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Abstract

We study the spectra of non-regular semisimple elements in irreducible
representations of simple algebraic groups. More precisely, we prove that if
G is a simply connected simple linear algebraic group and φ : G → GL(V ) is
a non-trivial irreducible representation for which there exists a non-regular
non-central semisimple element s ∈ G such that φ(s) has almost simple spectrum,
then, with few exceptions, G is of classical type and dimV is minimal possible.
Here the spectrum of a diagonalizable matrix is called simple if all eigenvalues
are of multiplicity 1, and almost simple if at most one eigenvalue is of mul-
tiplicity greater than 1. This yields a kind of characterization of the natural
representation (up to their Frobenius twists) of classical algebraic groups in
terms of the behavior of semisimple elements.

Keywords: semisimple elements, irreducible representations, eigenvalue multiplici-
ties, simple linear algebraic groups.
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Introduction

A rather general problem which has received attention in the literature can be stated
as that of classifying irreducible group representations whose image contains a ma-
trix with a certain specified property. In this paper we concentrate on a property
of the eigenvalue multiplicities of a semisimple element of simple linear algebraic
groups in their irreducible representations. (Henceforth we will use “algebraic
group” to mean “linear algebraic group”.) Although problems on eigenvalues in
group representations are important for many applications, little can be said in full
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generality. In fact, the behavior of individual elements in the image of a representa-
tion is quite unpredictable. For a discussion of this and related questions, we refer
the reader to A. E. Zalesski (2009).

Here, we consider matrices with almost simple spectrum, that is, matrices having
at most one eigenvalue of multiplicity greater than 1. More precisely, we will address
the following:

Problem 1 – Let G be a simple algebraic group defined over an algebraically closed
field. Determine the irreducible representations φ of G such that φ(G) contains
a non-scalar diagonalizable matrix with almost simple spectrum.

Note that the notion of matrices with almost simple spectrum is a natural gener-
alization of the similar notion of pseudo-reflections, the latter being diagonalizable
matrices with two eigenvalues, one of which has multiplicity 1. The classification of
irreducible matrix groups generated by pseudo-reflections was an important project
enjoying numerous applications. (See Wagner (1978), Wagner (1981), and Zalesskii
and Serežkin (1977, 1980).) We note as well that the consideration of Problem 1 is
an extension of the analogous question for finite quasi-simple groups of Lie type
and their representations in defining characteristic (see Suprunenko and Zalesskii
(2000) and Suprunenko and Zalesskii (1998)), as well as the classification (in Seitz
(1987) and Zalesskii and Suprunenko (1987)) of irreducible representations of
simple algebraic groups for which a maximal torus acts with 1-dimensional weight
spaces. A similar problem for irreducible representations of finite simple groups
occurring as subgroups of GLn(C) has been studied in Katz and Tiep (2021).

While Problem 1 is a question about semisimple elements, there is a natural
generalization of the notions of simple and almost simple spectra to matrices that
are not diagonalizable. Let V be a finite-dimensional vector space over a field F and
M ∈GL(V ). Then M is called cyclic if, for some v ∈ V , the space V is spanned by the
vectors v,Mv,M2v, . . ., and almost cyclic if, for some λ ∈ F, M is conjugate to a matrix
diag(λ · Id,M1), where M1 is a cyclic matrix. Almost cyclic matrices in the images
of irreducible representations of finite simple groups are studied in Di Martino,
Pellegrini, and A. E. Zalesski (2014), Di Martino, Pellegrini, and A. E. Zalesski
(2020), and Di Martino and A. E. Zalesski (2018) (in certain special cases). Now
let G be as in Problem 1 above, g ∈ G, and let φ be an irreducible representation
such that φ(g) is almost cyclic. If g is not semisimple, then g = su = us with u , 1
unipotent and s semisimple, and one sees that φ(u) has a single non-trivial Jordan
block. Such representations have been determined in Suprunenko (2013) and
D. M. Testerman and A. E. Zalesski (2018). On the other hand, if g is semisimple,
and φ(g) is almost cyclic, then φ(g) has almost simple spectrum; indeed φ(g) has at
most two eigenvalues, one of which has multiplicity 1.

Let us now return to our considerations of semisimple elements of G whose spec-
trum in some irreducible representation of G is almost simple. As every semisimple
element s ∈ G lies in a maximal torus, the condition for φ(s) to have simple spec-
trum implies that all weight multiplicities of φ are equal to 1. The irreducible
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representations whose set of weights satifies this property are determined in Seitz
(1987) for tensor-indecomposable representations and completed in Zalesskii and
Suprunenko (1987). By analogy, one could expect φ in Problem 1 to have all but
one weight multiplicity equal to 1. And indeed this is the case, as the following
result, which will be etablished in §3, shows.

Theorem 1 – Let G be a simple algebraic group defined over an algebraically closed field
and φ an irreducible representation of G. Then the following statements are equivalent:

(1) The matrix φ(s) has almost simple spectrum for some non-central semisimple
element s ∈ G.

(2) All non-zero weights of φ are of multiplicity 1.

Theorem 1 will be relevant to our consideration of Problem 1, especially as
the irreducible representations of simple algebraic groups satisfying 1 have been
determined in D. M. Testerman and A. E. Zalesski (2015). The above theorem is
best possible in the sense that in order to obtain a more precise result one has
to specify the nature of the semisimple element s in question. We recall that an
element g ∈ G is said to be regular if dim(CG(g)) is equal to the rank of G; for g
semisimple this is equivalent to CG(g)◦ being abelian, see Springer and Steinberg
(1970, Chapter III, Corollary 1.7). Our investigations show that, with very few
exceptions, a non-central semisimple element s having an almost simple spectrum
in an irreducible representation φ must be regular.

Theorem 2 – Let G be a simply connected simple algebraic group defined over an alge-
braically closed field F of characteristic p ≥ 0 and let s ∈ G be a non-regular non-central
semisimple element. Let V be a non-trivial irreducible G-module. If the spectrum of s on
V is almost simple, then one of the following holds:

(1) G is of Lie type An,Bn (p , 2), Cn or Dn and dimV = n+ 1,2n+ 1,2n,2n, respec-
tively;

(2) G is of Lie type Bn, p = 2 and dimV = 2n;

(3) G = A3 and dimV = 6;

(4) G = C2, p , 2 and dimV = 5.

The irreducible representations of G of the dimensions given in Theorem 2 are
well known; a description of elements s which have almost simple spectrum on V is
provided in Section 3.

Notation We fix an algebraically closed field F of characteristic p ≥ 0.
Throughout the paper G is a simple simply connected linear algebraic group

defined over F. All G-modules considered are rational finite-dimensional FG-
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modules. For a G-module V (or a representation ρ of G), we write V ∈ Irr(G) (or
ρ ∈ Irr(G)) to mean that V (or ρ) is rational and irreducible. If H is a subgroup of G
then we write V |H for the restriction of a G-module V to H .

We fix a maximal torus T in G, which in turn defines the roots of G as well
as the weights of G-modules and representations. The T -weights of a G-module
V are the irreducible constituents of the restriction of V to T . As T is fixed, we
will omit the reference to T and write “weights” in place of “T -weights”. The set
of weights of V is denoted by Ω(V ). For µ ∈Ω(V ), the dimension of the µ-weight
space {v ∈ V : tv = µ(t)v for all t ∈ T } is called the multiplicity of µ in V . The Weyl
group of G is denoted by W ; as W = NG(T )/T , the conjugation action of NG(T ) on T
yields an action of W on T and consequently on the set of T -weights. The W -orbit
of µ ∈Ω is denoted by Wµ. The set Ω = Hom(T ,F×) (the rational homomorphisms
of T to the multiplicative group of F) is called the weight lattice, which is a free
Z-module of finite rank called the rank of G.

With an algebraic group H is associated the Lie algebra of H denoted here by
Lie(H). For the simple group G, we denote the set of roots (that is, the non-zero
weights of the G-module Lie(G)) by Φ or Φ(G). For the notions of closed subsystems
of Φ and subsystem subgroups see Malle and D. Testerman (2011, §13.1). The
Z-span of Φ is called the root lattice and is denoted here by R or R(G). In Φ(G),
we fix a base Π = {α1, . . . ,αn} and order the simple roots according to the Dynkin
diagrams as in Bourbaki (1968). The associated set of positive roots will be denoted
R+ or R+(G). The weights in R are called radical. For each root α ∈ Φ(G), we choose
a non-zero element Xα in the α-weight space of T on Lie(G). Thus, FXα is the Lie
algebra of a T -invariant one-dimensional unipotent subgroup Uα of G; see Malle
and D. Testerman (2011, Theorem 8.16) for details.

One defines a non-degenerate, W -invariant, symmetric bilinear form on Ω⊗Z R,
which we express as (µ,ν). For α ∈ Φ , let wα ∈W denote the corresponding reflec-
tion. The elements ωi satisfying 2(ωj ,αi) = (αi ,αi)δij for 1 ≤ i, j ≤ n belong to Ω and
are called fundamental dominant weights, see Bourbaki (1968, Ch. VI, §1, no.10).
These form a Z-basis of Ω, so every ν ∈ Ω can be expressed in the form

∑
aiωi ,

for ai ∈ Z; the set of ν with a1, . . . , an ≥ 0 is denoted by Ω+, the set of dominant
weights. We set Ω+(V ) = Ω+ ∩Ω(V ), so Ω+(V ) is the set of dominant weights of V .
In what follows, we will regularly use so-called “Bourbaki weights”, when R(G) is
of type Ar−1,Br ,Cr or Dr , which are elements of a Z-lattice containing Ω with basis
ε1, ε2, . . . , εr ; the explicit expressions of the fundamental weights and the simple
roots of G in terms of εi ’s are given in Bourbaki (1968, Planches I – IV).

