy′0,λy

′
1)) .

We denote the equivalence class of ((x0,x1), (y0, y1)) by [x0 : x1;y0 : y1].
We will always see Fm as a P

1-bundle over P
1, via [x0 : x1;y0 : y1] 7→ [y0 : y1].

The fibers are then the curves of the form αy0 + βy1 = 0 for [α : β] ∈ P1.
The section given by x1 = 0 is denoted by S− and has self-intersection −m.

On the other hand, we denote by S+ the section given by x0 = 0, which has self-
intersection m.

We can visualize this surface with the following figure, where the number in the
bracket denotes the self-intersection:

x1 = 0

[−m]

y 0
=

0

[0
]

x0 = 0

[m]

y 1
=

0

[0
]

Moreover, Fm \
(
{xi = 0} ∪ {yj = 0}

)
≃A

2 for i, j = 0,1. Hence we can embedd A
2

into Fm for example with ιm : A2 ↪→ Fm, (x,y) 7→ [x : 1;y : 1], as the following picture
illustrates:

x = 0

y
=

0

ιm−−−→

•

x1 = 0

[−m]

y 0
=

0

[0
]

x0 = 0

[m]

y 1
=

0

[0
]

•

Recall that for each divisor D on Fm there are integers a,b with D ∼ aS− + bf . If
D is effective, then a and b are at least 0. Moreover, if D is irreducible and D , S−,
we have 0 ≤D · S− = −am+ b and hence b ≥ am.
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2. Preliminaries

Definition 1 – Let a ≥ 1 be an integer and let C ⊂ Fm be an effective divisor not
containing any fibers. We call C an a-section if C · f = a for fibers f ∈ Fm.

Note that a 1-section is a smooth, irreducible curve isomorphic to P
1. Therefore, it

will simply be called a section.

2.2 Singularities of type Ak

Definition 2 – Let C be a curve on a smooth surface. A point s ∈ C is called
singularity of type Ak for some integer k ≥ 1 if there are local analytic coordinates in
which C around s is given by the equation y2 − xk+1 = 0. We sometimes abuse the
notation and say that a smooth point has a “singularity” of type A0.

For small k, the real part of an Ak-singularity looks locally like the following:

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Remark 1 – If k is odd, then the singularity is reducible and we call it a node. If k is
even, then we call it a cusp and the singularity is irreducible. Thus, it cannot arise
as the intersection of two curves.

Example 1 – Consider the polynomial F = y(y − x2) ∈ C[x,y] of degree 3 and the
map

ϕ : C2→C
2, (x,y) 7→

(
i
√

2x,y − x2
)
.

This map sends F onto (y − x2)(y + x2) = y2 − x4. So V (F) is sent onto y2 − x4 = 0,
which corresponds to an A3-singularity. The map ϕ is holomorphic and it has
a holomorphic inverse, given by (u,v) 7→

(
−i√

2
u,v − 1

2u
2
)
. Therefore, there is a local

analytic isomorphism that sends V (F) onto y2 − x4 = 0 and so F (respectively V (F))
has an A3-singularity at the origin.

The following picture illustrates the (real part of the) zero set of F:

y(y − x2) = 0

47



Plane curves of fixed bidegree and their Ak-singularities J. Schneider

The following result by Wall (2004, Theorem (2.2.7)) shows that singularities of
type Ak arise naturally.

Lemma 1 (Wall) – Let C be a curve with a point of multiplicity 2 that is reduced at the
point. Then that point is a singularity of type Ak for some k ≥ 1.

We investigate singularities of type Ak via blow-ups in the following lemma.

Lemma 2 – Let π : Y → X be the blow-up centered at s ∈ X with exceptional divisor
E ⊂ Y . Let C ⊂ X be a curve reduced at s and let C̃ ⊂ Y be its strict transform.

1. The following are equivalent:

(a) ms(C) = 2

(b) C̃ ·E = 2

(c) C has an Ak-singularity at s for some k ≥ 1.

2. If 1 holds, then the following statements hold:

(I) C̃ ∩E contains two distinct points if and only if k = 1.
(II) C̃ ∩E = {s′} where s′ ∈ C̃ is smooth if and only if k = 2.

(III) C̃ ∩E = {s′} where s′ ∈ C̃ is a singular point of type Ak−2 if and only if k ≥ 3.

Moreover, in case (II) the exceptional divisor E and C̃ are tangent at s′ .

Proof. The proof is left to the reader. □

Corollary 1 – Let C be a curve on a smooth surface X with an Ak-singularity at some
point s. Then there exists a sequence π : Y → X of ⌈ k2 ⌉ blow-ups such that the strict
transform C̃ is smooth at the intersection with π−1(s).

•A2n−1 n blow ups
←−−−−−−−−−−−

E1

E2

E3

En−1

En

•A2n n blow ups
←−−−−−−−−−−−

E1

E2

E3

En−1

En

Figure 1 – Illustration of Corollary 1. Above: k odd, below: k even. For i = 1, . . . ,n,
the exceptional divisor of the i-th blow-up is denoted by Ei .
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Proof. If k = 1 or k = 2 we are done with applying Lemma 2 once. If k ≥ 3 let
n = ⌈ k2 ⌉ ≥ 2. By applying Lemma 2 n times, we get a sequence of n blow-ups as
described in this lemma. Figure 1 depicts the situation. □

2.3 Baby bounds

As a warm-up, we give bounds for N (1,b), N (2,b), and N (3,3) in this section and
remark that an irreducible curve of arithmetic genus g has at most an A2g-singularity
(c.f. Lemma 3).

Example 2 – Let us prove that N (1,b) = 0 for all integers b. Let F be a (reduced)
polynomial of bidegree (1,b), so F = λx +G(y), where G ∈ C[y] is a polynomial in
one variable. By applying a translation, we may assume that F has an Ak-singularity
in (0,0). If λ , 0, we can parametrize the curve given by the zero set of F by
x = −λ−1G(y), so it is a smooth curve. If λ = 0 then F = G(y) is a polynomial in one
variable, and reduced by hypothesis. So F has no multiple factors, and hence no
singular points. Therefore, F is again smooth.

Example 3 – The polynomial F = x2 − y2m−1 is of bidegree (2,2m − 1) and has an
A2m−2-singularity. Hence N (2,2m) ≥N (2,2m− 1) ≥ 2m− 2.

Note that for bidegree (2,2) the bound is not sharp, since F = xy has an A1-
singularity. In fact, we will see in Example 4 that it is not sharp for all bidegree
(2,2m).

Lemma 3 – Let C be an irreducible divisor on a smooth surface with a singularity of
type Ak . Then, k ≤ 2g(C), where g(C) denotes the arithmetic genus of C.

Proof. By Lemma 2 and Corollary 1, there are n = ⌈ k2 ⌉ infinitely near points with
multiplicity 2. The adjunction formula (see Hartshorne 1977, Example 3.9.2 for the
statement fitting our situation) yields

g(C) ≥ 1
2

∑
mp(C)(mp(C)− 1) ≥ n,

where the sum runs over all singular points of C, including infinitely near ones.
Hence, k ≤ 2n ≤ 2g(C). □

Lemma 4 – Let F be a polynomial of bidegree (3,3) (that is of degree at most 3) with an
Ak-singularity. Then, k ≤ 3. Moreover, if F is irreducible, then k ≤ 2.

Proof. If the degree of F is one or two, then we already know that k ≤ 2. So we
assume that its degree is 3.

If F is irreducible, we can homogenize it to an irreducible polynomial F′ of
degree 3 in C[x,y,z]3. Hence the curve C = V (F′) ⊂ P

2 has arithmetic genus 1.
Lemma 3 gives k ≤ 2g(C) = 2.
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So let us assume that F is reducible. Then the polynomial F is either the product
of 3 linear terms, which can give at most an A1-singularity, or the product of a linear
and a quadratic term. Let L ⊂A

2 be the zero set of the linear term and let Q ⊂A
2

be the zero set of the quadratic term. There are two possibilities:

1. L and Q intersect at two points, and then the intersection is transversal. This
gives an A1-singularity.

2. L and Q intersect at one point, and L is a tangent to Q. This gives an A3-
singularity, as in Example 1. □

Corollary 2 – N (3,3) = 3.

Proof. The upper bound comes from Lemma 4 and the existence of such a singularity
comes from Example 1. □

2.4 Links and cofiberedness

Recall Corollary 1 and Figure 1. Instead of blowing up the singular point n times,
we will do one blow-up at a time in the following way.

Definition 3 – Let m be an integer, let p ∈ Fm be a point and let f be the fiber
containing it. A birational map π : Fm d Fm±1 that is the blow-up centered at p
followed by the contraction of the strict transform of f to a point s ∈ Fm±1 will
be called p-link from Fm with inverse point s. Such birational maps are also called
elementary transformations in Nagata (1960) or Nagata transformations in Degtyarev
(2012).

Remark 2 – Note that a p-link π with inverse point s is a birational map Fmd Fm+1
if p ∈ S−, and it is a birational map Fmd Fm−1 if p < S−. It is uniquely determined
by p up to composition with an automorphism of Fm±1. Moreover, its inverse
π−1 : Fm±1d Fm is a s-link of Fm±1 with inverse point p, which justifies the denota-
tion of “inverse point”.

Definition 4 – Let C ⊂ Fm be a divisor and let p and p′ be two distinct points in Fm.
We say that p′ is a cofibered point of p with respect to C (or p and p′ are C-cofibered) if
p and p′ lie on C and on the same fiber.

The following lemma shows that when studying 3-sections with an Ak-singular-
ity, cofiberedness is a natural property.

Lemma 5 – Let C be a 3-section in Fm that has an Ak-singularity at a point s ∈ C for
some k ≥ 3. Then, s has a cofibered point p ∈ C.
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Proof. Let f be the fiber through s. Recall2 that Is(C,f ) =
∑
mr (C)mr (f ), where the

sum runs over all points r that are infinitely near to s. Since we have C · f = 3
and Is(C,f ) ≥ 2 (because an Ak-singulartiy has multiplicity 2), there is either one
more point p ∈ C ∩ f with Ip(C,f ) = 1, which means that s and p are C-cofibered,
or Is(C,f ) = 3. As C does not contain any fiber by assumption, the latter case is not
possible : It means that there is a point s′ ∈ C̃ ∩ f̃ in the exceptional divisor of the
blow-up centered at s with Is′ (C̃, f̃ ) = 1. If k ≥ 3, this is not possible because s′ ∈ C̃ is
a singular point. □

Figure 2 depicts the situation of the above lemma. The reader is urged to keep
these pictures in mind when thinking about 3-sections with a large Ak-singularity.

f

p

sAk

f

p

s
Ak

Figure 2 – A 3-section with a large Ak-singularity (left: k odd, right: k even).

3 Polynomial in A
2 vs. Divisor in Fm

In this section we study polynomials F in A
2 of bidegree (a,am− r) for some a,m ≥ 1

and 0 ≤ r < a and divisors C ∼ aS+ in Fm. We obtain a correspondence between such
polynomials and divisors in Lemma 7, which is the main statement of this section.
As an application, we find an upper bound for Ak : If the corresponding divisor (we
say: “(a,am)-divisor”, see Definition 5) is irreducible, we compute the genus and get
Lemma 9. If the divisor is reducible, the bound is stated in Lemma 12 in the case
where a = 3.

Lemma 6 – Let a,m,r be integers such that m ≥ 1 and 0 ≤ r < a. A polynomial
F ∈C[x,y] is of bidegree (a,am− r) if and only if it is of the form

F =
a∑

i=0

xi
N (i)∑
j=0

aijy
j ,

where N (i) = m(a− i)− r + ⌊ ira ⌋ for all i = 0, . . . , a and aij ∈C.

2Casas-Alvero, 2000, Singularities of plane curves.
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Proof. Observe that a pair (i, j) ∈N2 lies in the triangle spanned by (a,0), (0,0) and
(0, am− r) if and only if 0 ≤ i ≤ a and aj + (am− r)i ≤ a(am− r). The latter inequality
can be reformulated into

j ≤ (a− i)(am− r)
a

=
(
1− i

a

)
(am− r) = m(a− i)− r +

ir
a
.

As j is an integer this is equivalent to j ≤N (i) and the lemma follows. □

Recall from Section 2.1 the embedding

ιm : A2 ↪→ Fm,

(x,y) 7→ [x : 1;y : 1].

Definition 5 – Let F ∈ C[x,y] be of bidegree (a,am). An effective divisor C ⊂ Fm
with C ∼ aS+ such that C |ιm(A2) corresponds to the zero set of F in A

2 will be called
a (a,am)-divisor of F.

The following lemma shows that it exists uniquely, hence it will be called the
(a,am)-divisor of F.

Before stating the lemma, we give a short overview of it: Parts 1 and 2 show the
correspondence of a polynomial F of bidegree (a,am) and an (a,am)-divisor C. Then,
the equivalence of (i) and (ii) translates the meaning of having bidegree (a,am− r)
into a condition on the equation of the zero set of C. This condition is then stated in
a geometric manner in (A) and (B) for r = 1 respectively r = 2.

Lemma 7 – Let a ≥ 1 and m ≥ 1 be two integers.

