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Abstract

In Coulombel (2015) a multiplier technique, going back to Leray and Gård-
ing for scalar hyperbolic partial differential equations, has been extended to the
context of finite difference schemes for evolutionary problems. The key point
of the analysis in Coulombel (2015) was to obtain a discrete energy-dissipation
balance law when the initial difference operator is multiplied by a suitable quan-
tity (the so-called multiplier). The construction of the energy and dissipation
functionals was achieved in Coulombel (2015) under the assumption that all
modes were separated. We relax this assumption here and construct, for the
same multiplier as in Coulombel (2015), the energy and dissipation functionals
when some modes cross. Semigroup estimates for fully discrete hyperbolic
initial boundary value problems are deduced in this broader context.

Keywords: hyperbolic equations, difference approximations, stability, boundary
conditions, semigroup estimates.

msc: 65M06, 65M12, 35L03, 35L04.

Throughout this article, we keep the same notation as in Coulombel (2015). We
introduce several subsets of the complex plane C:

U := {ζ ∈ C, |ζ| > 1}, U := {ζ ∈ C, |ζ| ≥ 1},
D := {ζ ∈ C, |ζ| < 1}, S1 := {ζ ∈ C, |ζ| = 1}, D := D∪ S1.

We letMn(K) denote the set of n × n matrices with entries in K = R or C. If M ∈
Mn(C), M∗ denotes the conjugate transpose of M. We let I denote the identity
matrix or the identity operator when it acts on an infinite dimensional space. We
use the same notation x∗y for the Hermitian product of two vectors x,y ∈ Cn and
for the Euclidean product of two vectors x,y ∈ Rn. The norm of a vector x ∈ Cn is
|x| := (x∗x)1/2. The induced matrix norm onMn(C) is denoted ∥ ·∥.

1Institut de Mathématiques de Toulouse – UMR 5219, Université de Toulouse; CNRS, Uni-
versité Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France. Email: jean-
francois.coulombel@math.univ-toulouse.fr
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The letter C denotes a constant that may vary from line to line or within the
same line. The dependence of the constants on the various parameters is made
precise throughout the text.

In what follows, we let d ≥ 1 denote a fixed integer, which will stand for the
dimension of the space domain we are considering. We shall use the space ℓ2 of
square integrable sequences. Sequences may be valued in Ck for some integer k.
Some sequences will be indexed by Zd−1 while some will be indexed by Zd or
a subset of Zd . We thus introduce some specific notation for the norms. Let ∆xk > 0
for k = 1, . . . ,d be d space steps as considered herafter. We shall make use of the
ℓ2(Zd−1)-norm that we define as follows: for all v ∈ ℓ2(Zd−1),

∥v∥2
ℓ2(Zd−1) :=

 d∏
k=2

∆xk

 d∑
ν=2

∑
jν∈Z
|vj2,...,jd |

2.

The corresponding scalar product is denoted ⟨ · , · ⟩ℓ2(Zd−1). Then for all integers
m1 ≤m2 in Z, we set

|||u|||2m1,m2
:= ∆x1

m2∑
j1=m1

∥uj1, ·∥
2
ℓ2(Zd−1),

to denote the ℓ2-norm on the set [m1,m2] ×Zd−1 (m1 may equal −∞ and m2 may
equal +∞). The corresponding scalar product is denoted ⟨ · , · ⟩m1,m2

. Other notation
throughout the text is meant to be self-explanatory.

1 Introduction

This article is a sequel of our previous work Coulombel (2015) where we have
developed a multiplier technique for finite difference schemes. The theory in
Coulombel (2015) encompasses the well-known example of the leap-frog scheme
for the transport equation. Our main motivation was to derive stability estimates for
finite difference schemes with a method that bypasses as much as possible Fourier
analysis. This was a first step towards later considering multistep time integration
techniques with finite volume space discretizations on unstructured meshes. We
extend the results of Coulombel (2015) by dropping a simplicity assumption that
was made in this work, which now allows us to consider crossing eigenmodes.
Namely, the situation we consider here is the one where the latter crossing occurs
in a smooth way. We also completely deal with the case of multistep schemes with
two time levels for which the eigenmode crossing need not be smooth. In order
to avoid repeating many arguments from Coulombel (2015), we shall refer to this
work whenever possible. We warn the reader that the introduction below is mostly
the same as in Coulombel (2015) since the considered problem is the same and we
have found it easier for the reader to recall all the assumptions needed in the proof
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1. Introduction

of our main result (which is Theorem 1 on p. 156 below). The main difference lies
in the statement of Assumption 2 below.

We now set some more notation. With d ∈ N∗ being the considered space
dimension, we let ∆x1, . . . ,∆xd ,∆t > 0 denote the space and time steps where the
ratios, also known as the so-called Courant-Friedrichs-Lewy parameters, λk :=
∆t/∆xk , k = 1, . . . ,d, are fixed positive constants. We keep ∆t ∈ (0,1] as the only free
small parameter and let the space steps ∆x1, . . . ,∆xd vary accordingly. The ℓ2-norms
with respect to the space variables have been previously defined and thus depend
on ∆t and the CFL parameters through the cell volume (either ∆x2 · · ·∆xd on Zd−1 or
∆x1 · · ·∆xd on Zd). We always identify a sequence w indexed by either N (for time),
Zd−1 or Zd (for space), with the corresponding step function. In particular, we shall
feel free to take Fourier or Laplace transforms of such sequences.

For all index j ∈ Zd , we write j = (j1, j ′) with j ′ := (j2, . . . , jd) ∈ Zd−1. We let
p,q, r ∈ Nd denote some fixed multi-integers, and define p1,q1, r1, p′ ,q′ , r ′ according
to the above notation. We also let s ∈ N denote some fixed integer. This article is
devoted to recurrence relations of the form:

s+1∑
σ=0

Qσu
n+σ
j = ∆tFn+s+1

j , j ′ ∈ Zd−1, j1 ≥ 1, n ≥ 0,

un+s+1
j +

s+1∑
σ=0

Bj1,σu
n+σ
1,j ′ = gn+s+1

j , j ′ ∈ Zd−1, j1 = 1− r1, . . . ,0, n ≥ 0,

un
j = f n

j , j ′ ∈ Zd−1, j1 ≥ 1− r1, n = 0, . . . , s,

(1)

where the operators Qσ and Bj1,σ are given by:

Qσ :=
p1∑

ℓ1=−r1

p′∑
ℓ′=−r ′

aℓ,σSℓ , Bj1,σ :=
q1∑

ℓ1=0

q′∑
ℓ′=−q′

bℓ,j1,σSℓ . (2)

In (2), the aℓ,σ ,bℓ,j1,σ are real numbers and are independent of the small parameter
∆t (they may depend on the CFL parameters λ1, . . . ,λd though), while S denotes the
shift operator on the space grid: (Sℓv)j := vj+ℓ for j, ℓ ∈ Zd . We have also used in (2)
the short notation

p′∑
ℓ′=−r ′

:=
d∑

ν=2

pν∑
ℓν=−rν

,

q′∑
ℓ′=−q′

:=
d∑

ν=2

qν∑
ℓν=−qν

.

Namely, the operators Qσ and Bj1,σ only act on the spatial variable j ∈ Zd , and the
index σ in (1) keeps track of the dependence of (1) on the s+ 2 time levels involved
at each time iteration.