There is a standard partial ordering of elements of Ω: for µ,µ′ ∈ Ω we write
µ ≺ µ′ and µ′ ≻ µ if and only if µ , µ′ and µ′ − µ ∈ R+. (We write µ ⪯ µ′ and µ′ ⪰ µ
to allow µ = µ′.) If µ and µ′ are dominant weights such that µ′ ⪯ µ, we say µ′ is
subdominant to µ. For the notion of a minuscule weight see Bourbaki (1975, Ch. VIII,
§7.3), where they are tabulated. Every irreducible G-module has a unique weight
ω such that µ ≺ ω for every µ ∈Ω(V ) with µ , ω. This is called the highest weight
of V . There is a bijection between Ω+ and Irr(G), so for ω ∈Ω+ we denote by Vω
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the irreducible G-module with highest weight ω. Suppose that p > 0; a dominant
weight

∑
aiωi is called p-restricted if 0 ≤ ai < p for all i = 1, . . . ,n. For uniformity,

we often do not separate the cases with p = 0 and p > 0; by convention, when
p = 0, a p-restricted weight is simply a dominant weight. An irreducible G-module
is called p-restricted if its highest weight is p-restricted. For classical groups G,
that is, those with root system one of An, Bn, Cn or Dn, the module with highest
weight ω1 is called the natural module and the associated representation the natural
representation. (There is an exceptional case, when G = Bn and p = 2, where the
natural module is the Weyl module of highest weight ω1.)

The maximal height root of Φ(G) is denoted by ωa; this is the highest weight of
Lie(G) and affords a non-trivial composition factor of the adjoint module Lie(G).
The short root module for G of type Bn,Cn,F4, and G2 is the irreducible G-module
all of whose non-zero weights are short roots. This is unique, and the highest weight
of the short root module is maximal among short roots (with respect to ≺). An
irreducible G-module is called tensor-decomposable if it is a tensor product of two
or more non-trivial irreducible modules, similarly for representations.

If h : G→ G is a surjective algebraic group homomorphism and φ is a represen-
tation of G then the h-twist φh of φ is defined as the mapping g 7→ φ(h(g)) for g ∈ G.
Of fundamental importance is the Frobenius mapping Fr : G→ G arising from the
mapping x 7→ xp (x ∈ F) when p > 0. If V is a G-module and k a nonnegative integer,
then the modules V Frk are called Frobenius twists of V ; if V is irreducible with
highest weight ω then the highest weight of V Frk (for k ≥ 0) is pkω.

If p = 2, then for every n there is a surjective algebraic group homomorphism
Bn → Cn with trivial kernel (so this is an abstract group isomorphism); for our
purposes, the choice between these two groups is irrelevant, so we choose to work
with Cn when p = 2.

For the natural 2n-dimensional module M of the group Cn, n ≥ 2, a basis
{ei , fi | 1 ≤ i ≤ n} is called symplectic if {ei , fi} is a hyperbolic pair for all i and M is
the orthogonal direct sum of the spaces ⟨ei , fi⟩, 1 ≤ i ≤ n.

Finally, we will assume n ≥ 1 for An, n > 1 for Cn, n > 2 for G = Bn, and n > 3 for
Dn. For brevity we write G = An to say that G is a simple simply connected algebraic
group of type An, and similarly for the other types.

Preliminaries

Lemma 1 – Let M = M1 ⊗M2 be a Kronecker product of diagonal non-scalar matrices
M1,M2 of sizes m ≤ n, respectively. Suppose that M has almost simple spectrum. Then

(1) M1 and M2 have simple spectrum, and

(2) if Mi is similar to M−1
i for i = 1,2, then the eigenvalue multiplicities of M do not

exceed 2.
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Proof. (1) Suppose that M1 has an eigenvalue e, say, of multiplicity r > 1. Let b1,b2
be distinct eigenvalues of M2. Then eb1, eb2 are distinct eigenvalues of M, each of
multiplicity greater than 1. This implies the claim.

(2) Suppose the contrary, and let e be an eigenvalue of M of multiplicity at
least 3. By (1), M1 and M2 have simple spectra so e = aibi for i = 1,2,3 and some
(distinct) eigenvalues ai of M1 and bi of M2. Then e−1 = a−1

i b−1
i is an eigenvalue of

M, of the same multiplicity as that of e. As M has almost simple spectrum and is
similar to M−1 by hypothesis, we have e = e−1, so a1b2 = a−1

2 b−1
1 . If (a−1

2 ,b2) , (a1,b
−1
1 ),

then a1b2 is an eigenvalue of M of multiplicity at least 2 and so is equal to e. But
this then implies a1b2 = a1b1, contradicting that the bi are distinct. Hence a2 = a−1

1
and b2 = b−1

1 . Similarly, a1b3 = a−1
3 b−1

1 implies that a3 = a−1
1 and b3 = b−1

1 . But now
a2 = a3 contradicting that the ai are distinct. □

Definition 1 – Let V be a G-module and µ,ν ∈ Ω(V ), µ , ν. We say that s ∈ T
separates the weights µ and ν if µ(s) , ν(s). If this holds for every pair of distinct
weights µ,ν of V , we say that s separates the weights of V .

If s separates the weights of V then the eigenvalue multiplicities of s acting on
V are simply the weight multiplicities of V .

Lemma 2 – Let V be a non-trivial G-module. Let S ⊂ T be the set of all t ∈ T that
separate the weights of V . Then

(1) S is a nonempty Zariski open subset of T .

(2) Suppose that at most one weight of V has multiplicity greater than 1. Then, for all
s ∈ S, the spectrum of s is almost simple.

Proof. (1) Let µ,ν be weights of V , µ , ν. Then Tµ,ν := {x ∈ T | µ(x) = ν(x)} is a Zariski
closed subset Tµ,ν of T . The set of elements of T that do not separate some pair
of weights of V , being the finite union of all Tµ,ν , is a proper closed subset of T .
Moreover, S = T \ (∪Tµ,ν), and so (1) follows.

(2) Let s ∈ S, so that µ(s) , ν(s) whenever µ , ν are weights of V . Then the
eigenvalues of s on V are exactly µ(s), where µ runs over the weights of V , and the
multiplicity of µ(s) equals that of µ, giving (2). □

We will require the following characterization of regular semisimple elements.

Proposition 1 – Springer and Steinberg (1970, Ch. III, §1, Corollary 1.7) Let G, T be
as usual, and let s ∈ T . Then the following conditions are equivalent:

(1) s is regular;

(2) CG(s) consists of semisimple elements;

(3) for all α ∈ Φ(G), α(s) , 1;

(4) CG(s)◦ is a torus.
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Lemma 3 – Let V ,V1,V2 be non-trivial G-modules. Let s ∈ T \Z(G) have almost simple
spectrum on V.

(1) Suppose that V = V1 ⊗V2. Then all weights of V1 and V2 are of multiplicity 1,
and s is regular.

(2) Suppose that Ω(V1) +Ω(V2) = Ω(V ). Then s separates the weights of V1 and V2.

Proof. The first claim of (1) follows from Lemma 1. For the second assertion,
suppose that s is not regular. Then by Proposition 1, CG(s) contains a unipotent
element u , 1. As u stabilizes every eigenspace of s on V1, at least one of them is of
dimension greater than 1, contradicting Lemma 1(1).

(2) Suppose the contrary, that the weights of V1, say, are not separated by s,
so there exist distinct weights µ1,µ2 ∈ Ω(V1) such that µ1(s) = µ2(s). Then for
every λ,µ ∈Ω(V2), µi +λ,µi + µ ∈Ω(V ) for i = 1,2 and (µ1 +λ)(s) = (µ2 +λ)(s) and
(µ1 + µ)(s) = (µ2 + µ)(s). As s < Z(G), the spectrum of s on V is not almost simple,
a contradiction. □

With regards to applying Lemma 3(2), we note that Ω(V ) = Ω(V1) + Ω(V2) if
V = V1 ⊗V2. For certain choices of V ,V1,V2, and under certain conditions on p, we
may deduce that Ω(V ) = Ω(V1)+Ω(V2), for V different from V1⊗V2. See Lemma 4(2)
below.

We recall here some basic facts about the set of weights of irreducible represen-
tations of a simple algebraic group defined over a field of characteristic 0 (which are
derived from analogous statements about the weights of irreducible representations
of simple Lie algebras defined over C). Fixing a maximal torus TH of a simple
algebraic group H defined over C, and adopting the notation fixed earlier, so in
particular, writing W (H) for the Weyl group of H relative to TH , let λ be a dominant
TH -weight. Then the set of weights of the irreducible CH-module with highest
weight λ is precisely the set

{w(µ) | µ ∈Ω+,µ ⪯ λ,w ∈W (H)},

that is, the W (H)-conjugates of all weights which are subdominant to the highest
weight λ. From this one directly deduces the following facts:

(1) Let λ,µ ∈Ω+ and µ ≺ λ. Let Vλ, respectively Vµ, be the associated irreducible
CH-modules; then Ω(Vµ) ⊂Ω(Vλ).

(2) Bourbaki (1975, Ch. VIII, §7, Proposition 10) Let λ,µ ∈Ω+, with associated
irreducible CH-modules Vλ, Vµ; then Ω(Vλ+µ) = Ω(Vλ ⊗Vµ).

(3) Bourbaki (1975, Ch. VIII, §7, Propositions 4 and 6) Let λ ∈Ω+, λ , 0. If λ is
a radical weight, then some root is a weight of Vλ; otherwise Ω(Vλ) contains
some minuscule weight.
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We now return to the situation where the field F is of arbitrary characteristic.
We will use a fundamental result of Premet, which relies on the following definition
and notation.

