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Abstract
Let (H, ( · , · )) be a Hilbert space and let L(H) be the linear space of bounded

operators in H. In this paper, we deal with L(H)-valued function Q that belongs
to the generalized Nevanlinna classNκ(H), where κ is a non-negative integer. It
is the class of functions meromorphic on C \R, such that Q(z)∗ = Q(z̄) and the

kernelNQ(z,w) := Q(z)−Q(w)∗

z−w̄ has κ negative squares. A focus is on the functions
Q ∈ Nκ(H) which are holomorphic at ∞. A new operator representation of
the inverse function Q̂(z) := −Q(z)−1 is obtained under the condition that the
derivative at infinity Q′(∞) := limz→∞ zQ(z) is boundedly invertible operator. It
turns out that Q̂ is the sum Q̂ = Q̂1 + Q̂2, Q̂i ∈ Nκi (H) that satisfies κ1 +κ2 = κ.
That decomposition enables us to study properties of both functions, Q and Q̂,
by studying the simple components Q̂1 and Q̂2.

Keywords: Generalized Nevanlinna function, Pontryagin space, operator represen-
tation, generalized pole.

msc: 47B50, 47A56, 30E99.

1 Preliminaries and introduction

1.1 Generalized Nevanlinna class, denoted byNκ(H), is extensively studied class
of complex functions. For example, Hermitian matrix polynomials and their inverse
functions belong to Nκ(H). For more examples one can see, for example Luger
(2015).

As usually, N, R, C and C
+ denote sets of positive integers, real numbers,

complex numbers, and complex numbers from the upper half plane, respectively.

Definition 1 – An operator valued complex function Q :D(Q)→L(H) belongs to
the class of generalized Nevanlinna functions Nκ(H) if it satisfies the following
requirements:

• Q is meromorphic in C \R,

• Q(z)∗ = Q(z̄), z ∈ D(Q),
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• Nevanlinna kernel

NQ(z,w) :=
Q(z)−Q(w)∗

z − w̄
, NQ(z, z̄) := Q′(z); z,w ∈ D(Q)∩C+,

hasκ negative squares, i.e. for arbitraryn ∈N, z1, . . . , zn ∈ D(Q)∩C+ and h1, . . . ,hn ∈ H
the Hermitian matrix (NQ(zi , zj )hi ,hj )

n
i,j=1 has at most κ negative eigenvalues, and

for at least one choice of n; z1, . . . , zn, and h1, . . . ,hn it has exactly κ negative eigen-
values.

A generalized Nevanlinna function Q ∈ Nκ(H) is called regular if there exists
at least one point w0 ∈ D(Q) ∩C

+ such that the operator Q(w0)−1 is boundedly
invertible.

Let κ ∈N∪ {0} and let (K, [ · , · ]) denote a Krein space. That is a complex vector
space on which a scalar product, i.e. a Hermitian sesquilinear form [ · , · ], is defined
such that the following decomposition of K exists

K =K+ ∔K−,

where (K+, [ · , · ]) and (K−,−[ · , · ]) are Hilbert spaces which are mutually orthogonal
with respect to the form [ · , · ]. Every Krein space (K, [ · , · ]) is associated with a Hilbert
space (K, ( · , · )), which is defined as a direct and orthogonal sum of the Hilbert spaces
(K+, [ · , · ]) and (K−,−[ · , · ]). Topology in a Krein space K is introduced by means of
the associated Hilbert space (K, ( · , · )). For properties of Krein spaces one can see e.g.
Bognar (1974, Chapter V).

If the scalar product [ · , · ] has κ (<∞) negative squares, then we call it a Pontrya-
gin space of index κ. The definition of a Pontryagin space and other related concepts
can be found e.g. in Iohvidov, Krein, and Langer (1982).

1.2 The following definitions of a linear relation and basic concepts related to it
can be found in Arens (1961) and Sorjonen (1978). In the sequel, H, K,M are inner
product spaces.

A linear relation fromH into K is a linear manifold T of the product spaceH×K.
If H = K, T is said to be a linear relation in K. We will use the following concepts
and notations for linear relations, T and S from H into K and a linear relation R
from K intoM.

D(T ) :=
{
f ∈ H

∣∣∣ {f ,g} ∈ T for someg ∈ K
}
,

R(T ) :=
{
g ∈ K

∣∣∣ {f ,g} ∈ T for somef ∈ H
}
,

kerT :=
{
f ∈ H

∣∣∣ {f ,0} ∈ T }
,

T (0) :=
{
g ∈ K

∣∣∣ {0, g} ∈ T }
,

T (f ) :=
{
g ∈ K

∣∣∣ {f ,g} ∈ T }
, f ∈D(T ),(Cont. next page)
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T −1 :=
{
{g,f } ∈ K×H

∣∣∣ {f ,g} ∈ T }
,

zT :=
{
{f ,zg} ∈ H×K

∣∣∣ {f ,g} ∈ T }
, z ∈C,

S + T :=
{
{f ,g + k}

∣∣∣ {f ,g} ∈ S, {f ,k} ∈ T }
,

RT :=
{
{f ,k} ∈ H×M

∣∣∣ {f ,g} ∈ T , {g,k} ∈R for someg ∈ K
}
,

T + :=
{
{k,h} ∈ K×H

∣∣∣ [k,g] = (h,f ) for all{f ,g} ∈ T
}
,

T∞ :=
{
{0, g} ∈ T

}
.

A linear relation is closed if it is a closed subset in the product space H×K. If
T (0) = {0}, we say that T is an operator, or single-valued linear relation.

Note, in definition of the adjoint linear relation T +, we use the following notation
for inner product spaces (H, ( · , · )) and (K, [ · , · ]).

Let A be a linear relation in K. We say that A is symmetric (self-adjoint) if it
holds A ⊆ A+ (A = A+). Every point α ∈ C for which {f ,αf } ∈ A, with some f , 0,
is called a finite eigenvalue. The corresponding vectors are eigenvectors belonging
to the eigenvalue α. A set that consists of all points z ∈ C for which the relation
(A− zI)−1 is an operator defined on the entire K, is called the resolvent set ρ(A).

It is convenient to deal with the following representation of generalized Nevan-
linna functions.

