

Inverse of generalized Nevanlinna function that is holomorphic at infinity

Muhamed Borogovac¹

Received: March 9, 2019/Accepted: January 21, 2020/Online: February 14, 2020

Abstract

Let $(\mathcal{H}, (\cdot, \cdot))$ be a Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the linear space of bounded operators in H . In this paper, we deal with $L(H)$ -valued function Q that belongs to the generalized Nevanlinna class $\mathcal{N}_{\kappa}(\mathcal{H})$, where κ is a non-negative integer. It is the class of functions meromorphic on $\mathbb{C} \setminus \mathbb{R}$, such that $Q(z)^* = Q(\bar{z})$ and the $\text{kernel } \mathcal{N}_Q(z,w) := \frac{Q(z) - Q(w)^*}{z - \bar{w}}$ $\frac{y}{z-\overline{w}}$ has *κ* negative squares. A focus is on the functions $Q \in \mathcal{N}_{\kappa}(\tilde{\mathcal{H}})$ which are holomorphic at ∞ . A new operator representation of the inverse function $\hat{Q}(z) := -Q(z)^{-1}$ is obtained under the condition that the derivative at infinity $Q'(\infty) := \lim_{z\to\infty} zQ(z)$ is boundedly invertible operator. It turns out that \hat{Q} is the sum $\hat{Q} = \hat{Q}_1 + \hat{Q}_2$, $\hat{Q}_i \in \mathcal{N}_{\kappa_i}(\mathcal{H})$ that satisfies $\kappa_1 + \kappa_2 = \kappa$. That decomposition enables us to study properties of both functions, *Q* and *Q*ˆ, by studying the simple components \hat{Q}_1 and \hat{Q}_2 .

Keywords: Generalized Nevanlinna function, Pontryagin space, operator representation, generalized pole.

msc: 47B50, 47A56, 30E99.

1 Preliminaries and introduction

1.1 Generalized Nevanlinna class, denoted by $\mathcal{N}_{k}(\mathcal{H})$, is extensively studied class of complex functions. For example, Hermitian matrix polynomials and their inverse functions belong to $\mathcal{N}_{\kappa}(\mathcal{H})$. For more examples one can see, for example Luger [\(2015\)](#page-23-0).

As usually, \mathbb{N} , \mathbb{R} , \mathbb{C} and \mathbb{C}^+ denote sets of positive integers, real numbers, complex numbers, and complex numbers from the upper half plane, respectively.

Definition 1 – An operator valued complex function $Q : \mathcal{D}(Q) \to \mathcal{L}(\mathcal{H})$ belongs to the class of generalized Nevanlinna functions $\mathcal{N}_{\kappa}(\mathcal{H})$ if it satisfies the following requirements:

- *Q* is meromorphic in $\mathbb{C} \setminus \mathbb{R}$,
- $Q(z)^* = Q(\bar{z}), z \in \mathcal{D}(Q),$

¹BML, Actuarial department, Boston, USA

• Nevanlinna kernel

$$
\mathcal{N}_Q(z,w) := \frac{Q(z) - Q(w)^*}{z - \bar{w}}, \quad \mathcal{N}_Q(z,\bar{z}) := Q'(z); \qquad z, w \in \mathcal{D}(Q) \cap \mathbb{C}^+,
$$

has *κ* negative squares, i.e. for arbitrary $n \in \mathbb{N}$, $z_1, \ldots, z_n \in \mathcal{D}(Q) \cap \mathbb{C}^+$ and $h_1, \ldots, h_n \in \mathcal{H}$ the Hermitian matrix $(\mathcal{N}_Q(z_i, z_j)h_i, h_j)_{i,j=1}^n$ has at most κ negative eigenvalues, and for at least one choice of *n*; z_1, \ldots, z_n , and h_1, \ldots, h_n it has exactly κ negative eigenvalues.

A generalized Nevanlinna function $Q \in \mathcal{N}_{k}(\mathcal{H})$ is called *regular* if there exists at least one point $w_0 \in \mathcal{D}(Q) \cap \mathbb{C}^+$ such that the operator $Q(w_0)^{-1}$ is boundedly invertible.

Let $\kappa \in \mathbb{N} \cup \{0\}$ and let $(\mathcal{K}, [\cdot, \cdot])$ denote a *Krein space*. That is a complex vector space on which a scalar product, i.e. a Hermitian sesquilinear form $[\cdot, \cdot]$, is defined such that the following decomposition of K exists

$$
\mathcal{K}=\mathcal{K}_{+}\dotplus\mathcal{K}_{-},
$$

where (K+*,*[·*,*·]) and (K−*,*−[·*,*·]) are Hilbert spaces which are mutually orthogonal with respect to the form [·*,*·]. Every Krein space (K*,*[·*,*·]) is *associated* with a Hilbert space $(K, (·, ·))$, which is defined as a direct and orthogonal sum of the Hilbert spaces (K+*,*[·*,*·]) and (K−*,*−[·*,*·]). Topology in a Krein space K is introduced by means of the associated Hilbert space $(K, \langle \cdot, \cdot \rangle)$. For properties of Krein spaces one can see e.g. Bognar [\(1974,](#page-22-0) Chapter V).

If the scalar product [·*,*·] has *κ*(*<* ∞) negative squares, then we call it a *Pontryagin space of index κ*. The definition of a Pontryagin space and other related concepts can be found e.g. in Iohvidov, Krein, and Langer [\(1982\)](#page-22-1).

1.2 The following definitions of a linear relation and basic concepts related to it can be found in Arens [\(1961\)](#page-22-2) and Sorjonen [\(1978\)](#page-23-1). In the sequel, H , K, M are inner product spaces.

A *linear relation* from H into K is a linear manifold T of the product space $H \times K$. If $H = K$, *T* is said to be a *linear relation in* K. We will use the following concepts and notations for linear relations, T and S from H into K and a linear relation R from K into M .

$$
D(T) := \{ f \in \mathcal{H} \mid \{ f, g \} \in T \text{ for some } g \in \mathcal{K} \},
$$

$$
R(T) := \{ g \in \mathcal{K} \mid \{ f, g \} \in T \text{ for some } f \in \mathcal{H} \},
$$

$$
\ker T := \{ f \in \mathcal{H} \mid \{ f, 0 \} \in T \},
$$

$$
T(0) := \{ g \in \mathcal{K} \mid \{ 0, g \} \in T \},
$$

$$
T(f) := \{ g \in \mathcal{K} \mid \{ f, g \} \in T \}, \quad f \in D(T),
$$

$$
T^{-1} := \{ \{g, f\} \in \mathcal{K} \times \mathcal{H} \mid \{f, g\} \in T \},
$$

\n
$$
zT := \{ \{f, zg\} \in \mathcal{H} \times \mathcal{K} \mid \{f, g\} \in T \}, \quad z \in \mathbb{C},
$$

\n
$$
S + T := \{ \{f, g + k\} \mid \{f, g\} \in S, \{f, k\} \in T \},
$$

\n
$$
RT := \{ \{f, k\} \in \mathcal{H} \times \mathcal{M} \mid \{f, g\} \in T, \{g, k\} \in \mathbb{R} \text{ for some } g \in \mathcal{K} \},
$$

\n
$$
T^+ := \{ \{k, h\} \in \mathcal{K} \times \mathcal{H} \mid [k, g] = (h, f) \text{ for all } \{f, g\} \in T \},
$$

\n
$$
T_{\infty} := \{ \{0, g\} \in T \}.
$$

A linear relation is *closed* if it is a closed subset in the product space $H \times K$. If $T(0) = \{0\}$, we say that *T* is an *operator*, or *single-valued* linear relation.

Note, in definition of the adjoint linear relation T^+ , we use the following notation for inner product spaces $(\mathcal{H}, (\cdot, \cdot))$ and $(\mathcal{K}, [\cdot, \cdot])$.

Let *A* be a linear relation in *K*. We say that *A* is *symmetric* (*self-adjoint*) if it holds $A \subseteq A^+$ ($A = A^+$). Every point $\alpha \in \mathbb{C}$ for which $\{f, \alpha f\} \in A$, with some $f \neq 0$, is called a *finite eigenvalue*. The corresponding vectors are *eigenvectors* belonging to the eigenvalue α . A set that consists of all points $z \in \mathbb{C}$ for which the relation $(A - zI)^{-1}$ is an operator defined on the entire K , is called the *resolvent* set $\rho(A)$.

It is convenient to deal with the following representation of generalized Nevanlinna functions.