Definition 2 – We set e(G) = 1 for G of type An,Dn, or En, e(G) = 2 for G of type
Bn,Cn, or F4, and e(G) = 3 for G of type G2.

Theorem 3 – Premet (1987, Theorem 1) Assume p = 0 or p > e(G). Let λ be a p-
restricted dominant weight. Then Ω(Vλ) = {w(µ) | µ ∈Ω+,µ ⪯ λ,w ∈W }.

An application of Theorem 3 and the preceding remarks now gives:

Lemma 4 – Assume p = 0 or p > e(G). Let λ,µ ∈Ω+, where λ is p-restricted, and let
Vλ, respectively, Vµ be the associated irreducible G-modules. Then the following hold.

(1) If µ ≺ λ then Ω(Vµ) ⊆Ω(Vλ).

(2) If λ+µ is p-restricted then Ω(Vλ+µ) = Ω(Vλ ⊗Vµ) = Ω(Vλ) +Ω(Vµ).

(3) If λ is a radical weight, then some root is a weight of Vλ; otherwise Ω(Vλ) contains
some minuscule weight.

For the following result we introduce an additional notation. Let Ψ ⊂ Φ be
a closed subsystem. Then we set G(Ψ ) to be the subgroup generated by the T -root
subgroups corresponding to roots in Ψ .

Theorem 4 – Suprunenko and A. E. Zalesski (2005, Theorem 1) Let G be a simple
algebraic group with root system Φ . If Φ is of type Bn, assume char(F) , 2. Let
R1,R2 ⊂ Φ be closed subsystems such that the subgroups G1 := G(R1) and G2 := G(R2)
are simple and [G1,G2] = 1. Let φ be an irreducible representation of G. Then one of the
following holds:

(1) φ|G1G2
contains a composition factor which is non-trivial for both G1 and G2;

(2) G is classical and φ is a Frobenius twist of either the natural representation or the
dual of the natural representation of G;

(3) G = Cn with p = 2, G = Bn with n > 2, or G = Dn with n ≥ 4, and φ is a Frobenius
twist of the irreducible representation of highest weight ωn, or one of ωn and ωn−1
if G = Dn.

The following lemma will allow us in some cases to reduce our analysis of
elements with almost simple spectrum to representations all of whose weights
occur with multiplicity one.

Lemma 5 – Let G be a simple algebraic group of rank greater than 1 and s ∈ T \Z(G).
Assume that p = 0 or p > e(G). Let µ , 0 be a p-restricted dominant weight.
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(1) Let µm be the minimal non-zero weight subdominant to µ. Assume that the
spectrum of s on Vµm is not almost simple. Then the following hold:

(i) if µ is not radical, then the spectrum of s on Vµ is not almost simple;

(ii) if µ is radical and the multiplicity of the weight 0 in Vµm is at most 1, then
the spectrum of s on Vµ is not almost simple;

(iii) if µ is radical and the multiplicity of the weight 0 on both Vµ and Vµm is
greater than 1, then the spectrum of s on Vµ is not almost simple;

(iv) if 0 ≺ µm ⪯ µ and s is non-regular, then the spectrum of s on Vµ is not almost
simple.

(2) Suppose that ωa ≺ µ, the multiplicity of the weight 0 in Vµ is greater than 1, and
the spectrum of s on Vωa

is not almost simple. Then the spectrum of s on Vµ is not
almost simple.

(3) Suppose that ωa ≺ µ, s is non-regular, and the spectrum of s on Vωa
is not almost

simple. Then the spectrum of s on Vµ is not almost simple.

Proof. By assumption, Theorem 3 applies, and we may apply Lemma 4. If µm is
non-radical, then all weight multiplicities of Vµm are well known to be equal to 1;
(i) follows. Together with the hypothesis in (ii) about the multiplicity of the zero
weight, we observe that if the spectrum of s on Vµm is not almost simple then there
are 4 distinct weights λ1,λ2,µ1,µ2 of Vµm such that λ1(s) = λ2(s) , µ1(s) = µ2(s).
Then Lemma 4(1) implies that these weights are weights of Vµ, and the result
follows.

In case (iii), µm is the maximal height short root and the multiplicity of any non-
zero weight in Vµm is equal to 1. Saying that the spectrum of s on Vµm is not almost
simple means that there exist weights λ1,λ2 of Vµm such that λ1(s) = λ2(s) , 1. As
these weights are weights of Vµ (again by Lemma 4(1)) and, by hypothesis, the
weight 0 occurs in Vµ with multiplicity greater than 1, the result follows.

(iv) As s is non-regular, there exists α ∈ Φ(G) such that ±α(s) = 1 (Proposition 1).
Since the spectrum of s on Vµm is not almost simple, there are distinct short roots
β,γ such that β(s) = γ(s) , 1. Then Lemma 4 implies that ±α,β,γ are weights of Vµ,
and the result follows.

For (2), first note that the multiplicity of the weight 0 in Vωa
is greater than 1

unless (G,p) = (A2,3) (here we again rely on the prime restrictions in the hypotheses).
This case is considered in (ii). In all other cases, saying that the spectrum of s on
Vωa

is not almost simple means that there are two roots α,β such that α(s) = β(s) , 1.
As the weights of Vωa

occur as weights of Vµ and the weight 0 occurs in Vµ with
multiplicity greater than 1, the result follows.

Finally, the case (3) follows as (iv) above, where one has to replace Vµm by Vωa

and “short roots” by “roots”. □
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We complete this section with a straightforward observation about the natural
modules for classical groups.

Lemma 6 – Let G be a classical type group and assume p , 2 when G is of type Bn. Let
V = Vω1

and s ∈ G be a non-central semisimple element.

(1) For G = An or Cn, if s is regular, then s has simple spectrum on V .

(2) Let G = Bn. Then s is regular if and only if the multiplicity of the eigenvalue −1
on V is at most 2 and the other eigenvalue multiplicities are equal to 1.

(3) Let G = Dn. Then s is regular if and only if the multiplicities of the eigenvalues 1
and −1 on V are at most 2 and the other eigenvalue multiplicities are equal to 1.
In addition, if the spectrum of s on V is not almost simple then that of s on Vω2

is
not almost simple.

(4) If s is regular then the spectrum of s on V is almost simple unless G = Dn, p , 2
and 1,−1 are eigenvalues of s on V, each of multiplicity 2.

Proof. (1) This is straightforward and well known.
For the remainder of the proof, we take T to be the maximal torus consisting

of the diagonal matrices in the image of the natural representation of G. We
now turn to (2) and the first statement of (3). Observe that Ω(V ) consists of the
weights ±εi , 1 ≤ i ≤ n, together with the weight 0 in case G = Bn. In addition, s
is regular if and only if α(s) , 1 for every root α. Set ai = εi(s) and recall that
Φ(Dn) = {±εi ± εj | 1 ≤ i < j ≤ n} and Φ(Bn) = {±εi ± εj ,±εr | 1 ≤ i < j ≤ n,1 ≤ r ≤ n}.
So s is regular if and only if ai , aj and ai , a

−1
j for every i , j, and if in addition,

for G = Bn, ai , 1 for all 1 ≤ i ≤ n. So if G = Bn, we see that s is regular if and only if
either all of the eigenvalues a±1

1 , a±1
2 , . . . , a±1

n are distinct and distinct from 1, or there
exists a unique i with ai = a−1

i . If ai = a−1
i = −1, then s is regular if and only if all

eigenvalues of s on V different from −1 occur with multiplicity 1, and −1 occurs
with multiplicity at most 2. Now if G = Dn, then s is regular only if a±1

1 , . . . , a±1
n

are distinct or there exists 1 ≤ i ≤ n such that ai = a−1
i , so ai ∈ {1,−1}. In the latter

case, s is regular if and only if all eigenvalues distinct from 1 and −1 occur with
multiplicity 1 and each eigenvalue ai ∈ {1,−1} occurs with multiplicity at most 2, as
claimed.

For the final statement of (3), let G = Dn and suppose that the spectrum of s
on V is not almost simple. Then, without loss of generality, we may assume ai = aj
for some 1 ≤ i , j ≤ n. Then (εi −εk)(s) = (εj −εk)(s) and (−εi −εk)(s) = (−εj −εk)(s) for
every k , i, j. Recall that the non-zero weights of Vω2

are the roots in Φ(G), and the
zero weight occurs with multiplicity at least 2. Assume for a contradiction that the
spectrum of s on Vω2

is almost simple. Then (εi − εk)(s) = (εj − εk)(s) = (−εi − εk)(s) =
(−εj − εk)(s) = 1, whence −εi(s) = εi(s) = εk(s) for all 1 ≤ k ≤ n. As s < Z(G), we get
a contradiction.

(4) This follows from (1), (2) and (3). □
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1 Reduction theorem, and proof of Theorem 1

For an abelian group S, let Irr(S) denote the set of irreducible F-linear representa-
tions of S and write 1S for the trivial representation. For V a finite-dimensional
F-vector space, and S ⊂GL(V ) an abelian subgroup, and η ∈ Irr(S), set VS (η) = {v ∈
V : sv = η(s)v for all s ∈ S}. If VS(η) , {0}, we say η is an S-weight of V and we call
VS (η) the η-weight space for S. As throughout G is a simple algebraic group defined
over F and T ⊂ G is a maximal torus of G. If V is a rational G-module then V is
a direct sum of T -weight spaces and for any subgroup S ⊆ T , these weight spaces
are S-invariant. Thus for η ∈ Irr(S), VS(η) is a sum of T -weight spaces of V . We
establish here a result about such subgroups S of T , and later will apply this to the
case where S is the subgroup generated by an element s ∈ T .