The numerical scheme (1) is understood as follows: one starts with ℓ2 initial
data (f 0

j ), ..., (f s
j ) defined on [1− r1,+∞)×Zd−1. The source terms (Fn

j ) and (gnj ) in (1)
are given. Assuming that the solution u has been defined up to some time index
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n+ s, n ≥ 0, then the first and second equations in (1) should uniquely determine
un+s+1
j for j1 ≥ 1 − r1, j ′ ∈ Zd−1. The mesh cells associated with j1 ≥ 1 correspond

to the interior domain while those associated with j1 = 1 − r1, . . . ,0 represent the
discrete boundary. Recurrence relations of the form (1) arise when considering finite
difference approximations of hyperbolic initial boundary value problems2, which
is our main motivation (the Dirichlet and extrapolation boundary conditions3 are
typical examples). We wish to deal here simultaneously with explicit and implicit
schemes and therefore make the following solvability assumption.

Assumption 1 (Solvability of (1)) – The operator Qs+1 is an isomorphism on ℓ2(Zd).
Moreover, for all F ∈ ℓ2(N∗ × Zd−1) and for all g ∈ ℓ2([1 − r1,0] × Zd−1), there exists
a unique solution u ∈ ℓ2([1− r1,+∞)×Zd−1) to the systemQs+1uj = Fj , j ′ ∈ Zd−1, j1 ≥ 1,

uj +Bj1,s+1u1,j ′ = gj , j ′ ∈ Zd−1, j1 = 1− r1, . . . ,0.

The first and second equations in (1) therefore uniquely determine un+s+1
j for j1 ≥

1−r1 and j ′ ∈ Zd−1; one then proceeds to the following time index n+s+2. Existence
and uniqueness of a solution (un

j ) in ℓ2([1 − r1,+∞) × Zd−1)N to (1) follows from
Assumption 1 as long as the source terms lie in the appropriate functional spaces,
so the last requirement for well-posedness is continuous dependence of the solution
on the three possible source terms (Fn

j ), (gnj ), (f n
j ). This is a stability problem for

which several definitions can be chosen according to the functional framework. The
following one dates back to Gustafsson, Kreiss, and Sundström (1972) in one space
dimension and to Michelson (1983) in several space dimensions.

Definition 1 (Strong stability) – The finite difference approximation (1) is said
to be "strongly stable" if there exists a constant C such that for all γ > 0 and all
∆t ∈ (0,1], the solution (un

j ) to (1) with zero initial data (that is, (f 0
j ) = · · · = (f s

j ) = 0
in (1)) satisfies the estimate:

γ

γ∆t + 1

∑
n≥s+1

∆te−2γn∆t |||un|||21−r1,+∞ +
∑
n≥s+1

∆te−2γn∆t
p1∑

j=1−r1

∥un
j1, ·∥

2
ℓ2(Zd−1)

≤ C

γ∆t + 1
γ

∑
n≥s+1

∆te−2γn∆t |||Fn|||21,+∞ +
∑
n≥s+1

∆te−2γn∆t
0∑

j1=1−r1

∥gnj1, ·∥
2
ℓ2(Zd−1)

 .
(3)

The main contributions in Gustafsson, Kreiss, and Sundström (1972) and Michel-
son (1983) are to show that strong stability can be characterized by an algebraic

2Gustafsson, Kreiss, and Oliger, 1995, Time dependent problems and difference methods.
3Coulombel and Lagoutière, 2020, “The Neumann numerical boundary condition for transport

equations”.
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1. Introduction

condition which is usually referred to as the Uniform Kreiss-Lopatinskii Condition.
We shall assume here from the start that (1) is strongly stable. We can thus control,
for zero initial data, ℓ2 type norms of the solution to (1). Our goal, as in Coulombel
(2015), is to understand which kind of stability estimate holds for the solution
to (1) when one considers nonzero initial data (f 0

j ), . . . , (f s
j ) in ℓ2. We are specifically

interested in showing semigroup estimates for (1), that is in controlling the ℓ∞n (ℓ2
j )

norm of the solution to (1) (which is stronger than the ℓ2
n(ℓ2

j ) control encoded in (3)).
Our main assumption is the following. It is a relaxed version of the corresponding
assumption in Coulombel (2015) where the roots of the dispersion relation (4) below
were assumed to be always simple.

Assumption 2 (Stability for the discrete Cauchy problem) – For κ ∈ (C\ {0})d , let
us set :

Q̂σ (κ) :=
p∑

ℓ=−r
κℓaℓ,σ ∈ C,

where the coefficients aℓ,σ are the same as in (2) and we use the classical notation
κℓ := κℓ1

1 · · ·κ
ℓd
d for κ ∈ (C \ {0})d and ℓ ∈ Zd . Then there exists a finite number of points

κ(1), . . . ,κ(K) in (S1)d such that the following properties hold:

• if κ ∈ (S1)d \ {κ(1), . . . ,κ(K)}, the roots to the dispersion relation4:
s+1∑
σ=0

Q̂σ (κ)zσ = 0, (4)

are simple and located in D.

• if κ equals one of the κ(k)’s, the dispersion relation (4) has one multiple root z(k) ∈ D
(its multiplicity is denoted mk) and all other roots are simple.

• for all k = 1, . . . ,K , there exists a neighborhood Vk of κ(k) in Cd and there exist
holomorphic functions z1, . . . , zmk

on Vk such that

z1(κ(k)) = · · · = zmk
(κ(k)) = z(k),

and for all κ ∈ Vk , z1(κ), . . . , zmk
(κ) are the mk roots to (4) that are close to z(k).

Assumption 2 means that the dispersion relation (4) can have multiple roots (for sta-
bility reasons5, multiple roots may only belong to D and not to S1). When multiple
roots occur, we only ask that the splitting of the multiple eigenvalue around each
such point be smooth (analytic). The fact that we only consider one multiple root at

4From Assumption 1, we know that Qs+1 is an isomorphism on ℓ2(Zd ), which implies by Fourier anal-
ysis that Q̂s+1(κ) does not vanish for κ ∈ (S1)d . In particular, the dispersion relation (4) is a polynomial
equation of degree s+ 1 in z for any κ ∈ (S1)d and thus has s+ 1 roots.

5Gustafsson, Kreiss, and Oliger, 1995, Time dependent problems and difference methods.
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a time is only a matter of clarity and notation. There is no doubt that more elaborate
crossings (e.g., with one root remaining double along a submanifold of (S1)d) could
be considered by further refining the techniques developed below. Eventually, we
observe that multiple roots of the dispersion relation (4) occur for instance when
one uses the Adams-Bashforth or Adams-Moulton time integrators6 of order 3 or
higher (which is the reason why extending the result of Coulombel (2015) was
necessary). We now make the following assumption, which already appeared in
several works7 on numerical boundary conditions for hyperbolic equations.

Assumption 3 (Noncharacteristic discrete boundary) – For ℓ1 = −r1, . . . ,p1, z ∈ C
and η ∈ Rd−1, let us define

aℓ1
(z,η) :=

s+1∑
σ=0

zσ
p′∑

ℓ′=−r ′
a(ℓ1,ℓ′),σ eiℓ

′ ·η . (5)

Then a−r1 and ap1
do not vanish on U ×Rd−1, and they have nonzero degree with respect

to z for all η ∈ Rd−1.

Our main result is comparable with Wu (1995, Theorem 3.3), Coulombel and
Gloria (2011, Theorems 2.4 and 3.5) and Coulombel (2015). It shows that strong
stability (or "GKS stability") in the sense of Definition 1 is a sufficient condition for
incorporating ℓ2 initial conditions in (1) and proving optimal semigroup estimates.
Our result reads just as in Coulombel (2015) but it now holds in the broader context
of Assumption 2.