Theorem 1 – A function Q : D(Q) → L(H) is a generalized Nevanlinna function of
some index κ, denoted by Q ∈ Nκ(H), if and only if it has a representation of the form

Q(z) = Q(z0)∗ + (z − z̄0)Γ +
z0

(
I + (z − z0)(A− z)−1

)
Γz0

, z ∈ D(Q), (1)

where, A is a self-adjoint linear relation in some Pontryagin space (K, [ · , · ]) of index
κ̃ ≥ κ; Γz0

: H→ K is a bounded operator; z0 ∈ ρ(A)∩C+ is a fixed point of reference.
(Then, obviously ρ(A) ⊆ D(Q).) This representation can be chosen to be minimal, that is

K = c.l.s.
{
Γzh : z ∈ ρ(A),h ∈H

}
, (2)

where

Γz =
(
I + (z − z0)(A− z)−1

)
Γz0

. (3)

If realization (1) is minimal, then Q ∈ Nκ(H) if and only if the negative index of the
Pontryagin space κ̃ equals κ. In the case of minimal representation ρ(A) =D(Q) and the
triple (K,A,Γz0

) is uniquely determined (up to isomorphism).

Such operator representations were developed by M. G. Krein and H. Langer, see e.g.
Krein and Langer (1973, 1977) and later converted to representations in terms of
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linear relations (multivalued operators), see e.g. Dijksma, Langer, and Snoo H. S. V.
(1993) and Hassi, Snoo H. S. V., and Woracek (1998).

In this note, a point α ∈ C is called a finite generalized pole of Q if it is an
eigenvalue of the representing relation A in the minimal representation (1). It means
that it may be isolated singularity, i.e. an ordinary pole, as well as an embedded
singularity of Q. The latter may be the case only if α ∈R.

1.3 In this paper, we focus on the class of functions Q ∈ Nκ(H) that are holomor-
phic at∞, i.e. there exists

Q′(∞) := lim
z→∞

zQ(z). (4)

That is equivalent to

Q(z) = Γ +(A− z)−1Γ , (5)

where A is a bounded self-adjoint operator in some Pontrjagin spaceK, and Γ :H→K
is a bounded operator, see Lemma 3 below. We also assume that drivative Q′(∞)
is boundedly invertible. In this study, limz→∞ zQ(z) refers to convergence in the
Banach space of bounded operators L(H). By z→∞ we denote the limit if Q is
holomorphic at∞, and by z →̂ ∞ we denote the non-tangential limit, which we use
if singularities of Q exist (on the real axis) in every neighborhood of∞, see Krein
and Langer (1977). The same convention applies to limits toward finite points in
complex plane.

The following well known decomposition easily follows from Daho and Langer
(1985, Proposition 3.3) for matrix functions. See Luger (2006, Section 5.1) for
operator valued functions.

Lemma 1 – If Q ∈ Nκ(H) and α is a finite generalized pole of Q, then it holds

Q(z) = Qα(z)+Hα(z), (6)

where Qα ∈ Nκ1
(H) is holomorphic at∞,Hα ∈ Nκ2

(H) is holomorphic at α,κ1 +κ2 = κ.
Then Qα admits representation

Qα(z) = Γ +
α (Aα − z)−1Γα ,

with a bounded operator Aα . Operator Aα has the same root manifold at α as the
representing relation A of Q in (1).

Remark 1 – The decomposition (6) can be tweaked if necessary so that it holds

Q(z) = Q̃(z) + H̃(z),

where Q̃(z) = Γ +(Ã − z)−1Γ ∈ Nκ1
(H), self-adjoint extension Ã of Aα has the same

root manifold at α as Aα , and Γ +Γ is a boundedly invertible operator. Then the
equality κ = κ1 +κ2 does not have to be preserved because the number of negative
squares of H̃(z) may be greater than the number of negative squares of Hα(z).
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Indeed, if Γ +
α Γα is not already boundedly invertible operator in decomposition (6) of

Q, then we can add the term B
β−z to Qα(z) , where B is a positive operator, Γ +

α Γα +B

is boundedly invertible operator and β ∈ R \ {α}. Also we will subtract the same
term from Hα(z). Functions Q̃(z) := Qα(z) + B

β−z and H̃(z) := Hα(z)− B
β−z , will have

claimed properties. □

1.4 The following is the summary of the main results of the paper.
In Proposition 3 we prove that function Q, which is holomorphic at∞ and has

invertible operator Q′(∞), has kerQ :=
⋂

z∈D(Q) kerQ(z) = {0} .

The task of finding representation of Q̂(z) := −Q(z)−1 in terms of representing
relation A of Q has been studied in several papers, see e.g. Langer and Luger (2000)
and Luger (2002). In Theorem 2, we give an operator representation of Q̂, when
function Q is holomorphic at infinity and Q′(∞) is boundedly invertible operator.
According to Remark 1, those assumptions do not restrict generality in research of
local properties of the function Q ∈ Nκ(H).

Theorem 2 enables us to prove many properties of Q̂ and Q. For example, in
Theorem 3 we prove that function Q which is holomorphic at ∞ and has Q′(∞)
boundedly invertible, is a regular function. In Proposition 5 we prove that for
such Q the inverse function Q̂ must have a pole at∞. In Theorem 4 we prove that
Q̂(z) := −Q(z)−1 is the sum Q̂ = Q̂1 + Q̂2, Q̂i ∈ Nκi (H), where both functions Q̂i are
represented in terms of the representing operator A of Q, and it holds κ1 +κ2 = κ.
One of the functions, say Q̂1, is a polynomial of degree one, and Q̂2 has representa-
tion of the form (5). Therefore, we can call functions Q̂1 and Q̂2, polynomial, and
resolvent part of Q̂, respectively. Negative index κ1 of Q̂1 is equal to the number of
negative eigenvalues of the self-adjoint operator Γ +Γ = − limz→∞ zQ(z). The set of
zeros of Q coincides with the set of poles of Q̂2.

In Example 1, we show how the above results can be applied to find repre-
senting operators A and Γ of Q in some cases. In Example 2, we show how to
implement formulae given in Theorem 4 to a concrete function Q, in order to obtain
a decomposition Q̂ = Q̂1 + Q̂2 with nice properties described in that theorem.