Recall (see for instance Malle and D. Testerman (2011, §7)) that for any rational
representation ρ : G→ GL(V ), we have a corresponding representation of Lie(G),
namely dρ : Lie(G)→ Lie(GL(V )). For g ∈ G, let tg : G → G denote the automor-
phism induced by conjugation by g. Then using the basic definitions and properties
of the differential, we have that tρ(g) ◦ ρ = ρ ◦ tg and so

Ad(ρ(g)) ◦ dρ = dρ ◦Ad(g).

Theorem 5 (Reduction theorem) – Let G be a simple algebraic group, T a maximal
torus of G, and S ⊆ T a subgroup such that CG(S) , G. Let V be an irreducible G-
module with p-restricted highest weight. Let VS (η) be an S-weight space of V , for some
η ∈ Irr(S). Suppose that dimVS (η) = k > 1 and that all other S-weight spaces on V are
of dimension 1. Then all non-zero T -weights of V are of multiplicity 1.

Proof. Set E = VS (η). For µ ∈Ω(V ), write Mµ for the T -weight space of V associated
to µ. Suppose that dimMµ ≥ 2, for some µ ∈ Ω(V ). Then Mµ ⊂ E. As dimMµ =
dimMw(µ) for any w ∈W , we necessarily have Mw(µ) ⊂ E. Now let ρ : G→ GL(V )
be the corresponding rational representation of G. For a root α ∈ Φ , α induces
a 1-dimensional representation λα of the group S.

Consider first the case where λα , 1S , for all α ∈ Φ . Recall the notation Xα ∈
Lie(G), a root vector associated to the root α, a fixed element which spans the Lie
algebra of the associated root group. Then dρ(Xα)E ⊂ VS (ηλα). Since ηλα , η, this
latter S-weight space is of dimension at most 1. Hence Kα := ker((dρ(Xα)) |E) is
of dimension at least k − 1. Setting K1 = ∩α∈±ΠKα , we see that K1 ⊂ V is a proper
Lie(G)-submodule on which Lie(G) acts trivially. But by Curtis (1960), V is an
irreducible Lie(G)-module, and so K1 = {0}. Therefore, k = dimE ≤ 2n, where n is
the rank of G. We can now show that µ = 0; for otherwise the W -orbit of µ is of
length at least n+1 (the exact values are in A. E. Zalesski (2009, Table 1)). Therefore,
dim

∑
w∈W Mw(µ) ≥ 2(n+ 1), which is a contradiction.

Consider now the case where there exists α ∈ Φ such that λα = 1S . Set M ′ :=∑
w∈W Mw(µ), so that M ′ ⊆ E. Let R0 = {α ∈ Φ : λα = 1S }, R2 = Φ \R0. Since S is non-

central, R0 , Φ and R2 , ∅. Let R1 be the set of roots α such that dim(dρ(Xα)M ′) ≤ 1.

195



Spectra of non-regular elements D. M. Testerman and A. Zalesski

By the considerations of the first case above, R2 ⊆ R1. Moreover, we claim that R1 is
W -stable. Indeed for w ∈W , choose ẇ ∈NG(T ) such that w = ẇT . Then

ρ(ẇ)dρ(Xα)M ′ = ρ(ẇ)dρ(Xα)ρ(ẇ)−1ρ(ẇ)M ′ = Ad(ρ(ẇ))(dρ(Xα))M ′ .

By the remarks preceding the statement of the result, this latter is equal to

dρ(Ad(ẇ)Xα)M ′ = dρ(Xw(α))M
′

and since dim(ρ(ẇ)(dρ(Xα)M ′)) = dim(dρ(Xα)M ′), we have the claim. Now, if all
roots of Φ are of the same length then R1 = Φ , and we conclude as in the first case.

Hence we may assume that Φ has two root lengths and that the roots of R1 are
of a single length. Note that R0 = −R0 and β,γ ∈ R0 implies β + γ ∈ R0 provided
β +γ is a root. This implies (see for example Malle and D. Testerman (2011, B.14))
that R0 is a root system, that is, R0 is a closed subsystem of Φ . Moreover, R0 is of
maximal rank (equal to the rank of Φ) as otherwise, by Malle and D. Testerman
(2011, B.18), R0 lies in some subsystem corresponding to a proper subset of Π, in
which case R2, and so R1 has roots of both lengths. So R0 is a subsystem of maximal
rank, and by the classification of such, Malle and D. Testerman (2011, B.18), one
checks that in every case Φ \R0 = R2 again contains roots of both lengths and we
conclude as above. □

Remark 1 – If ω = pkω′ , with ω′ p-restricted, then the weights of Vω are pkµ for µ
a weight of Vω′ . Then pkµ(s) = µ(sp

k
). As the mapping x 7→ xp for x ∈ F is bijective

on F, the spectrum of s on Vω is almost simple if and only if the spectrum of s on
Vω′ is almost simple.

We now take S to be generated by a single element s ∈ T and consider the case
of tensor-decomposable irreducible representations.

Lemma 7 – Let s ∈ T be a non-central element. Let ω be a dominant weight which is
not p-restricted and not of the form pkµ for µ a p-restricted weight. Suppose that the
spectrum of s on Vω is almost simple. Then all weights of Vω are of multiplicity 1.

Proof. By Steinberg’s tensor product theorem, Vω = Vpk1µ1
⊗Vpk2µ2

⊗· · ·⊗Vpktµt
, where

t > 1 and µ1, . . . ,µk are non-zero p-restricted weights and (k1, . . . , kt) are distinct non-
negative integers. Then Lemma 3 implies that the spectrum of s on each tensor
factor is simple so the weights of each tensor factor have multiplicity 1. Furthermore,
Zalesskii and Suprunenko (1987, Proposition 2) implies that the weights of Vω are
of multiplicity 1 unless there exists 1 ≤ j < t such that kj+1 = kj + 1 and one of the
following holds:

(i) G = Cn, p = 2, µj = ωn, µj+1 = ω1;

(ii) G = G2, p = 2, µj = ω1, µj+1 = ω1;

(iii) G = G2, p = 3, µj = ω2, µj+1 = ω1.
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Moreover, in each of the cases (i), (ii) and (iii), the module Vµj ⊗ Vpµj+1
has

a weight of multiplicity greater than 1. Hence if one of the three cases occurs,
we deduce that t = 2 and so we can also assume that j = 1 and k1 = 0, that is,
Vω = Vµ1

⊗Vpµ2
. We consider the above cases in detail.

Case (i): Take T to be the set of diagonal matrices in the image of the natural
representation of G. Here Ω(Vωn

) = {±ε1 ± · · · ± εn} and Ω(V2ω1
) = {±2ε1, . . . ,±2εn}.

(As usual, we have adopted the notation of Bourbaki (1968, Planche III).) Let ν
be a weight of Vωn

with positive signs of both εi and εj , for some 1 ≤ i, j ≤ n, i , j.
As ν − 2εi and ν − 2εj are weights of Vωn

, it follows that ν is also a weight of Vω
with multiplicity at least 2. This remains true for weights where both εi and εj
have coefficient −1 or have opposite coefficients. It follows that the restriction
of Vωn+2ω1

to T contains a direct sum of at least two copies of Vωn
|T . Therefore,

every eigenvalue of s on Vωn
is also an eigenvalue of s on Vωn+2ω1

, and occurs with
multiplicity at least 2. So this case is ruled out as the spectrum of s on Vωn

is simple.
Case (ii): Here the weights of Vω1

are the short roots of Φ , and the following
weights occur with multiplicity 2 in Vω: 3α1 +α2, 3α1 + 2α2. Since the spectrum of
s on Vω is almost simple, these roots must all take equal value on s. In particular,
α2(s) = 1. But now the eigenvalue 5α1(s) occurs with multiplicity 2 as well as 3α1(s),
implying that α1(s) = 1 as well, contradicting the fact that s is non-central.

Case (iii): This case is similar. Here the weights of Vω2
are the long roots of Φ

and the zero weight, and the weights of Vω1
are the short roots and the zero weight.

We find that each of the weights 3α1 + α2 and α2 occur with multiplicity 2, and
deduce that α1(s) = 1. But now the eigenvalue α2(s) occurs with multiplicity greater
than 1, as well as the eigenvalue 1, and so α2(s) = 1 as well, again contradicting s
non-central. □

Proof (of Theorem 1). Using Lemma 2, we see that assertion (1) follows from as-
sertion (2). We apply Theorem 5, Remark 1 and Lemma 7 to obtain the reverse
implication. □

2 Commuting subgroups and a partial proof
of Theorem 2

An essential element of our proof of Theorem 2 is an application of Theorem 4,
which allows us to treat many of the groups and representations in a uniform way.
(See Proposition 2 below.) Let s ∈ G be a non-regular semisimple element. In order
to apply Theorem 4, we need to find a pair of subsystem subgroups K,Y such that
[K,Y ] = 1, [K,s] = 1 and [s,Y ] , 1. For technical reasons, it will suffice to do this for
groups other than Bn,Dn, and G2.

Lemma 8 – Let G = SLn(F), n > 3, and let s ∈ T \ Z(G) be a non-regular element.
Then there are simple subsystem subgroups K,Y , normalized by T , such that [K,Y ] = 1,
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[K,s] = 1 and [s,Y ] , 1, unless n = 4 and, up to conjugacy in G, s = diag(a,a,a−1, a−1)
or s = diag(a,a,−a−1,−a−1), for some a ∈ F×.