Theorem 1 – Let Assumptions 1, 2 and 3 be satisfied, and assume that the scheme (1) is
strongly stable in the sense of Definition 1. Then there exists a constant C such that for
all γ > 0 and all ∆t ∈ (0,1], the solution to (1) satisfies the estimate:

sup
n≥0

e−2γn∆t |||un|||21−r1,+∞ +
γ

γ∆t + 1

∑
n≥0

∆te−2γn∆t |||un|||21−r1,+∞

+
∑
n≥0

∆te−2γn∆t
p1∑

j1=1−r1

∥un
j1, ·∥

2
ℓ2(Zd−1)

≤ C

{ s∑
σ=0

|||f σ |||21−r1,+∞ +
γ∆t + 1

γ

∑
n≥s+1

∆te−2γn∆t |||Fn|||21,+∞

+
∑
n≥s+1

∆te−2γn∆t
0∑

j1=1−r1

∥gnj1, ·∥
2
ℓ2(Zd−1)

}
. (6)

6Hairer, Nørsett, and Wanner, 1993, Solving ordinary differential equations. I, Chapter III.
7Gustafsson, Kreiss, and Sundström, 1972, “Stability theory of difference approximations for mixed

initial boundary value problems. II”;
Michelson, 1983, “Stability theory of difference approximations for multidimensional initial-

boundary value problems”.
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In particular, the scheme (1) is "semigroup stable" in the sense that there exists a constant
C such that for all ∆t ∈ (0,1], the solution (un

j ) to (1) with (Fn
j ) = (gnj ) = 0 satisfies the

estimate

sup
n≥0
|||un|||21−r1,+∞ ≤ C

s∑
σ=0

|||f σ |||21−r1,+∞. (7)

The scheme (1) is also ℓ2-stable with respect to boundary data, see Trefethen (1984,
Definition 4.5), in the sense that there exists a constant C such that for all ∆t ∈ (0,1], the
solution (un

j ) to (1) with (Fn
j ) = (f n

j ) = 0 satisfies the estimate

sup
n≥0
|||un|||21−r1,+∞ ≤ C

∑
n≥s+1

∆t
0∑

j1=1−r1

∥gnj1, ·∥
2
ℓ2(Zd−1).

Multiplier techniques have been developed in the study of A-stability (or A(α)-
stability) for multistep integrators, see for instance Nevanlinna and Odeh (1981)
and Akrivis and Katsoprinakis (2016). Such techniques are used, for instance in
the proof of Dahlquist’s equivalence theorem of A- and G-stability8. One typical
example of multistep integrator for which a (very simple !) multiplier is known
is the BDF-2 method9. It turns out that our multiplier technique is not restricted
to A-stable methods, though some of the details below look similar to the theory
in Nevanlinna and Odeh (1981). We shall try to explore more into such possible
connections in the future.

Sections 2 and 3 below are devoted to the proof of Theorem 1. We follow the lines
of Coulombel (2015) and first explain why the same multiplier yields an energy-
dissipation balance law for the Cauchy problem (in the whole space) in the broader
framework of Assumption 2. The analysis relies on a suitable construction of the
energy and dissipation functionals, which are more involved than in Coulombel
(2015). The end of the proof of Theorem 1 follows Coulombel (2015) almost word
for word. We explain where the specificity of the broader framework of Assumption
2 comes into play. In an Appendix, we deal with the specific case s = 1 (recurrence
relations with two time levels) for which energy and dissipation functionals with
local densities can be constructed. This gives hope to later deal with finite volume
space discretization techniques on unstructured meshes.

8Hairer and Wanner, 1996, Solving ordinary differential equations. II, Chapter V.6.
9Emmrich, 2009a, “Convergence of the variable two-step BDF time discretisation of nonlinear

evolution problems governed by a monotone potential operator”;
Emmrich, 2009b, “Two-step BDF time discretisation of nonlinear evolution problems governed by

monotone operators with strongly continuous perturbations”.
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2 The Leray-Gårding method for fully discrete
Cauchy problems

This section is devoted to proving stability estimates for discretized Cauchy prob-
lems in the whole space Zd , which is the first step before considering the discretized
initial boundary value problem (1). More precisely, we consider the simpler case of
the whole space j ∈ Zd , and the recurrence relation in ℓ2(Zd):

s+1∑
σ=0

Qσu
n+σ
j = 0, j ∈ Zd , n ≥ 0,

un
j = f n

j , j ∈ Zd , n = 0, . . . , s,

(8)

where the operators Qσ are given by (2). We recall that in (2), the aℓ,σ are real
numbers and are independent of the small parameter ∆t (they may depend on the
CFL parameters λ1, . . . ,λd), while S denotes the shift operator on the space grid:
(Sℓv)j := vj+ℓ for j, ℓ ∈ Zd . Stability of (8) is defined as follows.

Definition 2 (Stability for the discrete Cauchy problem) – The numerical
scheme (8) is (ℓ2-) stable if Qs+1 is an isomorphism from ℓ2(Zd) onto itself, and if
furthermore there exists a constant C0 > 0 such that for all ∆t ∈ (0,1], for all initial
conditions f 0, . . . , f s ∈ ℓ2(Zd), there holds

sup
n∈N
|||un|||2−∞,+∞ ≤ C0

s∑
σ=0

|||f σ |||2−∞,+∞. (9)

Let us quickly recall, see e.g. Gustafsson, Kreiss, and Oliger (1995), that stability in
the sense of Definition 2 is in fact independent of ∆t ∈ (0,1] (because (8) nowhere
involves ∆t and the norms in (9) can be simplified on either side by the cell volume∏

k∆xk), and can be characterized in terms of the uniform power boundedness of
the so-called amplification matrix

A(κ) :=


−Q̂s(κ)/Q̂s+1(κ) . . . . . . −Q̂0(κ)/Q̂s+1(κ)

1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 ∈Ms+1(C), (10)

where the Q̂σ (κ)’s are defined in (4) and where it is understood that A is defined on
the largest open set of Cd on which Q̂s+1 does not vanish. Let us also recall that if
Qs+1 is an isomorphism from ℓ2(Zd) onto itself, then Q̂s+1 does not vanish on (S1)d ,
and therefore does not vanish on an open neighborhood of (S1)d . With the above
definition (10) for A, the following well-known result holds, see e.g. Gustafsson,
Kreiss, and Oliger (1995):
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2. The Leray-Gårding method for fully discrete Cauchy problems

Proposition 1 (Stability for discrete Cauchy problems) – Assume that the opera-
tor Qs+1 is an isomorphism from ℓ2(Zd) onto itself. Then the scheme (8) is stable in
the sense of Definition 2 if and only if there exists a constant C1 > 0 such that the
amplification matrix A in (10) satisfies

∀n ∈ N, ∀κ ∈ (S1)d , ∥A(κ)n∥ ≤ C1. (11)

In particular, the spectral radius of A(κ) should not be larger than 1 (the so-called von
Neumann condition).