1. Let F be a polynomial of bidegree (a,am). Then, there is a unique divisor C ⊂ Fm
which is an (a,am)-divisor of F.

2. Let C ⊂ Fm be a divisor with C ∼ aS+. Then, there exists a polynomial F (unique
up to multiplication with a constant) of bidegree (a,am) such that C is its (a,am)-
divisor. Moreover, if C is irreducible, then so is F.

If 1 and / or 2 hold, let G =
∑a

i=0 x
i
0 x

a−i
1 Gm(a−i)(y0, y1) be a polynomial on Fm whose zero

set is C, where the Gm(a−i) are homogenenous of degree m(a− i), and let r be an integer
with 0 ≤ r < a. The following are equivalent:

(i) F is a polynomial of bidegree (a,am− r),

(ii) y
r−⌊ ira ⌋
1 divides Gm(a−i) for all i = 0, . . . , a.
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Moreover, for small r we have the following statements:

(A) For r = 1, (i) holds if and only if Ip(y1,C) = a, or y1 = 0 is a component of C,

(B) for r = 2 and a = 3, (i) holds if and only if

(a) mp(C) = 3, or

(b) mp(C) = 2 and C has only one tangent direction at p, namely the one given
by y1 = 0,

where p = [0 : 1;1 : 0].

Proof. We show 1. Thanks to Lemma 6 we can write F =
∑a

i=0 x
i ∑m(a−i)

j=0 aijy
j . We

homogenize it to a polynomial G of degree (a,0) on Fm with ιm and obtain

G :=
a∑

i=0

xi0 x
a−i
1

m(a−i)∑
j=0

aij y
j
0 y

m(a−i)−j
1︸                  ︷︷                  ︸

=:Gm(a−i)

.

As xa0 is also of degree (a,0), we have G
xa0
∈ k(Fm) and so

div
(
G
xa0

)
= div(G)− adiv(x0)

∼ div(G)− aS+,

and finally we set C to be the effective divisor C := div(G) ∼ aS+.
Observe that G(x,1, y,1) = F(x,y) and so ιm is an isomorphism between the zero

set of F in A
2 and C |ιm(A2), so C is a (a,am)-divisor of F.

To show the uniqueness of C, we assume that there is another effective divisor
C′ ⊂ Fm with C′ ∼ aS+ and C′ |ιm(A2)= C |ιm(A2). So we have

(C −C′) |ιm(A2)= 0

and because Fm \ ιm(A2) = S− ∪ f holds there are some α,β ≥ 0 such that C −C′ =
αS− + βf ∼ 0, since C ∼ aS+ ∼ C′ . Hence α = β = 0 and so C = C′ , and 1 is proved.

Let us prove 2. As C ∼ aS+ there is a g ∈ k(Fm) with div(g) = C−aS+ = C−adiv(x0).
Hence there is a polynomial G on Fm of degree (a,0) with g = G

xa0
. Hence C = div(G)

and G is of the form G =
∑a

i=0 x
i
0 x

a−i
1 Gm(a−i)(y0, y1). Let

F(x,y) := G(x,1, y,1) =
a∑

i=0

xiGm(a−i)(y,1).

53



Plane curves of fixed bidegree and their Ak-singularities J. Schneider

We remark that if C is irreducible, then G is and hence also F is irreducible. The
zero set of F corresponds to C|ιm(A2) with div(F) = C|ιm(A2), so F is unique up to
multiplication with a constant. As Gm(a−i)(y,1) is of degree at most m(a − i), the
monomials xi yj appearing in F satisfy j ≤ m(a− i). By Lemma 6, the polynomial
F is of bidegree (a,am) and C is hence its (a,am)-divisor. This concludes the proof
of 2.

Let us show the equivalence of (i) and (ii). Note that in 1 and in 2 we have

F(x,y) = G(x,1, y,1) =
a∑

i=0

xiGm(a−i)(y,1).

So if (i) holds, that is if F is of bidegree (a,am − r), then by Lemma 6, the degree
of Gm(a−i)(y,1) is at most N (i), where N (i) = m(a− i)− r + ⌊ ira ⌋ for all i = 0, . . . , a. As
Gm(a−i) is of degree m(a− i), this implies that

y
m(a−i)−N (i)
1 = y

r−⌊ ira ⌋
1

needs to divide Gm(a−i)(y0, y1), which is (ii).
For the converse direction, we assume (ii) and find Gm(a−i) = 0 or Gm(a−i) =

y
r−⌊ ira ⌋
1 PN (i)(y0, y1), where the PN (i) are homogeneous polynomials of degree N (i).

Hence, F =
∑a

i=0 x
iPN (i)(y,1), which is a polynomial of bidegree (a,am − r) by

Lemma 6. This is (i).
It remains to prove the statements (A) and (B). Let us start with (A). Note that

for r = 1 we have that r − ⌊ ira ⌋ is zero for i = a, and else it is 1. Hence, (ii) translates
to y1 | Gm(a−i) for i = 0, . . . , a− 1.

Assuming (ii), G can be written as

y1

a−1∑
i=0

xi0x
a−i
1 Hm(a−i)(y0, y1) +G0x

a
0,

where Gm(a−i) = y1Hm(a−i). Therefore, if G0 = 0, then y1 divides G, and so y1 = 0 is
a component of C. If G0 , 0, then

I[0:1;1:0](y1,G) = I(0,0)(y,G(x,1,1, y)) = I(0,0)(y,x
a) = a.

Hence, we have shown that (ii) implies that y1 = 0 is a component ofC, or Ip(y1,C) = a,
which is the first part of (A).

For the other direction of (A), note that if y1 = 0 is a component of C, then we
have directly that G0 = 0 and that y1 divides Gm(a−i) for i = 0, . . . , a− 1, implying (ii).

It remains to show that Ip(y1,C) = a implies (ii), too. As a = I(0,0)(G(x,1,1, y), y),
we find that xa | G(x,1,1,0) =

∑a
i=0 x

iGm(a−i)(1,0). So we have Gm(a−i)(1,0) = 0 for
i = 0, . . . , a− 1 and so y1 | Gm(a−i), which is (ii). Hence, (A) is proved.
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Now, let us show (B). In one direction, we will show the more general statement
“(ii) =⇒ mp(C) ≥ 3 or (b)” for any a ≥ 3. For a = 3, we have mp(C) ≤ C ·f = 3S+ ·f = 3,
where f is the fiber going through p, and thus we have (a) or (b).

Note that for r = 2 and any a ≥ 3 we have
(
2− ⌊2i

a ⌋
)2

i=0
= (2,2,1).

Assuming (ii) yields y2
1 | Gma, y2

1 | Gm(a−1) and y1 | Gm(a−2). On the affine chart
{[x : 1;1 : y] | (x,y) ∈A2} containing p = [0 : 1;1 : 0] we can write G as

xaG0 + xa−1Gm(1, y) + · · ·+ x2Gm(a−2)(1, y) + xGm(a−1)(1, y) +Gma(1, y),

and so it has no terms of degree 0 and 1. A term of degree 2 can only come from
Gma(1, y) = λy2 + terms of higher degree. If λ , 0 we have mp(G) = 2 and the only
tangent direction of G at p comes from y = 0. If λ = 0 we have mp(G) ≥ 3. So we are
either in case (a) or (b).

Let us now prove the converse direction. Assuming a = 3, we consider

G(x,1,1, y) = G3m(1, y) + xG2m(1, y) + x2Gm(1, y) + x3G0

in both cases (a) and (b):

(a) If mp(C) = 3 no terms of degree less than 3 may appear in G(x,1,1, y). So we
have y3

1 | G3m, y2
1 | G2m and y1 | Gm. This is even stronger than (ii).

(b) If mp(C) = 2 there may be no terms of degree less than 2 in G(x,1,1, y), and
the only term of degree 2 is y2 because y1 = 0 is the only tangent direction of
C at p. So y2

1 | G3m, y2
1 | G2m and y1 | Gm, implying (ii). □

Observation 1 – Let a,m ≥ 1 be two integers and let F be a polynomial of bidegree
(a,am) with a singularity of type Ak at (0,0) for some integer k ≥ 1. Then the
(a,am)-divisor C of F has an Ak-singularity at s = ([0 : 1;0 : 1]) (where s stands for
“singular”). Figure 3 depicts C for a = 3.

Since C ∼ aS+, the divisor C is an a-section if and only if C does not contain any
fibers.

S− f

Ak

S− f

f ′

Ak

S− f

f ′

Ak

Figure 3 – Illustration of Lemma 7 with an Ak-singularity in the case a = 3, k odd,
and r = 0,1,2 (left to right).
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Lemma 8 – Let m ≥ 1 be an integer and let s and t be two points on Fm that do not lie on
the same fiber and that do not lie on S−. Then, there exists an automorphism α ∈ Aut(Fm)
such that α(s) = [0 : 1;0 : 1] and α(t) = [0 : 1;1 : 0].

Proof. Applying an automorphism of the form [x0 : x1;y0 : y1]→ [x0 : x1;ay0 + by1 :
cy0 + dy1] with

(
a b
c d

)
∈ GL2(C) we can assume that the fiber of s is y0 = 0, and

the fiber of t is y1 = 0. As both points do not lie on S−, we get s = [a′ : 1;0 : 1]
and t = [b′ : 1;1 : 0] for some a′ ,b′ ∈ C. By applying the coordinate change x0 7→
x0 − x1(a′ ym1 + b′ ym0 ) we obtain the result. □

Example 4 – Consider C = C1 + C2 ⊂ Fm, where C1 is given by the zero set of
F = x0 − x1(ym0 + ym1 ) and C2 by G = x0 − x1y

m
1 . Note that C1,C2 ∼ S− +mf are both

sections in Fm, so C ∼ 2S+ is a 2-section. Let us see that C has an A2m−1-singularity
at s = ([1 : 1;0 : 1]). Then we can apply a change of coordinates that sends s onto
([0 : 1;0 : 1]), namely x0 7→ x0 − x1y

m
1 . The existence of such a divisor implies with

Lemma 7, 2 the existence of a polynomial F of bidegree (2,2m) with a singularity of
type A2m−1 at (0,0), and so N (2,2m) ≥ 2m− 1.

By inserting the parametrisation of C2 into F we find

F(x1y
m
1 ,x1, y0, y1) = x1y

m
0 ,

hence C1 and C2 intersect only at ([1 : 1;0 : 1]) with Is(C1,C2) = C1 ·C2 = m. There-
fore, after m blow-ups C1 and C2 separate and C gets smooth. As in Corollary 1,
it follows that C has an Ak-singularity where k = 2m or k = 2m− 1. Recall that the
Ak-singularity has to be odd (as in Remark 1) since it is the intersection of two
curves, hence k = 2m− 1 as claimed.

Lemma 9 – Let a,m,r be integers with a,m ≥ 1 and 0 ≤ r < a. Let F be a polynomial of
bidegree (a,am−r) with a singularity of type Ak such that its (a,am)-divisor is irreducible.
Then k ≤ (a− 1)(am− 2). Moreover, if a ≥ 3 and r = 2, then k ≤ (a− 1)(am− 2)− 2.

Proof. Let C be the (a,am)-divisor of F. Hence we have C ∼ aS+ ⊂ Fm irreducible
and we can compute its arithmetic genus

g(C) =
1
2
C · (C +K

Fm
) + 1

=
1
2
aS+ · ((a− 2)S− + ((a− 1)m− 2)f ) + 1

=
1
2
a ((a− 1)m− 2) + 1.

Lemma 3 yields

k ≤ 2g(C) = a ((a− 1)m− 2) + 2 = (am− 2)(a− 1)

and the first part of the lemma is proved.
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If a ≥ 3 and r = 2, by Lemma 7, 1 there is another singular point on C. So we
have k ≤ 2g(C)− 2, which finishes the proof. □

Lemma 10 – Let C = C1 + . . .+Cl be an effective divisor on a smooth surface with an
Ak-singularity at a point p ∈ C, where k ≥ 1 and all Ci are irreducible for i = 1, . . . , l.
Then up to exchanging the order of the Ci ’s, one of the following holds:

1. C1 has a singularity of type Ak at p and p does not lie on any of the other Ci ’s.

2. p ∈ C1 ∩ C2 is a smooth point of C1 and C2, C1 , C2, that does not lie on any of
the other Ci ’s. Moreover, k = 2n− 1 where n = Ip(C1,C2).

Proof. The proof is left to the reader. □

We have all ingredients to find the value of N (2,b) for any b ≥ 2.

Lemma 11 – For each integer b ≥ 1 we have N (2,b) = b − 1.

Proof. The lower bound has been studied in Example 3 for b odd and in Example 4
for b even. It remains to show that they are also an upper bound.

Let F be a polynomial of bidegree (2,2m − r) with an Ak-singularity, where
r ∈ {0,1}. Let C ⊂ Fm be its (2,2m)-divisor. If C is irreducible, then by Lemma 9 we
obtain k ≤ 2m− 2.

So let us assume that C is reducible, hence we can write C = C1 + · · ·+Cl , where
all Ci are irreducible for i = 1, . . . , l. Recall that C ∼ 2S+ = 2(S− +mf ). We can apply
Lemma 10.