Proof. We take T to be the torus of diagonal matrices in G. As s is non-regular and
non-central, we may assume that s = diag(b,b,a3, . . . , an), where a3 , b. Suppose
first that a3 , ai for some i > 3. Set K = diag(SL2(F), Idn−2), Y = diag(Id2,SLn−2(F)).
Next, suppose a3 = · · · = an. If n > 4 then we can take Y = diag(1,SL2(F), Idn−3)
and K = diag(Idn−2,SL2(F)). If n = 4, then s = diag(b,b,a,a) and b2a2 = 1, whence
b = ±a−1. □

Remark 2 – If G = SL4(F), and s = diag(λ,λ,λ−1,λ−1) or s = diag(λ,λ,−λ−1,−λ−1),
for λ ∈ F, λ4 , 1, then s is non-regular, non-central, and it is impossible to find
a pair of commuting subsystem subgroups K , Y such that [s,K] = 1 and [s,Y ] , 1.
Moreover, the Jordan form of s on the exterior square of the natural 4-dimensional
module is diag(λ2,λ−2,1,1,1,1), which is non-central with almost simple spectrum.

Lemma 9 – Let G = Cn, n > 1, and let s ∈ T \Z(G) be a non-regular element. Then there
are simple subsystem subgroups K , Y of G, normalized by T , such that [K,Y ] = 1, [K,s] =
1 and [s,Y ] , 1, unless n = 2 and with respect to an ordered symplectic basis (e1, f1, e2, f2)
of Vω1

, the Jordan form of s on the natural G-module is either diag(a,a−1, a,a−1), for
±1 , a ∈ F, or s = ±diag(1,1,−1,−1), for p , 2.

Proof. The group G = Cn = Sp2n(F) contains a maximal rank subsystem subgroup
H isomorphic to Sp2(F)× · · · × Sp2(F), so every semisimple element is conjugate to
an element of H . Therefore, we can write the matrix of s with respect to a suitable
basis of the natural G-module Vω1

as diag(a1, a
−1
1 , . . . , an, a

−1
n ) for some a1, . . . , an ∈ F.

By Lemma 6, the diagonal entries of s are not distinct. Hence either ai = ±1 for
some i ∈ {1, . . . ,n}, or, replacing some ai by a−1

i , we can assume that ai = aj for some
1 ≤ i < j ≤ n.

Suppose first that ai = ±1 for some i ∈ {1, . . . ,n} and assume without loss of
generality that i = 1. If there exists j such that aj , ±1, we can assume j = n and then
take K = diag(Sp2(F), Id2n−2), Y = diag(Id2n−2,Sp2(F)). Otherwise, s2 = 1 and p , 2.
We can reorder a1, . . . , an so that a1 , a2, and if n > 2 we take Y = diag(Sp4(F), Id2n−4),
K = diag(Id2n−2,Sp2(F)). If n = 2, s2 = 1 and p , 2, such a choice is not possible and
we have s as in the final statement.

Now suppose that ai , ±1 for all i ∈ {1, . . . ,n}, so there exists 1 ≤ i < j ≤ n such
that ai = aj . In this case, there exists a 2-dimensional totally isotropic subspace of the
underlying 2n-dimensional symplectic space on which s acts as scalar multiplication.
If n > 2, then s is contained in a Levi subgroup L = L1 ×L2 of G, where L1 �GL2(F)
and L2 � Sp2n−4(F). Moreover [s,L1] = 1, so we can take K = L1, Y = L2. If n = 2 then
s = diag(a,a−1, a,a−1) as in the statement of the result. □

Lemma 10 – Let G ∈ {E6,E7,E8,F4}. Let s ∈ T \Z(G) be a non-regular element. Then
there exist simple subsystem subgroups K , Y , normalized by T , such that K is of type A1,
[K,Y ] = 1, [K,s] = 1, [s,Y ] , 1.
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Proof. As s is not regular, CG(s) contains root subgroups U±α for some root α ∈ Φ .
Clearly, we can assume α to be a simple root. Moreover, we can assume that α = α1
if G , F4, otherwise, that α = α1 or α4.

Denote by Rα the set of roots orthogonal to α, and observe that Rα is not empty.
Set Y = ⟨U±β : β ∈ Rα⟩ and K = ⟨U±α⟩. Then [Y ,K] = 1 and [K,s] = 1. If [Y ,s] , 1,
replacing Y by a suitable simple subgroup of Y , we are done.

We now assume [s,Uβ] = 1 for all β ∈ Rα . In this situation, as s is non-central,
[s,Uγ ] , 1 for some simple root adjacent to α in the Dynkin diagram. Moreover,
the Dynkin diagram of the above groups contains a node β, not adjacent to each of
α,γ . In particular, β ∈ Rα and so [s,Uβ] = 1, while [s,Uγ ] , 1. So now we can take
K = ⟨U±β⟩ and Y = ⟨U±γ⟩.

This completes the proof. □

We now apply the previous three lemmas and Theorem 4 to establish Theorem 2
for certain groups.

Proposition 2 – Let G be of type An for n > 3, Cn for n > 2, or of type F4,E6,E7, or E8.
Let V be a non-trivial irreducible G-module and s ∈ T \Z(G). Suppose that the spectrum
of s on V is almost simple. Then one of the following holds:

(1) s is regular,

(2) G = Cn with p = 2 and the highest weight of V is 2mωn, or

(3) G is classical and V is a Frobenius twist of the natural or the dual of the natural
module for G.

Proof. Suppose that s is not regular. By Lemma 8 for An, Lemma 9 for Cn, and
Lemma 10 for the other groups in the statement, there are simple subsystem sub-
groups K , Y , normalized by T , such that [K,Y ] = 1, [K,s] = 1 and [Y ,s] , 1. Then
we apply Theorem 4 to K , Y in place of G(R1),G(R2) to conclude that either (2) or
(3) holds or there is a KY -composition factor M of V afforded by an irreducible
representation τ of KY , such that τ is non-trivial on both K and Y . So we assume
neither (2) nor (3) holds, so we are in the latter situation, and aim for a contradiction.

We first note that T Y = Y ·Z(T Y ), as Y is simple. Therefore, as s ∈ T , s = s1sY
for some s1 ∈ Z(T Y ) ⊂ T and sY ∈ (T ∩ Y ). As [s,K] = 1 and [Y ,K] = 1, we have
[s1,K] = 1 and [s1,Y K] = 1. Also, as [s,Y ] , 1, we have [sY ,Y ] , 1.

Now M is a direct sum of eigenspaces for s1. It follows that τ is realized in one
of the s1-eigenspaces M1, say, and hence the spectrum of s on M1 is almost simple if
and only if that of sY on M1 is almost simple. Therefore, it suffices to show that the
spectrum of τ(sY ) is not almost simple.

Now τ = τK ⊗ τY , where τK , τY are non-trivial irreducible representations
of K , Y , respectively. As [sY ,Y ] , 1, there are at least two distinct sY -eigenspaces
on the representation space corresponding to τY , each of them is of dimension at

199



Spectra of non-regular elements D. M. Testerman and A. Zalesski

least 2 as τK (K) acts on each eigenspace and all τK (K) composition factors of M are
of dimension strictly greater than 1. Hence, the spectrum of sY on M is not almost
simple, giving the desired contradiction. □

Remark 3 – (1) Let G = C2, p odd. If s is not as described in the exceptional cases
of Lemma 9, then the conclusion of Proposition 2 remains valid.

(2) Note that the irreducible representation of G = C2 with highest weight
ω2 induces an isomorphism between PSp4(F) and SO5(F), and the element s =
±diag(1,1,−1,−1) in Lemma 9 acts as diag(1,−1,−1,−1,−1), hence has almost simple
spectrum. Similarly, the element s = diag(a,a−1, a,a−1) acts as diag(a2,1,1,1, a−2),
which has almost simple spectrum provided a2 , ±1.

(3) In view of Lemma 3 and Proposition 2, to complete the proof of Theorem 2, it
remains to consider p-restricted representations (of highest weight λ) of the groups
Bn for n > 2, Dn for n > 3, Cn for p = 2 and λ = ωn, and the small rank groups A2,
A3, C2, and G2. We will handle the small rank groups in Section 4.1 and complete
the proof in Section 4.2 by dealing with the remaining groups.

3 Weight levels

Recall we have Ω =
∑n

i=1Zωi , the weight lattice associated with Φ , and Ω+ the set
of dominant weights in Ω. In this section we establish some results on Ω in view of
applying the results in Section 2. Recall that a weight is radical if it is an integral
linear combination of roots. The irreducible G-module whose highest weight is the
maximal height short root is called the short root module. If all weights are of the
same length then any root is regarded as short, and the short root module is Vωa

.

Definition 3 – Let

Λ1 = {µ ∈Ω+ | if ν ⪯ µ for some ν ∈Ω+ then µ = ν }.

For i > 1, let

Λi = {µ ∈Ω+ ,µ <Λ1 ∪ · · · ∪Λi−1 | if ν ≺ µ for some ν ∈Ω+

then ν ∈Λ1 ∪ · · · ∪Λi−1}.

The elements of Λi are called weights of level i.

Lemma 11 – Assume p = 0 or p > e(G). Let ω , 0 be a p-restricted dominant weight
for G. If ω < Λ1 ∪ · · · ∪Λi for some i > 0, then there are weights ν1, . . . ,νi of Vω such
that νj ∈ Λj for j = 1, . . . , i. In addition, the weights of Vνj occur as weights of Vω, for
1 ≤ j ≤ i.

Proof. This follows from the definition of Λj and Lemma 4. □
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We conclude this section with some precise information about weights of level 1
or 2, and radical weights of level 3, for certain root systems.