The eigenvalues of A(κ) are the roots to the dispersion relation (4). When these
roots are simple for all κ ∈ (S1)d , the von Neumann condition is both necessary
and sufficient for stability of (8), see, e.g., Coulombel (2013, Proposition 3). How-
ever, Assumption 2 is more general than the situation considered in Coulombel
(2015) where the roots always remain simple. Nevertheless, since the occurence of
a multiple root only occurs in the interior D and not on the boundary S1, we easily
deduce from Assumption 2 that the matrixA(κ) in (10) is geometrically regular in the
sense of Coulombel (2013, Definition 3). Hence we can still apply Coulombel (2013,
Proposition 3) and conclude that Assumption 2 implies stability for the Cauchy
problem (8) (in the sense of Definition 2). As in Coulombel (2015), our goal now
is to derive the semigroup estimate (9) not by applying Fourier transform to (8)
and using uniform power boundedness of A, but rather by multiplying the first
equation in (8) by a suitable local multiplier. As a warm-up, and to make things as
clear as possible, we first deal with the simpler case where one only considers the
time evolution and no additional space variable (the standard recurrence relations
in C).

2.1 Stable recurrence relations

In this paragraph, we consider sequences (vn)n∈N with values in C. The index n
should be thought of as the discrete time variable, which is the reason why we
always write n as an exponent in order to be consistent with the notation used for
discretized partial differential equations. Let then ν ≥ 1 and let aν , . . . , a0 be some
complex numbers with aν , 0 (in the next Paragraphs, we choose ν = s+ 1). It is well
known that all solutions (vn)n∈N to the recurrence relation

∀n ∈ N, aνv
n+ν + · · ·+ a0v

n = 0,

are bounded if and only if the polynomial:

P(X) := aνX
ν + · · ·+ a1X + a0, (12)

has all its roots in D and the roots on S1 are simple, see Hairer, Nørsett, and Wanner
(1993, chapter III.3). This is equivalent to requiring that the companion matrix
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(compare with (10)):
−aν−1/aν . . . . . . −a0/aν

1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 ∈Mν(C),

be power bounded. In that case, the Kreiss matrix Theorem Strikwerda and Wade
(1997) implies that the latter matrix is a contraction (it has a norm ≤ 1) for some
Hermitian norm on Cν . In Coulombel (2015), we have obtained some explicit
construction of such a Hermitian norm and an associated dissipation functional in
the case where all the roots of P in (12) are simple and located in D. The construction
is based on a multiplier technique which is the discrete analogue of Gårding (1956,
Lemme 1.1). The inconvenience of the result in Coulombel (2015) is that even the
roots in D, which are associated with an exponentially decaying behavior in time,
are assumed to be simple. We suppress this technical assumption here and explain
why the multiplier technique developed in Coulombel (2015) allows to deal with
the general case with multiple roots in D.

As in Coulombel (2015), we introduce the notation T for the shift operator in
time, that is, for any sequence (vn)n∈N, we define: (Tmv)n := vn+m for all m,n ∈ N.
The following Lemma is an extension of Coulombel (2015, Lemma 1).

Lemma 1 (The energy-dissipation balance law for recurrence relations) – Let
P ∈ C[X] be a polynomial of degree ν, ν ≥ 1, that satisfies the following two properties:

• If P (z) = 0, then z ∈ D.

• If P (z) = 0 and z ∈ S1, then z is a simple root of P .

Then there exists a positive definite Hermitian form qe on Cν , and a nonnegative Hermi-
tian form qd on Cν such that for any sequence (vn)n∈N with values in C, there holds:

∀n ∈ N, 2Re
(
T(P ′(T)vn)P (T)vn

)
= ν|P (T)vn|2 + (T− I)

(
qe(v

n, . . . , vn+ν−1)
)

+ qd(vn, . . . , vn+ν−1).

In particular, for any sequence (vn)n∈N that satisfies the recurrence relation

∀n ∈ N, P (T)vn = 0,

the sequence (qe(vn, . . . , vn+ν−1))n∈N is nonincreasing.

The multiplier TP ′(T)vn used in Lemma 1 is the same as in Coulombel (2015). We
shall see below in the proof why the expressions provided in Coulombel (2015) for
the energy and dissipation functions qe,qd can not cover the case of multiple roots
and how they should be modified.
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Proof. Let us first recall the proof in Coulombel (2015) in the case of simple roots
because this is the starting point for the general case we consider here. We therefore
assume for now that P has degree ν and only has simple roots z1, . . . , zν located in D.
We write

P (X) = a
ν∏

j=1

(X − zj ),

with a , 0, and introduce the Lagrange polynomials:

∀k = 1, . . . ,ν, Pk(X) := a
ν∏

j=1
j,k

(X − zj ).

Since the zj ’s are pairwise distinct, the Pk’s form a basis of Cν−1[X]. Moreover, the
following relation was obtained in Coulombel (2015):

2Re
(
T(P ′(T)vn)P (T)vn

)
− ν|P (T)vn|2

= (T− I)

 ν∑
k=1

|Pk(T)vn|2
+

ν∑
k=1

(
1− |zk |2

)
|Pk(T)vn|2. (13)

The conclusion of Lemma 1 is then obtained by introducing the energy (qe) and
dissipation (qd) forms:

∀(w0, . . . ,wν−1) ∈ Cν , qe(w
0, . . . ,wν−1) :=

ν∑
k=1

|Pk(T)w0|2, (14)

qd(w0, . . . ,wν−1) :=
ν∑

k=1

(1− |zk |2)|Pk(T)w0|2. (15)

When the roots of P are located in D, qd is obviously nonnegative (this property
does not depend on the fact that the roots are simple). When furthermore the roots
of P are simple, the Pk’s form a basis of Cν−1[X] and qe is positive definite. The
conclusion follows.

We now turn to the general case and therefore no longer assume that the roots
of P in D are simple. For the sake of clarity, we label the pairwise distinct roots of
P as z1, . . . , zm and let µ1, . . . ,µm denote the corresponding multiplicities. We thus
have:

P (X) = a
m∏
j=1

(X − zj )µj ,
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for some a , 0, and we introduce the polynomials:

∀k = 1, . . . ,m, Pk(X) := a(X − zk)µk−1
m∏
j=1
j,k

(X − zj )µj .

We thus get the relation:

P ′ =
m∑
k=1

µkPk ,

and it is a simple exercise to adapt the computation in Coulombel (2015) to obtain
the relation (compare with (13)):

2Re
(
T(P ′(T)vn)P (T)vn

)
− ν|P (T)vn|2

= (T− I)

 m∑
k=1

µk |Pk(T)vn|2
+

m∑
k=1

µk(1− |zk |2)|Pk(T)vn|2. (16)

The problem which we are facing is that there are too few polynomials Pk to span
the whole space Cν−1[X]. The trick consists in adding to the energy part on the
right hand side of (16) some nonnegative Hermitian forms in order to gain positive
definiteness, while still keeping the corresponding dissipation form nonnegative.
This “add and subtract” trick is performed below.

As long as a root zk is at least double (µk ≥ 2), we introduce the polynomials:

∀j = 1, . . . ,µk − 1, Qk,j (X) := a(X − zk)j−1
m∏
ℓ=1
ℓ,k

(X − zℓ)µℓ ,

each of which being of degree ≤ ν − 2. (Later we shall use the fact that XQk,j (X) has
degree ≤ ν − 1.) We go back to (16) and add/subtract suitable quantities as follows:

2Re
(
T(P ′(T)vn)P (T)vn

)
− ν|P (T)vn|2

= (T− I)


m∑
k=1

µk |Pk(T)vn|2 +
m∑
k=1

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)|Qk,j (T)vn|2
 (17)

+
m∑
k=1

µk(1− |zk |2)|Pk(T)vn|2

+
m∑
k=1

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)vn|2 − |Qk,j (T)vn+1|2

)
,
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where ε > 0 is a parameter to be fixed later on (any choice 0 < ε ≤ 1/4 will do).
In (17), it is understood that if µk = 1 (that is, if the root zk is simple), then we do not
add any polynomial Qk,j , the range of indices 1 ≤ j ≤ µk − 1 being empty. Moreover,
we recall that if µk ≥ 2 for some k, then we have |zk | < 1 so the coefficient of the
Hermitian form |Qk,j (T)w0|2 on the second line of (17) will be positive.