Theorem 1 – *A function* $Q: \mathcal{D}(Q) \to \mathcal{L}(\mathcal{H})$ *is a generalized Nevanlinna function of some index κ, denoted by* $Q ∈ N_k(H)$ *, if and only if it has a representation of the form*

$$
Q(z) = Q(z_0)^* + (z - \bar{z}_0) \Gamma_{z_0}^+ \left(I + (z - z_0)(A - z)^{-1} \right) \Gamma_{z_0}, \quad z \in \mathcal{D}(Q), \tag{1}
$$

where, A is a self-adjoint linear relation in some Pontryagin space (K*,*[·*,*·]) *of index* $\kappa \geq \kappa$; Γ_{z_0} : $\mathcal{H} \to \mathcal{K}$ *is a bounded operator;* $z_0 \in \rho(A) \cap \mathbb{C}^+$ *is a fixed point of reference. (Then, obviously* $\rho(A) \subseteq \mathcal{D}(Q)$ *.) This representation can be chosen to be minimal, that is*

$$
\mathcal{K} = \text{c.l.s.} \Big\{ \Gamma_z h : z \in \rho(A), h \in H \Big\},\tag{2}
$$

where

$$
\Gamma_z = \left(I + (z - z_0)(A - z)^{-1}\right)\Gamma_{z_0}.\tag{3}
$$

If realization [\(1\)](#page-2-0) is minimal, then $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ *if and only if the negative index of the Pontryagin space* $\tilde{\kappa}$ *equals* κ *. In the case of minimal representation* $ρ(A) = D(Q)$ *and the triple* (K*,A,*Γ*z*⁰) *is uniquely determined (up to isomorphism).*

Such operator representations were developed by M. G. Krein and H. Langer, see e.g. Krein and Langer [\(1973,](#page-22-3) [1977\)](#page-22-4) and later converted to representations in terms of

linear relations (multivalued operators), see e.g. Dijksma, Langer, and Snoo H. S. V. [\(1993\)](#page-22-5) and Hassi, Snoo H. S. V., and Woracek [\(1998\)](#page-22-6).

In this note, a point $\alpha \in \mathbb{C}$ is called a *finite generalized pole* of Q if it is an eigenvalue of the representing relation *A* in the minimal representation [\(1\)](#page-2-0). It means that it may be isolated singularity, i.e. an ordinary pole, as well as an embedded singularity of *Q*. The latter may be the case only if $\alpha \in \mathbb{R}$.

1.3 In this paper, we focus on the class of functions $Q \in \mathcal{N}_{k}(\mathcal{H})$ that are holomorphic at ∞ , i.e. there exists

$$
Q'(\infty) := \lim_{z \to \infty} zQ(z). \tag{4}
$$

That is equivalent to

$$
Q(z) = \Gamma^+(A-z)^{-1}\Gamma,\tag{5}
$$

where *A* is a bounded self-adjoint operator in some Pontrjagin space K, and $\Gamma : \mathcal{H} \to \mathcal{K}$ is a bounded operator, see Lemma [3](#page-9-0) below. We also assume that drivative $Q'(\infty)$ is boundedly invertible. In this study, $\lim_{z\to\infty}zQ(z)$ refers to convergence in the Banach space of bounded operators $\mathcal{L}(\mathcal{H})$. By $z \to \infty$ we denote the limit if *Q* is holomorphic at ∞ , and by $z \rightarrow \infty$ we denote the non-tangential limit, which we use if singularities of *Q* exist (on the real axis) in every neighborhood of ∞ , see Krein and Langer [\(1977\)](#page-22-4). The same convention applies to limits toward finite points in complex plane.

The following well known decomposition easily follows from Daho and Langer [\(1985,](#page-22-7) Proposition 3.3) for matrix functions. See Luger [\(2006,](#page-23-2) Section 5.1) for operator valued functions.

Lemma 1 – *If* $Q \in \mathcal{N}_{k}(\mathcal{H})$ *and* α *is a finite generalized pole of* Q *, then it holds*

$$
Q(z) = Q_{\alpha}(z) + H_{\alpha}(z),\tag{6}
$$

where $Q_{\alpha} \in \mathcal{N}_{\kappa_1}(\mathcal{H})$ *is holomorphic at* ∞ , $H_{\alpha} \in \mathcal{N}_{\kappa_2}(\mathcal{H})$ *is holomorphic at* α , $\kappa_1 + \kappa_2 = \kappa$. *Then Q^α admits representation*

 $Q_{\alpha}(z) = \Gamma_{\alpha}^{+}(A_{\alpha} - z)^{-1}\Gamma_{\alpha}$ *,*

with a bounded operator Aα. Operator A^α has the same root manifold at α as the representing relation A of Q in [\(1\)](#page-2-0).

Remark 1 – The decomposition [\(6\)](#page-3-0) can be tweaked if necessary so that it holds

$$
Q(z) = \tilde{Q}(z) + \tilde{H}(z),
$$

where $\tilde{Q}(z) = \Gamma^+(\tilde{A}-z)^{-1}\Gamma \in \mathcal{N}_{\kappa_1}(\mathcal{H})$, self-adjoint extension \tilde{A} of A_α has the same root manifold at α as A_α , and $\dot{\Gamma}^+\Gamma$ is a boundedly invertible operator. Then the equality $\kappa = \kappa_1 + \kappa_2$ does not have to be preserved because the number of negative squares of $\tilde{H}(z)$ may be greater than the number of negative squares of $H_{\alpha}(z)$ *.*

2. Representation $Q(z) = S + \Gamma^{+}(A - z)^{-1}\Gamma$

Indeed, if Γ^+_{α} is not already boundedly invertible operator in decomposition [\(6\)](#page-3-0) of *Q*, then we can add the term $\frac{B}{\beta - z}$ to $Q_{\alpha}(z)$, where *B* is a positive operator, $\Gamma_{\alpha}^{+}\Gamma_{\alpha} + B$ is boundedly invertible operator and $\beta \in \mathbb{R} \setminus \{\alpha\}$. Also we will subtract the same term from $H_{\alpha}(z)$. Functions $\tilde{Q}(z) := Q_{\alpha}(z) + \frac{B}{\beta - z}$ and $\tilde{H}(z) := H_{\alpha}(z) - \frac{B}{\beta - z}$, will have claimed properties. □

1.4 The following is the summary of the main results of the paper.

In Proposition [3](#page-10-0) we prove that function Q , which is holomorphic at ∞ and has invertible operator $Q'(\infty)$, has ker $Q := \bigcap_{z \in D(Q)} \ker Q(z) = \{0\}$.

The task of finding representation of $\hat{Q}(z) := -Q(z)^{-1}$ in terms of representing relation *A* of *Q* has been studied in several papers, see e.g. Langer and Luger [\(2000\)](#page-22-8) and Luger [\(2002\)](#page-23-3). In Theorem [2,](#page-12-0) we give an operator representation of \dot{Q} , when function *Q* is holomorphic at infinity and $Q'(\infty)$ is boundedly invertible operator. According to Remark [1,](#page-3-1) those assumptions do not restrict generality in research of local properties of the function $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$.

Theorem [2](#page-12-0) enables us to prove many properties of *Q*ˆ and *Q*. For example, in Theorem [3](#page-14-0) we prove that function *Q* which is holomorphic at ∞ and has $Q'(\infty)$ boundedly invertible, is a regular function. In Proposition [5](#page-16-0) we prove that for such *Q* the inverse function \hat{Q} must have a pole at ∞ . In Theorem [4](#page-18-0) we prove that $\hat{Q}(z) := -Q(z)^{-1}$ is the sum $\hat{Q} = \hat{Q}_1 + \hat{Q}_2$, $\hat{Q}_i \in \mathcal{N}_{\kappa_i}(\mathcal{H})$, where both functions \hat{Q}_i are represented in terms of the representing operator *A* of *Q*, and it holds $\kappa_1 + \kappa_2 = \kappa$. One of the functions, say \hat{Q}_1 , is a polynomial of degree one, and \hat{Q}_2 has representa-tion of the form [\(5\)](#page-3-2). Therefore, we can call functions \hat{Q}_1 and \hat{Q}_2 , *polynomial*, and *resolvent part of* \hat{Q} *,* respectively. Negative index κ_1 of \hat{Q}_1 is equal to the number of negative eigenvalues of the self-adjoint operator $\Gamma^+\Gamma = -\lim_{z\to\infty} zQ(z)$. The set of zeros of *Q* coincides with the set of poles of \hat{Q}_2 .

In Example [1,](#page-15-0) we show how the above results can be applied to find representing operators *A* and Γ of *Q* in some cases. In Example [2,](#page-19-0) we show how to implement formulae given in Theorem [4](#page-18-0) to a concrete function *Q*, in order to obtain a decomposition $\hat{Q} = \hat{Q}_1 + \hat{Q}_2$ with nice properties described in that theorem.

2 Representation $Q(z) = S + \Gamma^{+}(A - z)^{-1}\Gamma$

2.1 We will frequently need the following proposition in this paper.

Proposition 1 – *(i)* Let function $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ be represented by a self-adjoint linear *relation A in representation [\(1\)](#page-2-0), which is not necessarily minimall. If for any point* $z_0 \in \rho(A)$ *it holds*

$$
R(\Gamma_{z_0}) \subseteq D(A),\tag{7}
$$

then the same inclusion holds for every $z \in \rho(A)$ *. We can define linear relation*

$$
\Gamma := (A - z)\Gamma_z, \quad z \in \rho(A), \tag{8}
$$

that satisfies $D(\Gamma) = H$, $\Gamma(0) = A(0)$ *. Then function Q has representation of the form*

$$
Q(z) = S + \Gamma^{+} (A - z)^{-1} \Gamma \in \mathcal{N}_{\kappa}(\mathcal{H}), \quad S = S^{*} \in \mathcal{L}(\mathcal{H}).
$$
\n(9)

(ii) Conversely, if A in representation [\(9\)](#page-5-0) of Q is a self-adjoint linear relation in Pontryagin space K, and $\Gamma \subseteq H \times K$, $D(\Gamma) = H$, is a linear relation that satisfies $A(0) = \Gamma(0)$ *, then for any point* $z_0 \in \rho(A)$ *and operator*

$$
\Gamma_{z_0} := (A - z_0)^{-1} \Gamma,\tag{10}
$$

function Q satisfies [\(1\)](#page-2-0).