In case 1, we can write C1 ∼ aS− + bf with 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2m. If a = 0
(respectively a = 1), then C1 is a fiber (respectively a section, since C1 is irreducible
and contains thusly no fibers) and therefore smooth. So let us assume that a = 2.
Then, 0 ≤ C1 ·S− = −2m+b and hence b ≥ 2m and so b = 2m and C = C1 is irreducible,
a contradiction.

In case 2 let us write C1 ∼ aS−+bf and C2 ∼ cS−+df with a+c ≤ 2 and b+d ≤ 2m.
We may assume that a ≥ c, and a = 1 (since a = 2 implies that C = C1 as before, and
a = 0 implies that C1 and C2 are both fibers, hence they do not meet).

• If c = 0, then n = Ip(C1,C2) ≤ C1 ·C2 = (S− + bf ) · d f = 1 and so k = 2n− 1 ≤ 1
with Lemma 10.

• If c = 1, then n = Ip(C1,C2) ≤ C1 ·C2 = b + d −m ≤ m and so k ≤ 2m − 1 with
Lemma 10.

It remains to show that equality in the latter equation cannot happen for r = 1.
We have k = 2m− 1 only if b = d = m (which means that C1,C2 ∼ S+ and hence
C = C1 +C2) and if n = C1 ·C2 (that is if C1 and C2 intersect at p only). So for
any point q distinct from p we have Iq(C,f ) = Iq(C1, f ) + Iq(C2, f ) ≤ 1 since C1
and C2 are both sections. Hence, case (A) of Lemma 7, 1 cannot apply and so
F is not of bidegree (2,2m− 1).

This finishes the proof. □
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From now on we delve into the study of N (3,b). A first result shows that Ak-
singularities of reducible polynomials are not interesting enough.

Lemma 12 – Let m ≥ 2 be an integer and let F ∈ C[x,y] be a polynomial of bidegree
(3,3m− r), where r ∈ {0,1,2}. Then, its (3,3m)-divisor C ⊂ Fm is either irreducible or
has at most a singularity of type A4m−1−r .

Proof. By Lemma 7, 1, we have C ∼ 3S+. Assume C is reducible and write C =
C1 + · · ·+Cl , where all Ci for i = 1, . . . , l are irreducible divisors. Assume that C has
a singularity of type Ak at a point p ∈ C. Hence, either 1 or 2 of Lemma 10 holds.

Let us first look at 1. Since C1 is effective, we have C1 ∼ aS− + bf with 0 ≤ a ≤ 3
and 0 ≤ b ≤ 3m. If a = 0 (respectively a = 1), C1 is a fiber (respectively a section) and
therefore smooth.

If a > 1, then 0 ≤ C1 · S− = −am + b and hence b ≥ am. So a = 3 is impossible,
because that would give b = 3m and hence C = C1 would be irreducible. The only
remaining possibility is a = 2 and therefore C1 ∼ 2S− + bf with 2m ≤ b ≤ 3m. Its
arithmetic genus is

g(C1) =
C1 · (C1 +K

Fm
)

2
+ 1

=
C1 · (b −m− 2)f

2
+ 1

= b −m− 1

≤ 2m− 1.

By Lemma 3, 2g(C1) ≤ 4m− 2 is an upper bound for k. It remains to show that we
cannot have an A4m−2-singularity if r = 2. We find an A4m−2-singularity at p only
if g(C1) = 2m− 1 (which corresponds to b = 3m) and p is the only singular point of
C1 (as in Lemma 3). Hence, we get C1 ∼ 2S− + 3mf and so C = C1 + S−. We want to
see that this cannot occur for r = 2 by finding a contradiction to (B) of Lemma 7, 1.
Since S− is smooth, and C1 contains no singular point except p, the divisor C cannot
have a point with multiplicity ≥ 3. A point with multiplicity 2 besides p is possible,
but then one of its tangent directions is given by S−, and this does not have the same
tangent direction as a fiber. This contradicts (B) of Lemma 7, 1, and so C cannot
have a singularity of type A4m−2 if r = 2.

We move on to 2: We will show that C1 · C2 ≤ 2m and that equality n =
Ip(C1,C2) = 2m cannot hold if r = 1 (and thus if r = 2). This implies with Lemma 10
that k = 2n − 1 ≤ 4m − 1, and that k = 2n − 1 ≤ 4m − 2 if r = 1. However, since in
case 2 only odd singularities are possible, we even have k ≤ 4m− 3 if r = 1 (and thus
if r = 2). This achieves the proof. So we assume 2 and will prove the claims above.
We write

C1 ∼ aS− + bf

C2 ∼ cS− + df
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with a+ c ≤ 3 and b+ d ≤ 3m. We can assume a ≥ c and a ≤ 2 (because a = 3 implies
that C = C1 is irreducible as before). If c = 0, then C2 is a fiber and since we assumed
m ≥ 2 we have C1 · C2 = a ≤ 2 < 2m. So we can assume c = 1 (since c ≥ 2 is not
possible because a ≥ c and a+ c ≤ 3). Hence, 1 ≤ a ≤ 2.

• If a = 2, then 0 ≤ C1 · S− = b − 2m and so b ≥ 2m.

– First, note that if C2 = S−, then C1 ·C2 = (2S−+bf ) ·S− = −2m+b ≤m < 2m.
(Note that the inequality is strict.)

– In the other case we have C2 , S−. Then, we have 0 ≤ C2 · S− = −m + d
and hence b ≥ 2m and d ≥m, which implies with b+ d ≤ 3m that b = 2m
and d = m. Hence C1 ∼ 2S+, C2 ∼ S+ and so we have C1 ·C2 = 2m and
C = C1 +C2.

So only in the latter case the equality C1 · C2 = 2m can occur. Assuming
n = Ip(C1,C2) = 2m, the point p is the only point in the intersection of C1
and C2, and so for all points q distinct from p we have Iq(C,f ) = Iq(C1, f ) +
Iq(C2, f ) ≤ 2. Therefore, case (A) in Lemma 7, 1 does not occur (since C does
not contain any fiber), and hence r = 0.

• If a = 1, then C1 ·C2 = −m+ d + b ≤ 2m. Assume in a first step that equality
C1 ·C2 = 2m holds (later on we assume the stronger equality n = 2m), which
means that b+d = 3m. Hence, C = C1 +C2 +S−. If b = 0 (or analogously, d = 0),
then C1 = S− and C2 ∼ S−+3mf . But now C is not reduced at p, a contradiction
to C having an Ak-singularity at p. Hence, we have b , 0 and d , 0. Hence, C
does not contain any fiber.

If we assume n = 2m, is it possible to have r = 1? To achieve n = C1 ·C2,the
only point in the intersection of C1 and C2 is p, and so any point q distinct
from p satisfies Iq(C,f ) = Iq(S−, f ) + Iq(C1, f ) + Iq(C2, f ) ≤ 2, since Ci · f = 1 for
i = 1,2. We conclude that case (A) in Lemma 7, 1 cannot occur.

We have showed that whenever n = 2m occurs, case (A) in Lemma 7, 1 is not satisfied.
Therefore, n = 2m does not happen if r = 1. □

Corollary 3 – Let m ≥ 2 be an integer and let F ∈ C[x,y] be a polynomial of bidegree
(3,3m− r), where r ∈ {0,1,2}. Then, F is irreducible, or has at most a singularity of type
A4m−1−r .

Proof. Let C be the (3,3m)-divisor of F. If C is irreducible, then so is F, by 2 of
Lemma 7. If C is reducible, then C and thus also F has at most a singularity of type
A4m−1−r by Lemma 12. □
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Remark 3 – Let m ≥ 2 and r ∈ {0,1,2} be two integers and let F be a polynomial
of bidegree (3,3m − r) with an Ak-singularity. If its (3,3m)-divisor is irreducible,
we obtain an upper bound from Lemma 9, if it is reducible we obtain one from
Lemma 12:

N (3,3m) N (3,3m− 1) N (3,3m− 2) asymptotically

m ≥ 2, reducible 4m− 1 4m− 2 4m− 3 ∼ 4m

m ≥ 1, irreducible 6m− 4 6m− 4 6m− 6 ∼ 6m

This gives us the following upper bounds (UB) in the cases b = 3m− r = 3, . . . ,12:

b 3 4 5 6 7 8 9 10 11 12

UB irreducible 2 6 8 8 12 14 14 18 20 20

UB reducible 3 5 6 7 9 10 11 13 14 15

4 To Be . . .

In this section the goal is to give a lower bound for N (3,b) where b ≤ 12, namely the
existence of a polynomial of bidegree (3,b) with a certain singularity of type Ak is
shown.

In what follows we will not give the specific equation of a polynomial, but rather
prove that a polynomial with certain properties exists.

In Section 4.1 we introduce our method: It is a “recipe” that “cooks up” poly-
nomials with large singularities. However, a recipe alone is not enough – only
ingredients make it useful. We introduce these in Section 4.2 and then use our
recipe to prepare polynomials with large singularities.

4.1 The recipe

We start by introducing some definitions that simplify the statements that follow.
Now is a good time to go back to take a look at Figures 2 and 3.

Definition 6 – Let m ≥ 0 be an integer and let C ⊂ Fm be an effective divisor and
p ∈ Fm a point. We say that p is a transversal point of C (or that C is transversal at p)
if C intersects the fiber f containing p transversally, that is Ip(C,f ) = 1.

We are interested in a configuration of curves with a certain behaviour on a fiber,
described in the following definition.
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Definition 7 – Let m ≥ 0 be an integer, let p and s be two points in Fm and let
C and S be two divisors on Fm. We say that the configuration (C,S,s,p)m is an
a-configuration if the following hold:

• C is an a-section,

• S is a section,

• p is a transversal point of C,

• s ∈ C,

• p and s are C-cofibered.

Sometimes, we will be interested only in a part of the configuration. In this
case, we denote by • the parts we do not know about. For instance, if we say that
(C,• ,• ,p)m is an a-configuration, we just mean that C is an a-section and that it
contains a transversal point p. The existence of the rest of the configuration is not
required.

Definition 8 – We say that an a-configuration (C,S,• ,• )m is disjoint if the intersec-
tion of C and S is empty. We say that the a-configuration (C,S,• ,p)m is tangent if
C ∩ S = {p}, and we say that the a-configuration (C,S,• ,• )m is tangent if there exists
a point p such that (C,S,• ,p)m is tangent.

For example, the situation in Figure 3 depicts a disjoint 3-configuration. We will
focus on 3-configurations that are tangent or disjoint.

Definition 9 – Let k ≥ −1 be an integer. Let C = (C,• , s,p)m be a 3-configuration
and let f be the fiber meeting s and p. We say that C is of type −1, 0 or k ≥ 1 in the
following cases:

(I) If C ∩ f = {p,s, t} for a point t distinct from p and s, C is of type −1,

(II) if C ∩ f = {p,s}, and f and C are tangent at s, then C is of type 0,

(III) if C∩ f = {p,s}, and s is an Ak-singularity of C for some k ≥ 1, then C is of type
k ≥ 1.

We say that (C,• , s,• )m (respectively (C,• ,• ,p)m) is of type k, if there is a point p
(respectively a point s) such that (C,• , s,p)m is a 3-configuration of type k.

Note that s ∈ C is a smooth point if C is of type ≤ 0, and s ∈ C is an Ak-singularity if
C is of type k ≥ 1.

For example, we can rephrase Lemma 5 with our new notions: Let C be a 3-
section on Fm that has an Ak-singularity at a point s ∈ C for some k ≥ 3. Then,
(C,• , s,• )m is a 3-configuration (and it is of type k ≥ 3).

We now remark that any 3-configuration (C,• ,• ,p)m is of type k for some k ≥ −1.

61



Plane curves of fixed bidegree and their Ak-singularities J. Schneider

Lemma 13 – Let m ≥ 0 be an integer. Any 3-configuration (C,• ,• ,p)m is of type k for
some k ≥ −1.

Proof. The proof is left to the reader. □

On a 3-configuration (C,S,s,p)m we will perform two kinds of links: a p-link or
an s-link. In this section we focus on p-links, in Section 5 we will study s-links.

Lemma 14 – Let a ≥ 1 and m ≥ 0 be two integers. Let p ∈ Fm be any point, and let D
be a divisor on Fm. Consider a p-link π : Fm d Fm′ . Let D ′ := π∗(D). Then, D is an
a-section if and only if D ′ is an a-section. If this holds, then D is irreducible if and only
if D ′ is irreducible.

Proof. Let s′ ∈ Fm′ be the inverse point of π. Since π sends a general fiber of Fm
(that is one that does not contain p) onto a general fiber of Fm′ (that is one that does
not contain s′), the push-forward D ′ is an a-section if and only if D is an a-section.
If this holds, neither D nor D ′ contains a fibre, so D is irreducible if and only if D ′

is irreducible. □

Lemma 15 – Let a ≥ 1 and m ≥ 0 be two integers. Let (D,• ,• ,p)m be an a-configuration.
Let π : Fm d Fm′ be a p-link with inverse point s′. Let D ′ := π∗(D). The following
statements hold:

(a) D ′2 = D2 + a2 − 2a,

(b) ms′ (D ′) = a− 1,

(c) there exists a (unique) cofibered point p′ ∈D ′ with s′ . Furthermore, (D ′ ,• ,• ,p′)m′
is an a-configuration.