It remains to show that for some suitably chosen parameter ε > 0, the decompo-
sition (17) yields the result of Lemma 1. Let us first observe that the ν polynomials

Q1,1, . . . , Q1,µ1−1, P1, . . . , Qm,1, . . . , Qm,µm−1, Pm,

span the space Cν−1[X] (this is nothing but the classical Hermite interpolation
problem). Since the quantity 1− |zk |2 is positive as long as µk is larger than 2, any
choice ε > 0 will make the Hermitian form qe defined on Cν by:

∀(w0, . . . ,wν−1) ∈ Cν ,

qe(w
0, . . . ,wν−1) :=

m∑
k=1

µk |Pk(T)w0|2

+
m∑
k=1

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)|Qk,j (T)w0|2,

(18)

positive definite. We thus now define a Hermitian form qd on Cν by:

∀(w0, . . . ,wν−1) ∈ Cν ,

qd(w0, . . . ,wν−1) :=
m∑
k=1

µk(1− |zk |2)|Pk(T)w0|2

+
m∑
k=1

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j (T)w1|2

)
,

(19)

and we are going to show that a convenient choice of ε makes qd nonnegative.
(Let us observe here that it is crucial to have the degree of Qk,j less than ν − 2
so that the quantity Qk,j(T)w1 is a linear combination of w1, . . . ,wν−1.) With the
above definitions (18) and (19) for qe and qd , the energy balance law (17) reads as
claimed in Lemma 1, so the only remaining task is to show that qd is nonnegative
for a convenient choice of ε > 0.

We use below the convention Qk,µk := Pk , which is compatible with the above
definition of Pk and of the Qk,j ’s. Observing that there holds:

∀j = 1, . . . ,µk − 1, XQk,j (X) = Qk,j+1 + zkQk,j ,
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we have for any k = 1, . . . ,m:

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j (T)w1|2

)

=
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j+1(T)w0 + zkQk,j (T)w0|2

)

=
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
(1− |zk |2)|Qk,j (T)w0|2 − |Qk,j+1(T)w0|2

)

−
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)2Re
(
zkQk,j (T)w0Qk,j+1(T)w0

)
.

We use Young’s inequality as follows:∣∣∣∣∣2Re
(
zkQk,j (T)w0Qk,j+1(T)w0

)∣∣∣∣∣
≤ 1

2
(1− |zk |2)|Qk,j (T)w0|2 +

2|zk |2

1− |zk |2
|Qk,j+1(T)w0|2,

and thus derive the lower bound:
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j (T)w1|2

)

≥
µk−1∑
j=1

1
2
εµk−j (1− |zk |2)2(µk−j)+1|Qk,j (T)w0|2

−
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j) 1 + |zk |2

1− |zk |2
|Qk,j+1(T)w0|2.

Shifting indices, we get:

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j (T)w1|2

)

≥
µk−2∑
j=0

1
2ε

εµk−j (1− |zk |2)2(µk−j)−1|Qk,j+1(T)w0|2

−
µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j) 1 + |zk |2

1− |zk |2
|Qk,j+1(T)w0|2.
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Restricting from now on to 0 < ε ≤ 1/4, we have 1/(2ε) ≥ 2 ≥ 1 + |zk |2 and all
terms corresponding to the indices j = 1, . . . ,µk − 2 in the above two sums match to
give a nonnegative quantity (the first one for j = 0 obviously gives a nonnegative
contribution since it only appears in the first sum). Hence we can keep only the very
last term corresponding to j = µk − 1 and we have thus derived the lower bound:

µk−1∑
j=1

εµk−j (1− |zk |2)2(µk−j)
(
|Qk,j (T)w0|2 − |Qk,j (T)w1|2

)
≥ −ε(1− |zk |2)(1 + |zk |2)|Qk,µk (T)w0|2 ≥ −1

2
(1− |zk |2)|Pk(T)w0|2,

where we have used |zk | ≤ 1 and ε ≤ 1/4 in the last inequality. Going back to the
definition (19) of qd , and summing over the k’s, we obtain that the Hermitian form
qd is nonnegative for any choice of ε within the interval (0,1/4]. The proof of
Lemma 1 is complete. □

2.2 The energy-dissipation balance for finite difference schemes

In this paragraph, we consider the numerical scheme (8). We introduce the following
notation:

L :=
s+1∑
σ=0

TσQσ , M :=
s+1∑
σ=0

σTσQσ . (20)

Thanks to Fourier analysis, the following result will be a consequence of Lemma 1.

Proposition 2 (Energy-dissipation for finite difference schemes) – Let Assump-
tions 1 and 2 be satisfied. Then there exist a continuous coercive quadratic form E and
a continuous nonnegative quadratic form D on ℓ2(Zd ;R)s+1 such that for all sequences
(vn)n∈N with values in ℓ2(Zd ;R) and for all n ∈ N, there holds

2⟨Mvn,Lvn⟩−∞,+∞ = (s+1)|||Lvn|||2−∞,+∞ + (T− I)E(vn, . . . , vn+s) +D(vn, . . . , vn+s).

In particular, for any choice of initial data f 0, . . . , f s ∈ ℓ2(Zd ;R), the solution to (8)
satisfies

sup
n∈N

E(un, . . . ,un+s) ≤ E(f 0, . . . , f s),

and (8) is (ℓ2-)stable.

Proof. We use the same notation vn for the sequence (vnj )j∈Zd and the corresponding

step function on Rd whose value on the cell [j1∆x1, (j1 + 1)∆x1)× · · · × [jd∆xd , (jd +
1)∆xd) equals vnj for any j ∈ Zd . Then Plancherel’s Theorem gives the identity

2⟨Mvn,Lvn⟩−∞,+∞ − (s+ 1)|||Lvn|||2−∞,+∞

=
∫
Rd

2Re
(
T(P ′κ(T)v̂n(ξ))Pκ(T)v̂n(ξ)

)
− (s+ 1)

∣∣∣Pκ(T)v̂n(ξ)
∣∣∣2 dξ

(2π)d
, (21)
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where v̂n denotes the Fourier transform (in L2(Rd)) of the function vn, and where
we have let

Pκ(z) :=
s+1∑
σ=0

Q̂σ

(
κ1, . . . ,κd

)
zσ , κj := eiξj∆xj ∈ S1,

and P ′κ(z) denotes the derivative of Pκ with respect to z.
The construction of the quadratic forms E and D is made, as in Coulombel

(2015), of the superposition of appropriate energy and dissipation Hermitian forms
for each frequency κ ∈ (S1)d , each coordinate κj being a placeholder for exp(iξj∆xj ).
Here, unlike Coulombel (2015), the polynomial Pκ either only has simple roots in D
or it has one multiple root in D and all other roots are simple. We cannot therefore
construct the energy and dissipation forms in a unified manner. Below we shall
use the analysis of Lemma 1 in the neighborhood of finitely many points in (S1)d

where Pκ has a multiple root and we shall use Coulombel (2015, Lemma 1) in the
neighborhood of all points where Pκ only has simple roots. (This is the reason why
we have recalled the proof of Lemma 1 in the case where all roots are simple.) We
shall eventually glue things together thanks to a suitable partition of unity.