(iii) It holds

$$
\Gamma_z := (I + (z - z_0)(A - z)^{-1})\Gamma_{z_0} = (A - z)^{-1}\Gamma, \quad \forall z \in \rho(A).
$$
\n(11)

Representation [\(1\)](#page-2-0) is minimal if and only if representation [\(9\)](#page-5-0) is minimal.

Note, case $S = 0$ is not excluded in Proposition [1.](#page-4-0)

Proof. (i) For function *Q* given by [\(1\)](#page-2-0), it holds

$$
\Gamma_z = \left(I + (z - w)(A - z)^{-1}\right)\Gamma_w, \quad \forall z, w \in \rho(A),
$$

see the proof in Dijksma, Langer, and Snoo H. S. V. [\(1993\)](#page-22-5), which obviously can be repeated when $Q \in N_{\kappa}(\mathcal{H})$. If we substitute *w* by z_0 in the above equation, then from assumption [\(7\)](#page-4-1) it follows

$$
R(\Gamma_z)\subseteq D(A),\quad \forall z\in \rho(A).
$$

In the following few steps we use properties of linear relations listed in Arens [\(1961,](#page-22-2) Theorem 1.2). Note, Γ _z are single-valued linear relations defined on the entire H which simplifies verification of the following steps. Therefore

$$
(A-z)\big(\Gamma_{z_0}+(z-z_0)(A-z)^{-1}\Gamma_{z_0}\big)=(A-z)\Gamma_z.
$$

According to $(A - z)(A - z)^{-1} \supseteq I$ it holds

$$
(A-z)\Gamma_{z_0} + (z-z_0)\Gamma_{z_0} \subseteq (A-z)\Gamma_z \implies (A-z_0)\Gamma_{z_0} \subseteq (A-z)\Gamma_z, \quad \forall z \in \rho(A).
$$

By the same token, the converse inclusion $(A - z)\Gamma_z \subseteq (A - z_0)\Gamma_{z_0}$, $\forall z \in \rho(A)$ holds. Therefore,

$$
(A-z)\Gamma_z=(A-z_0)\Gamma_{z_0},\quad \forall z\in\rho(A),
$$

and we can define linear relation Γ by [\(8\)](#page-5-1). According to (8) it holds $\Gamma(0) = A(0)$, and therefore $(A - z)^{-1} \Gamma$ is also an operator, $\forall z \in \rho(A)$.

Thus, Γ is an invariant of *Q*, i.e. Γ is a characteristic of the function *Q* (independent of *z* \in *ρ*(*A*)). That makes relation Γ and representation [\(5\)](#page-3-2) particularly interesting.

Let us now show that linear relation Γ^+ is an operator. If we assume the contrary, then it holds

$$
\{0,g\} \in \Gamma^+ \implies [k,0] = (h,g), \quad \forall \{h,k\} \in \Gamma.
$$

Since $D(\Gamma) = H$, it follows $g = 0$. Therefore, Γ^+ is single-valued.

From [\(8\)](#page-5-1), for $z_0 \in \rho(A)$, we get $\Gamma = (A - z_0) \Gamma_{z_0}$ and $\Gamma_{z_0} = (A - z_0)^{-1} \Gamma$. Then we substitute $\Gamma_{\!z_0}^{\!+}$ and $\Gamma_{\!z_0}$ into [\(1\)](#page-2-0) and easily derive

$$
Q(z) = Q(\bar{z}_0) + (z - \bar{z}_0) \Gamma^+ (A - \bar{z}_0)^{-1} (A - z)^{-1} \Gamma.
$$

By means of the resolvent equation we get

$$
Q(z) = Q(\bar{z}_0) - \Gamma^+(A - \bar{z}_0)^{-1}\Gamma + \Gamma^+(A - z)^{-1}\Gamma.
$$

By substituting here

$$
S:=Q(\bar{z}_0)-\Gamma^+(A-\bar{z}_0)^{-1}\Gamma,
$$

we get the first equation of [\(9\)](#page-5-0).

From the first equation of [\(9\)](#page-5-0) and from $Q(z)^* = Q(\bar{z})$ it follows $S = S^*$.

(ii) Conversely, assume [\(9\)](#page-5-0) holds with linear relation *A*. From (9), for $z = z_0$, we get $S = S^* = Q(z_0)^* - \Gamma^+(A - \bar{z}_0)^{-1}\Gamma$. Substituting *S* into [\(9\)](#page-5-0) and applying resolvent equation we obtain

$$
Q(z) = Q(z_0)^* + (z - \bar{z}_0) \Gamma^+ (A - \bar{z}_0)^{-1} (A - z)^{-1} \Gamma.
$$

Now [\(10\)](#page-5-2) gives

$$
Q(z) = Q(z_0)^* + (z - \bar{z}_0) \Gamma_{z_0}^+ (A - z)^{-1} \Gamma.
$$

According to resolvent equation it holds

$$
(A-z)^{-1} = (I + (z-z_0)(A-z)^{-1})(A-z_0)^{-1}, \quad \forall z \in \rho(A).
$$
 (12)

Therefore

$$
Q(z) = Q(z_0)^* + (z - \bar{z}_0) \Gamma_{z_0}^+ \left(I + (z - z_0)(A - z)^{-1} \right) (A - z_0)^{-1} \Gamma.
$$

Substituting here Γ_{z_0} from [\(10\)](#page-5-2) gives [\(1\)](#page-2-0).

(iii) From [\(12\)](#page-6-0) and [\(10\)](#page-5-2) it follows

$$
(A-z)^{-1}\Gamma = (I + (z-z_0)(A-z)^{-1})\Gamma_{z_0} =: \Gamma_z, \quad \forall z \in \rho(A).
$$

This proves [\(11\)](#page-5-3). Minimality of a representation is defined in terms the of vectors Γ*zh* by [\(2\)](#page-2-1). According to [\(11\)](#page-5-3) we conclude that represention [\(9\)](#page-5-0) is minimal if and only if

$$
\mathcal{K} = \text{c.l.s.}\Big\{ (A-z)^{-1} \Gamma h : z \in \rho(A), h \in \mathcal{H} \Big\}.
$$

This proves (iii). □

Note, the first statement of the proposition is well known for matrix functions represented by operators. This was proven in Krein and Langer [\(1977\)](#page-22-4) for scalar, and in Langer and Luger [\(2000\)](#page-22-8) for matrix valued function *Q*. In both cases one additional assumption on *Q* was made so that *A* was linear operator from the start.

By definition, ∞ is generalized pole of Q if and only if 0 is generalized pole of the function $\tilde{Q}(\zeta) = Q(\frac{-1}{\zeta})$, see Borogovac and Luger [\(2014,](#page-22-9) Remark 3.13.). This is equivalent to $A(0) \neq \{0\}$, where *A* is representing relation of *Q*. In that case ∞ is called an eigenvalue of *A* and nonzero vectors from *A*(0) are called *eigenvectors at* ∞, see Luger [\(2002\)](#page-23-3).

The following statement is well known for closed linear relations in Hilbert space H , see e.g. Langer and Textorius [\(1977\)](#page-23-4). We will state it here in our setting, for convenience of the reader.

Lemma 2 – *Let* H *and* K *be Hilbert and Krein space, respectively, and let linear relation* $T \subseteq H \times K$ *has closed* $T(0)$ *. Then it holds:*

$$
T = \tilde{T} \dotplus T_{\infty},
$$

where $\dot{+}$ *denotes direct sum of subspaces,* \tilde{T} *is an operator with* $D(\tilde{T}) = D(T)$ *and* $T_{\infty} := \{ \{0, g\} \in T \}.$

Proof. Because $T(0) \subseteq K$ is closed subspace of the Hilbert space $(K, \langle \cdot, \cdot \rangle)$ associated with Krein space $(K, [\cdot, \cdot])$, we can uniquely and orthogonaly decompose $(K, (\cdot, \cdot))$ by means of *T*(0). Thus, for every {*f*,*g*} \in *T* we have, {*f*,*g*} = {*f*,*g*₁(+) *g*₀}, where (∔) is direct and orthogonal sum in the Hilbert space (K ,(⋅,⋅)), and $g_0 \in T(0)$ and *g*₁ ∈ K (−) *T*(0) are uniquely determined vectors. We define

$$
\tilde{T} := \Big\{ \{f, g_1\} \Big| \{f, g\} \in T \Big\},\
$$

2. Representation $Q(z) = S + \Gamma^{+}(A - z)^{-1}\Gamma$

and T_{∞} is as above. Then we have

$$
T=\tilde{T}(\dot{+})T_{\infty}\subseteq\mathcal{H}\times\mathcal{K},
$$

where (∔) denotes direct orthogonal sum in the Hilbert space associated with $H \times K$.