In particular, if a ≥ 2 then (D ′ ,• , s′ ,p′)m′ is an a-configuration.

Proof. Let ρ : X→ Fm be the blow up centered at p so we can assume that σ = π ◦ρ :
X→ Fm′ is the contraction of the strict transform of f onto the point s′ ∈ Fm′ . Note
that p ∈ D is a smooth point because Ip(D,f ) = 1. So the self-intersection of the
strict-transform of D is D̃2 = D2 − 1. Having Ip(D,f ) = 1 also implies

D̃ · f̃ =
∑

q∈Fm\{p}
Iq(D,f ) = a− 1.

Therefore, by contracting f̃ to the point s′ , we find ms′ (D ′) = a− 1, and

D ′2 = D̃2 + (a− 1)2 = D2 + a2 − 2a.

Hence, we have shown (a) and (b). To prove (c), recall that D and f intersect transver-
sally at p, hence D̃ and f̃ do not meet on E, the strict transform of ρ. Moreover,
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D̃ intersects E transversally at a point p̂ ∈ X (not lying on the strict transform f̃ ).
Therefore, σ∗(D) = D ′ and σ∗(E) = f ′ intersect transversally at p′ = σ (p̂), which
is a point lying on the same fiber f ′ as s′. Hence, p′ is a transversal point of D ′

and so (D ′ ,• ,• ,p′)m′ is an a-configuration. Moreover, if a ≥ 2 we have that s′ ∈ D ′
and so (D ′ ,• , s′ ,p′)m′ is an a-configuration. For the uniqueness of p′ recall that by
Lemma 14, D ′ is an a-section, and hence by (b), we have

a = D ′ · f ′ =
∑
q∈Fm′

Iq(D ′ , f ′) ≥ Ip′ (D
′ , f ′) +ms′ (D

′) = a

and so D ′ ∩ f ′ = {p′ , s′}. This concludes the proof. □

Therefore, it makes sense to define the direct image of an a-configuration.

Definition 10 – Let a ≥ 1 and let m ≥ 0. Let C = (C,• ,• ,p)m be an a-configuration
and let π : Fmd Fm′ be a p-link with inverse point s′. We define the direct image
π∗(C) to be the a-configuration (π∗(C),• , s′ ,p′)m′ as obtained in Lemma 15 (respec-
tively (π∗(C),• ,• ,p′)m′ if a = 1). In the same way we define the direct image of an
a-configuration (C,S,• ,p)m under π to be the a-configuration (π∗(C),π∗(S), s′ ,p′)m′ .

This leads us to a chain of p-links.

Definition 11 – Let m0 = m ≥ 0, a ≥ 1 and n ≥ 1 be three integers. Let C = C0 be
an a-configuration (C0 = C,• ,• ,p0 = p)m. For i = 1, . . . ,n, let πi : Fmi−1

d Fmi
be

a pi−1-link with inverse point si . Let Ci = (Ci ,• , si ,pi)mi
be the direct image of Ci−1.

We call the composition

π = πn ◦ · · · ◦π1 : Fm0
d Fmn

a transversal C-chain of n links (because we perform a series of links obtained from
blowing up the transversal point of C). We say that sn ⊂ Fmn

is the inverse point of π
and that the direct image of C under π is Cn.

Remark 4 – A transversal C-chain of n links is unique up to isomorphism at the
target, since each of the πi is unique up to isomorphism. The points pi and si
being cofibered, π restricted to Fm0

\ f0 is an isomorphism to Fmn
\ fn, where f0

(respectively fn) is the fiber containing p0 (respectively pn).

Lemma 16 – Let m ≥ 0 and n ≥ 1 be two integers. Let C = (C,• ,• ,p)m be a 3-configu-
ration of type k ≥ −1. Let π : Fmd Fm′ be a transversal C-chain of n links with inverse
point s′ . Then the 3-configuration C′ = π∗(C) is of type K = 2n+ k ≥ 1.

Proof. By induction, it is enough to prove the statement for n = 1, which we do now.
Recall that ρ : X → Fm is the blow up centered at p and σ = π ◦ ρ : X → Fm′ is the
contraction of the strict transform of f onto the point s′ ∈ Fm′ . The exceptional
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divisor of σ , denoted by E, equals f̃ , and the strict transform of C with respect to ρ
equals the strict transform of C′ with respect to σ . So we have C̃′ ∩E = C̃ ∩ f̃ .

By (b) of Lemma 15, we know that ms′ (C′) = 2, so part 1 of Lemma 2 is satisfied
(note that C′ is a 3-section and is therefore reduced) and C′ has a singularity of type
AK at s′ for some K ≥ 1. Hence, part 2 can be applied onto C′ (with respect to σ ). In
all cases we find that k = K − 2.

(I) If K = 1, then C̃ ∩ f̃ contains two distinct points, say ŝ, t̂. Hence, C ∩ f also
contains the distinct points s = ρ(ŝ) and t = ρ(t̂), but it also contains p, so C is
of type −1.

(II) If K = 2, then C̃ ∩ f̃ = {ŝ}, where ŝ ∈ C̃ is smooth and E = f̃ and C̃′ = C̃ are
tangent at ŝ. Hence, C ∩ f = {p,s}, where s = ρ(ŝ) and C and f are tangent at s,
concluding that C is of type 0.

(III) If K ≥ 3, then C̃ ∩ f̃ = {ŝ}, where ŝ ∈ C̃ is a singular point of type AK−2 = Ak .
Therefore, C ∩ f = {p,s}, where s = ρ(ŝ) and C has a singularity of type Ak at s
with k = K − 2 ≥ 1. Hence, C is of type k = K − 2.

By Lemma 13 we know that C is of type k ≥ −1, and so the dichotomy proves the “if
and only if”-statement. □

The following pictures illustrate the situation for k = −1, k = 0, and k ≥ 1:

k = −1:

S

C

f

p

s

t

π−−−→

S ′

C′

f ′

p′

s′

A1

k = 0:

S

C

f

p

sA0

π−−−→

S ′

C′

f ′

p′

s′

A2
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k ≥ 1:

π−−−→

S

C

f

p

s

Ak

S ′

C′

f ′

p′

s′

Ak+2

Lemma 17 – Let m ≥ 0 and a ≥ 1 be two integers, and let C = (C,S,• ,p)m be a tangent
a-configuration. Let 1 ≤ n ≤ Ip(S,C) be an integer. Let π : Fmd Fm′ be a transversal
C-chain of n links, and let C′ = (C′ ,S ′ ,• ,p′)m′ be the direct image π∗(C). The a-configu-
ration C′ is tangent or disjoint, and Ip′ (S ′ ,C′) = Ip(S,C)−n. In particular, it is tangent
if and only if Ip′ (C′ ,S ′) ≥ 1.

Proof. By induction, it is enough to prove the statement for n = 1 since assuming
n ≤ Ip(S,C) asserts that in each step we have Ipi (Si ,Ci) ≥ 1 for i = 1, . . . ,n− 1, hence
the direct image is again a tangent a-configuration. So assume n = 1.

Let s′ be the inverse point of π. Observe that s′ < S ′ by (b) of Lemma 15.
Recall that ρ : X→ Fm is the blow up centered at p and σ = π◦ρ : X→ Fm′ is the

contraction of the strict transform of the fiber f containing p onto the point s′ ∈ Fm′ .
Let C̃, respectively S̃, be the strict transform of C, respectively S. Note that p is
a smooth point of C (because Ip(C,f ) = 1) and of S (because S is smooth since it is
a section). Having p ∈ C ∩ S yields

C̃ · S̃ = C · S − 1 = Ip(C,S)− 1.

Since C is tangent, C ∩ S = {p} and so C̃ ∩ S̃ ⊂ E, where E is the exceptional divisor
with respect to the blow-up of p. Let p̂ be the intersection of E and C̃ (as in the
proof of Lemma 15), then σ (p̂) = p′ . Hence, C̃ and S̃ intersect at most in p̂, giving

Ip̂(C̃, S̃) = C̃ · S̃ = Ip(S,C)− 1,

and so also Ip′ (C′ ,S ′) = Ip(S,C), as the intersection multiplicity is a local property. □

To summarize the lemmas of this section, we equip a 3-configuration C =
(C,S,s,p)m of type k ≥ −1 with information

[C2,S2, k, Ip(C,S);m].

With this notation, we obtain the following lemma.
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Lemma 18 – Let m ≥ 0 and a ≥ 1 be two integers. Let C = (C,S,s,p)m be a tangent a-
configuration and let n be an integer with n ≤ Ip(S,C). Let π : Fmd Fm′ be a transversal
C-chain of n links. Then C′ = π∗(C) is equipped with

[C2 +n(a2 − 2a),S2 −n,•, Ip(S,C)−n;•].

Moreover, if a = 3 then C′2 = C2 + 3n, and C′ is of type k + 2n if and only if C is of type
k ≥ −1.

Proof. Write C′ = (C′ ,S ′ , s′ ,p′)m′ . Lemma 17 gives directly that Ip′ (S ′ ,C′) =
Ip(S,C) − n, and Lemma 16 provides the statement about the type of C′. It re-
mains to compute C′2 and S ′2. We want to apply (a) of Lemma 15 n times to the
1-configuration (S,• ,• ,p)m and to the a-configuration (C,• ,• ,p)m. To do this, we
need to know that in each step of the transversal C-chain the point pi is contained
in Si ∩Ci . This is true because we chose n ≤ Ip(S,C), and so Ipi (Si ,Ci) ≥ 1, hence
pi ∈ Si ∩Ci in each step. So by applying (a) of Lemma 15, we get S ′2 = S2 − n and
C′2 = C2 +n(a2 − 2a) as claimed. □

In general, we do not know on which Hirzebruch surface Fm′ we arrive. However,
under assumptions as in the following lemma, we can determine m′ .

Lemma 19 – Let m ≥ 0 and a ≥ 1 be two integers. Let C = (C,S,• ,p)m be a tangent
a-configuration and let S2 ≤ n ≤ Ip(S,C) be an integer. Assume that C2 = 2an− a2S2.
Let π : Fm d Fm′ be a transversal C-chain of n links and let π∗(C) = (C′ ,S ′ ,• ,p′)m′ .
Then, m′ = n− S2, S ′ = S− and C′ ∼ aS+.

Proof. It remains to prove that m′ = n − S2, using S2 ≤ n, and that C′ ∼ aS+ and
S ′ = S− under the assumption C2 = 2an− a2S2. Applying Lemma 18, we find that
S ′2 = S2−n ≤ 0. Since S ′ is a section, it is therefore irreducible and isomorphic to P

1,
and hence it is the (−m′)-curve on Fm′ . Therefore, m′ = n − S2 and S ′ = S− ⊂ Fm′ .
With Lemma 18 we also find that

C′2 = C2 +n(a2 − 2a) = a2(n− S2) = a2m′ .

As C′ is an a-section, we have Cn ∼ aS− + bf for some b ≥ 0. Inserting this into the
value of C′2 yields b = am′ and hence C′ ∼ aS+. □

4.2 The ingredients

In this section we will show the existence of some tangent 3-configurations
C = (C,S,• ,p)m satisfying the assumptions of Lemma 19 with m = 0 (that is, a con-
figuration in F0 = P

1 ×P1) or m = 1 (that is, a configuration in F1 obtained by the
blow-up at one point of a configuration in P

2), and we let n = Ip(S,C).
These are then the “ingredients” that we can put into the “recipe” that we estab-

lished in the last section: Applying a transversal C-chain of n links π : Fmd Fm′ ,
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we get a divisor C′ ∼ 3S+ ⊂ Fm′ , where m′ = n− S2, and C′ has a singularity of type
AK , where K = 2n+ k and C is of type k. Upon the divisor C′ ⊂ Fm′ we can apply
Lemma 7 and find a polynomial F ∈C[x,y] of bidegree (3,3m′) that has a singularity
of type AK at some point.

Moreover, if the curve C we started with has a special intersection property with
some general fiber as in (A) or (B), then also C′ has the same intersection property
with a general fiber, since π sends a general fiber onto a general fiber, leading to F
being of bidegree (3,3m′ − 1) (case (A)) or (3,3m′ − 2) (case (B)).

To recapitulate, we start with a relatively “easy” configuration and can then find
a polynomial of a certain type with a “large” singularity of type AK . In this way, we
will get a lower bound for N (3,b).

First, we give a 3-configuration (C,S,• ,p)0 in F0 = P
1 ×P1 that yields with the

method described above a lower bound of N (3,9).

Lemma 20 – There exists an irreducible polynomial of bidegree (3,9) with a singularity
of type A13.

Proof. Consider the curves C = V (F) and S = V (G) in F0 = P
1 × P1, where G =

x0y
2
1 − x1y

2
0 and

F = x3
0(y0 + 7y1) + x2

0 x1(21y0 + 35y1) + x0 x
2
1(35y0 + 21y1) + x3

1(7y0 + y1).

Let p = [1 : 1;1 : −1] and let f be the fiber going through p, hence f is given by
y0 + y1 = 0. We prove that C = (C,S,• ,p)0 is a tangent 3-configuration.