2 Representation Q(z) = S + Γ +(A− z)−1Γ

2.1 We will frequently need the following proposition in this paper.

Proposition 1 – (i) Let function Q ∈ Nκ(H) be represented by a self-adjoint linear
relation A in representation (1), which is not necessarily minimall. If for any point
z0 ∈ ρ(A) it holds

R(Γz0
) ⊆D(A), (7)

23



Inverse of generalized Nevanlinna function M. Borogovac

then the same inclusion holds for every z ∈ ρ(A). We can define linear relation

Γ := (A− z)Γz, z ∈ ρ(A), (8)

that satisfies D(Γ ) = H, Γ (0) = A(0). Then function Q has representation of the
form

Q(z) = S + Γ +(A− z)−1Γ ∈ Nκ(H), S = S∗ ∈ L(H). (9)

(ii) Conversely, if A in representation (9) of Q is a self-adjoint linear relation in
Pontryagin space K, and Γ ⊆ H×K, D(Γ ) = H, is a linear relation that satisfies
A(0) = Γ (0), then for any point z0 ∈ ρ(A) and operator

Γz0
:= (A− z0)−1Γ , (10)

function Q satisfies (1).

(iii) It holds

Γz :=
(
I + (z − z0)(A− z)−1

)
Γz0

= (A− z)−1Γ , ∀z ∈ ρ(A). (11)

Representation (1) is minimal if and only if representation (9) is minimal.

Note, case S = 0 is not excluded in Proposition 1.

Proof. (i) For function Q given by (1), it holds

Γz =
(
I + (z −w)(A− z)−1

)
Γw, ∀z,w ∈ ρ(A),

see the proof in Dijksma, Langer, and Snoo H. S. V. (1993), which obviously can
be repeated when Q ∈Nκ(H). If we substitute w by z0 in the above equation, then
from assumption (7) it follows

R(Γz) ⊆D(A), ∀z ∈ ρ(A).

In the following few steps we use properties of linear relations listed in Arens (1961,
Theorem 1.2). Note, Γz are single-valued linear relations defined on the entire H
which simplifies verification of the following steps. Therefore

(A− z)
(
Γz0

+ (z − z0)(A− z)−1Γz0

)
= (A− z)Γz.

According to (A− z)(A− z)−1 ⊇ I it holds

(A− z)Γz0
+ (z − z0)Γz0

⊆ (A− z)Γz ⇒ (A− z0)Γz0
⊆ (A− z)Γz, ∀z ∈ ρ(A).
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By the same token, the converse inclusion (A − z)Γz ⊆ (A − z0)Γz0
, ∀z ∈ ρ(A) holds.

Therefore,

(A− z)Γz = (A− z0)Γz0
, ∀z ∈ ρ(A),

and we can define linear relation Γ by (8). According to (8) it holds Γ (0) = A(0), and
therefore (A− z)−1Γ is also an operator, ∀z ∈ ρ(A).

Thus, Γ is an invariant of Q, i.e. Γ is a characteristic of the function Q (inde-
pendent of z ∈ ρ(A)). That makes relation Γ and representation (5) particularly
interesting.

Let us now show that linear relation Γ + is an operator. If we assume the contrary,
then it holds

{0, g} ∈ Γ + ⇒ [k,0] = (h,g), ∀{h,k} ∈ Γ .

Since D(Γ ) =H, it follows g = 0. Therefore, Γ + is single-valued.
From (8), for z0 ∈ ρ(A), we get Γ = (A − z0)Γz0

and Γz0
= (A − z0)−1Γ . Then we

substitute Γ +
z0

and Γz0
into (1) and easily derive

Q(z) = Q(z̄0) + (z − z̄0)Γ +(A− z̄0)−1(A− z)−1Γ .

By means of the resolvent equation we get

Q(z) = Q(z̄0)− Γ +(A− z̄0)−1Γ + Γ +(A− z)−1Γ .

By substituting here

S := Q(z̄0)− Γ +(A− z̄0)−1Γ ,

we get the first equation of (9).
From the first equation of (9) and from Q(z)∗ = Q(z̄) it follows S = S∗.
(ii) Conversely, assume (9) holds with linear relation A. From (9), for z = z0, we

get S = S∗ = Q(z0)∗ − Γ +(A− z̄0)−1Γ . Substituting S into (9) and applying resolvent
equation we obtain

Q(z) = Q(z0)∗ + (z − z̄0)Γ +(A− z̄0)−1(A− z)
−1
Γ .

Now (10) gives

Q(z) = Q(z0)∗ + (z − z̄0)Γ +
z0

(A− z)−1Γ .

According to resolvent equation it holds

(A− z)−1 =
(
I + (z − z0)(A− z)−1

)
(A− z0)−1, ∀z ∈ ρ(A). (12)
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Therefore

Q(z) = Q(z0)∗ + (z − z̄0)Γ +
z0

(
I + (z − z0)(A− z)−1

)
(A− z0)−1Γ .

Substituting here Γz0
from (10) gives (1).

(iii) From (12) and (10) it follows

(A− z)−1Γ =
(
I + (z − z0)(A− z)−1

)
Γz0

=: Γz, ∀z ∈ ρ(A).

This proves (11). Minimality of a representation is defined in terms the of vectors Γzh
by (2). According to (11) we conclude that represention (9) is minimal if and only if

K = c.l.s.
{
(A− z)−1Γ h : z ∈ ρ(A),h ∈ H

}
.

This proves (iii). □

Note, the first statement of the proposition is well known for matrix functions
represented by operators. This was proven in Krein and Langer (1977) for scalar,
and in Langer and Luger (2000) for matrix valued function Q. In both cases one
additional assumption on Q was made so that A was linear operator from the start.

By definition,∞ is generalized pole of Q if and only if 0 is generalized pole of
the function Q̃(ζ) = Q(−1

ζ ), see Borogovac and Luger (2014, Remark 3.13.). This is
equivalent to A(0) , {0}, where A is representing relation of Q. In that case ∞ is
called an eigenvalue of A and nonzero vectors from A(0) are called eigenvectors at
∞, see Luger (2002).

The following statement is well known for closed linear relations in Hilbert
space H, see e.g. Langer and Textorius (1977). We will state it here in our setting,
for convenience of the reader.