Lemma 12 – The sets Λ1 and Λ2 for the root systems of types An, Bn, Cn and Dn are as
in Table 1. In addition, we have

(1) for Φ = Bn, n > 2, ω2 is the only radical weight in Λ3;

(2) for Φ = Cn, n > 3, 2ω1,ω4 are the only radical weights in Λ3;

(3) for Φ = C2 or C3, 2ω1 is the only radical weight in Λ3.

Φ Λ1 Λ2

An,n ≥ 1 0,ω1, . . . ,ωn 2ω1,2ωn,ω1 +ωn,ω1 +ωi ,ωi +ωn, i = 2, . . . ,n− 1

Bn,n ≥ 3 0,ωn ω1,ω1 +ωn

Cn,n > 2 0,ω1 ω2,ω3

C2 0,ω1 ω2,ω1 +ω2

Dn,n > 4 0,ω1,ωn−1,ωn ω2,ω3,ω1 +ωn−1,ω1 +ωn

D4 0,ω1,ω3,ω4 ω2,ω1 +ω3,ω1 +ω4,ω3 +ω4

Table 1 – Weights in Λ1, Λ2

Proof. By Lemma 4(3), Λ1 consists of minuscule weights and the weight 0, justifying
the entries in the column headed Λ1 of the table. Furthermore, Λ2 contains a unique
radical weight, which is the maximal short root (see for instance Suprunenko and
A. E. Zalesski (2007, Proposition 10)).

Let now ω =
∑
aiωi ∈ Λ2 be a non-radical weight. Suppose that ai ≥ 2 for

some i. Then ω′ = ω −αi ∈Ω+, so ω′ ∈ Λ1. Inspecting Λ1 and the expressions of
simple roots in terms of fundamental dominant weights, we observe that ω′ +αi
(for ω′ ∈Λ1) is dominant only if Φ is of type An and ω ∈ {2ω1,2ωn}; furthermore, it
is straightforward to see that in this latter case, we have 2ω1,2ωn ∈Λ2. So we can
assume that ai ≤ 1 for all i. Next we proceed case-by-case, still assuming ω ∈ Λ2
a non-radical weight.

Consider first the case where Φ = An. If n = 1,2 then the result is clear, so assume
now n > 2. Note that ωi +ωj ≻ωi−1 +ωj+1 for 1 ≤ i < j ≤ n as ωi +ωj −ωi−1 −ωj+1 =
αi + · · ·+αj . (Here ω0 and ωn+1 are understood to be zero.) So if ai , aj , 0 for some
i , j, then ω = ω′ +ωi−1 +ωj+1 with ω′ ∈Λ1. Using the same reasoning for different
pairs of non-zero coefficients, we see that either i = 1 and ω′ = ω1 or j = n and
ω′ = ωn. Finally, one observes that no weight obtained is subdominant to another
one. So Λ2 is as in the table. This completes the consideration of Φ = An.
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For Φ , An, the argument differs, as some fundamental dominant weights are
radical. Recall that ω =

∑
aiωi ∈Λ2 is a non-radical weight and we have seen that

ai ≤ 1 for all i. If ωi is a radical weight and ai > 0, then ω −ωi is subdominant to
the weight ω, and hence 0 , ω −ωi ∈ Λ1. So ω = ν + ωi , for some ν ∈ Λ1, ν , 0.
Moreover, ωi = µ, where µ is the maximal height short root, as otherwise ν + µ is
subdominant to ω and ω <Λ2. So either ω = ν +µ, for some ν ∈Λ1, or ai = 0 for all
i such that ωi is radical. For each root system, we determine when ν +µ lies in Λ2.

Consider the case Φ = Bn, n ≥ 3. Following the notation of the previous para-
graph, we have ν = ωn, µ = ω1. Moreover, ωi is radical for every i < n. So ω ∈ Λ2
non-radical implies that ω = ω1+ωn. It is straightforward to verify that ω1+ωn ∈Λ2.
We deduce that Λ2 = {ω1,ω1 + ωn}. For the claim of (1), let ω ∈ Λ3 be a radical
weight. If ai ≥ 2 for some i, then ω −αi is a radical dominant weight which must
lie in Λ2. We deduce that ω − αi = ω1 and we find that n = 2, contradicting our
hypothesis; so we may now assume ai ≤ 1 for all i. In particular, as ω is radical,
an = 0. In addition, ωi = ωi−1 + αi + · · · + αn, see Bourbaki (1968, Planche II), i.e.
ωi−1 ≺ωi . So ω ∈Λ3 then implies that ω = ω2.

Consider now the case Φ = Cn, for n ≥ 2. If ai , 0 or some i such that ωi is
radical (as above), we find that ν = ω1, µ = ω2. In this case µ + ν = ω1 + ω2. But
ω1 + ω2 − α1 − α2 is subdominant to ω and lies in Λ1 only if n = 2. We may now
assume ai = 0 if ωi is radical, so ai = 0 for i even. Also by the preliminary remarks,
ai ≤ 1 for all i. It is easy to observe that ωi ≻ωi−2 for i > 1, which implies the result
on Λ2. We now turn to the claims of (2) and (3), so let ω ∈Λ3 be a radical weight.
If ai ≥ 2 for some i, then ω −αi ∈ Λ2 if only if ω = 2ω1. So we now assume ai ≤ 1
for all i. Let 1 ≤ i ≤ n be maximal such that ai = 1. Since the dominant weight
ω−ωi +ωi−2 ≺ω must lie in Λ1 ∪Λ2 and is a radical weight, we find that n ≥ 4 and
ω = ω4. Finally, one checks that ω4 lies in Λ3.

Finally consider the case Φ = Dn, n ≥ 4. Here, in the case where ai , 0 for some
i with ωi radical, we have (in the previously defined notation) ν ∈ {ω1,ωn−1,ωn}
and µ = ω2, so µ + ν ∈ {ω1 + ω2,ω2 + ωn−1,ω2 + ωn}. Now ω2 + ωn ≻ ω1 + ωn−1 <
Λ1 and ω2 + ωn−1 ≻ ω1 + ωn < Λ1 so ω2 + ωn,ω2 + ωn−1 < Λ2. Furthermore, as
ω1 + ω2 − α1 − α2 = ω3 + δn,4ω4, it follows that ω1 + ω2 < Λ2. So we now assume
that ai = 0 for all i such that ωi is radical, that is, ai = 0 if i < n− 1 is even and as
established earlier aj ≤ 1 for all j. Moreover, there are at most two aj which are
non-zero, as otherwise there exists β ∈ Φ with ω − β dominant and not lying in Λ1.
Suppose ai = 1 for some (odd) i < n−1. Then ω−(ωi−ωi−2) ≺ω must lie in Λ1 and so
i = 3. So finally, recalling that ω is non-radical we have ω ∈ {ω3(n > 4),ω3 +ωn−1(n >
4),ω3 + ωn(n > 4),ω1 + ωn,ω1 + ωn−1,ωn−1 + ωn}. It is straightforward to see that
ω3(n > 4),ω1 +ωn−1 and ω1 +ωn all lie in Λ2. In addition, ωn−1 +ωn ≻ωn−3, and the
latter lies in Λ1 if and only if n = 4. So it remains to show that ω3+ωn,ω3+ωn−1 <Λ2
for n > 4. This is clear since ω2 +ωn−1, respectively ω2 +ωn, is subdominant to the
given weight and does not lie in Λ1. □
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4 Proof of Theorem 2

In this section, we prove Theorem 2, so in particular we are concerned with the
action of non-central non-regular semisimple elements on certain specific represen-
tations (as shown by Theorem 1). As noted earlier, in remark 3(3), we must handle
some small rank groups as well as the groups Bn, Dn, and Cn when p = 2 and for
certain highest weights; we do this in two separate subsections.

4.1 Groups of small rank

Lemma 13 – Let G = A2 and let s ∈ T \Z(G) be a non-regular element. Let V = Vω be
the irreducible G-module of p-restricted highest weight ω , 0. Then the spectrum of s on
Vω is almost simple if and only if ω = ω1 or ω2.

Proof. We take T to be the torus of diagonal matrices in SL3(F). Since s is non-
regular non-central, with respect to an appropriate choice of basis of Vω1

, we may
assume s = diag(a,a,a−2), for some a ∈ F× with a3 , 1. Clearly the spectrum of s
on Vω1

and Vω2
is indeed almost simple. So we now assume ω < {0,ω1,ω2}. In

particular, Lemma 12 implies ω <Λ1 and by Lemmas 11 and 12, Ω(Vω) has some
weight from Λ2 = {ω1 +ω2,2ω1,2ω2}.

Suppose first that ω = 2ω1, and so p , 2. The weights of Vω1
are {ε1, ε2, ε3}, so

the weights of Vω1
⊗Vω1

are 2ε1,2ε2,2ε3, ε1 +ε2, ε1 +ε3, ε2 +ε3, which by Lemma 4(2)
coincide with the weights of Vω. Now, 2ε1(s) = 2ε2(s) = a2, and (ε1 + ε3)(s) =
(ε2 + ε3)(s) = a−1. As a3 , 1, the eigenvalues a2, a−1 are distinct, so the spectrum of s
on V2ω1

is not almost simple, as claimed. Since V2ω2
is dual to V2ω1

, the spectrum
of s on V2ω2

is not almost simple as well.
Suppose now that ω = ω1 +ω2. Then the weights of Vω are the roots and the zero

weight. Then (α1+α2)(s) = α2(s) = (ε2−ε3)(s) = a3 , 1 and −(α1+α2)(s) = −α2(s) = a−3.
If p , 3, the eigenvalue 1 is also of multiplicity 2, and we are done. If p = 3 and
a3 , a−3 then we are done as well. So suppose p = 3 and a6 = 1 and hence a3 = −1,
that is a = −1. Note that ±α2(s) = −1 and ±α1(s) = 1, so the result also follows in this
case.