Let us first consider the point κ(1) ∈ (S1)d for which Pκ(1) has one multiple root
(of multiplicity m1) in D and in the neighborhood of which we have a smooth
splitting of the eigenmodes z1, . . . , zm1

. The other roots zm1+1, . . . , zs+1 are simple and
can thus be determined holomorphically with respect to κ in the neighborhood of
κ(1). Keeping in mind that the dominant coefficient of the polynomial Pκ(z) equals
Q̂s+1(κ) (which is nonzero for κ ∈ (S1)d), we consider some κ ∈ (S1)d sufficiently
close to κ(1) and introduce the Lagrange polynomials:

∀k = 1, . . . , s+ 1, Pk,κ(z) := Q̂s+1(κ)
s+1∏
j=1
j,k

(
z − zj (κ)

)
.

We then introduce the following energy and dissipation Hermitian forms on Cs+1

(below, κ always denotes an element of (S1)d that is sufficiently close to κ(1) so that
all considered quantities are well-defined):

∀(w0, . . . ,ws) ∈ Cs+1,

qe,κ(w0, . . . ,ws) :=
s+1∑
k=1

|Pk,κ(T)w0|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j
(
1− |zk(κ)|2

)2(m1−j)

×
∣∣∣∣∣Q̂s+1(κ)

(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w0

∣∣∣∣∣2,

(Cont. next page) (22)
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qd,κ(w0, . . . ,ws) :=
s+1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j
(
1− |zk(κ)|2

)2(m1−j)

×
{∣∣∣∣∣Q̂s+1(κ)

(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w0

∣∣∣∣∣2

−
∣∣∣∣∣Q̂s+1(κ)

(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w1

∣∣∣∣∣2},

(23)

where ε > 0 is a parameter to be fixed later on. Using the decomposition (13) which
we have recalled in the proof of Lemma 1, we have the decomposition

2Re
(
T(P ′κ(T)w0)Pκ(T)w0

)
− (s+ 1)|Pκ(T)w0|2

= (T− I)(qe,κ(w0, . . . ,ws)) + qd,κ(w0, . . . ,ws), (24)

for all vectors (w0, . . . ,ws) ∈ Cs+1, because we have just added and subtracted some
Hermitian forms to the energy-dissipation balance law (13). It remains to prove
that qd,κ in (23) is nonnegative and that qe,κ in (22) is positive definite. Let us
start with qe,κ. If κ does not equal κ(1), we know from Assumption 2 that the roots
z1(κ), . . . , zs+1(κ) are pairwise distinct so the Lagrange polynomials Pk,κ form a basis
of Cs[X]. Hence qe,κ in (22) is positive definite because we have added a nonnegative
form to a positive definite one. We thus now consider the case κ = κ(1) for which the
m1 first roots z1, . . . , zm1

all collapse to z(1) and the m1 first Lagrange polynomials
P1,κ(1) , . . . , Pm1,κ(1) are all equal. At the base point κ = κ(1), the definition (22) thus
reduces to:

qe,κ(1)(w0, . . . ,ws) = m1|P1,κ(1)(T)w0|2 +
s+1∑

k=m1+1

|Pk,κ(1)(T)w0|2

+m1

m1−1∑
j=1

εm1−j
(
1− |z(1)|2

)2(m1−j)

×
∣∣∣∣∣Q̂s+1(κ(1))

(
T− z(1)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ(1))

)
w0

∣∣∣∣∣2,
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which (up to the harmless positive constant m1 in the second line) coincides with
our definition of the Hermitian form in (18). Since the polynomials:

P1,κ(1)(X), Pm1+1,κ(1)(X), . . . , Ps+1,κ(1)(X),

Q̂s+1(κ(1))
s+1∏

ℓ=m1+1

(
X − zℓ(κ(1))

)
, Q̂s+1(κ(1))

(
X − z(1)

) s+1∏
ℓ=m1+1

(
X − zℓ(κ(1))

)
,

. . . , Q̂s+1(κ(1))
(
X − z(1)

)m1−2
s+1∏

ℓ=m1+1

(
X − zℓ(κ(1))

)
,

form a basis of Cs[X] (this is again the classical Hermite interpolation problem), the
form qe,κ(1) is positive definite as long as the parameter ε is a fixed positive constant
(the choice ε = 1/8 that is made below will do). Moreover, once ε is fixed, the form
qe,κ depends in a C∞ way on κ in the neighborhood of κ(1).

We now show that the form qd,κ in (23) is nonnegative for a well-chosen param-
eter ε > 0 and κ ∈ (S1)d sufficiently close to κ(1). The argument is quite similar to
what we have done in the proof of Lemma 1 but we now need to take into account
that the m1 first eigenmodes z1, . . . , zm1

split for κ , κ(1), which will make us choose
ε > 0 slightly smaller than in the proof of Lemma 1 in order to absorb an additional
error. Before going on, let us recall that the eigenmodes z1(κ), . . . , zs+1(κ) belong to
D for κ ∈ (S1)d close to κ(1) with κ , κ(1). By continuity, this implies that they also
belong to D for κ = κ(1). Hereafter, we shall consider κ ∈ (S1)d close to κ(1) and shall
therefore feel free to use the inequality |zℓ(κ)| ≤ 1 for all ℓ = 1, . . . , s + 1 (the so-called
von Neumann condition).

Let us consider some vector (w0, . . . ,ws) ∈ Cs+1 and let us introduce the notation:

∀k, j = 1, . . . ,m1, Wk,j := Q̂s+1(κ)
(
T− zk(κ)

)j−1
s+1∏

ℓ=m1+1

(
T− zℓ(κ)

)
w0, (25)

where the complex numbers Wk,j (which, according to (25), are linear combinations
of w0, . . . ,ws) also depend on κ but there is no need to keep track of this in what
follows. We start from the definition (23) and derive the lower bound:

qd,κ(w0, . . . ,ws) ≥
m1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j
(
1− |zk(κ)|2

)2(m1−j)

×
(
|Wk,j |2 − |Wk,j+1 + zk(κ)Wk,j |2

)
.
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Expanding the square modulus |Wk,j+1 + zk(κ)Wk,j |2 and using Young’s inequality
under the form:∣∣∣∣∣2Re

(
zk(κ)Wk,jWk,j+1

)∣∣∣∣∣ ≤ 1
2

(
1− |zk(κ)|2

)
|Wk,j |2 +

2|zk(κ)|2

1− |zk(κ)|2
|Wk,j+1|2

≤ 1
2

(
1− |zk(κ)|2

)
|Wk,j |2 +

1 + |zk(κ)|2

1− |zk(κ)|2
|Wk,j+1|2,

we get:

qd,κ(w0, . . . ,ws) ≥
m1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j
(
1− |zk(κ)|2

)2(m1−j)

×
(

1− |zk(κ)|2

2
|Wk,j |2 −

2
1− |zk(κ)|2

|Wk,j+1|2
)
.

After shifting indices, we end up with:

qd,κ(w0, . . . ,ws) ≥
m1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j

2

(
1− |zk(κ)|2

)2(m1−j)+1
|Wk,j |2

−
m1∑
k=1

m1∑
j=2

2εεm1−j
(
1− |zk(κ)|2

)2(m1−j)+1
|Wk,j |2.