Because the sum g_1 ($\dot{+}$) g_0 does not have to be orthogonal in the Krein space $(K, [\cdot, \cdot])$, we write

$$
T = \tilde{T} + T_{\infty}.
$$

It is easy to verify that $\tilde{T} = T(-) T_{\infty}$ is single-valued. \square

Corollary 1 – *If representing relation A of* $Q \in \mathcal{N}_{k}(\mathcal{H})$ *satisfies condition* [\(7\)](#page-4-1)*, then A can be replaced in [\(1\)](#page-2-0) by its operator part A*˜*. If representation [\(1\)](#page-2-0) is minimal, it will remain minimal with self-adjoint operator A*˜*. The function Q does not have generalized pole at* ∞ *.*

Proof. Because *A* is closed linear relation, it is easy to verify that *A*(0) is closed. According to Lemma [2](#page-7-0) it holds

$$
A = \tilde{A} \dot{+} A_{\infty}.
$$

According to Proposition [1](#page-4-0) (i) there exists a linear relation

 $\Gamma := (A - z)\Gamma_z, \quad z \in \rho(A),$

with $\Gamma(0) = A(0)$. Because $\Gamma(0)$ is closed, according to Lemma [2](#page-7-0) it holds

$$
\Gamma=\tilde{\Gamma}\dotplus\Gamma_{\!\infty}.
$$

Because $\Gamma(0) = A(0) = \ker(A - z)^{-1}$, it holds

$$
\Gamma_z = (A - z)^{-1} \Gamma = (\tilde{A} - z)^{-1} \tilde{\Gamma}, \quad \forall z \in \rho(A). \tag{13}
$$

Let $z_0 \in \rho(A) \setminus \mathbb{R}$ be the point of reference in [\(1\)](#page-2-0). Let us now prove that we can replace $(A-z)^{-1}\Gamma_{z_0}$ by $(\tilde{A}-z)^{-1}\Gamma_{z_0}$ in [\(1\)](#page-2-0). We start from [\(3\)](#page-2-2) written in the form

$$
(A - z)^{-1} \Gamma_{z_0} = \frac{\Gamma_z - \Gamma_{z_0}}{z - z_0}, \quad \forall z \in \rho(A).
$$

According to [\(13\)](#page-8-0) and the resolvent equation we have

$$
(A-z)^{-1}\Gamma_{z_0} = \frac{(\tilde{A}-z)^{-1}\tilde{\Gamma}-(\tilde{A}-z_0)^{-1}\tilde{\Gamma}}{z-z_0} = (\tilde{A}-z)^{-1}(\tilde{A}-z_0)^{-1}\tilde{\Gamma} = (\tilde{A}-z)^{-1}\Gamma_{z_0}.
$$

This proves

$$
(A-z)^{-1}\Gamma_{z_0} = (\tilde{A}-z)^{-1}\Gamma_{z_0}.
$$

Therefore, we can substitute $(A - z)^{-1} \Gamma_{z_0}$ for $(A - z)^{-1} \Gamma_{z_0}$ into [\(3\)](#page-2-2) and [\(1\)](#page-2-0), and values of Γ*^z* and *Q*(*z*) will not change. Thus,

$$
\Gamma_z = (I + (z - z_0)(\tilde{A} - z)^{-1})\Gamma_{z_0}.
$$

$$
Q(z) = Q(z_0)^* + (z - \bar{z}_0)\Gamma_{z_0}^+ (I + (z - z_0)(\tilde{A} - z)^{-1})\Gamma_{z_0}, \quad z \in \mathcal{D}(Q).
$$

According to definition of minimality [\(2\)](#page-2-1), we conclude that minimal representation (1) remains minimal when \tilde{A} replaces A . Because of the uniqueness of the minimal representation [\(1\)](#page-2-0) it must be $A = \tilde{A}$. Therefore, \tilde{A} must be a self-adjoint operator, as the unique representing operator of a generalized Nevanlinna function. Because the function Q is represented by operator \tilde{A} , we conclude that Q cannot have generalized pole at ∞. $□$

2.2 By definition a function *Q* has a non-tangential limit at ∞ if and only if the function $\tilde{Q}(\zeta) = Q(\frac{-1}{\zeta})$ has a non-tangential limit at 0. By the same token a function *Q* is holomorphic at ∞ if and only if the function $\tilde{Q}(\zeta) = Q(\frac{-1}{\zeta})$ is holomorphic at 0. The following proposition, that corresponds to Krein and Langer [\(1977,](#page-22-4) Satz 1.4) holds.

Proposition 2 – Let $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ *satisfies non-tangential version of [\(4\)](#page-3-3):*

$$
\exists Q'(\infty) := \lim_{z \to \infty} zQ(z),\tag{14}
$$

where the limit denotes convergence in the Banach space of bounded operators. Then $Q'(\infty) \in \mathcal{L}(\mathcal{H})$, and Q has minimal representation [\(1\)](#page-2-0) with a self-adjoint operator A.

Proof. Because $\mathcal{L}(\mathcal{H})$ is a Banach space with respect to norm topology, we conclude that *Q*′ (∞), given by [\(14\)](#page-9-1), is a bounded operator. Under assumption that limit [\(14\)](#page-9-1) exists, it holds

$$
\lim_{\zeta \to 0} \tilde{Q}(\zeta) := \lim_{z \to \infty} Q(z) = 0.
$$

If we define $\tilde{Q}(0) := \lim_{\zeta \to 0} \tilde{Q}(\zeta) = 0$, then

$$
\tilde{Q}'(0) := \lim_{\zeta \to 0} \frac{\tilde{Q}(\zeta) - \tilde{Q}(0)}{\zeta} = \lim_{z \to \infty} zQ(z) =: Q'(\infty).
$$

According to Borogovac and Luger [\(2014,](#page-22-9) Defintion 3.1 (B)), *ζ* = 0 is not a generalized pole of Q , i.e. ∞ is not a generalized pole of Q. Therefore, the representing relation *A* satisfies *A*(0) = 0. Hence, *Q* is represented by the self-adjoint operator *A* in [\(1\)](#page-2-0). \Box

2. Representation $Q(z) = S + \Gamma^{+}(A - z)^{-1}\Gamma$

Lemma 3 – *A function* $Q \in \mathcal{N}_{k}(\mathcal{H})$ *is holomorphic at* ∞ *if and only if* $Q(z)$ *has minimal representation [\(5\)](#page-3-2)*

$$
Q(z) = \Gamma^+(A-z)^{-1}\Gamma, \quad z \in \mathcal{D}(Q),
$$

with a bounded self-adjoint operator A in a Pontryagin space K*, and bounded operator* Γ : H → K*. In this case*

$$
Q'(\infty) := \lim_{z \to \infty} zQ(z) = -\Gamma^+ \Gamma.
$$

Proof. If $Q(z)$ is holomorphic at ∞ , then it satisfies [\(14\)](#page-9-1). According to Proposition [2,](#page-9-2) *Q* is represented by an operator *A*. From the assumption of holomorphy at ∞ it follows that operator *A* has bounded spectrum. According to Langer [\(1982,](#page-22-10) Corollary 2), *A* is bounded. Then condition [\(7\)](#page-4-1) is satisfied. According to Proposition [1](#page-4-0) (i), *Q* has minimal representation [\(9\)](#page-5-0). Then, from existence of limit [\(14\)](#page-9-1), it follows $S = 0$.

Conversely, if *A* is bounded operator in representation [\(5\)](#page-3-2), then it has bounded spectrum, and therefore, *Q* is holomorphic at infinity.

To prove the last statement of the lemma, we use Neumann series of resolvent of the bounded operator *A*.

$$
Q'(\infty) := \lim_{z \to \infty} zQ(z) = \lim_{z \to \infty} z\Gamma^+ \bigg(\sum_{i=0}^{\infty} -\frac{A^i}{z^{i+1}}\bigg)\Gamma = -\Gamma^+\Gamma.
$$

The concept

$$
\ker Q := \bigcap_{z \in D(Q)} \ker Q(z)
$$

was introduced in Dijksma, Langer, and Snoo H. S. V. [\(1993\)](#page-22-5). For matrix function $Q \in N_K^{n \times n}$, represented by [\(1\)](#page-2-0) it was proven

 $\ker Q = \ker \Gamma_{z_0} \cap \ker Q(z_0)^*$.

Proposition 3 – If $Q \in N_{\kappa}(\mathcal{H})$ is holomorphic at infinity and $Q'(\infty)$ is invertible, then

 $ker Q = \{0\}.$

Proof. According to Lemma [3](#page-9-0) we can assume that *Q* is minimally represented by bounded operator *A*. Recall, for $z, w \in \rho(A) = \mathcal{D}(Q)$ it holds

$$
\Gamma_z = \left(I + (z - w)(A - z)^{-1}\right)\Gamma_w.
$$

Obviously,

$$
\Gamma_w h = 0 \implies \Gamma_z h = 0,
$$

If we reverse roles of *z* and *w*, then the converse implication holds. Hence, it holds

$$
\ker \Gamma_z = \ker \Gamma_w.
$$

If $Q(z)$ is holomorphic at ∞ , according to Lemma [3,](#page-9-0) Q has representation [\(5\)](#page-3-2) with bounded operator *A*. Therefore, condition [\(7\)](#page-4-1) is satisfied. According to Proposition [1](#page-4-0) (iii) we have

$$
\Gamma_z = (A - z)^{-1} \Gamma, \quad \forall z \in \mathcal{D}(Q).
$$

Then we have:

$$
(5) \Rightarrow Q(z)h = \Gamma^{+}\Gamma_{z}h, \quad \forall h \in \mathcal{H}, \ \forall z \in \mathcal{D}(Q).
$$

If we assume *h* ∈ ker*Q*, then according to definition of ker*Q* we have

$$
h \in \ker Q \iff h \in \ker zQ(z), \quad \forall z \in \mathcal{D}(Q)
$$

$$
\iff 0 = \lim_{z \to \infty} zQ(z)h = -\Gamma^+ \Gamma h = Q'(\infty)h \iff h = 0.
$$

This proves the statement. □

We cannot here claim that *Q*(*z*) is a regular function. We will prove it in the following section.