First, we show that p is the unique intersection point of C and S. We can
parametrize S by [y0 : y1] 7→ ([y2

0 : y2
1 ], [y0 : y1]). Inserting this parametrization into

F, we find

F(y2
0 , y

2
1 , y0, y1) = (y0 + y1)7,

and so C and S intersect only at p with Ip(S,C) = 7.
Next, we show that S is a section. Since S is of bidegree (1,2), it satisfies S · f = 1

for any fiber f that is given by a linear equation in y0, y1 (and S2 = 4). To see that
S is a section, we need to check that it does not contain any fibers. If S would
contain a fiber, then it were the fiber y0 + y1 = 0 that contains p (otherwise, S and C
would meet in a second point). On this fiber we have G(x0,x1,1,−1) = x0 +x1, which
does not vanish everywhere. Therefore, S does not contain any fiber and is hence
a section.

Similarly, we note that F is of bidegree (3,1) and so C · f = 3 (and C2 = 6). We
can compute the intersection of C and f , namely

F(x0,x1, y0,−y0) = (3x0 + x1)(x0 + 3x1)(x0 − x1).
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Hence, C intersects f in three distinct points and so Ip(C,f ) = 1, hence p is a transver-
sal point of C. We can now see that C does not contain any fibers: If C would contain
a fiber, then it would be the fiber going through p (otherwise, C and S would inter-
sect in a second point). This contradicts p being a transversal point of C. Hence, C
is a 3-section.

To sum it up: C is a tangent 3-configuration equipped with information

[6,4,−1,7;0],

where it is of type −1 because C and f intersect at 3 distinct points. Letting n = 7,
one can check that the assumptions of Lemma 19 are satisfied. Applying this lemma
and Lemma 18, we get a 3-configuration C′ = (C′ ,S−, s′ ,p′)3 of type −1+2n = 13 such
that C′ ∼ 3S+. By Lemma 12, C′ is irreducible. Therefore, there is an irreducible
polynomial F of bidegree (3,9) such that C′ is its (3,9)-divisor by Lemma 7, and so
F has an A13-singularity. □

Remark 5 – Note that the coefficients of the polynomial F from the above lemma
is the 7th row of Pascal’s triangle and so they are binomial coefficients. We can
generalise Lemma 20 to the following statement:

Let m ≥ 3 be an odd integer. Then there exists an irreducible polynomial
of bidegree (3,3m) with at least an A4m+1-singularity.

It can be proved by writing m = 2a − 1 for an integer a ≥ 2 and considering the
curves C = V (F) and S = V (G) in F0, where

G = x0y
a
1 − x1y

a
0,

F = x3
0

a−1∑
i=0

(
4a− 1

i

)
ya−1−i

0 yi1 + x2
0x1

2a−1∑
i=a

(
4a− 1

i

)
y2a−1−i

0 yi−a1

+ x0x
2
1

3a−1∑
i=2a

(
4a− 1

i

)
y3a−1−i

0 yi−2a
1 + x3

1

4a−1∑
i=3a

(
4a− 1

i

)
y4a−1−i

0 yi−3a
1 .

Note that the coefficients of F correspond to the (4m− 1)th row of Pascal’s triangle,
which is the nice part: By plugging in the parametrisation of S into F we find

F(ya0, y
a
1, y0, y1) = (y0 + y1)4a−1,

and so p = [1 : (−1)a;1 : −1] is the unique intersection point of S and C, providing
tangency in case (C,S,• ,p)0 is a 3-configuration. However, to show that it is a 3-
configuration involves lengthy computations with binomial coefficients, which is
the reason why we refrain from presenting the proof. Furthermore, this gives an
asymptotical lower bound N (3,b) ≥ 4

3b, whereas Lemma 28 gives N (3,b) ≥ 3
2b.
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Remark 6 – We touch upon a connection to Weierstrass points on P
1 ×P1 as intro-

duced by Maugesten and Moe Maugesten and Moe 2018 in 2018. A curve S ⊂ P
1×P1

of degree (α,β) is said to be a hyperosculating curve to some curve C, if

Ip(S,C) > (α + 1)(β + 1)− 1,

and if this holds p is an (α,β)-Weierstrass point of C. They study the case where α
and β are at most one.

In our situation, if an a-configuration (C,S,• ,p)0 is tangent, then S ∼ S− + βf
is a hyperosculating curve to C, and p is an (1,β)-Weierstrass point of C. For
instance, the curve C of Remark 5, which has degree (3, a−1), contains p as a smooth
(1, a)-Weierstrass point, with hyperosculating curve S of degree (1, a).

Looking ahead, the examples of tangent 3-configurations we obtain on F1 (after
blowing up a situation in P

2) can be transformed to a tangent 3-configuration in F0
after just one elementary link centered at p, and so we get a curve C ⊂ F0 of degree
(3,b) that has an (1,β)-Weierstrass point, where S ∼ S− + βf ⊂ F0.

For example, Lemma 28 implies the existence of a curve C of degree (3,3k) that
has a (1,5k)-Weierstrass point for every k ≥ 1. It would be interesting to know under
which circumstances it is possible to have two curves of degree (1, a) and (3,b) that
intersect in one point only, especially if a > b.

The following “ingredients” are tangent 3-configurations in F1, which we obtain
from configurations of curves in P

2. We start with two curves S and C in P
2 that

are very tangent at a point p. Then, we do a blow-up σ : F1→ P
2 centered at a point

q , p. The following lemma gives conditions for C, S, p, and q such that (C̃, S̃,• , p̂)1
is a tangent 3-configuration satisfying C̃2 = 6n− 9S̃2, where p̂ = σ−1(p), C̃, S̃ are the
strict transforms of C respecitvely S, and n = Ip(S,C).

Lemma 21 – Let p and q be two distinct points on P
2 and let L be the line meeting both.

Let C and S be two curves meeting p that do not contain any line passing through q and
that satisfy the following conditions:

1. p is a smooth point of C,

2. mq(C) = degC − 3,

3. mq(S) = degS − 1,

4. n := Ip(S,C) = 3degS + degC − 3.

Let σ : F1→ P
2 be the blow-up centered at q ∈ P2 and let C̃ denote the strict transform

of C, and S̃ the one of S. Let p̂ = ρ−1(p). Then, (C̃, S̃,• , p̂)1 is a tangent 3-configuration
with information

[6deg(C)− 9,2deg(S)− 1,• ,n;1].

In particular, C̃2 = 6n− 9S̃2.
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Proof. Since the strict transforms of the lines going through q are the fibers in F1, S̃
and C̃ do not contain any fiber. In particular, the strict transform L̃ is a fiber. With 2
we have C̃ · L̃ = C ·L−mq(C) = degC −mq(C) = 3, hence C̃ is a 3-section. Similarly,
we find with 3 that S̃ is a section. To see that p̂ is a transversal point of C̃ we insert 2
and 3 into 4 and find

Ip(S,C) = 3
(
mq(S) + 1

)
+mq(C) ≥ 3.

Since p is distinct from q and p̂ is a smooth point of C̃ by 1 (and p is a smooth
point of S by 3), we have Ip̂(C̃, S̃) = Ip(S,C) ≥ 3, and so C̃ is tangent to the section S̃

at p̂. As a section intersects all fibers transversally, the 3-section C̃ intersects the
fiber L̃ transversally at p̂. Hence, p̂ is a transversal point of C̃ and so (C̃, S̃,• , p̂)1 is
a 3-configuration.

To prove that the 3-configuration (C̃, S̃,• , p̂)1 is tangent, we compute using 2
and 3

S̃ · C̃ = deg(S)deg(C)−mq(S)mq(C)

= degS degC − (degS − 1)(degC − 3)

= 3degS + degC − 3,

so with 4 we find that S̃ · C̃ = Ip(S,C) = Ip̂(S̃, C̃), since a blow-up is outside the
exceptional divisor an isomorphism. So C̃ and S̃ intersect only at the point p̂.
Therefore, it is a tangent 3-configuration.

Finally, with 2 we compute

C̃2 = degC2 −mq(C)2 = 6degC − 9

and with 3 and 4 we find

6n− 9S̃2 = 6(3degS + degC − 3)− 9
(
degS2 − (degS − 1)2

)
= 6degC − 9,

so C̃2 = 6n− 9S̃2 holds. □

In the following we give specific examples of curves S, C and L in P
2 with a point

p and a distinct point q that will be blown up. We will show that they satisfy the
assumptions of Lemma 21 and can therefore apply Lemma 19 onto C = (C̃, S̃,• , p̂)1.
We determine of which type k ≥ −1 the a-configuration C is, and then Lemma 16
gives a large singularity of type AK . If we want to achieve a case with r = 1 or r = 2,
we will also add to the situation in P

2 a line T (going through q) and describe the
intersection with C at a point t ∈ T . This corresponds then to a situation such as (A)
or (B) in Lemma 7, using the fact that the line T is a fiber after a blow-up.

The examples with large singularities we give provide irreducible polynomials.
This follows directly from Corollary 3.
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Lemma 22 – There exists an irreducible polynomial of bidegree (3,5) with a singularity
of type A7.

Proof. Let us consider the following configuration in P
2 that consists of three general

lines and a nodal cubic that intersects the lines in a special way (as illustrated in the
picture below):

L : x = 0, q = [0 : 1 : −1],

S : x+ z = 0, p = [0 : 1 : 0],

C : z(x2 + xy + y2) + xy(x+ y) = 0, s = [0 : 0 : 1],

T : y + z = 0, t = [1 : 0 : 0].

S

C
t

T
q

s

L

p

First, note that L is the line meeting p and q and that S and C both contain p. Neither
of them contains a line through q, since q does not lie on C nor on S. Let us now
check the conditions 1 to 4 from Lemma 21, which then gives us a 3-configuration
in F1.

For 1 we remark that p ∈ C is a smooth point. For 2, 3 and 4 note that q does
not lie on S ∪C, so mq(S) = mq(C) = 0. Since C has degree 3 and S has degree 1, 2
and 3 follow. Part 4 holds because by inserting z = −x into C we see that C and S
intersect only at p, so Ip(S,C) = degC ·degS = 3. So Lemma 21 gives us a tangent
3-configuration C = (C̃, S̃, ŝ, p̂)1 equipped with information [9,1,1,3;1], since C has
an A1-singularity at s, which lies on L.

We can thus apply Lemma 19 on a transversal C-chain of 3 links and get a dis-
joint 3-configuration C′ = (C′ ,S−, s′ ,p′)m′ , where m′ = 3 − 1 = 2 and C′ ∼ 3S+ ⊂ F2.
Lemma 18 says that C′ is of type 7, since 2n+1 = 7. Moreover, the line T (containing
q) intersects C only at t. Therefore, C′ intersects a fiber T ′ at only one point t′,
giving It′ (T ′ ,C′) = 3. So we are in case (A) of Lemma 7. Finally, 2 of Lemma 7 asserts
that there exists a polynomial of bidegree (3,3m′ − 1) = (3,5) with a singularity of
type A7. This polynomial is irreducible by Corollary 3. □

Lemma 23 – There exists an irreducible polynomial of bidegree (3,7) with a singularity
of type A10.
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Proof. Let us consider the following configuration in P
2 consisting of three general

lines and a quartic curve that intersects the lines in a special way (as is illustrated
in the picture below):

L : y + z = 0, q = [0 : 1 : −1],

S : y = 0, p = [1 : 0 : 0],

C : y2x2 + y(x3 + 3x2z+ xz2 + z3) + z4 = 0, s = [1 : 1 : −1],

T : x = 0, t = [0 : 1 : 0].

S

T

t

C q

s

L

p

We want to check that all assumptions of Lemma 21 are satisfied. First, note that L
is the line going through p and q. Inserting the parametrisation of S into C, we see
that S and C intersect only at p, and C is smooth at p, giving 1 and 2. So we have

n = Ip(S,C) = degC ·degS = 4 = 3degS + degC − 3,

which is 4. Clearly, S does not meet q (implying 3) so it does not contain any line
going through q. If C would contain a line going through q, then it had to be L
(otherwise, C and S would intersect also in a point distinct from p). Inserting the
parametrisation of L into C yields a non-zero polynomial. Hence, C does not contain
a line going through q.

Therefore, Lemma 21 gives us a tangent 3-configuration C = (C̃, S̃, ŝ, p̂)1 satisfying
C̃2 = 6n−9S̃2 and equipped with information [15,1,• ,4;1]. Now, let us see that C is
of type 2: Using the change of coordinates [x : y : z] 7→ [x+ y : y : z − y], which sends
[0 : 1 : 0] onto s, one sees that C with changed coordinates has a cusp at [0 : 1 : 0],
hence s is an A2-singularity of C.

Applying Lemma 19 on a transversal C-chain of n = 4 links, we get a disjoint 3-
configuration C′ = (C′ ,S−, s′ ,p′)m′ , where m′ = 4− 1 = 3 and C′ ∼ 3S+. By Lemma 18,
C′ is of type 2n+ 2 = 10.