Instead of choosing ε ∈ (0,1/4] as in the proof of Lemma 1, we make the more
restrictive choice ε ∈ (0,1/8] and thus obtain:

qd,κ(w0, . . . ,ws) ≥
m1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2 −

(
1− |zk(κ)|2

)
4

|Wk,m1
|2

+
m1∑
k=1

m1−1∑
j=1

εm1−j

4

(
1− |zk(κ)|2

)2(m1−j)+1
|Wk,j |2. (26)

We go back to the definition of the Lagrange polynomial Pk,κ and of the complex
numbers Wk,j . For k = 1, . . . ,m1, we have:

Pk,κ(z) = Q̂s+1(κ)
m1∏
j=1
j,k

(
z − zj (κ)

) s+1∏
ℓ=m1+1

(
z − zℓ(κ)

)
.
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The goal is to absorb in (26) the only negative term by means of all other positive
quantities. To do this, we observe that we can expand the polynomial(

X − zk(κ)
)m1−1

,

on the basis of Cm1−1[X] formed by the polynomials:

1,
(
X − zk(κ)

)
,
(
X − zk(κ)

)m1−2
,

m1∏
j=1
j,k

(
X − zj (κ)

)
.

The linear system for determining the coefficients is lower triangular and has
determinant 1 so we can write for each k = 1, . . . ,m1:

(
X − zk(κ)

)m1−1
=

m1∏
j=1
j,k

(
X − zj (κ)

)
+

m1−1∑
j=1

ak,j (κ)
(
X − zk(κ)

)j−1
, (27)

with holomorphic functions ak,j defined in the neighborhood of κ(1) and that vanish
at κ(1). The decomposition (27) gives (just use the definition (25) and the expression
of the Lagrange polynomial Pk,κ):

Wk,m1
= Pk,κ(T)w0 +

m1−1∑
j=1

ak,j (κ)Wk,j ,

and we now apply the Cauchy-Schwarz inequality twice to get:

|Wk,m1
|2 ≤ 2|Pk,κ(T)w0|2 + 2(m1 − 1)

m1−1∑
j=1

|ak,j (κ)|2|Wk,j |2.

Fixing from now on ε = 1/8 and using the latter inequality in (26), we find that qd,κ
is nonnegative for κ sufficiently close to κ(1) (recall that |zk(κ)| < 1 uniformly with
respect to κ in the neighborhood of κ(1) since the multiple eigenvalue z(1) lies in D).
Moreover, we observe on the defining equation (23) that the Hermitian form qd,κ
depends in a C∞ way on κ in the neighborhood of κ(1).

The above analysis close to κ(1) can be repeated word for word in the neighbor-
hood of any other point κ(2), . . . ,κ(K) where the dispersion relation (4) has a multiple
root. Now, if κ ∈ (S1)d is such that the dispersion relation (4) only has simple roots
at κ = κ, the analysis is much simpler since we know in that case that the roots
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z1, . . . , zs+1 locally depend holomorphically on κ and the energy and dissipation
forms can be simply defined as:

∀(w0, . . . ,ws) ∈ Cs+1, qe,κ(w0, . . . ,ws) :=
s+1∑
k=1

|Pk,κ(T)w0|2,

qd,κ(w0, . . . ,ws) :=
s+1∑
k=1

(
1− |zk(κ)|2

)
|Pk,κ(T)w0|2,

with the same notation as above for the Lagrange polynomials Pk,κ. At this stage,
we have shown that for any base point κ in the compact manifold (S1)d , there
exists an open neighborhood V of κ in (S1)d and there exists a C∞ mapping qe,κ,
resp. qd,κ, on V with values in the set of positive definite, resp. nonnegative,
Hermitian forms, such that the decomposition (24) holds for all κ ∈ V and all vectors
(w0, . . . ,ws) ∈ Cs+1. By compactness of (S1)d , we can take a finite covering of (S1)d

by such neighborhoods and glue the local definitions of the energy and dissipation
forms thanks to a subordinate partition of unity. We have thus constructed a positive
definite, resp. nonnegative, Hermitian form qe,κ, resp. qd,κ, on Cs+1 which depends
in a C∞ way on κ ∈ (S1)d and such that there holds:

2⟨Mvn,Lvn⟩−∞,+∞ − (s+ 1)|||Lvn|||2−∞,+∞

= (T−I)
∫
Rd

qe,κ
(
v̂n(ξ), . . . , v̂n+s(ξ)

) dξ
(2π)d

+
∫
Rd

qd,κ
(
v̂n(ξ), . . . , v̂n+s(ξ)

) dξ
(2π)d

,

where we recall that κ is a placeholder for (exp(iξ1∆x1), . . . ,exp(iξd∆xd)). The con-
clusion of Proposition 2 follows as in Coulombel (2015) by a standard compactness
argument for showing continuity of the quadratic forms E and D, and coercivity
for E. □

The C∞ regularity of the Hermitian forms qe,κ,qd,κ with respect to κ is not
needed in the proof of Proposition 2 (continuity with respect to κ would be enough)
but we have paid attention to that particular issue since it is a crucial step for later
extending this construction to variable coefficients problems and applying symbolic
calculus rules as in Lax and Nirenberg (1966). This is left to a future work.

3 Semigroup estimates for discrete initial boundary
value problems

It remains to prove Theorem 1 with the help of Proposition 2. The strategy is exactly
the same as in Coulombel (2015) since the analysis in that earlier work shows that
the cornerstone of the proof of Theorem 1 is the existence of a multiplier for the
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fully discrete Cauchy problem on Zd . Let us emphasize that the relation (21) is of
the exact same form as in Coulombel (2015). The multiplier Mvn is the same. The
only difference is in the definition of the energy and dissipation forms E and D,
but their precise expression is not useful in what follows. What matters is that D
is nonnegative, and E is coercive and therefore yields a control of ℓ2 norms on Zd .
Hence we can apply the same arguments as in Coulombel (2015) as long as the
proof of Theorem 1 only uses the result of Proposition 2 and not the behavior of the
roots of the dispersion relation (4). We thus follow the proof of Coulombel (2015,
Theorem 1) and explain where the same arguments can be applied without any
modification.

3.1 The case with zero initial data

The first step in Coulombel (2015) is to prove the validity of (6) for zero initial data
(f 0 = · · · = f s = 0 in (1)). This part of the proof only uses the relation (21) and the
fact that the multiplier M has the same stencil as the original difference operator L.
Hence we can repeat the arguments in Coulombel (2015) word for word and obtain
the validity of (6) when the iteration (1) is considered with zero initial data. It then
remains to consider (1) with nonzero initial data in ℓ2 and zero interior/boundary
forcing terms.

3.2 Construction of dissipative boundary conditions

This was the most technical step of the analysis in Coulombel (2015). The goal here
is to construct an auxiliary set of numerical boundary conditions for which, with
arbitrary initial data in ℓ2, we can derive an optimal semigroup estimate and a trace
estimate for the solution. Our result here is the same as in Coulombel (2015) but
it now holds in the broader framework of Assumption 2. (Theorem 2 is the place
where Assumption 3 is needed.)

Theorem 2 – Let Assumptions 1, 2 and 3 be satisfied. Then for all P1 ∈ N, there exists
a constant CP1

> 0 such that, for all initial data f 0, . . . , f s ∈ ℓ2(Zd) and for all source
term (gnj )j1≤0,j ′∈Zd−1,n≥s+1 that satisfies the integrability condition:

∀Γ > 0,
∑
n≥s+1

e−2Γn
∑
j1≤0

∥gnj1, ·∥
2
ℓ2(Zd−1) < +∞,

there exists a unique sequence (un
j )j∈Zd ,n∈N in ℓ2(Zd)N solution to the iteration

Lun
j = 0, j ∈ Zd , j1 ≥ 1, n ≥ 0,

Mun
j = gn+s+1

j , j ∈ Zd , j1 ≤ 0, n ≥ 0,

un
j = f n

j , j ∈ Zd , n = 0, . . . , s.