3 Inverse of $\Gamma^+(A-z)^{-1}\Gamma$

Lemma 4 – Let bounded operators $\Gamma : \mathcal{H} \to \mathcal{K}$ and $\Gamma^+ : \mathcal{K} \to \mathcal{H}$ be introduced as usually, *see Section [1.](#page-0-0) Assume also that* Γ + Γ *is a boundedly invertible operator in the Hilbert space* (H*,*(·*,*·))*. Then for operator*

$$
P := \Gamma(\Gamma^+\Gamma)^{-1}\Gamma^+\tag{15}
$$

the following statements hold:

- *(i) P* is orthogonal projection in Pontryagin space $(K, [\cdot, \cdot])$.
- *(ii) Scalar product does not degenerate on* Γ(H) *and therefore it does not degenerate on* $\Gamma(\mathcal{H})^{[\perp]} = \ker \Gamma^+.$
- (iii) ker $\Gamma^+ = (I P)\mathcal{K}$.
- *(iv) Pontryagin space* K *can be decomposed as a direct orthogonal sum of Pontryagin spaces i.e.*

$$
\mathcal{K} = (I - P)\mathcal{K} + P\mathcal{K}.\tag{16}
$$

3. Inverse of $\Gamma^+(A-z)^{-1}\Gamma$

Proof. (i) Obviously $P^2 = P$.

According to well known properties of adjoint operators, see e.g. Iohvidov, Krein, and Langer [\(1982,](#page-22-1) p. 34), it is easy to verify $[(\Gamma^+\Gamma)^{-1}]^* = (\Gamma^+\Gamma)^{-1}$ and then to verify $[Px, y] = [x, Py]$, i.e. $P^{[*]} = P$. This proves (i).

(ii) If $\Gamma h \neq 0$ and $[\Gamma h, \Gamma g] = 0$, $\forall g \in H$, then $(\Gamma^+ \Gamma h, g) = 0$, $\forall g \in H$. Then we have $\Gamma^+ \Gamma h = 0 \Rightarrow h = 0 \Rightarrow \Gamma h = 0$. This is a contradiction that proves (ii).

(iii) It is sufficient to prove $\ker \Gamma^+ = \ker P$.

$$
P := \Gamma(\Gamma^+\Gamma)^{-1}\Gamma^+ \Rightarrow \ker \Gamma^+ \subseteq \ker P.
$$

Conversely, because $\Gamma^+\Gamma$ is boundedly invertible $R(\Gamma^+) = H$. Then

$$
y \in \ker P \implies 0 = \left[\Gamma(\Gamma^+\Gamma)^{-1}\Gamma^+y, x\right] = \left((\Gamma^+\Gamma)^{-1}\Gamma^+y, \Gamma^+x\right), \quad \forall \Gamma^+x \in \mathcal{H}.
$$

$$
R(\Gamma^+) = \mathcal{H} \implies (\Gamma^+\Gamma)^{-1}\Gamma^+y = 0 \implies \Gamma^+y = 0 \implies y \in \ker \Gamma^+.
$$

 (iv) This statement follows directly from (iii) and (ii). \Box

Assume now that function *Q* is given by [\(5\)](#page-3-2) and that projection *P* is given by [\(15\)](#page-11-0). We define

$$
\tilde{A} := (I - P)A_{|(I - P)K}.
$$

Then

$$
(\tilde{A} - zI_{|(I-P)\mathcal{K}})^{-1} : (I - P)\mathcal{K} \to (I - P)\mathcal{K}.
$$

Note that it is customary to omit the identity mapping in resolvents. Therefore, we will frequently write $(\widetilde{A} - z)^{-1}$ rather than $(\widetilde{A} - zI_{|(I - P)K})^{-1}$. It holds

$$
(I - P)(\tilde{A} - z)^{-1}(I - P) = \begin{pmatrix} (\tilde{A} - zI_{|(I - P)K})^{-1} & 0\\ 0 & 0 \end{pmatrix}
$$

In the sequel, we will use notation from the left hand side of this equation because it makes the following proofs easier to write.

.

Theorem 2 – *Assume that function* $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ *is holomorphic at* ∞ *, and that*

$$
Q'(\infty):=\lim_{z\to\infty}zQ(z)
$$

is boundedly invertible. Then there exists the inverse function

$$
\hat{Q}(z) := -Q(z)^{-1},
$$

and $\hat{Q}(z)$ *has the following representation on* $\mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})$

$$
\hat{Q}(z) = (\Gamma^+ \Gamma)^{-1} \Gamma^+ \Big\{ A(I - P)(\tilde{A} - z)^{-1} (I - P)A - (A - zI) \Big\} \Gamma (\Gamma^+ \Gamma)^{-1},\tag{17}
$$

where operator Γ *was defined by [\(8\)](#page-5-1) and projection P was defined by equation [\(15\)](#page-11-0).*

Proof. According to Lemma [3,](#page-9-0) function *Q* has minimal representation [\(5\)](#page-3-2) with bounded operator *A*. For projection *P* defined in Lemma [4,](#page-11-1) we have the following decomposition with respect to [\(16\)](#page-11-2)

$$
A - zI = \begin{pmatrix} (I - P)(A - zI)(I - P) & (I - P)AP \\ PA(I - P) & P(A - zI)P \end{pmatrix}.
$$

Let us denote

$$
\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} := (A - z)^{-1}.
$$

By solving operator equations derived from the identity

$$
\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} \tilde{A} - z(I - P) & (I - P)AP \\ PA(I - P) & P(A - zI)P \end{pmatrix} = \begin{pmatrix} I - P & 0 \\ 0 & P \end{pmatrix}
$$

we get

$$
W = \left\{ P(A - zI)P - PA(I - P)(A - z)^{-1}(I - P)AP \right\}^{-1}.
$$

It is easy to verify the following equalities:

$$
\Gamma^+ P = \Gamma^+, \quad P\Gamma = \Gamma, \quad \Gamma^+(I - P) = 0, \quad (I - P)\Gamma = 0.
$$

It follows

$$
Q(z) = \Gamma^+ \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \Gamma = (\Gamma^+ (I - P), \Gamma^+ P) \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} (I - P)\Gamma \\ P\Gamma \end{pmatrix}
$$

\n
$$
\Rightarrow Q(z) = (0, \Gamma^+) \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} 0 \\ \Gamma \end{pmatrix} = \Gamma^+ \begin{pmatrix} 0 & 0 \\ 0 & W \end{pmatrix} \Gamma.
$$

Therefore, we do not need to find operators *X*, *Y* , *Z*. By substituting *W* here, we get

$$
Q(z) = \Gamma^{+} \Big\{ P(A - zI)P - PA(I - P)(A - z)^{-1}(I - P)AP \Big\}^{-1} \Gamma.
$$
 (18)

By substituting expressions [\(18\)](#page-13-0) and [\(17\)](#page-12-1) for Q and \hat{Q} , respectively, into the following product, we verify

$$
Q(z)\hat{Q}(z) = \Gamma^{+}\Big{P(A-zI)P - PA(I-P)(\tilde{A}-z)^{-1}(I-P)AP\Big}^{-1}\Gamma(\Gamma^{+}\Gamma)^{-1}\Gamma^{+}
$$

$$
\times \Big{A(I-P)(\tilde{A}-z)^{-1}(I-P)A-(A-zI)\Big{\Gamma(\Gamma^{+}\Gamma)^{-1}}}
$$

$$
= \Gamma^{+}\Big{P(A-zI)P - PA(I-P)(\tilde{A}-z)^{-1}(I-P)AP\Big}^{-1}
$$

$$
\times \Big{P A(I-P)(\tilde{A}-z)^{-1}(I-P)AP - P(A-zI)P\Big{\Gamma(\Gamma^{+}\Gamma)^{-1}}}
$$

$$
= \Gamma^{+}(-P)\Gamma(\Gamma^{+}\Gamma)^{-1} = -I.
$$

3. Inverse of $\Gamma^+(A-z)^{-1}\Gamma$

The remaining statements of this paper are consequences of Theorem [2.](#page-12-0)

Theorem 3 – Let $Q \in \mathcal{N}_{k}(\mathcal{H})$.

 (i) Q is holomorphic at ∞ and Q' (∞) is boundedly invertible if and only if

$$
\hat{Q}(z) = \tilde{\Gamma}^+ (\tilde{A} - z)^{-1} \tilde{\Gamma} + \hat{S} + \hat{G} z, \forall z \in \mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})
$$
\n(19)

where A˜ *is a self-adjoint bounded operator in the Pontryagin space* (*I* − *P*)K*, S*ˆ *and G*ˆ *are self-adjoint bounded operators in the Hilbert space* H*, and G*ˆ *is boundedly invertible.*

(ii) In that case function $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ is regular.