Lemma 2 – LetH and K be Hilbert and Krein space, respectively, and let linear relation
T ⊆H×K has closed T (0). Then it holds:

T = T̃ ∔ T∞,

where ∔ denotes direct sum of subspaces, T̃ is an operator with D(T̃ ) = D(T ) and
T∞ := {{0, g} ∈ T }.

Proof. Because T (0) ⊆ K is closed subspace of the Hilbert space (K, ( · , · )) associated
with Krein space (K, [ · , · ]), we can uniquely and orthogonaly decompose (K, ( · , · ))
by means of T (0). Thus, for every {f ,g} ∈ T we have, {f ,g} = {f ,g1 (∔) g0}, where
(∔) is direct and orthogonal sum in the Hilbert space (K, ( · , · )), and g0 ∈ T (0) and
g1 ∈ K (−) T (0) are uniquely determined vectors. We define

T̃ :=
{
{f ,g1}

∣∣∣ {f ,g} ∈ T }
,
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and T∞ is as above. Then we have

T = T̃ (∔) T∞ ⊆H×K,

where (∔) denotes direct orthogonal sum in the Hilbert space associated withH×K.
Because the sum g1 (∔) g0 does not have to be orthogonal in the Krein space

(K, [ · , · ]), we write

T = T̃ ∔ T∞.

It is easy to verify that T̃ = T (−) T∞ is single-valued. □

Corollary 1 – If representing relation A of Q ∈ Nκ(H) satisfies condition (7), then A
can be replaced in (1) by its operator part Ã. If representation (1) is minimal, it will
remain minimal with self-adjoint operator Ã. The function Q does not have generalized
pole at∞.

Proof. Because A is closed linear relation, it is easy to verify that A(0) is closed.
According to Lemma 2 it holds

A = Ã∔A∞.

According to Proposition 1 (i) there exists a linear relation

Γ := (A− z)Γz, z ∈ ρ(A),

with Γ (0) = A(0). Because Γ (0) is closed, according to Lemma 2 it holds

Γ = Γ̃ ∔ Γ∞.

Because Γ (0) = A(0) = ker(A− z)−1, it holds

Γz = (A− z)−1Γ = (Ã− z)−1Γ̃ , ∀z ∈ ρ(A). (13)

Let z0 ∈ ρ(A) \R be the point of reference in (1). Let us now prove that we can
replace (A− z)−1Γz0

by (Ã− z)−1Γz0
in (1). We start from (3) written in the form

(A− z)−1Γz0
=
Γz − Γz0

z − z0
, ∀z ∈ ρ(A).

According to (13) and the resolvent equation we have

(A− z)−1Γz0
=

(Ã− z)−1Γ̃ − (Ã− z0)−1Γ̃

z − z0
= (Ã− z)−1(Ã− z0)−1Γ̃ = (Ã− z)−1Γz0

.

This proves

(A− z)−1Γz0
= (Ã− z)−1Γz0

.
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Therefore, we can substitute (Ã − z)−1Γz0
for (A − z)−1Γz0

into (3) and (1), and
values of Γz and Q(z) will not change. Thus,

Γz =
(
I + (z − z0)(Ã− z)−1

)
Γz0

.

Q(z) = Q(z0)∗ + (z − z̄0)Γ +
z0

(
I + (z − z0)(Ã− z)−1

)
Γz0

, z ∈ D(Q).

According to definition of minimality (2), we conclude that minimal representation
(1) remains minimal when Ã replaces A. Because of the uniqueness of the minimal
representation (1) it must be A = Ã. Therefore, Ã must be a self-adjoint operator, as
the unique representing operator of a generalized Nevanlinna function. Because
the function Q is represented by operator Ã, we conclude that Q cannot have
generalized pole at∞. □

2.2 By definition a function Q has a non-tangential limit at∞ if and only if the
function Q̃(ζ) = Q(−1

ζ ) has a non-tangential limit at 0. By the same token a function
Q is holomorphic at∞ if and only if the function Q̃(ζ) = Q(−1

ζ ) is holomorphic at 0.
The following proposition, that corresponds to Krein and Langer (1977, Satz 1.4)
holds.

Proposition 2 – Let Q ∈ Nκ(H) satisfies non-tangential version of (4):

∃Q′(∞) := lim
z→̂∞

zQ(z), (14)

where the limit denotes convergence in the Banach space of bounded operators. Then
Q′(∞) ∈ L(H), and Q has minimal representation (1) with a self-adjoint operator A.

Proof. Because L(H) is a Banach space with respect to norm topology, we conclude
that Q′(∞), given by (14), is a bounded operator. Under assumption that limit (14)
exists, it holds

lim
ζ→̂0

Q̃(ζ) := lim
z→̂∞

Q(z) = 0.

If we define Q̃(0) := limζ→̂0 Q̃(ζ) = 0, then

Q̃′(0) := lim
ζ→̂0

Q̃(ζ)− Q̃(0)
ζ

= lim
z→̂∞

zQ(z) =: Q′(∞).

According to Borogovac and Luger (2014, Defintion 3.1 (B)), ζ = 0 is not a gener-
alized pole of Q̃, i.e.∞ is not a generalized pole of Q. Therefore, the representing
relation A satisfies A(0) = 0. Hence, Q is represented by the self-adjoint operator A
in (1). □
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Lemma 3 – A function Q ∈ Nκ(H) is holomorphic at∞ if and only if Q(z) has minimal
representation (5)

Q(z) = Γ +(A− z)−1Γ , z ∈ D(Q),

with a bounded self-adjoint operator A in a Pontryagin space K, and bounded operator
Γ :H→K. In this case

Q′(∞) := lim
z→∞

zQ(z) = −Γ +Γ .

Proof. If Q(z) is holomorphic at∞, then it satisfies (14). According to Proposition 2,
Q is represented by an operator A. From the assumption of holomorphy at ∞ it
follows that operator A has bounded spectrum. According to Langer (1982, Corol-
lary 2), A is bounded. Then condition (7) is satisfied. According to Proposition 1 (i),
Q has minimal representation (9). Then, from existence of limit (14), it follows
S = 0.

Conversely, if A is bounded operator in representation (5), then it has bounded
spectrum, and therefore, Q is holomorphic at infinity.

To prove the last statement of the lemma, we use Neumann series of resolvent of
the bounded operator A.