The largest power of y in the polynomial of C is y2 with unique tangent direction
x = 0, which corresponds to T . Hence, mt(C) = 2 and T is the unique tangent
direction to C at t, and so there is a fiber T ′ ⊂ Fm′ containing a point t that is the
only tangent direction to C′ at a point t′ , which is case (B) of Lemma 7.
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Using all the results we have collected, we can apply Lemma 7 onto C′, which
asserts the existence of a polynomial of bidegree (3,3m′−2) = (3,7) with a singularity
of type A10. Moreover, this polynomial is irreducible by Corollary 3. □

Lemma 24 – There exists an irreducible polynomial of bidegree (3,8) with a singularity
of type A12.

Proof. Let

a = −3
8

(i
√

3− 1), b =
1
8

(3i
√

3− 1), c =
1
2

(−3 + i
√

3), d = −1
2

(3 + i
√

3)

and consider the following configuration in P
2 consisting of a cubic, a conic and

two general lines that intersect in a special way (see the picture for illustration):

L : y = 0, q = [0 : 0 : 1],

S : xz − y2 = 0, p = [1 : 0 : 0],

C : z3 + (xz − y2)(ax+ by + cz) = 0,

T : x+ dy = 0, t = [−d : 1 : 1].

S
q

L

s

Ct

T

We want to check that the assumptions of Lemma 21 are satisfied. Note that L is the
line going through p and q, and p ∈ C is a smooth point, giving 1. Clearly, S is an
irreducible conic, hence it does not contain any line. Since C does not contain q it
does not contain any line going through q. So we also have 2 and 3.

Inserting the parametrisation of S into C, we see that S and C intersect only at p
and compute n = Ip(S,C) = degS ·degC = 6 and 3 + 3mq(S) +mq(C) = 3 + 3 = 6, so
we have 4.

So we apply Lemma 21 and get a tangent 3-configuration (C̃, S̃, ŝ, p̂)1 satisfying
C̃2 = 6n− 9S̃2 and equipped with [9,3,• ,6;1]. Hence, we can apply Lemma 19 to
a transversal C-chain of 6 links and get a 3-configuration C′ = (C′ ,S ′ , s′ ,p′)m′ where
m′ = n− S̃2 = 6− 3 = 3 and C′ ∼ 3S+ ⊂ F3.

Note that we did not give a point “s” in the listing of the curves and points of
the configuration, but we draw an “s” in the picture such that L is the tangent to C
at this point. Such a point does exist because

F(x,0, z) =
1− i
√

3
24

z
(
z
(
i
√

3 + 3
)
− 3x

)2
.

Hence, C is of type 0, and by Lemma 18, C′ is of type 12, because 2n = 12.
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By inserting x = −dy into C, we find

F(−dy,y,z) = (−y + z)3,

so t is the only intersection point of T and C, so we have It(T ,C) = 3 and get
therefore a fiber T ′ ⊂ Fm′ containing a point t′ with It′ (T ′ ,C′) = 3. So we are in
case (A) of Lemma 7.

Applying Lemma 7 gives the existence of a polynomial of bidegree (3,3m′ − 1) =
(3,8) with a singularity of type A12. Finally, this polynomial is irreducible because
of Corollary 3. □

Lemma 25 – There exists an irreducible polynomial of bidegree (3,10) with a singularity
of type A15.

Proof. Let

F = (i − 1)x2yz+
1
2
x3(y − iz) + xy2(−x+ 2z)− y2z2 +

1
2
xz2((1− 3 i)y + ix)

and let

G = x(iy + z) + (1− i)y2 − (1 + 3 i)yz − z2.

Consider the following configuration in P
2 consisting of a quartic, a conic and two

lines that intersect in a special way (as illustrated in the picture below):

L : y = 0, q = [1 : 0 : 1],

S : G = 0, p = [1 : 0 : 0],

C : F = 0, s = [0 : 0 : 1],

T : x − z = 0, t = [0 : 1 : 0].

S
q

L

p

s
Ct

T

We want to prove that the assumptions of Lemma 21 are satisfied. The line going
through p and q is L. For 1 note that p ∈ C is smooth, since F contains the term x3. One
can also check that q ∈ C is a smooth point, so we have mq(C) = 1 = degC − 3, which
gives 2. The conic given by G is smooth (since G can be written as xα(y,z)+β(y,z) for
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some α,β ∈C[y,z]), so q ∈ S is smooth and we have mq(S) = 1 = degS − 1. So 3 holds.
This also implies that S is irreducible and does thus not contain any lines. We still
need to prove that C does not contain any line meeting q (which we will do later in
the proof), and that 4 holds.

To show 4 consider the parametrisation ϕ : P2→ P
2 of S, which is given by

ϕ([y : z]) = [(−1 + i)y2 + (1 + 3 i)yz+ z2 : y (z+ iy) : z (z+ iy)].

Inserting this into F gives

(1 + i)y (iz − y)7 ,

hence S and C intersect at two points: at [0 : 1] with local intersection 1, and at [i : 1]
with local intersection 7. Note that ϕ([i : 1]) = [1 : 0 : 0] = p. Therefore, Ip(C,S) = 7
and so we have 3degS + degC − 3 = 7 = Ip(S,C), implying 4.

We show that C has a node at s = [0 : 0 : 1]. Since z4 and z3 do not appear in F,
the quartic C has a singular point at s. It is a node, because the coefficient of z2 is

1/2
(
−2y2 + xy(1− 3i) + ix2

)
,

which has discriminant −2 + i
2 , 0. Hence, it has two distinct roots, and s is an

A1-singularity of C.
Note that t is a singular point of C, since y3 and y4 do not appear in F. Moreover,

the coefficient of y2 is − (x − z)2, which has the unique tangent direction T and is
hence a cusp.

Instead of proving that C does not contain any line meeting q, we are now ready
to prove that C is irreducible, which is a stronger statement. Since we know that
t ∈ C is a cusp, this singularity needs to come from an irreducible component C1.
Hence, this component needs to be of degree 3 or 4. If it is of degree 4, we are
done. So assume that it is of degree 3. Then, C = C1 +C2, where C2 is irreducible
and of degree 1. Having Ip(S,C1) ≤ 6, we achieve 7 = Ip(S,C) = Ip(S,C1) + Ip(S,C2)
only if Ip(S,C2) ≥ 1. Hence, p ∈ C2 ∩ C1 and so p is a singular point of C. This is
a contradiction to 1 and therefore, C is irreducible.

We have now proven that all assumptions of Lemma 21 are satisfied and hence
(C̃, S̃, ŝ, p̂)1 is a tangent 3-configuration that satisfies C̃2 = 6n− 9S̃2 and is equipped
with [15,3,1,7;1]. Applying Lemma 19 on a transversal C-chain of 7 links, we get
that there is a disjoint 3-configuration C′ = (C′ ,S−, s′ ,p′)m′ where m′ = n− S̃2 = 4 and
C′ ∼ S+. By Lemma 18, C′ is of type 15, because 2n + 1 = 15. Moreover, there is
a fiber T ′ containing a point t′ with mt′ (C′) = 2 and such that T ′ is the only tangent
direction to C′ at t′ . Therefore, C′ satisfies (B) of Lemma 7. By applying Lemma 7
we get a polynomial of bidegree (3,3m′ − 2) = (3,10) that has a singularity of type
A15. This polynomial is irreducible by Corollary 3. □

Lemma 26 – There exists an irreducible polynomial of bidegree (3,11) with a singularity
of type A17.
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Proof. Let ω = i
√

3 and let

F = z3 +
3
8

(ω+ 3)(y − x)z2 +
9
8

(ω
2

+ 1
)
x2z+

3
64

(−7ω − 3)xyz

+
3

64
(5ω − 3)y2z+

3
32

(
−5ω

2
− 3

)
x3 +

9
32

(ω
2
− 1

)
x2y.

Consider the following configuration in P
2 consisting of two cubics and two lines

that intersect in a special way (as illustrated in the picture below):

L : x = 0, q = [0 : 0 : 1],

S : (−2x+ y)yz+
1
4

(ω+ 3)x2y − x3 = 0, p = [0 : 1 : 0].

C : F = 0,

T : x+ y = 0,

S
q

L

C

t

T

We check that the assumptions of Lemma 21 are satisfied. First of all, L is the line
meeting p and q. For 1 we note that y3 does not appear in F, but y2 does. So p is
a smooth point of C.

For 2 we have mq(C) = 0, since z3 appears in F. Hence 2 holds. We see that
mq(S) = 2, so also 3 holds.

Since the polynomial defining S can be written in the form zα(x,y) + β(x,y) for
some α,β ∈C[x,y], S is irreducible and does therefore contain no lines.

For 4 we need to know what n = Ip(S,C) is. By plugging the parametrization
of S into F, we find (with the help of a computer algebra program) that p is the
only intersection point of S and C, hence n = Ip(S,C) = 3 · 3 = 9 and we find
3degS + degC − 3 = 9 = n.

Now, we can prove that C does not contain any line meeting q. If it would, then
the line needs to be L (otherwise, S and C would meet also in a point distinct from
p). We insert x = 0 into C and see that it is not the zero polynomial. Therefore, C
does not contain L and so does not contain any line meeting q.

We have shown that the assumptions of Lemma 21 are satisfied. The lemma
implies that C = (C̃, S̃, ŝ, p̂)1 is a tangent 3-configuration that satisfies C̃2 = 6n− 9S̃2

and is equipped with [9,5,• ,9;1]. Note that the line L intersects C besides p at two
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more points, because the discriminant of F(0,1, z) divided by z is 3
32 (15 −ω) , 0.

Hence C is of type −1. So we can apply Lemma 19 on a transversal C-chain of 9
links and get a disjoint 3-configuration C′ = (C′ ,S−, s′ ,p′)m′ , where m′ = n− S̃2 = 4
and C′ ∼ 3S+. By Lemma 18, C′ is of type 17, because 2n− 1 = 17.

Now remark that the line T intersects C at only one point, because

F(−y,y,z) = − ω
72

(−3y + (ω − 3)z)3.

So there is a fiber T ′ containing a point t′ with It′ (T ′ ,C′) = 3 and we are in case (A)
of Lemma 7. Therefore, Lemma 7 implies the existence of a polynomial of bidegree
(3,3m′ −1) = (3,11) with a singularity of type A17. This polynomial is irreducible by
Corollary 3. □

Lemma 27 – There exists an irreducible polynomial of bidegree (3,12) with a singularity
of type A18.

Proof. Let ω = i
√

3 and let

F = z3 +
9
2

(−1 +ω)x3 − 9yx2 + 9zy2 + 3(−ω+ 3)xyz

− 6yz2 − 3xz2 +
3
2

(−ω+ 5)x2z,

G =yz (x+ y) +
1
2

(
−1 +

ω
3

)
x3 − x2y.

Consider the following configuration in P
2 consisting of two cubics and one line

that intersect in a special way (as illustrated in the picture below):

L : x = 0, q = [0 : 0 : 1],

S : G = 0, p = [0 : 1 : 0],

C : F = 0, s = [0 : 1 : 3].

S
q

L

s

C

We want to check that the assumptions of Lemma 21 are satisfied. The line meeting
p and q is L. Since G can be written as zα(x,y, ) + β(x,y) for some α,β ∈ C[x,y], S is
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irreducible and contains therefore no lines. One sees that p is a smooth point of p,
so we have 1. The multiplicities of S respectively C at q are mq(S) = 2 and mq(C) = 0.
So 2 and 3 hold.

By plugging the parametrization of S into F, with the help of a computer algebra
program we find that S and C intersect at only one point, namely at p. Therefore,
we have n = Ip(S,C) = 3 · 3 = 9. We compute 4: 3 + 3mq(S) +mq(C) = 3 + 6 = 9 = n.

We check now that C does not contain any line meeting q. If it would contain
such a line, then it would be L (otherwise, C intersects S in a second point). Inserting
the parametrisation of L into F gives the polynomial F(0, y,z) , 0. Hence, C does
not contain L.

We have proven that the assumptions of Lemma 21 are satisfied and get a 3-
configuration C = (C̃, S̃, ŝ, p̂)1 that satisfies C̃2 = 6n − 9S̃2 and is equipped with
[9,5,• ,9;1]. Note that the line L is tangent to C at s, as

F(0,1, z) = z(z − 3)2.

Hence, C is of type 0. We apply Lemma 19 on a transversal C-chain of 9 links and get
a disjoint 3-configuration (C′ ,S−, s′ ,p′)m′ where m′ = n− S̃2 = 4 and C′ ∼ 3S+ ⊂ F4,
which is of type k = 18 by Lemma 18.

Therefore, by applying Lemma 7 there exists a polynomial of bidegree (3,3m′) =
(3,12) with a singularity of type A18. The polynomial is irreducible by Corol-
lary 3. □

It remains to provide a lower bound for N (3,4) and N (3,6). In these cases, it
is not difficult to construct “ingredients” and apply our method. However, we
leave this as an exercise to the interested reader since a family of examples that we
learned from Feller gives a lower bound for N (3,b) for all even b. It gives a specific
polynomial of bidegree (3,2n) with a singularity of type A3n−1. For N (3,4) and
N (3,6) it gives the optimal bound as we will see. (For b = 8,10,12 the bounds we
have found are better.)

Lemma 28 – Let b be any integer. Then N (3,2b) ≥ 3b − 1.