Proof. (i) (\Rightarrow) The assumptions are the same as in Theorem [2.](#page-12-0) Therefore, representation [\(17\)](#page-12-1) holds. If we substitute

$$
\hat{S} = -(\Gamma^+\Gamma)^{-1}\Gamma^+A\Gamma(\Gamma^+\Gamma)^{-1}, \quad \hat{G} = (\Gamma^+\Gamma)^{-1}
$$
\n(20)

$$
\tilde{\Gamma} := (I - P)A\Gamma(\Gamma^+\Gamma)^{-1},\tag{21}
$$

into representation [\(17\)](#page-12-1) we get representation [\(19\)](#page-14-1). Operator \tilde{A} is bounded because it is a restriction of the bounded operator *A*. The statements about *S*ˆ and *G*ˆ are easy verification.

(\Leftarrow) Now we assume that [\(19\)](#page-14-1) holds. Obviously:

$$
\lim_{z \to \infty} \frac{\hat{Q}(z)}{z} = \lim_{z \to \infty} (-zQ(z))^{-1}.
$$

On the other hand, because \tilde{A} is bounded we can apply Neumann series of the resolvent $(\tilde{A} - z)^{-1}$. We have

$$
\lim_{z \to \infty} \frac{\hat{Q}(z)}{z} = \lim_{z \to \infty} \left(\frac{\tilde{\Gamma}^+ (\tilde{A} - z)^{-1} \tilde{\Gamma} + \hat{S}}{z} + \hat{G} \right)
$$

$$
= \lim_{z \to \infty} \left(\tilde{\Gamma}^+ \sum_{i=0}^{\infty} -\frac{\tilde{A}^i}{z^{i+2}} \tilde{\Gamma} + \frac{\hat{S}}{z} \right) + \hat{G} = \hat{G}.
$$

Therefore,

$$
\lim_{z \to \infty} (-zQ(z))^{-1} = \hat{G}.
$$

Because \hat{G} is bounded, $\lim_{z\to\infty}zQ(z)$ is boundedly invertible.

(ii) This statement holds because, according to [\(19\)](#page-14-1), operator $\hat{Q}(z)$ is obviously bounded for every $z \in \mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})$.

It is usually very difficult to find representing operator for a given function $Q \in \mathcal{N}_{k}(\mathcal{H})$. The construction used in cited papers is abstract and not applicable in concrete situations. Theorem [2](#page-12-0) gives us a new simple relationships between representing operators *A*, Γ and Γ + . That might help us to find those operators in some cases, like e.g. in the following case.

Example 1 – Given function

$$
Q(z) = -\begin{bmatrix} 0 & z^{-1} \\ z^{-1} & z^{-2} \end{bmatrix}.
$$

It is easy to verify that function *Q*(*z*) is holomorphic at infinity, and that it holds

$$
Q'(\infty) := \lim_{z \to \infty} zQ(z) = -\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
$$

According to Lemma [3,](#page-9-0) *Q*(*z*) admits minimal representation [\(5\)](#page-3-2). Hence,

$$
Q(z) = \Gamma^{+} (A - zI)^{-1} \Gamma \wedge - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = -\Gamma^{+} \Gamma.
$$

In addition,

$$
Q(z)^{-1} = \begin{bmatrix} 1 & -z \\ -z & 0 \end{bmatrix} =: L(z).
$$

i.e. the inverse function is a polynomial. Therefore, the resolvent part of \hat{Q} in representation [\(17\)](#page-12-1) must be equal to zero. It holds,

$$
(\Gamma^+\Gamma)^{-1}\Gamma^+(A-zI)\Gamma(\Gamma^+\Gamma)^{-1} = \begin{bmatrix} 1 & -z \\ -z & 0 \end{bmatrix}
$$

\n
$$
\Rightarrow \Gamma^+(A-zI)\Gamma = \begin{bmatrix} 0 & -z \\ -z & 1 \end{bmatrix} \Rightarrow \Gamma^+A\Gamma = \Gamma^*JA\Gamma = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.
$$

Here *J* denotes a fundamental symmetry in K. Because function *Q* has a single pole of order two at $z = 0$, the representing operator has the single eigenvalue of order two at *z* = 0. All those information enable us to make an easy educated guess

$$
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \Gamma^{+}.
$$

We will refer to this example for a different reason in Theorem [4.](#page-18-0)

Proposition 4 – *Let Q*(*z*)*, Q*ˆ(*z*)*,* Γ*,* Γ ⁺ *be the same as in Theorem [2.](#page-12-0) Then for all z* ∈ $\mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})$ *it holds*

$$
\hat{Q}(z)\Gamma^{+} = (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\{-I + A(I - P)(\tilde{A} - z)^{-1}(I - P)\}(A - zI). \tag{22}
$$

3. Inverse of $\Gamma^+(A-z)^{-1}\Gamma$

Proof. In the following derivations we will frequently use $\Gamma^+ P = \Gamma^+$ and $P\Gamma = \Gamma$. From [\(17\)](#page-12-1) it follows

$$
\hat{Q}(z)\Gamma^{+} = (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{A(I-P)(\tilde{A}-z)^{-1}(I-P)A-(A-zI)\Big}\Gamma(\Gamma^{+}\Gamma)^{-1}\Gamma^{+}
$$
\n
$$
= (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)P-(A-zI)P\Big}
$$
\n
$$
= (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)(P-I)
$$
\n
$$
+A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)-(A-zI)P\Big}
$$
\n
$$
= (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{-A(I-P)+A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)-(A-zI)P\Big}
$$
\n
$$
= (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{-(A-zI)+A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)\Big}
$$
\n
$$
= (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}\Big{-I+A(I-P)(\tilde{A}-z)^{-1}(I-P)(A-zI)}.
$$

Note, if $x_0 x_1, \ldots, x_{k-1}$ is a Jordan chain of *A* at the eigenvalue $\alpha \in \mathbb{C}$, then it holds

$$
(A-zI)(x_0 + (z-\alpha)x_1 + \dots + (z-\alpha)^{k-1}x_{k-1}) = -(z-\alpha)^k x_{k-1}.
$$

This formula together with [\(22\)](#page-15-1) enables us to prove that if α is not a zero of Q , then the function

$$
\eta(z) := \hat{Q}(z)\Gamma^{+}(x_0 + (z - \alpha)x_1 + \dots + (z - \alpha)^{k-1}x_{k-1}) = (\Gamma^{+}\Gamma)^{-1}\Gamma^{+}(z - \alpha)^{k}x_{k-1}
$$

is a pole cancellation functions of *Q* at *α*, cf. Borogovac and Luger [\(2014,](#page-22-9) Remark 3.7).

According to Luger [\(2002,](#page-23-3) Proposition 2.1), for a regular function $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ with representing relation A , the inverse \hat{Q} admits representation

$$
\hat{Q}(z) = \hat{Q}(\bar{z}_0) + (z - \bar{z}_0)\hat{\Gamma}^+\left(I + (z - z_0)(\hat{A} - z)^{-1}\right)\hat{\Gamma}
$$
\n(23)

where $\hat{\Gamma} := -\Gamma_{\!z_0} Q(z_0)^{-1}$ and it holds

$$
(\hat{A} - z)^{-1} = (A - z)^{-1} - \Gamma_z Q(z)^{-1} \Gamma_{\bar{z}}^+, \quad \forall z \in \rho(A) \cap \rho(\hat{A}).
$$
\n(24)

The following proposition gives us one more relationship between representations [\(17\)](#page-12-1) and [\(23\)](#page-16-1).

Proposition 5 – Let $Q \in \mathcal{N}_{\kappa}(\mathcal{H})$ be holomorphic at ∞ and let $Q'(\infty)$ be boundedly *invertible. If A*ˆ *is the representing linear relation in [\(23\)](#page-16-1), then A*ˆ *satisfies*

$$
\hat{A}(0) = R(P) = R(\Gamma).
$$

*and A*ˆ(0) *is not degenerate.*

Proof. Function $Q \in \mathcal{N}_{k}(\mathcal{H})$ that admits representation [\(5\)](#page-3-2) is a special case of the function that admits representation [\(1\)](#page-2-0). Let us select a (non-real) point of reference $z_0 \in \mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})$, so that $Q(z_0)$ is boundedly invertible. Let us introduce Γ_{z_0} by [\(10\)](#page-5-2). Then according to Proposition [1](#page-4-0) (ii) function *Q* given by [\(5\)](#page-3-2) admits representation [\(1\)](#page-2-0) with the same representing self-adjoint operator *A* and $Q(z_0)^* = \Gamma^+(A - \bar{z}_0)^{-1}\Gamma$. From [\(24\)](#page-16-2), for $z = z_0$ we get

$$
(\hat{A} - z_0)^{-1} = (A - z_0)^{-1} - \Gamma_{z_0} Q(z_0)^{-1} \Gamma_{\bar{z}_0}^+.
$$
\n(25)

From [\(10\)](#page-5-2), it follows

$$
\Gamma_{z_0} = (A - z_0)^{-1} \Gamma \ \wedge \ \Gamma_{\bar{z}_0}^+ = \Gamma^+ (A - z_0)^{-1}.
$$

Substituting this into [\(25\)](#page-17-0) gives

$$
(\hat{A} - z_0)^{-1} = (A - z_0)^{-1} - (A - z_0)^{-1} \Gamma Q(z_0)^{-1} \Gamma^+ (A - z_0)^{-1}
$$

=
$$
(A - z_0)^{-1} (I - \Gamma Q(z_0)^{-1} \Gamma^+ (A - z_0)^{-1}).
$$

By substituting here the expression for $Q(z_0)^{-1}\Gamma^+$ from [\(22\)](#page-15-1) we get

$$
(\hat{A} - z_0)^{-1} = (A - z_0)^{-1} \Big(I + P(-I + A(I - P)(\tilde{A} - z_0)^{-1}(I - P)) \Big)
$$

= $(A - z_0)^{-1} \Big(I - P + PA(I - P)(\tilde{A} - z_0)^{-1}(I - P) \Big).$

Hence

$$
(\hat{A} - z_0)^{-1} = (A - z_0)^{-1} \left(I + PA(I - P)(\tilde{A} - z_0)^{-1} \right) (I - P).
$$
 (26)

From this we conclude ker $(\hat{A} - z_0)^{-1} \supseteq R(P)$ and, therefore $\hat{A}(0) \supseteq R(\Gamma)$.