Q′(∞) := lim
z→∞

zQ(z) = lim
z→∞

zΓ +
( ∞∑
i=0

− Ai

zi+1

)
Γ = −Γ +Γ . □

The concept

kerQ :=
⋂

z∈D(Q)

kerQ(z)

was introduced in Dijksma, Langer, and Snoo H. S. V. (1993). For matrix function
Q ∈Nn×n

κ , represented by (1) it was proven

kerQ = kerΓz0
∩kerQ(z0)∗.

Proposition 3 – If Q ∈Nκ(H) is holomorphic at infinity and Q′(∞) is invertible, then

kerQ = {0}.

Proof. According to Lemma 3 we can assume that Q is minimally represented by
bounded operator A. Recall, for z,w ∈ ρ(A) =D(Q) it holds

Γz =
(
I + (z −w)(A− z)−1

)
Γw.

Obviously,

Γwh = 0 ⇒ Γzh = 0,
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If we reverse roles of z and w, then the converse implication holds. Hence, it holds

kerΓz = kerΓw.

If Q(z) is holomorphic at∞, according to Lemma 3, Q has representation (5) with
bounded operator A. Therefore, condition (7) is satisfied. According to Proposition
1 (iii) we have

Γz = (A− z)−1Γ , ∀z ∈ D(Q).

Then we have:

(5) ⇒ Q(z)h = Γ +Γzh, ∀h ∈ H, ∀z ∈ D(Q).

If we assume h ∈ kerQ, then according to definition of kerQ we have

h ∈ kerQ ⇔ h ∈ kerzQ(z), ∀z ∈ D(Q)

⇔ 0 = lim
z→̂∞

zQ(z)h = −Γ +Γ h = Q′(∞)h ⇔ h = 0.

This proves the statement. □

We cannot here claim that Q(z) is a regular function. We will prove it in the
following section.

3 Inverse of Γ +(A− z)−1Γ

Lemma 4 – Let bounded operators Γ :H→K and Γ + :K→H be introduced as usually,
see Section 1. Assume also that Γ +Γ is a boundedly invertible operator in the Hilbert
space (H, ( · , · )). Then for operator

P := Γ (Γ +Γ )−1Γ + (15)

the following statements hold:

(i) P is orthogonal projection in Pontryagin space (K, [ · , · ]).

(ii) Scalar product does not degenerate on Γ (H) and therefore it does not degenerate on
Γ (H) [⊥] = kerΓ +.

(iii) kerΓ + = (I − P )K.

(iv) Pontryagin space K can be decomposed as a direct orthogonal sum of Pontryagin
spaces i.e.

K = (I − P )K [+] PK. (16)
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Proof. (i) Obviously P 2 = P .
According to well known properties of adjoint operators, see e.g. Iohvidov, Krein,

and Langer (1982, p. 34), it is easy to verify [(Γ +Γ )−1]∗ = (Γ +Γ )−1 and then to verify
[P x,y] = [x,P y], i.e. P [∗] = P . This proves (i).

(ii) If Γ h , 0 and [Γ h,Γ g] = 0, ∀g ∈ H, then (Γ +Γ h,g) = 0, ∀g ∈ H. Then we have
Γ +Γ h = 0⇒ h = 0⇒ Γ h = 0. This is a contradiction that proves (ii).

(iii) It is sufficient to prove kerΓ + = kerP .

P := Γ (Γ +Γ )−1Γ +⇒ kerΓ + ⊆ kerP .

Conversely, because Γ +Γ is boundedly invertible R(Γ +) =H. Then

y ∈ kerP ⇒ 0 =
[
Γ (Γ +Γ )−1Γ +y,x

]
=

(
(Γ +Γ )−1Γ +y,Γ +x

)
, ∀Γ +x ∈ H.

R(Γ +) =H ⇒ (Γ +Γ )−1Γ +y = 0 ⇒ Γ +y = 0 ⇒ y ∈ kerΓ +.

(iv) This statement follows directly from (iii) and (ii). □

Assume now that function Q is given by (5) and that projection P is given by (15).
We define

Ã := (I − P )A|(I−P )K .

Then

(Ã− zI|(I−P )K)−1 : (I − P )K→ (I − P )K.

Note that it is customary to omit the identity mapping in resolvents. Therefore, we
will frequently write (Ã− z)−1 rather than (Ã− zI|(I−P )K)−1. It holds

(I − P )(Ã− z)−1(I − P ) =
(
(Ã− zI|(I−P )K)−1 0

0 0

)
.

In the sequel, we will use notation from the left hand side of this equation because
it makes the following proofs easier to write.

Theorem 2 – Assume that function Q ∈ Nκ(H) is holomorphic at∞, and that

Q′(∞) := lim
z→∞

zQ(z)

is boundedly invertible. Then there exists the inverse function

Q̂(z) := −Q(z)−1,

and Q̂(z) has the following representation on D(Q)∩D(Q̂)

Q̂(z) = (Γ +Γ )−1Γ +
{
A(I − P )(Ã− z)−1(I − P )A− (A− zI)

}
Γ (Γ +Γ )−1, (17)

where operator Γ was defined by (8) and projection P was defined by equation (15).
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Proof. According to Lemma 3, function Q has minimal representation (5) with
bounded operator A. For projection P defined in Lemma 4, we have the following
decomposition with respect to (16)

A− zI =
(
(I − P )(A− zI)(I − P ) (I − P )AP

PA(I − P ) P (A− zI)P

)
.

Let us denote(
X Y
Z W

)
:= (A− z)−1 .

By solving operator equations derived from the identity(
X Y
Z W

)(
Ã− z(I − P ) (I − P )AP
PA(I − P ) P (A− zI)P

)
=

(
I − P 0

0 P

)
we get

W =
{
P (A− zI)P − PA(I − P )(Ã− z)−1(I − P )AP

}−1
.

It is easy to verify the following equalities:

Γ +P = Γ +, P Γ = Γ , Γ +(I − P ) = 0, (I − P )Γ = 0.

It follows

Q(z) = Γ +
(
X Y
Z W

)
Γ = (Γ +(I − P ),Γ +P )

(
X Y
Z W

)(
(I − P )Γ

P Γ

)
⇒ Q(z) = (0,Γ +)

(
X Y
Z W

)(
0
Γ

)
= Γ +

(
0 0
0 W

)
Γ .