Proof. By an example of Feller, the curve ya − (xb − y)2 = 0 in A
2 is of bidegree

(a,2b) with an Aab−1-singularity. We check that y3 − (xb − y)2 = 0 has indeed an
A3b−1-singularity. The change of coordinates y 7→ y + xb gives (y + xb)3 − y2 = 0.
Locally, the blow-up at (0,0) is given by (x,y) 7→ (x,xy), so after b blow ups we get

(xby + xb)3 − x2by2 = x2b(xb(y + 1)3 − y2).

With the analytic local coordinate change x 7→ x(y + 1)
1
b we get xb − y2, which

has an Ab−1-singularity. As we did b blow-ups, the curve we started with has an
A(b−1)+2b = A3b−1-singularity. □
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Corollary 4 – N (3,4) ≥ 5 and N (3,6) ≥ 8.

Proof. Follows directly from Lemma 28. □

Remark 7 – We have therefore the following lower bounds (LB) for N (3,b):

b 3 4 5 6 7 8 9 10 11 12

LB for N (3,b) 3 5 7 8 10 12 13 15 17 18
.

5 . . . Or Not To Be

In this chapter we find an upper bound for N (3,b) for small b. We use the “recipe”
of Section 4.1 but in converse direction. First, we verify in Section 5.1 that we are
allowed to go backwards, and then determine in Section 5.2 that the configurations
we get do not occur.

5.1 The recipe

We start with a polynomial F of bidegree (3,3m) with a large Ak-singularity. By
Lemma 12, its (3,3m)-divisor C is irreducible and hence does not contain any fiber.
Having C ∼ 3S+, it follows that C is a 3-section, and C ∩ S− = ∅. Thus, (C,S−,• ,• )m
is a disjoint 3-configuration.

Recall that in Lemma 5 we have observed that as soon as k ≥ 3, the Ak-singularity
at s has a cofibered point and so (C,• , s,• )m is a 3-configuration.

We will use the recipe of Section 4.1 in a converse direction. To say it metaphori-
cally: Instead of cooking “easy” ingredients into very singular curves, we “de-cook”
singular curves into “easy” configurations (and later show that these configurations
do not exist).

Lemma 29 – Let m ≥ 0 and k ≥ 1 be two integers and let C = (C,• , s,• )m be a 3-
configuration of type k ≥ 1. Let π : Fmd Fm′ be an s-link with inverse point p′. Then,
(π∗(C),• ,• ,p′) is a 3-configuration, which we will call the direct image of C and denote
it by π∗(C). Moreover, π∗(C) is of type k − 2 ≥ −1.

Proof. Let ρ : X → Fm be the blow-up centered at s, so we can assume that σ =
π ◦ ρ : X → Fm′ is the contraction of the strict transform f̃ . Let E denote the
exceptional divisor of ρ. Since C ∩ f = {p,s} we have that f̃ ∩ C̃ = {p̂}, where p̂ = ρ(p)
is a transversal point of C̃. Moreover, the intersection of E with f̃ is transversal,
since Is(C,f ) = 2 = ms(C). Thus, contracting f̃ onto p′ makes p′ a transversal point
of C′ = π∗(C). So, π∗(C) is indeed a 3-configuration.

The fact that π∗(C) is of type k−2 follows from Lemma 16 because π is the inverse
of a p′-link with inverse point s (which is a transversal π∗(C)-chain of 1 link). □
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This leads us to the inverse of a transversal C-chain of links, which we will call
a singular C-chain of links (because it is obtained by blowing up a singular point),
described in the following definition. However, after an s-link the type drops from
k to k−2. Writing k = 2n respectively k = 2n−1 depending on k even or odd, we can
apply Lemma 29 at most n = ⌈ k2 ⌉ times. Then, the integer k is ≤ 0 and we cannot
continue the process. Remark that n ≤ ⌈ k2 ⌉ is equivalent to k − 2n ≥ −1.

Definition 12 – Let k = k0 ≥ 1, m = m0 ≥ 0 and 1 ≤ n ≤ ⌈ k2 ⌉ be three integers. Let
C = C0 = (C = C0,• , s = s0,p = p0)m be a 3-configuration of type k ≥ 1. For i = 1, . . . ,n
let πi : Fmi−1

d Fmi
be a si−1-link with inverse point pi and let Ci = π∗(Ci−1) be as in

Lemma 29. We say that the composition π = πn ◦ · · · ◦π1 : Fm0
d Fmn

is a singular
C-chain of n links and we say that Cn is the direct product π∗(C) of C. The singular
C-chain of n links is the inverse of a transversal π∗(C)-chain of n links.

Lemma 30 – Let m ≥ 0, k ≥ 1 and 1 ≤ n ≤ ⌈ k2 ⌉ be three integers. Let C = (C,S,• ,p)m
be a disjoint or tangent 3-configuration of type k ≥ 1 such that Ip(S,C) ≥ n. Let
π : Fm d Fm′ be a singular C-chain of n links. Then, the 3-configuration π∗(C) is
tangent and is equipped with the information

[C2 − 3n,S2 +n,k − 2n,Ip(S,C) +n;• ].

Proof. Note that it is enough to prove that π∗(C) = (C′ ,S ′ ,• ,p′)m′ is tangent. Know-
ing this, we can apply Lemma 18 onto the inverse of the singular C-chain, which is
a transversal C-chain and find that C′ is of type k − 2n ≥ −1. The other statements
follow analogously.

We now show that π∗(C) is tangent. Since C is tangent or disjoint, S and C
intersect at most in p. In any case, the section S intersects the fiber f meeting p
either in p, or in another point, say r. By blowing up p and the contracting the
strict transform f̃ onto p′, C′ and S ′ intersect in p′ (and only in p′). Hence, C′ is
tangent. □

Remark 8 – Let C ⊂ Fm be a 3-section with an Ak-singularity at s that is smooth
elsewhere. Assume that s has a C-cofibered point. Then, Lemma 30 implies the
existence of a birational map π : Fmd Fm′ , composed by n = ⌈ k2 ⌉ links, such that
π∗(C) is smooth.

To show non-existence of a polynomial of bidegree (3,3m− r) we will assume
it exists and find its (3,3m)-divisor C0 with Lemma 7, 1. We take S0 to be the
(−m)-curve and the following Lemma 31 will assert that we arrive in F1 and the
curve we get is (almost) smooth. Then, we will contract the (−1)-curve and get
a situation in the projective plane P

2. Finally, we will show that this situation does
not exist in certain cases.

The following lemma has some assumptions that are specific to the cases that we
want to study. To arrive in some Fl , where l is odd, we need that the parity of m and
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the number of blow-ups, n, differ. To make sure we arrive in F1, we have to assume
that “C2 − 3n ≤ 17” holds. However, we cannot have always that after n links, we
arrive in a smooth situation: Sometimes, we achieve only an A1- or A2-singularity.

Lemma 31 – Let m ≥ 0, k ≥ 1 and 1 ≤ n ≤ ⌈ k2 ⌉ be integers such that n−m is odd. Let
C = (C,S−,• ,p)m be a 3-configuration of type k ≥ 1 such that C ∼ 3S+ is an irreducible
3-section. Assume that C2 − 3n ≤ 17. Let ϕ : Fmd Fm′ be a singular C-chain of n links.
Then, π∗(C) is equipped with

[9m− 3n,−m+n,k − 2n,n;1].

Proof. Write π∗(C) = (C′ ,S ′ ,• ,p′)m′ . Since C ∼ 3S+ is irreducible, the 3-configura-
tion C is disjoint and hence with Lemma 30 we find that Ip′ (S ′ ,C′) = n. Having
S2
− = −m, we find (again with Lemma 30) that S ′2 = −m + n, which is odd by

assumption. Hence, m′ is odd because S ′ is a section. Using the same lemma, we
get C′2 = C2 − 3n = 9m− 3n and by assumption C′2 ≤ 17. Since we assumed C to be
irreducible, the 3-section C′ is irreducible, too, and we can write C′ ∼ 3S−+bf ⊂ Fm′

for some integer b ≥ 3m′ . This gives 17 ≥ C′2 = −9m′ + 6b ≥ 9m′ and so m′ ≤ 1. Since
we already know that m′ is odd, m′ = 1 follows. □

5.2 The non-ingredients

In this section, we give an upper bound for N (3,9) and N (3,12). We assume
that there is a curve with a larger Ak-singularity and find a contradiction to the
configuration in P

2 that we obtain with the “recipe” from Section 5.1.

Lemma 32 – There is an upper bound N (3,9) ≤ 13. In particular, there is no polynomial
of bidegree (3,9) with a singularity of type A14.

Proof. Let us assume that a polynomial of bidegree (3,9) with an Ak-singularity and
k ≥ 14 exists. If the (3,9)-divisor C0 of the polynomial is reducible, we already know
by Lemma 12 that it cannot have such a singularity. So C0 is irreducible and by
Lemma 3 we know that k ≤ 14. So assume that C0 has an Ak-singularity at a point s0
with k = 14. We consider the 3-configuration C0 = (C0,S−, s0,p0)3, which is disjoint
because C0 ∼ 3S+ is irreducible. Let π : Fm d Fm′ be a singular C0 chain of n = 6
links. Note that n−m = 3 is odd, that 6 < 7 = 14

2 and that C2
0 − 3n = 27− 18 = 9 < 17.

Together with Lemma 30, we find that Cn = π∗(C0) is equipped with

[9,3,2,6;1],

where we found A2 because 14 − 2n = 2. Knowing the self-intersection of the 3-
section Cn and the section Sn on F1, we find Cn ∼ 3S− + 3f and Sn ∼ S− + 2f . As
Cn is irreducible, Cn and S− do not intersect. In particular, pn is not contained in
S−. Let ρ : F1 → P

2 be the contraction of the (−1)-curve S− onto a point q in P
2.
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Let C = ρ∗(C), S = ρ∗(S), p = ρ(pn) , q and s = ρ(sn) , q. We have C2 = C2
n = 9 (so C

is a cubic with mq(C) = 0) and S2 = S2
n + 1 because Sn · S− = 1 and thus mq(S) = 1

(so S is a conic going through q). Moreover, C has a singularity of type A2 at s, and
since sn and pn are cofibered, the three distinct points s, p and q are collinear. To
recapitulate, we have a cubic C with a cusp at s ∈ P2 that intersects a conic S at p
with Ip(S,C) = 6, so they intersect only at one point p , s. This is not possible by
Lemma 33. □

Observation 2 – Let C be the cuspidal cubic curve x2z−y3 = 0 with cusp at [0 : 0 : 1].
Take a polynomial P ∈C[x,y,z]d with P (0,0,1) , 0 and write P (1, t, t3) =

∏3d
i=1(t − ti)

for some ti ∈C. In the product, the coefficient of the monomial t3d−1 is −
∑3d

i=1 ti , but
in P (1, t, t3) the monomial t3d−1 does not appear. Hence,

∑3d
i=1 ti = 0. In particular,

if the curve P = 0 intersects C in only one point, then P (1, t, t3) = t3d , and so the
inflection point [1 : 0 : 0] is the point of intersection.

Lemma 33 – Let C ⊂ P
2 be an irreducible cubic curve that has a singularity at a point

s, and let S be an irreducible conic that intersects C at exactly one point p at which C is
smooth. Then, the singularity of C is a node.

S
q

L

p

s

C

Figure 4 – The situation of Lemma 33

Proof. We assume that C has a cusp. With a change of coordnates we can assume
that C is given by x2z − y = 0. The conic S is given by a polynomial P ∈ C[x,y,z]2.
Since C and S intersect only at p by assumption, we find with Observation 2 that
p = [1 : 0 : 0] is the point of intersection, and that P (1, t, t3) = t6. Since t and t3 are
linearly independent, this is only possible if P = z2, which is a contradiction to the
irreducibility of S. □

Lemma 34 – There is an upper bound N (3,12) ≤ 18. In particular, there is no polyno-
mial of bidegree (3,12) with a singularity of type A19 or A20.

Proof. Let us assume that a polynomial of bidegree (3,12) with an Ak-singularity
and k ≥ 19 exists. If the (3,12)-divisor C0 of the polynomial is reducible, we already
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know that such a singularity cannot exist by Lemma 12. So we assume that C0
is irreducible. By Lemma 3, we know that k ≤ 20. We assume that C0 has an
Ak-singularity at a point s0, where k ∈ {19,20}. So we consider the 3-configuration
C0 = (C0,S−, s0,p0)4, which is disjoint because C0 ∼ 3S+ is irreducible. Let π : F4d
Fm′ be a singular C0-chain of n = 9 links. Note that n−m = 5 is odd, that 9 < 10 = ⌈ k2 ⌉,
and that C2

0−3n = 36−27 = 9 < 17. Together with Lemma 31, we find that Cn = π∗(C0)
is equipped with

[9,5,K,9;1],

where K = 1 if k = 19, and K = 2 if k = 20. Knowing the self-intersection of the
3-section Cn and the section Sn in F1, we find Cn ∼ 3S− + 3f and Sn ∼ S− + 3f . As
Cn is irreducible, it does not intersect the (−1)-curve S−. In particular, pn < S− and
sn < S−.