In order to prove $\ker(\hat{A} - z_0)^{-1} \subseteq R(\Gamma)$, assume the contrary, that there exists $0 ≠ (I - P)y ∈ \text{ker}(\hat{A} - z_0)^{-1}$. Because, $z_0 ∈ \rho(A)$ and *A* is single-valued, from [\(26\)](#page-17-1) it follows

$$
(I + PA(I - P)(A - z0)-1)(I - P)y = 0.
$$

Then, it must be

$$
-(I - P)y = PA(I - P)(A - z0)-1(I - P)y = 0,
$$

which is a contradiction. Therefore, ker($\hat{A} - z_0$)⁻¹ = $R(\Gamma)$. □

Note, since the non-real point $z_0 \in \mathcal{D}(Q) \cap \mathcal{D}(\hat{Q})$ was arbitrarily selected, all formulae derived in the proof of Proposition [5](#page-16-0) hold for all non-real points *z* ∈ D(*Q*)∩ D(*Q*ˆ).

One consequence of Proposition [5](#page-16-0) is that function \hat{Q} must have a generalized pole at ∞. This means that regular function *Q*ˆ does not have a derivative at ∞.

4 Properties of *Q*ˆ

The following theorem is also a consequence of Theorem [2.](#page-12-0)

Theorem 4 – *Assume that function* $Q \in \mathcal{N}_{k}(\mathcal{H})$ *is holomorphic at* ∞ *, i.e.* $Q(z)$:= Γ + (*A* − *z*) −1 Γ*, and assume that operator*

$$
Q'(\infty) := \lim_{z \to \infty} zQ(z)
$$

is boundedly invertible. Then for functions

$$
\hat{Q}_1(z) = \hat{S} + z\hat{G} \in \mathcal{N}_{\kappa_1}(\mathcal{H}),\tag{27}
$$

and

$$
\hat{Q}_2(z) := \tilde{\Gamma}^+(\tilde{A}-z)^{-1}\tilde{\Gamma} \in \mathcal{N}_{\kappa_2}(\mathcal{H}),\tag{28}
$$

*where operators S*ˆ*, G*ˆ *and* ˜Γ *are given by equations [\(20\)](#page-14-2) and [\(21\)](#page-14-3), the inverse function Q*ˆ(*z*) *has decomposition*

$$
\hat{Q}(z) = \hat{Q}_1(z) + \hat{Q}_2(z).
$$
\n(29)

That decomposition has the following properties:

- *(i)* It must be $\hat{Q}_1 \not\equiv 0$ while function \hat{Q}_2 may be zero function in some cases. \hat{Q}_1 has only one generalized pole, it is at ∞ , while \hat{Q}_2 is holomorphic at ∞ .
- *(ii) Finite generalized zeros of Q, coincide with generalized poles of Q*ˆ ² *including multiplicities.*
- (*iii*) $\hat{Q}_1 \in \mathcal{N}_{\kappa_1}(\mathcal{H})$, where negative index κ_1 is equal to the number of negative eigenval*ues of the bounded self-adjoint operator* −*Q*′ (∞) *in the Hilbert space* H *and that is equal to negative index of P* K*.*

$$
(iv) \ \kappa_1 + \kappa_2 = \kappa.
$$

Proof. (i) According to above definitions of \hat{Q}_1 and \hat{Q}_2 , and [\(19\)](#page-14-1), it holds $\hat{Q}(z) = \hat{Q}_1(z) + \hat{Q}_2(z)$. According to Proposition [5,](#page-16-0) \hat{Q} has generalized pole at ∞ . Since representing operator \tilde{A} of \hat{Q}_2 is bounded operator, according to Lemma [3](#page-9-0) \hat{Q}_2 is holomorphic at ∞. Therefore, $\hat{Q}_1 \neq 0$ and it must have generalized pole at ∞. According to Example [1](#page-15-0) it is possible to have $\hat{Q}_2 \equiv 0$.

(ii) The statement follows immediately from (i) and formula [\(29\)](#page-18-1).

(iii) Note, representation [\(27\)](#page-18-2) of \hat{Q}_1 is not a typical operator representation of a generalized Nevanlinna function, because *A* − *zI* is not a resolvent.

We know $\hat{Q} \in \mathcal{N}_{\kappa}(\mathcal{H})$ and $\kappa_1 + \kappa_2 \geq \kappa$. Let us denote by κ' and κ'' negative indexes of subspaces \overrightarrow{PK} and $(I - P)\overrightarrow{K}$, respectively. Then, according to [\(16\)](#page-11-2) $\overrightarrow{\kappa'} + \kappa'' = \kappa$.

For any $f, g \in H$ we have

$$
\left(\frac{\hat{Q}_1(z) - \hat{Q}_1(w)}{z - \overline{w}} f, g\right) = \left((\Gamma^+ \Gamma)^{-1} f, g\right).
$$

Hence, κ_1 equals number of negative eigenvalues of $(\Gamma^+\Gamma)^{-1}$. Since $(\Gamma^+\Gamma)^{-1}$ is bounded, hence defined on the whole H , we can consider $f = \Gamma^+ \Gamma f_0$ and $g = \Gamma^+ \Gamma g_0$, where f_0 and g_0 run through entire H when f and g run through H . Therefore

$$
((\Gamma^+\Gamma)^{-1}f,g) = [\Gamma f_0, \Gamma g_0].
$$

Because $R(\Gamma) = R(P)$, we conclude that $\kappa_1 = \kappa'$. Real number $\alpha < 0$ is an eigenvalue of $\Gamma^+\Gamma = -Q'(\infty)$ if and only if $\alpha^{-1} < 0$ is an eigenvalue of $(\Gamma^+\Gamma)^{-1}$. Hence, statement (iii) follows.

 (iv)

$$
\kappa_1 = \kappa' \implies \kappa' + \kappa_2 \ge \kappa = \kappa' + \kappa'' \implies \kappa_2 \ge \kappa''
$$

Because \tilde{A} , the representing operator of \hat{Q}_2 , is self-adjoint operator in $(I-P){\cal K}$, it must be $\kappa_2 \leq \kappa''$. Therefore, $\kappa_2 = \kappa''$ and

$$
\kappa_1+\kappa_2=\kappa.
$$

That proves (iv). \Box

In the following example we will show how Theorem [4](#page-18-0) can be applied to a concrete generalized Nevanlinna functions.

Example 2 – Let

$$
Q(z) = \begin{bmatrix} \frac{-(1+z)}{z^2} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{1+z} \end{bmatrix}.
$$

The function *Q* has representation [\(5\)](#page-3-2)

$$
Q(z) = \Gamma^+(A - z)^{-1} \Gamma,
$$

where the space $\mathbb{K}=\mathbb{C}^3.$ In that representation fundamental symmetry, and representing operators of *Q* are:

$$
J = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \Gamma = \begin{bmatrix} 0.5 & -1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix},
$$

$$
\Gamma^{+} = \Gamma^{*} J = \begin{bmatrix} 1 & 0.5 & 0 \\ 0 & -1 & 1 \end{bmatrix}.
$$

4. Properties of *Q*ˆ

Here, $\Gamma^*: \mathbb{C}^3 \to \mathbb{C}^2$ is adjoint operator of Γ with respect to Hilbert spaces \mathbb{C}^2 and $\mathbb{C}^3.$ It is easy to see that this representation is minimal. From the shape of the fundamental symmetry *J* we conclude $\kappa = 2$, i.e. $Q \in \mathcal{N}_2(\mathbb{C}^2)$. We have

$$
\hat{Q}(z) = \begin{bmatrix} \frac{z^2}{2(1+z)} & -\frac{z}{2} \\ -\frac{z}{2} & \frac{-(1+z)}{2} \end{bmatrix} \in N_2(\mathbb{C}^2).
$$

Limit [\(14\)](#page-9-1) gives

$$
\Gamma^{+}\Gamma = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}, \quad (\Gamma^{+}\Gamma)^{-1} = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & -0.5 \end{bmatrix}.
$$

This means that conditions of Theorem [4](#page-18-0) are satisfied.