We now appeal to Lemma 11 to conclude. □

Lemma 14 – Let G = A3 and let s ∈ T \Z(G) be a non-regular element. Let V = Vω be
the irreducible G-module of p-restricted highest weight ω , 0. If the spectrum of s on
V is almost simple, then either ω = ω1 or ω3, or ω = ω2 and there exists a ∈ F×, a4 , 1
such that with respect to a suitably chosen basis, s = diag(a,a,±a−1,±a−1).

Proof. Without loss of generality, we take T to be the set of diagonal matrices in
SL4(F). We may assume s = diag(a,a,b,c) for some a,b,c ∈ F such that a2bc = 1.
Fix the base of Φ such that αi(diag(a1, a2, a3, a4)) = aia

−1
i+1 for 1 ≤ i ≤ 3; in par-

ticular α1(s) = 1. It is clear that if a2b2 , 1 then s has almost simple spectrum
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on Vω1
and on Vω3

. If ω = ω2, then the matrix of s on V is conjugate to s1 =
diag(a2, a−2, ab,ab, (ab)−1, (ab)−1), so the spectrum of s is almost simple only if b =
±a−1 and a4 , 1, and the result easily follows.

Now consider the general case, where ω < {ω1,ω2,ω3}. Assume s has almost
simple spectrum on Vω. Factor s as

s = diag(aγ,aγ,a−2γ−2,1) ·diag(γ−1,γ−1,γ−1, c),

where γ,c ∈ F× with γ3 = c. Then viewing s as lying in the maximal parabolic
P = LQ, Q = Ru(P ), corresponding to the root α3, we see that the second factor
acts as a scalar on the fixed point space V Q

ω . Hence the eigenvalue multiplicities
of s on this fixed point space are determined by those of the first factor. We now
apply Lemma 13 to the element h = diag(γa,γa, (γa)−2) and the weight ω ↓ L′,
which is the highest weight of the irreducible L′-module V Q

ω . In addition, we apply
Lemma 13 to (V ∗ω)Q. By Lemma 13, the only p-restricted irreducible representations
of SL3(F) on which h has an almost simple spectrum are the natural representation
and its dual. Writing ω = m1ω1 +m2ω2 +m3ω3, we deduce that (m1,m2), (m2,m3) ∈
{(0,0), (1,0), (0,1)}. We are therefore reduced to considering the case ω = ω1 +ω3,
(a quotient of) the adjoint representation. The multiplicity of the weight 0 is at
least 2 and α1(s) = 1. Therefore, (α1 +α2)(s) = α2(s), so α2(s) = 1 as well. But then
(α2 +α3)(s) = α3(s) , 1, as s is non-central; hence s is not almost cyclic on Vω1+ω3

.□

Lemma 15 – Let G = C2, p = 2, and let ω be a non-zero 2-restricted dominant weight.
Let s ∈ T be a non-regular element. Suppose that the spectrum of s on Vω is almost
simple. Then ω ∈ {ω1,ω2} and the spectrum of s is almost simple on precisely one of the
modules Vω1

and Vω2
. Assume moreover that T is the torus of diagonal matrices in the

group Sp4(F), written with respect to a fixed symplectic basis (e1, e2, f2, f1) of the natural
module Vω1

. Let g ∈ T be non-regular. If the spectrum of g on Vω1
is almost simple then,

up to conjugacy, ε1(g) = a, ε2(g) = 1 for 1 , a ∈ F×; if the spectrum of g on Vω2
is almost

simple then, up to conjugacy ε1(g) = ε2(g) = a for 1 , a ∈ F×.

Proof. As ω is 2-restricted, if ω < {ω1,ω2} then ω = ω1 +ω2, and Steinberg (2016,
§12, Corollary of Theorem 41) implies that Vω = Vω1

⊗ Vω2
. By Lemma 3, the

spectrum of s is simple on Vω1
, and hence s is regular, contradicting our hypothesis.

One easily verifies the validity of the additional assertions. □

Lemma 16 – Let G = C2, p , 2, and fix an ordered symplectic basis (e1, e2, f2, f1) of the
natural module of G and let T be the torus of diagonal matrices of G in the natural
representation. Let s ∈ T \Z(G) be a non-regular element and let Vω ∈ Irr(G) be a non-
trivial p-restricted G-module. Then s has almost simple spectrum on Vω if and only if
one of the following holds:

(i) ω = ω1, and up to conjugacy, ε1(s) = 1, ε2(s) = a or ε1(s) = −1, ε2(s) = a, where
a ∈ F×, a2 , 1;

(ii) ω = ω2, and up to conjugacy, ε1(s) = 1, ε2(s) = −1 or ε1(s) = ε2(s) = a, where
a ∈ F×, a2 , ±1.
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Proof. Let ε1(s) = b, ε2(s) = a, that is s = diag(b,a,a−1,b−1).
We first consider ω = ω1, so Ω(Vω) = {±ε1,±ε2}. Since s is non-regular, we may

assume that either a = b or b2 = 1. In the first case, s does not have almost simple
spectrum on Vω, while in the second case s has almost simple spectrum on Vω if
and only if a2 , 1.

We now turn to the cases ω , ω1. By Remark 3(1), we are left with the ex-
ceptional cases described in Lemma 9, s1 = diag(a,a,a−1, a−1) with a2 , 1, or s2 =
±diag(1,−1,−1,1). Note that α1(s1) = 1 and α2(s2) = 1. By Lemma 12, Λ1 = {0,ω1},
and Λ2 = {ω1 +ω2,ω2} and 2ω1 is the only radical weight in Λ3. We consider these
weights in turn, before turning to the general case.

The weights of Vω2
are 0,±ε1 ± ε2. The remarks of the preceding paragraph

imply that the cases in the statement are the only possible ones, and they yield the
matrices of s1, s2 on Vω2

(with respect to a suitable basis) diag(a2,1,1,1, a−2) and
diag(−1,−1,1,−1,−1), respectively.

Suppose ω = ω1 + ω2. Then Ω(Vω) = Ω(Vω1
⊗Vω2

), by Lemma 4. In terms of
Bourbaki weights, the weights in Ω(Vω) are ±ε1 +(±ε1±ε2), ±ε2 +(±ε1±ε2), ±ε1, and
±ε2. Then (±ε1 + (±ε1 ± ε2))(s2) = −1, (±ε2 + (±ε1 ± ε2)(s2) = 1, so the spectrum of s2
on Vω is not almost simple. Furthermore, (ε1 + (−ε1 + ε2))(s1) = a = (ε2 + (ε1 − ε2))(s1)
and (−ε1 + (ε1 − ε2))(s1) = a−1 = (−ε2 + (−ε1 + ε2))(s1). So the spectrum of s1 on Vω is
not almost simple.

Finally, suppose ω = 2ω1. Then by Lemma 4, the weights of Vω are the same as
those of Vω1

⊗Vω1
. These are ±εi ± εj , for i, j ∈ {1,2}. But now it is easy to see that

neither s1 nor s2 has almost simple spectrum on Vω.
We now turn to the general case and suppose that ω differs from the weights

examined above. Then ω <Λ1∪Λ2 and ω , 2ω1. Recall that if µ ∈Λi for some i then
Vµ has a weight from Λj for every j = 1, . . . , i−1 (Lemma 11). Then Lemma 12 implies
that either 2ω1 or ω1 +ω2 is a weight of Vω and by Lemma 4, the weights of V2ω1

or
Vω1+ω2

are weights of Vω. The above considerations of Vω1+ω2
and V2ω1

show then
that, given s = s1 or s2, there are 4 distinct weights λ1,λ2,ν1,ν2 in Ω(Vω) such that
λ1(s) = λ2(s) , ν1(s) = ν2(s). So s is not almost cyclic on Vω, which completes the
proof of the result. □

Lemma 17 – Theorem 2 is true for G of type G2.

Proof. Let G be of type G2, and let V be a non-trivial G-module and 1 , s ∈ T
a non-regular element. We have to show that the spectrum of s on V is not almost
simple. Let ω be the highest weight of V . Suppose first that ω = ω1 or p = 3,ω = ω2,
so dimV = 7, or 6 for p = 2. The group G contains a maximal rank closed subgroup
H isomorphic to A2 such that the restriction of Vω1

to H has composition factors
the natural module for SL3(F), and its dual and, if p , 2, an additional trivial
summand. So the matrix of s on Vω1

can be written as diag(a,b,c,1, a−1,b−1, c−1) if
p , 2, otherwise diag(a,b,c,a−1,b−1, c−1), where abc = 1 in both cases. This is also
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true if p = 3 and V = Vω2
. If all the entries are distinct, this matrix is a regular

element in SL(V ), and hence in G, contrary to the assumption.
Suppose that the entries are not distinct. As any permutation of a,b,c can be

realized by an inner automorphism of G, we may assume that a equals some other
diagonal entry and by the same reasoning, we may ignore the possibilities a = c and
a = c−1. So we examine the cases a = b, a = a−1, and a = b−1.

Let a = b. Then s has almost simple spectrum on Vω only if a = a−1. But then
c = 1 and s is not almost cyclic on Vω.

Let a = a−1 , b, so a = ±1, c = ±b−1. If a = 1, then b , 1, s acts on Vω as
ŝ = diag(1,b,b−1,1,1,b−1,b) (where we drop the 1 in the middle if p = 2) which
does not have almost simple spectrum. If a = −1 then p , 2 and s acts on Vω as
ŝ = diag(−1,b,−b−1,1,−1,b−1,−b). If b = ±1 then the spectrum of ŝ is not almost
simple. Let b , ±1. As V is an orthogonal space, s is a regular element of SO(V )
(Lemma 6), and hence in G, contrary to the assumption.