Therefore, we do not need to find operators X, Y , Z. By substituting W here, we get

Q(z) = Γ +
{
P (A− zI)P − PA(I − P )(Ã− z)−1(I − P )AP

}−1
Γ . (18)

By substituting expressions (18) and (17) for Q and Q̂, respectively, into the follow-
ing product, we verify

Q(z)Q̂(z) = Γ +
{
P (A− zI)P − PA(I − P )(Ã− z)−1(I − P )AP

}−1
Γ (Γ +Γ )−1Γ +

×
{
A(I − P )(Ã− z)−1(I − P )A− (A− zI)

}
Γ (Γ +Γ )−1

= Γ +
{
P (A− zI)P − PA(I − P )(Ã− z)−1(I − P )AP

}−1

×
{
PA(I − P )(Ã− z)−1(I − P )AP − P (A− zI)P

}
Γ (Γ +Γ )−1

= Γ +(−P )Γ (Γ +Γ )−1 = −I. □
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The remaining statements of this paper are consequences of Theorem 2.

Theorem 3 – Let Q ∈ Nκ(H).

(i) Q is holomorphic at∞ and Q′(∞) is boundedly invertible if and only if

Q̂(z) = Γ̃ +(Ã− z)−1Γ̃ + Ŝ + Ĝz,∀z ∈ D(Q)∩D(Q̂) (19)

where Ã is a self-adjoint bounded operator in the Pontryagin space (I − P )K, Ŝ and
Ĝ are self-adjoint bounded operators in the Hilbert space H, and Ĝ is boundedly
invertible.

(ii) In that case function Q ∈ Nκ(H) is regular.

Proof. (i) (⇒) The assumptions are the same as in Theorem 2. Therefore, represen-
tation (17) holds. If we substitute

Ŝ = −(Γ +Γ )−1Γ +AΓ (Γ +Γ )−1, Ĝ = (Γ +Γ )−1 (20)

Γ̃ := (I − P )AΓ (Γ +Γ )−1, (21)

into representation (17) we get representation (19). Operator Ã is bounded because
it is a restriction of the bounded operator A. The statements about Ŝ and Ĝ are easy
verification.

(⇐) Now we assume that (19) holds. Obviously:

lim
z→∞

Q̂(z)
z

= lim
z→∞

(−zQ(z))−1.

On the other hand, because Ã is bounded we can apply Neumann series of the
resolvent (Ã− z)−1. We have

lim
z→∞

Q̂(z)
z

= lim
z→∞

(
Γ̃ +(Ã− z)−1Γ̃ + Ŝ

z
+ Ĝ

)
= lim

z→∞

(
Γ̃ +

∞∑
i=0

− Ãi

zi+2
Γ̃ +

Ŝ
z

)
+ Ĝ = Ĝ.

Therefore,

lim
z→∞

(−zQ(z))−1 = Ĝ.

Because Ĝ is bounded, limz→∞ zQ(z) is boundedly invertible.
(ii) This statement holds because, according to (19), operator Q̂(z) is obviously

bounded for every z ∈ D(Q)∩D(Q̂). □
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It is usually very difficult to find representing operator for a given function
Q ∈ Nκ(H). The construction used in cited papers is abstract and not applicable
in concrete situations. Theorem 2 gives us a new simple relationships between
representing operators A, Γ and Γ +. That might help us to find those operators in
some cases, like e.g. in the following case.

Example 1 – Given function

Q(z) = −
[

0 z−1

z−1 z−2

]
.

It is easy to verify that function Q(z) is holomorphic at infinity, and that it holds

Q′(∞) := lim
z→∞

zQ(z) = −
[
0 1
1 0

]
.

According to Lemma 3, Q(z) admits minimal representation (5). Hence,

Q(z) = Γ +(A− zI)−1Γ ∧−
[
0 1
1 0

]
= −Γ +Γ .

In addition,

Q(z)−1 =
[

1 −z
−z 0

]
=: L(z).

i.e. the inverse function is a polynomial. Therefore, the resolvent part of Q̂ in
representation (17) must be equal to zero. It holds,

(Γ +Γ )−1Γ +(A− zI)Γ (Γ +Γ )−1 =
[

1 −z
−z 0

]
⇒ Γ +(A− zI)Γ =

[
0 −z
−z 1

]
⇒ Γ +AΓ = Γ ∗JAΓ =

[
0 0
0 1

]
.

Here J denotes a fundamental symmetry in K. Because function Q has a single pole
of order two at z = 0, the representing operator has the single eigenvalue of order
two at z = 0. All those information enable us to make an easy educated guess

A =
[
0 1
0 0

]
, Γ =

[
1 0
0 1

]
, J =

[
0 1
1 0

]
= Γ +. □

We will refer to this example for a different reason in Theorem 4.

Proposition 4 – Let Q(z), Q̂(z), Γ , Γ + be the same as in Theorem 2. Then for all
z ∈ D(Q)∩D(Q̂) it holds

Q̂(z)Γ + = (Γ +Γ )−1Γ +
{
−I +A(I − P )(Ã− z)−1(I − P )

}
(A− zI). (22)
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Proof. In the following derivations we will frequently use Γ +P = Γ + and P Γ = Γ .
From (17) it follows

Q̂(z)Γ + = (Γ +Γ )−1Γ +
{
A(I − P )(Ã− z)−1(I − P )A− (A− zI)

}
Γ (Γ +Γ )−1Γ +

= (Γ +Γ )−1Γ +
{
A(I − P )(Ã− z)−1(I − P )(A− zI)P − (A− zI)P

}
= (Γ +Γ )−1Γ +

{
A(I − P )(Ã− z)−1(I − P )(A− zI)(P − I)

+A(I − P )(Ã− z)−1(I − P )(A− zI)− (A− zI)P
}

= (Γ +Γ )−1Γ +
{
−A(I − P ) +A(I − P )(Ã− z)−1(I − P )(A− zI)− (A− zI)P

}
= (Γ +Γ )−1Γ +

{
−(A− zI) +A(I − P )(Ã− z)−1(I − P )(A− zI)

}
= (Γ +Γ )−1Γ +

{
−I +A(I − P )(Ã− z)−1(I − P )

}
(A− zI). □

Note, if x0 x1, . . . ,xk−1 is a Jordan chain of A at the eigenvalue α ∈C, then it holds

(A− zI)
(
x0 + (z −α)x1 + · · ·+ (z −α)k−1xk−1

)
= −(z −α)kxk−1.