Let us calculate $\hat{Q}_1(z)$. By substituting matrices $(\Gamma^+\Gamma)^{-1}$, Γ^+ , Γ into formulae for \hat{G} and \hat{S} , we obtain

$$
\hat{Q}_1(z) = \begin{bmatrix} \frac{-1+z}{2} & -\frac{z}{2} \\ -\frac{z}{2} & -\frac{1+z}{2} \end{bmatrix}.
$$

Let us now find $\hat{Q}_2(z)$ by means of formulae [\(28\)](#page-18-3). In order to do that, we have first to find matrices for projections *P* and $(I - P)$. By means of formula [\(15\)](#page-11-0) we get

$$
P = \begin{bmatrix} 0.75 & 0.125 & 0.25 \\ 0.5 & 0.75 & -0.5 \\ 0.5 & -0.25 & 0.5 \end{bmatrix}, \quad I - P = \begin{bmatrix} 0.25 & -0.125 & -0.25 \\ -0.5 & 0.25 & 0.5 \\ -0.5 & 0.25 & 0.5 \end{bmatrix}.
$$

Obviously, range $(I - P) = 1$, i.e. dim $(I - P)K = 1$. We also have

$$
(I - P)A(I - P) - z(I - P) = \begin{bmatrix} -0.25 & 0.125 & 0.25 \\ 0.5 & -0.25 & -0.5 \\ 0.5 & -0.25 & -0.5 \end{bmatrix} - z \begin{bmatrix} 0.25 & -0.125 & -0.25 \\ -0.5 & 0.25 & 0.5 \\ -0.5 & 0.25 & 0.5 \end{bmatrix},
$$

$$
\tilde{\Gamma} := (I - P)A\Gamma(\Gamma^+\Gamma)^{-1} = \begin{bmatrix} 0.25 & 0 \\ -0.5 & 0 \\ -0.5 & 0 \end{bmatrix}, \quad \tilde{\Gamma}^+ = \tilde{\Gamma}^* I = \begin{bmatrix} -0.5 & 0.25 & 0.5 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Obviously, $\tilde{\Gamma}$, and $\tilde{\Gamma}^{+}$, each have only one linearly independent row, column, respectively. Therefore, operators Γ̃, Γ̃⁺ can be represented by equivalent matrices, i.e. we can write

$$
\tilde{\Gamma} := \begin{bmatrix} 0.25 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{\Gamma}^+ = \begin{bmatrix} -0.5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Accordingly, we will write in the equivalent matrix form

$$
(I-P)A(I-P) - z(I-P) = \begin{bmatrix} -0.25 - 0.25z & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Then, the matrix form of the operator

$$
(I - P)(\tilde{A} - z)^{-1}(I - P) = \begin{pmatrix} (\tilde{A} - z)^{-1} & 0\\ 0 & 0 \end{pmatrix}
$$

is

$$
\begin{bmatrix} \frac{-4}{1+z} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Now, according to [\(28\)](#page-18-3) we calculate

$$
\hat{Q}_2(z):=\tilde{\Gamma}^+(\tilde{A}-z)^{-1}\tilde{\Gamma}=\begin{bmatrix}-0.5 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}\frac{-4}{1+z} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}0.25 & 0\\ 0 & 0\\ 0 & 0\end{bmatrix}.
$$

Thus

$$
\hat{Q}_2(z) = \begin{bmatrix} \frac{1}{2(1+z)} & 0 \\ 0 & 0 \end{bmatrix}.
$$

We obtained the decomposition [\(29\)](#page-18-1) of $\hat{Q}(z)$:

$$
\begin{bmatrix} \frac{z^2}{2(1+z)} & -\frac{z}{2} \\ -\frac{z}{2} & \frac{-(1+z)}{2} \end{bmatrix} = \begin{bmatrix} \frac{-1+z}{2} & -\frac{z}{2} \\ -\frac{z}{2} & -\frac{1+z}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2(1+z)} & 0 \\ 0 & 0 \end{bmatrix}.
$$

There are many decompositions of the function \hat{Q} . For this decomposition, we know that the following claims hold:

- Because Hermitian matrix Γ⁺Γ has one simple negative eigenvalue, according to Theorem [4](#page-18-0) (iii) the function \hat{Q}_1 has negative index $\kappa_1 = 1$ *.*
- Because, $\kappa = 2$, according to Theorem [4](#page-18-0) (iv), it must be $\kappa_2 = 1$.
- According to Theorem [4](#page-18-0) (ii), *z* = −1 is zero of the function *Q*. Indeed, it is a pole of \hat{Q}_2 with pole cancellation function $\eta(z) = \begin{bmatrix} 1+z \\ 0 \end{bmatrix}$, according to Borogovac and Luger [\(2014,](#page-22-9) Definition 3.1). □

In this example we have demonstrated how to use formulae given in Theorem [4](#page-18-0) to obtain decomposition [\(29\)](#page-18-1). The example was selected to be as simple as possible to make it readable. In more complicated cases, the calculation of

$$
\hat{Q}_1(z) = \hat{S} + z\hat{G}
$$

remains simple, while calculation of $\hat{Q}_2(z)$ can get very involved .

Fortunately, Theorem [4](#page-18-0) enables us to avoid the difficult calculation of \hat{Q}_2 given by formula [\(28\)](#page-18-3). Instead, we can obtain \hat{Q}_2 by formula $\hat{Q}_2(z) := \hat{Q}(z) - \hat{Q}_1(z)$.

In general case, it is an interesting task to decompose a generalized Nevanlinna function into a sum that preserves the number of negative squares, i.e. $Q = Q_1 + Q_2$ and $\kappa = \kappa_1 + \kappa_2$.

References

- Arens, R. (1961). "Operational calculus of linear relations". *Pacific J. Math. 11*, pp. 9– 23 (cit. on pp. [20,](#page-19-1) [24\)](#page-23-5).
- Bognar, J. (1974). *Indefinite Inner Product Spaces*. Springer-Verlag, Berlin, Heidelberg, New York (cit. on p. [20\)](#page-19-1).
- Borogovac, M. and A. Luger (2014). "Analytic characterizations of Jordan Chains by pole cancellation functions of higher order". *J. Funct. Anal. 267*, pp. 4499–4518 (cit. on pp. [26, 28, 35, 40\)](#page-0-1).
- Daho, K. and H. Langer (1985). "Matrix functions of the class $\mathcal{N}_{\kappa}^{n x n}$ ". *Math. Nachr. 120*, pp. 275–294 (cit. on p. [22\)](#page-21-0).
- Dijksma, A., H. Langer, and de Snoo H. S. V. (1993). "Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions". *Math. Nachr. 161*, pp. 107–154 (cit. on pp. [22,](#page-21-0) [24,](#page-23-5) [29\)](#page-0-1).
- Hassi, S., de Snoo H. S. V., and H. Woracek (1998). "Some interpolation problems of Nevanlinna Pick type". *Oper. Theory Adv. Appl. 106*, pp. 201–216 (cit. on p. [22\)](#page-21-0).
- Iohvidov, I. S., M. G. Krein, and H. Langer (1982). *Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric*. Akademie-Verlag, Berlin (cit. on pp. [20,](#page-19-1) [31\)](#page-0-1).
- Krein, M. G. and H. Langer (1973). "*U*¨ ber die *Q*-Funktion eines *π*-hermiteschen Operatos im Raume Π*κ*". *Acta Sci. Math. 34*, pp. 190–230 (cit. on p. [21\)](#page-20-0).
- Krein, M. G. and H. Langer (1977). "Über einige fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π*^κ* zusammenhangen. I. Einige Funktionenklassen und ihre Darstellungen". *Math. Nachr. 77*, pp. 187–236 (cit. on pp. [21,](#page-20-0) [22,](#page-21-0) [26, 28\)](#page-0-1).
- Langer, H. (1982). *Spectral functions of definitizable operators in Krein spaces, In: Functional Analysis, Proceedings, Dubrovnik 1981, Lecture Notes Math. 948*. Springer-Verlag, Berlin and New York (cit. on p. [29\)](#page-0-1).
- Langer, H. and A. Luger (2000). "A class of 2x2-matrix functions". *Glasnik Matematicki, 35(55)*, pp. 149–160 (cit. on pp. [23,](#page-22-11) [26\)](#page-0-1).
- Langer, H. and B. Textorius (1977). "On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert spaces". *Pacific J. Math., Volume 72, Number 1*, pp. 135–165 (cit. on p. [26\)](#page-0-1).
- Luger, A. (2002). "A factorization of regular generalized Nevanlinna functions". *Inetgr. Equ. Oper. Theory 43*, pp. 326–345 (cit. on pp. [23,](#page-22-11) [26, 35\)](#page-0-1).
- Luger, A. (2006). "A characterization of generalized poles of generalized Nevanlinna functions". *Math. Nachr. 279*, pp. 891–910 (cit. on p. [22\)](#page-21-0).
- Luger, A. (2015). *Generalized Nevanlinna Functions: Operator Representations, Asymptotic Behavior, In book: Operator Theory, Chapter 15,* Springer (cit. on p. [19\)](#page-18-4).
- Sorjonen, P. (1978–1979). "On linear relations in an indefinite inner product spaces". *Annales Academiae Scientiarum Fennica, Series A. I. Mathematica, Vol. 4*, pp. 169– 192 (cit. on p. [20\)](#page-19-1).

Contents

Contents