Let ρ : F1 → P
2 be the contraction of S− onto a point q ∈ P2. Let C = ρ∗(Cn),

S = ρ∗(Sn), p = ρ(pn) , q, and s = ρ(sn) , q. We have C2 = C2
n = 9, so C is a cubic

not going through q. Since Sn · S− = 2, we have mq(S) = 2 and so S2 = S2
n + 4 = 9.

Hence, S is a cubic with a singular point at q. They intersect only at p, because
Ip(S,C) = Ipn(Sn,Cn) = 9. Since sn and pn are cofibered, the distinct points s, p, and q
are collinear. Recall that C has a singular point at s (of type A1 or A2, depending
on k). To summarize, we have two singular cubics that intersect at exactly one point,
and this point is collinear with the two singular points.

• Lemma 35 contradicts this situation if one of the singularities is a cusp.

• If one of the singularities is a node, then Lemma 36 contradicts our situation.

The lemma is proved. □

Lemma 35 – Let C ⊂ P
2 be an irreducible cubic curve with a cusp. Let D ⊂ P

2 be
another irreducible cubic that intersects C in exactly one point that is not the cusp. Then,
D is smooth.

Proof. The following picture describes the situation of our lemma:

C q

p

D
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Since C has a cusp, with a linear transformation we can assume that the cubic
curve C is given by the zero set of F = x2z − y3, which has a cusp at q = [0 : 0 : 1].
Let G ∈C[x,y,z]3 be the polynomial defining D. As C and D intersect in only one
point p, and p is smooth, with Observation 2 we find that the intersection point is
p = [1 : 0 : 0], and G(1, t, t3) = t9. Hence, G = z3 +λ(x2z − y3) for some λ ∈ C. Since
G is irreducible, λ is not zero. Let µ be such that µ6 = 1

λ . The coordinate change
[x : y : z] 7→ [µ3x : µ2y : z] preserves C, the intersection point p, and the cusp q, and
it maps G onto z3 + x2z − y3. Therefore, we can assume that λ = 1.

One concludes the proof by checking that not all partial derivatives of G can be
zero at the same point. So G is not singular. □

Lemma 36 – Let C ⊂ P
2 be an irreducible cubic with a node. Let D ⊂ P

2 be an irre-
ducible cubic that intersects C in only one point that is not the node. Then, D is smooth
on the line connecting the node and the intersection point.

Proof. As C has a node, by applying a linear transformation we can assume that C
is given by the zero set of F = xyz− x3 − y3, which has a node at [0 : 0 : 1]. This cubic
can be parametrized by [u : v] 7→ [u2v : uv2 : u3 + v3]. Consider the linear map that
is given by evaluating this parametrization,

ϕ : C[x,y,z]3→C[u,v]9

G 7→ G(u2v,uv2,u3 + v3).

As F is the equation of C, we have kerϕ = C · (xyz − x3 − y3), so the kernel is of
dimension 1. As k[x,y,z]3 has dimension 10, the image is of dimension 9.
Now, we show that

Imϕ = {g ∈ k[u,v]9 | g(1,0) = g(0,1)}

holds. For the direction “⊂” write g(u,v) = G(u2v,uv2,u3 + v3) and so we have
g(1,0) = G(0,0,1) = g(0,1). The condition “g(1,0) = g(0,1)” is equivalent to the
coefficients of u9 and v9 being equal, hence the vector space on the right is also of
dimension 9 and equality holds.

Since [1 : 0] and [0 : 1] are both mapped onto [0 : 0 : 1], any point on C outside
of the node is of the form [α : −1] 7→ [−α2 : α : α3 − 1] for some α ∈ C

∗. Since
the intersection point of C and D is not the node, this point can be written as
q = [−λ2 : λ : λ3 − 1] for some λ ∈ C∗. Now, let us find a G ∈ k[x,y,z]3 that meets F
only at q. Hence, ϕ(G) must have only one zero at [λ : −1] ∈ P1. Up to multiplying
G with a scalar, we get

g(u,v) := G(u2v,uv2,u3 + v3) = (u +λv)9 ∈ Imϕ

and so 1 = g(1,0) = g(0,1) = λ9. So λ is a ninth root of 1.
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5. . . . Or Not To Be

We look at

H = z3 + z29λ(x+λ7y)

+ z
(
9λ2x2(−λ6 + 4) + 3xy(28λ3 − 1) + 9λy2(4λ6 − 1)

)
+ 9λxy

(
x (−4λ6 + 14λ3 − 1) +λy(−λ6 + 14λ3 − 4)

)
+ 84λ3y3(λ3 − 1)

and check that ϕ(H) = (u +λv)9. Therefore, we have

G = H + a(xy z − x3 − y3)

for some a ∈C.
Let L be the line connecting [0 : 0 : 1] (the node of F) and q = [−λ2 : λ : λ3 − 1]

(the common point of F and G), which is thus given by x+λy = 0. We want to see
that G is smooth on this line L. Let us assume that D has a singular point on L.
Hence G has a double zero on L at a point s.

Now, we find the value of a. We note that

G |x=−λy= P1 P2,

where

P1 = y(λ3 − 1)−λz,
P2 = (−28λ6 + 56λ3 + a− 1)y2 + 8λ (−λ6 + 1)yz −λ8z2.

The zero of P1 corresponds to q, so P2 has to be a square because G has a double zero
on x = −λy at some point s. The discriminant of P2, multiplied by λ, is

4(a− 12λ6 + 72λ3 − 33)

and so we find that

a = 12λ6 − 72λ3 + 33

and then

P2 = −λ6
(
4y (λ3 − 1)− zλ

)2
.

So its zero is at s = [−λ2 : λ : 4(λ3 − 1)].
Note that λ9 − 1 = (λ3 − 1)(λ6 +λ3 + 1). Inserting for λ the values with λ3 = 1,

we find that G is reducible. (For instance, if λ = 1 we find that G = (3x + 3y + z)3.)
Therefore, λ is not a third root of 1 and so λ6 +λ3 + 1 = 0.

We insert s into the differentials of G and find, using λ6 +λ3 + 1 = 0, that they
are not zero, a contradiction to s being a singular point of D:

dG
dx

(
−λ2,λ,4(λ3 − 1)

)
= 27λ(−2λ6 +λ3 + 1)

= −3 · 27λ7 , 0. □
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Remark 9 – We have shown that N (3,b) has the following upper bound (UB), where
the bound for N (3,6) comes from the genus upper bound in Remark 3:

b 3 4 5 6 7 8 9 10 11 12

UB for N (3,b) 8 13 18

The same method can also be applied to prove the non-existence of a polynomial
of bidegree (3,b) with an Ak-singularity, where type and singularity are one of the
following:

1. (3,4) with A8,

2. (3,5) with A8,

3. (3,7) with A11 and A12,

4. (3,8) with A13 and A14,

5. (3,10) with A16, A17, and A18,

6. (3,11) with A18, A19, and A20.

For instance, 2 implies 1. However, to determine that the obtained configuration
in P

2 does not exist is tedious (and gets more tedious with increasing b), and it does
not add any value, since in Section 6 we present a knot theoretic theorem, which
has as a consequence that the polynomials of the above list do not exist.

6 Let’s Tie the Knot

In Section 6.1 we present a result of knot theory and explain how it is used to obtain
an upper bound for N (3,b). With this, we can finally finish the proof of Theorem 1
in Section 6.2, by marrying the lower bound from Section 4 with the obtained upper
bound. Therefore, despite the Shakespearean section titles and the author’s first
name, this paper does not end in utter tragedy but with a happy end.

6.1 Detour to knot theory

A knot is a smooth and oriented embedding of S1 into S3. A link is the disjoint union
of finitely many knots.

For any positive r ∈ R, let S3
r denote the sphere of dimension 3 with radius r

embedded in C
2 as S3

r = {(x,y) ∈C2 | |x|2 + |y2| = r2}.
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6. Let’s Tie the Knot

Definition 13 – Let C ⊂C
2 be a curve given by a polynomial F with a singularity

at (0,0). Its link of singularity is the transversal intersection C ⋔ S3
r for some r > 0

small enough. For R > 0 large enough we say that C ⋔ S3
R is the link at infinity of C.

Note that these notions are well-defined, see e.g. Milnor (1968) and Neumann and
Rudolph (1987).

Definition 14 – A torus link Tp,q for two integers p,q > 0 is defined by the embed-

ding S1 → S1 × S1, t 7→ (t
p
d , t

q
d ), where d = gcd(p,q) and S1 = {x ∈ C | |x| = 1}. It is

called torus knot if p and q are coprime.

Note that this corresponds to the intersection of the zero set of yp −xq in C
2 with

the 3-sphere S3 in C
2. So if there are local analytical coordinates such that a curve

is locally given by yp − xq = 0, then the curve has exactly the torus link Tp,q as its
link of singularity. Hence, a singularity of type Ak corresponds to a torus link T2,k+1.
On the other hand, the link at infinity of the curve given by yb − xa = 0 is Ta,b.

Definition 15 – A cobordism between two links K and T is an oriented surface C in
S3 × [0,1] with boundary K × {0} ∪ T × {1} such that the induced orientation agrees
with the orientation of T and disagrees with the orientation of K .

A cobordism is called algebraic if it is given by the intersection of a smooth
algebraic curve in C

2 with the closure of B4
R \ B

4
r ⊂ R

4, which is isomorphic to
S3 × [0,1], where 0 < r < R.

In what follows we are interested in the existence of a cobordism between the
link of singularity of some curve and its link at infinity.

Let C ⊂A
2 be a curve given by a polynomial F of bidegree (a,b) with a singularity

yp − xq = 0 at (0,0), so its link of singularity K is the torus link Tp,q. We want to see
that there exists a cobordism from K to Ta,b.

We choose r > 0 small enough such that C ⋔ S3
r is the link of singularity K of C.

Set G = F + t+ s(xa +yb) for some s, t ∈C small with |s|, |t| << r. Then, V (G) is smooth
(for general s, t), and V (G) ⋔ S3

r is isotopic to C ⋔ S3
r , that is K . The polynomial G

was chosen in such a way that xa and yb appear with non-zero coefficients. Hence,
the link of infinity of G is Ta,b. This means that V (G) gives rise to an algebraic
cobordism between K , that is Tp,q, and Ta,b.

Therefore, the existence of a polynomial of bidegree (3,b) with a singularity of
type Ak implies the existence of an algebraic cobordism from T3,b to T2,k+1. (Whether
also the converse implication holds is not known, however, Theorem 1 provides
evidence that it might, see Remark 11.)

In this way, the following theorem in Feller (2016, Theorem 1) gives an upper
bound for N (3,b).

Lemma 37 (Feller) – Let there be two positive torus knots T2,k+1 and T3,b of braid
index 2 and 3, respectively. There exists an algebraic cobordism between T2,k+1 and T3,b

if and only if k + 1 ≤ 5b−1
3 .
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In fact, the proof in Feller (2016) also works if T2,k+1 is only a link, since the
results used in the proof hold for links, too (Lemma 6 and Proposition 22 in Feller
2016). However, it does not work for T3,3m, since a torus knot Tp,q needs p and q to
be coprime.

Remark 10 – By inserting b = 3m − r with r ∈ {1,2} into Lemma 37, we find that
the maximal k such that there is an algebraic cobordism from T2,k+1 to T3,b is the
maximal k with k ≤ 5m− r − 1− 2r+1

3 .

• If r = 1 then k = 5m− 3,

• if r = 2 then k ≤ 5m− 4− 2
3 , hence k = 5m− 5.

This gives the following upper bound (UB) for N (3,b):

b 3 4 5 6 7 8 9 10 11 12

UB for N (3,b) 5 7 10 12 15 17

Returning to Section 1, we observe that using N (3,b) and Proposition 1, we
cannot improve Orevkov’s lower bound of α ≥ 7

6 :

Lemma 38 – Every b ≥ 1 satisfies 2(N (3,b)+1)
3b < 7

6 .

Proof. For b = 1,2 the statement follows from Example 2 and Lemma 11, so we
assume b ≥ 3. If b is no multiple of 3, we have with Lemma 37 that

2(N (3,b) + 1)
3b

≤ 2(5b − 1)
9b

=
10
9
− 2

9b
<

10
9

<
7
6
.

If b is a multiple of 3, we write b = 3m− 3 for some m ≥ 2, and hence b+ 1 = 3m− 2
is not a multiple of 3, so Remark 10 gives

N (3,b) ≤N (3,b+ 1) ≤ 5m− 5.

We find that 2(N (3,b)+1)
3b ≤ 2(5m−4)

3(3m−3) , which is strictly less than 7
6 for m ≥ 6, and that

corresponds to b ≥ 15. Theorem 1 concludes the proof for the remaining cases
b = 3,6,9,12. □

6.2 Proof of Theorem 1

Proof (Theorem 1). Let us look at the souvenirs collected on our journey. In Re-
mark 7 we have found lower bounds (LB), and the upper bounds (UB) from Re-
marks 9 and 10 combined give the following values for N (3,b):

b 3 4 5 6 7 8 9 10 11 12

LB for N (3,b) 3 5 7 8 10 12 13 15 17 18

UB for N (3,b) 3 5 7 8 10 12 13 15 17 18

N (3,b) 3 5 7 8 10 12 13 15 17 18 □
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