This formula together with (22) enables us to prove that if α is not a zero of Q, then
the function

η(z) := Q̂(z)Γ +
(
x0 + (z −α)x1 + · · ·+ (z −α)k−1xk−1

)
= (Γ +Γ )−1Γ +(z −α)kxk−1

is a pole cancellation functions of Q at α, cf. Borogovac and Luger (2014, Re-
mark 3.7).

According to Luger (2002, Proposition 2.1), for a regular function Q ∈ Nκ(H)
with representing relation A, the inverse Q̂ admits representation

Q̂(z) = Q̂(z̄0) + (z − z̄0)Γ̂ +
(
I + (z − z0)(Â− z)−1

)
Γ̂ (23)

where Γ̂ := −Γz0
Q(z0)−1 and it holds

(Â− z)−1 = (A− z)−1 − ΓzQ(z)−1
Γ +
z̄ , ∀z ∈ ρ(A)∩ ρ(Â). (24)

The following proposition gives us one more relationship between representations
(17) and (23).

Proposition 5 – Let Q ∈ Nκ(H) be holomorphic at ∞ and let Q′(∞) be boundedly
invertible. If Â is the representing linear relation in (23), then Â satisfies

Â(0) = R(P ) = R(Γ ).

and Â(0) is not degenerate.
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Proof. Function Q ∈ Nκ(H) that admits representation (5) is a special case of the
function that admits representation (1). Let us select a (non-real) point of reference
z0 ∈ D(Q)∩D(Q̂), so that Q(z0) is boundedly invertible. Let us introduce Γz0

by (10).
Then according to Proposition 1 (ii) function Q given by (5) admits representation
(1) with the same representing self-adjoint operator A and Q(z0)∗ = Γ +(A− z̄0)−1Γ .
From (24), for z = z0 we get

(Â− z0)−1 = (A− z0)−1 − Γz0
Q(z0)−1

Γ +
z̄0
. (25)

From (10), it follows

Γz0
= (A− z0)−1Γ ∧ Γ +

z̄0
= Γ +(A− z0)−1.

Substituting this into (25) gives

(Â− z0)−1 = (A− z0)−1 − (A− z0)−1ΓQ(z0)−1
Γ +(A− z0)−1

= (A− z0)−1
(
I − ΓQ(z0)−1

Γ +(A− z0)−1
)
.

By substituting here the expression for Q(z0)−1
Γ + from (22) we get

(Â− z0)−1 = (A− z0)−1
(
I + P (−I +A(I − P )(Ã− z0)−1(I − P ))

)
= (A− z0)−1

(
I − P + PA(I − P )(Ã− z0)−1(I − P )

)
.

Hence

(Â− z0)−1 = (A− z0)−1
(
I + PA(I − P )(Ã− z0)−1)(I − P ). (26)

From this we conclude ker(Â− z0)−1 ⊇ R(P ) and, therefore Â(0) ⊇ R(Γ ).
In order to prove ker(Â − z0)−1 ⊆ R(Γ ), assume the contrary, that there exists

0 , (I − P )y ∈ ker(Â− z0)−1. Because, z0 ∈ ρ(A) and A is single-valued, from (26) it
follows(

I + PA(I − P )(Ã− z0)−1)(I − P )y = 0.

Then, it must be

−(I − P )y = PA(I − P )(Ã− z0)−1(I − P )y = 0,

which is a contradiction. Therefore, ker(Â− z0)−1 = R(Γ ). □

Note, since the non-real point z0 ∈ D(Q) ∩ D(Q̂) was arbitrarily selected,
all formulae derived in the proof of Proposition 5 hold for all non-real points
z ∈ D(Q)∩D(Q̂).

One consequence of Proposition 5 is that function Q̂ must have a generalized
pole at∞. This means that regular function Q̂ does not have a derivative at∞.
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4 Properties of Q̂

The following theorem is also a consequence of Theorem 2.

Theorem 4 – Assume that function Q ∈ Nκ(H) is holomorphic at ∞, i.e. Q(z) :=
Γ +(A− z)−1Γ , and assume that operator

Q′(∞) := lim
z→∞

zQ(z)

is boundedly invertible. Then for functions

Q̂1(z) = Ŝ + zĜ ∈ Nκ1
(H), (27)

and

Q̂2(z) := Γ̃ +(Ã− z)−1Γ̃ ∈ Nκ2
(H), (28)

where operators Ŝ, Ĝ and Γ̃ are given by equations (20) and (21), the inverse function
Q̂(z) has decomposition

Q̂(z) = Q̂1(z) + Q̂2(z). (29)

That decomposition has the following properties:

(i) It must be Q̂1 . 0 while function Q̂2 may be zero function in some cases. Q̂1 has
only one generalized pole, it is at∞, while Q̂2 is holomorphic at∞.

(ii) Finite generalized zeros of Q, coincide with generalized poles of Q̂2 including
multiplicities.

(iii) Q̂1 ∈ Nκ1
(H), where negative index κ1 is equal to the number of negative eigenval-

ues of the bounded self-adjoint operator −Q′(∞) in the Hilbert space H and that is
equal to negative index of PK.

(iv) κ1 +κ2 = κ.

Proof. (i) According to above definitions of Q̂1 and Q̂2, and (19), it holds
Q̂(z) = Q̂1(z) + Q̂2(z). According to Proposition 5, Q̂ has generalized pole at ∞.
Since representing operator Ã of Q̂2 is bounded operator, according to Lemma 3
Q̂2 is holomorphic at∞. Therefore, Q̂1 . 0 and it must have generalized pole at∞.
According to Example 1 it is possible to have Q̂2 ≡ 0.

(ii) The statement follows immediately from (i) and formula (29).
(iii) Note, representation (27) of Q̂1 is not a typical operator representation of

a generalized Nevanlinna function, because A− zI is not a resolvent.
We know Q̂ ∈ Nκ(H) and κ1+κ2 ≥ κ. Let us denote by κ′ and κ′′ negative indexes

of subspaces PK and (I − P )K, respectively. Then, according to (16) κ′ +κ′′ = κ.
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For any f ,g ∈ H we have(
Q̂1(z)− Q̂1(w)

∗

z − w̄
f ,g

)
=

(
(Γ +Γ )−1f ,g

)
.