Let a = b−1. Then c = 1. By reordering a,c, we arrive at the case a = 1, considered
above. This completes the analysis of the cases ω = ω1, and (ω,p) = (ω2,3).

Suppose now that ω is an arbitrary p-restricted weight. If p , 2,3 then the
weights of Vω1

occur as weights of V (Lemma 4), so the result follows from that for
Vω1

. Let p = 2; now 0,ω1,ω2,ω1 +ω2 are the only 2-restricted dominant weights
of G. By A. E. Zalesski (2009, Theorem 15), the weights of Vω are the same as in
characteristic 0, in particular all weights of Vω1

are weights of Vω, and we conclude
as above.

Now turn to the case p = 3 and ω still p-restricted. By A. E. Zalesski (2009,
Theorem 15), if ω , 2ω2 then the weights of Vω are the same as in characteristic
0, and in particular all weights of Vω1

are weights of Vω. So the result follows as
above. For p = 3 and ω = 2ω2, we use the tables of Lübeck (2018) to see that the
weights of Vω2

are weights of V2ω2
, and then conclude as before.

Finally, suppose that ω is not p-restricted. By Remark 1, we may assume that V
is tensor-decomposable, say, V = V1 ⊗V2, where the highest weight of V1 is of the
form pkω′ for some k. Then the result follows by Lemma 3. □

4.2 Groups Bn with n > 2, Dn with n > 3, and Cn with p = 2
and n > 2

In this section, we consider the groups as indicated in the heading of the section.
Recall that when G = Bn, we may assume p , 2. Note that for groups G of type
Bn and of type Dn, the multiplicity of the 0 weight in the adjoint representation
Vω2

is greater than 1. Therefore, if ω is a dominant weight such that ω2 ≺ω then,
by Lemma 5(2), it suffices to observe that a non-central non-regular semisimple
element s ∈ G is not of almost simple spectrum on Vω2

. This is done in Lemma 18
below. The condition ω2 ≺ω holds provided ω is a radical weight and ω , 0,ω1,ω2
for G of type Bn, and ω , 0,ω2 for G of type Dn.
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Lemma 18 – Let G=Bn, n>2, p,2, ω∈{ω2,ωn} or G=Dn, n>3, ω∈{ω2,ωn−1,ωn}.
Let s ∈ T \Z(G) be a non-regular element. Then the spectrum of s on Vω is not almost
simple, unless G = D4, ω ∈ {ω3,ω4}.

Proof. Here we take T to be the preimage in G of the set of diagonal matrices in
the image of G under the natural representation. We take s ∈ T and assume the
spectrum of s on Vω is almost simple. Since s is not regular, there exists a root α
with respect to T such that α(s) = 1. We will assume without loss of generality that
either α = α1, or G = Bn and α = αn.

Suppose first that ω = ω2. Set R0 = {α ∈ Φ | α(s) = 1}. Since s is non-central,
there exists β ∈ Φ \R0. Moreover, since Φ is an irreducible root system, there exists
β ∈ Φ \ R0 which is not orthogonal to R0. So for some α ∈ R0, wα(β) , β. Then
β(s) = wα(β)(s) , 1, while α(s) = −α(s) = 1. So s is not almost cyclic on ω2.

Let ω ∈ {ωn−1,ωn}, for G = Dn and n > 4, or ω = ωn for G = Bn. Then µ = 1
2 (α1 +ν)

is a weight of Vω, for ν ∈ {±ε3 ± · · · ± εn}, with certain conditions on the parity of
the number of minus signs in the Dn-case. Suppose that α = α1. Then µ − α1 is
a weight of Vω for any admissible choice of the signs. As the spectrum of s on Vω
is almost simple, we deduce that µ(s) does not depend on the choice of ν and so
ε3(s) = · · · = εn(s) = 1. Similarly, this then implies that ( 1

2 (ε1 + ε2 + ν))(s) does not
depend on the choice of ν, so again this value must be equal to ( 1

2 (±(ε1 − ε2) + ν))(s),
whence ε1(s) = 1 = ε2(s) as well. This implies s ∈ Z(G), a contradiction.

Finally, suppose that G = Bn, ω = ωn and α = αn. Then for all 1 ≤ i ≤ n− 1, we
have the two distinct weights of Vω, ω−αi −αi+1 − · · · −αn−1 −αn and ω−αi −αi+1 −
· · · −αn−1 − 2αn, taking the same value on s, and therefore deduce that αi(s) = 1 for
all i, again contradicting the fact that s is non-central. □

Remark 4 – If G = D4 then there exist non-central non-regular semisimple elements
s with almost simple spectrum on Vω3

or Vω4
. Indeed, one easily observes that there

are non-regular elements s ∈ T \Z(G) whose spectrum is almost simple on Vω1
. Let

σ be the triality automorphism of G. Then σ (s) has almost simple spectrum on V σ
ω1

,
whence the claim.

Lemma 19 – Let G = Bn, n > 2, p , 2, or G = Dn, n ≥ 4 , and let Vω ∈ Irr(G), where
ω , 0 is p-restricted. Let s ∈ T \ Z(G) be a non-regular element with almost simple
spectrum on Vω. Then either ω = ω1 or G = D4 and ω ∈ {ω1,ω3,ω4}.

Proof. If ω is radical, this follows from Lemmas 18, 5(2) and 4, both for Bn and Dn.
Suppose that ω is not radical. If G = Bn then ωn ⪯ω by Lemma 4(2), so again the

result follows from Lemmas 18 and 5(1)(i). Let G = Dn. By Theorem 5, all non-zero
weights of Vω are of multiplicity 1. Then, by D. M. Testerman and A. E. Zalesski
(2015, Tables 1, 2), ω ∈ {ω1,2ω1,ω2,ωn−1,ωn}, where the radical weights 2ω1,ω2
are to be dropped. Whence the result for n = 4. If n > 4 then the spectrum of s on
Vω is not almost simple by Lemma 18. □
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We now handle the case G = Cn, for n > 2 and p = 2, which is excluded in
Proposition 2. Moreover, we only need to consider Vωn

(see Proposition 2).

Lemma 20 – Let G = Cn, n > 2, p = 2. Let 1 , s ∈ T be a non-regular element. Then the
spectrum of s on Vωn

is not almost simple.

Proof. We argue as in the proof of Lemma 18. We can assume that α(s) = 1 for
α = α1 or α = 2ε1. The weights of Vωn

are ±ε1 ± · · · ± εn. Then µ := ε1 ± ε2 + ν are
weights of Vωn

for any ν = ±ε3 ± · · · ± εn. If α = 2ε1 then µ−α is a weight of Vωn
, and

we conclude (as in the proof of Lemma 18) that (2ε1)(s) = · · · = (2εn)(s). As p = 2, we
have ε1(s) = · · · = ε1(s), whence s ∈ Z(G) = 1, a contradiction.

If α = α1 then for µ = ε1 − ε2 + ν we have µ − α1 ∈ Ω(Vωn
), whence (2ε3)(s) =

· · · = (2εn)(s) = 1. This implies that (ε1 + ε2 + ν)(s) does not depend on ν, nor does
(ϵ1 − ϵ2 + ν)(s), whence (2ε1)(s) = 1, and again we conclude that s = 1. □

4.3 Completion of the Proof of Theorem 2

Proof. Let G,s be as in the statement of Theorem 2. Note that rank(G) ≥ 2.
Suppose first that λ is p-restricted. The groups of rank 2 have been examined in

Lemmas 13, 15, 16 and 17, and the group of type A3 in Lemma 14. In Proposition 2,
we handled the groups An,n > 3, F4, E6,E7,E8, and all p-restricted weights for the
group Cn, n > 2, except the weight ω = ωn when p = 2. The latter is handled in
Lemma 20.

Groups of type Bn,n > 2, and p , 2, and groups of type Dn are dealt with in
Lemma 19.

By Remark 1, we may now assume that V is tensor-decomposable. Let V = V1⊗V2
be a non-trivial tensor decomposition of V . By Lemma 3, the spectra of s on V1 and
V2 are simple. This contradicts Lemma 3. □

Finally, we conclude with a straightforward corollary of Theorem 2.

Corollary 1 – Let s ∈ T \Z(G) be a non-regular element and V an irreducible G-module.
Suppose that the spectrum of s on V is almost simple. Then the eigenvalue multiplicities
of s on V do not exceed m = mV (s), where either m ≤ rank(G) or one of the following
holds:

(1) G = A3, dimV = 6, m = 4;

(2) G = Bn, n > 2, p , 2, dimV = 2n+ 1, m = 2n;

(3) G = Cn, and either dimV = 2n and m = 2n − 2 or n = 2, p , 2, dimV = 5 and
m = 4;

(4) G = Dn, n > 3, dimV = 2n, m = 2n− 2.
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Proof. This will follow from Theorem 2; we discuss each of the cases of the theorem.
To get (1) above, we additionally use Lemma 14. For G = C2, p , 2, we use Lemma 16.
The modules of dimensions indicated in Theorem 2(1) are obtained by Frobenius
twisting of Vω1

(where the statement is clear); mV (s) remains unchanged under such
a twist. This leaves us with G = D4 and dimV = 8. The modules Vω1

, Vω3
, Vω4

, are
obtained from each other by a graph automorphism of G, and the other modules of
dimension 8 as in Theorem 2(4) are Frobenius twists of these. The result follows.□
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