Hence, κ1 equals number of negative eigenvalues of (Γ +Γ )−1. Since (Γ +Γ )−1 is
bounded, hence defined on the whole H, we can consider f = Γ +Γ f0 and g = Γ +Γ g0,
where f0 and g0 run through entire H when f and g run through H. Therefore(

(Γ +Γ )−1f ,g
)

= [Γ f0,Γ g0].

Because R(Γ ) = R(P ), we conclude that κ1 = κ′ . Real number α < 0 is an eigenvalue
of Γ +Γ = −Q′(∞) if and only if α−1 < 0 is an eigenvalue of (Γ +Γ )−1. Hence, statement
(iii) follows.

(iv)

κ1 = κ′ ⇒ κ′ +κ2 ≥ κ = κ′ +κ′′ ⇒ κ2 ≥ κ′′

Because Ã, the representing operator of Q̂2, is self-adjoint operator in (I − P )K, it
must be κ2 ≤ κ′′ . Therefore, κ2 = κ′′ and

κ1 +κ2 = κ.

That proves (iv). □

In the following example we will show how Theorem 4 can be applied to a con-
crete generalized Nevanlinna functions.

Example 2 – Let

Q(z) =

−(1+z)
z2

1
z

1
z

1
1+z

 .
The function Q has representation (5)

Q(z) = Γ +(A− z)−1Γ ,

where the space K = C
3. In that representation fundamental symmetry, and repre-

senting operators of Q are:

J =

0 1 0
1 0 0
0 0 −1

 , A =

0 1 0
0 0 0
0 0 −1

 , Γ =

0.5 −1
1 0
0 −1

 ,
Γ + = Γ ∗J =

[
1 0.5 0
0 −1 1

]
.
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Here, Γ ∗ : C3 → C
2 is adjoint operator of Γ with respect to Hilbert spaces C

2

and C
3. It is easy to see that this representation is minimal. From the shape of the

fundamental symmetry J we conclude κ = 2, i.e. Q ∈ N2(C2). We have

Q̂(z) =

 z2

2(1+z) − z
2

− z
2

−(1+z)
2

 ∈N2(C2).

Limit (14) gives

Γ +Γ =
[

1 −1
−1 −1

]
, (Γ +Γ )−1 =

[
0.5 −0.5
−0.5 −0.5

]
.

This means that conditions of Theorem 4 are satisfied.
Let us calculate Q̂1(z). By substituting matrices (Γ +Γ )−1,Γ +,Γ into formulae for Ĝ

and Ŝ, we obtain

Q̂1(z) =
[−1+z

2 − z
2

− z
2 −1+z

2

]
.

Let us now find Q̂2(z) by means of formulae (28). In order to do that, we have
first to find matrices for projections P and (I − P ). By means of formula (15) we get

P =

0.75 0.125 0.25
0.5 0.75 −0.5
0.5 −0.25 0.5

 , I − P =

0.25 −0.125 −0.25
−0.5 0.25 0.5
−0.5 0.25 0.5

 .
Obviously, range (I − P ) = 1, i.e. dim(I − P )K = 1. We also have

(I − P )A(I − P )− z(I − P ) =

−0.25 0.125 0.25
0.5 −0.25 −0.5
0.5 −0.25 −0.5

− z
0.25 −0.125 −0.25
−0.5 0.25 0.5
−0.5 0.25 0.5

 ,
Γ̃ := (I − P )AΓ (Γ +Γ )−1 =

0.25 0
−0.5 0
−0.5 0

 , Γ̃ + = Γ̃ ∗J =
[
−0.5 0.25 0.5

0 0 0

]
.

Obviously, Γ̃ , and Γ̃ +, each have only one linearly independent row, column, respec-
tively. Therefore, operators Γ̃ , Γ̃ + can be represented by equivalent matrices, i.e. we
can write

Γ̃ :=

0.25 0
0 0
0 0

 , Γ̃ + =
[
−0.5 0 0

0 0 0

]
.
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Accordingly, we will write in the equivalent matrix form

(I − P )A(I − P )− z(I − P ) =

−0.25− 0.25z 0 0
0 0 0
0 0 0

 .
Then, the matrix form of the operator

(I − P )(Ã− z)−1(I − P ) =
(
(Ã− z)−1 0

0 0

)
is 

−4
1+z 0 0

0 0 0
0 0 0

 .
Now, according to (28) we calculate

Q̂2(z) := Γ̃ +(Ã− z)−1Γ̃ =
[
−0.5 0 0

0 0 0

]
−4
1+z 0 0

0 0 0

0 0 0



0.25 0

0 0

0 0

 .
Thus

Q̂2(z) =
[ 1

2(1+z) 0

0 0

]
.

We obtained the decomposition (29) of Q̂(z): z2

2(1+z) − z
2

− z
2

−(1+z)
2

 =
[−1+z

2 − z
2

− z
2 −1+z

2

]
+
[ 1

2(1+z) 0

0 0

]
.

There are many decompositions of the function Q̂. For this decomposition, we
know that the following claims hold:

• Because Hermitian matrix Γ +Γ has one simple negative eigenvalue, according
to Theorem 4 (iii) the function Q̂1 has negative index κ1 = 1.

• Because, κ = 2, according to Theorem 4 (iv), it must be κ2 = 1.

• According to Theorem 4 (ii), z = −1 is zero of the function Q. Indeed, it
is a pole of Q̂2 with pole cancellation function η(z) =

[
1+z

0

]
, according to

Borogovac and Luger (2014, Definition 3.1). □
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In this example we have demonstrated how to use formulae given in Theorem 4
to obtain decomposition (29). The example was selected to be as simple as possible
to make it readable. In more complicated cases, the calculation of

Q̂1(z) = Ŝ + zĜ

remains simple, while calculation of Q̂2(z) can get very involved .
Fortunately, Theorem 4 enables us to avoid the difficult calculation of Q̂2 given

by formula (28). Instead, we can obtain Q̂2 by formula Q̂2(z) := Q̂(z)− Q̂1(z).
In general case, it is an interesting task to decompose a generalized Nevanlinna

function into a sum that preserves the number of negative squares, i.e. Q = Q1 +Q2
and κ = κ1 +κ2.
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