(28)

172



3. Semigroup estimates for discrete initial boundary value problems

Moreover for all γ > 0 and ∆t ∈ (0,1], this solution satisfies

sup
n≥0

e−2γn∆t |||un|||2−∞,+∞ +
γ

γ∆t + 1

∑
n≥0

∆te−2γn∆t |||un|||2−∞,+∞

+
∑
n≥0

∆te−2γn∆t
P1∑

j1=1−r1

∥un
j1, ·∥

2
ℓ2(Zd−1)

≤ CP1


s∑

σ=0

|||f σ |||2−∞,+∞ +
∑
n≥s+1

∆te−2γn∆t
∑
j1≤0

∥gnj1, ·∥
2
ℓ2(Zd−1)

 . (29)

Proof. Unsurprisingly, most of the proof of Theorem 2 is the same as in Coulombel
(2015) but there is one specific point where the behavior of the roots to the dispersion
relation (4) is used so we review the main steps of the proof and simply refer
to Coulombel (2015) when no modification is needed. First, the existence and
uniqueness of a solution to (28) follows from the invertibility of Qs+1 on ℓ2(Zd).
Then, using Proposition 1, we can derive the same estimate as in Coulombel (2015)
for the solution to (28):

sup
n≥0

e−2γn∆t |||un|||2−∞,+∞ +
γ

γ∆t + 1

∑
n≥0

∆te−2γn∆t |||un|||2−∞,+∞

+
∑
n≥0

∆te−2γ(n+s+1)∆t
∑
j1∈Z
∥Lun

j1, ·∥
2
ℓ2(Zd−1)

≤ C


s∑

σ=0

|||f σ |||2−∞,+∞ +
∑
n≥s+1

∆te−2γn∆t
∑
j1≤0

∥gnj1, ·∥
2
ℓ2(Zd−1)

 , (30)

where the constant C is independent of γ , ∆t and on the source terms in (28). It
remains to derive the trace estimate for the solution (un

j ) to (28) (that is showing that
the third term in the sum on the left hand side of the inequality (29) is controlled
by the right hand side).

The derivation of the trace estimate when γ∆t is large enough is done as in
Coulombel (2015) since it only uses the invertibility of the operator Qs+1 on ℓ2(Zd).
We can thus assume from now on γ∆t ∈ (0, lnR0] for some fixed constant R0 > 1.
Then we can deduce from (30) that for any j1 ∈ Z, the Laplace-Fourier transform ûj1
of the step function

uj1 : (t,y) ∈ R+ ×Rd−1 7−→ un
j if (t,y) ∈ [n∆t, (n+ 1)∆t)×

d∏
k=2

[jk∆xk , (jk + 1)∆xk),

is well-defined on the half-space {τ ∈ C,Reτ > 0} × Rd−1. The dual variables to
(t,y) are denoted τ = γ + iθ, γ > 0, and η = (η2, . . . ,ηd) ∈ Rd−1. We also use below
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the notation η∆ := (η2∆x2, . . . ,ηd∆xd). The following result, which is proved in
Coulombel (2015), is used here as a blackbox since its proof is merely based on the
validity of (30) and Plancherel’s Theorem.

Lemma 2 – With R0 > 1 fixed as above, there exists a constant C > 0 such that for all
γ > 0 and ∆t ∈ (0,1] satisfying γ∆t ∈ (0, lnR0], there holds

∑
j1∈Z

∫
R×Rd−1

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

aℓ1

(
e(γ+iθ)∆t ,η∆

)
ûj1+ℓ1

(γ + iθ,η)

∣∣∣∣∣∣∣∣
2

dθdη

+
∑
j1≤0

∫
R×Rd−1

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

e(γ+iθ)∆t∂zaℓ1

(
e(γ+iθ)∆t ,η∆

)
ûj1+ℓ1

(γ + iθ,η)

∣∣∣∣∣∣∣∣
2

dθdη

≤ C


s∑

σ=0

|||f σ |||2−∞,+∞ +
∑
n≥s+1

∆te−2γn∆t
∑
j1≤0

∥gnj1, ·∥
2
ℓ2(Zd−1)

 . (31)

Recall that the functions aℓ1
, ℓ1 = −r1, . . . ,p1, are defined in (5).

The conclusion now relies on the following crucial result. (This is the place where
the behavior of the roots to the dispersion relation (4) matters, and where we
therefore need to be careful.)

Lemma 3 (The trace estimate) – Let Assumptions 1, 2 and 3 be satisfied. Let R0 > 1
be fixed as above and let P1 ∈ N. Then there exists a constant CP1

> 0 such that for all
z ∈ U with |z| ≤ R0, for all η ∈ Rd−1 and for all sequence (wj1 )j1∈Z ∈ ℓ

2(Z;C), there holds

P1∑
j1=−r1−p1

|wj1 |
2 (32)

≤ CP1


∑
j1∈Z

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

aℓ1
(z,η∆)wj1+ℓ1

∣∣∣∣∣∣∣∣
2

+
∑
j1≤0

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

z∂zaℓ1
(z,η∆)wj1+ℓ1

∣∣∣∣∣∣∣∣
2 .

As in Coulombel (2015), Lemma 3 yields the conclusion of Theorem 2 by integrat-
ing (32) for the sequence (ûj1(γ+iθ,η))j1∈Z with respect to (θ,η) (taking z = e(γ+iθ)∆t

accordingly), using the inequality (31) from Lemma 2 and applying Plancherel’s
Theorem. We thus focus on the proof of Lemma 3 from now on. □

Proof (Proof of Lemma 3). We reproduce most of the proof that can already be found
in Coulombel (2015) in order to highlight where Assumption 2 (in its new form) is
used. We argue by contradiction and assume that the conclusion to Lemma 3 does
not hold. Therefore, up to normalizing and extracting subsequences, there exist
three sequences (indexed by k ∈ N):
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• a sequence (wk)k∈N with values in ℓ2(Z;C) such that (wk
−r1−p1

, . . . ,wk
P1

) belongs

to the unit sphere of CP1+r1+p1+1 for all k, and (wk
−r1−p1

, . . . ,wk
P1

) converges
towards (w−r1−p1

, . . . ,wP1
) as k tends to infinity,

• a sequence (zk)k∈N with values in U∩{ζ ∈ C, |ζ| ≤ R0}, which converges towards
z ∈ U ,

• a sequence (ηk)k∈N with values in [0,2π]d−1, which converges towards η ∈
[0,2π]d−1,

and these sequences satisfy:

lim
k→+∞

∑
j1∈Z

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

aℓ1
(zk ,ηk)wk

j1+ℓ1

∣∣∣∣∣∣∣∣
2

+
∑
j1≤0

∣∣∣∣∣∣∣∣
p1∑

ℓ1=−r1

zk∂zaℓ1
(zk ,ηk)wk

j1+ℓ1

∣∣∣∣∣∣∣∣
2

= 0.

(33)

We are going to show that (33) implies that the vector (w−r1−p1
, . . . ,wP1

) must be zero,
which will yield a contradiction since this vector has norm 1.

• We already know that (wk
−r1−p1

, . . . ,wk
P1

) converges towards (w−r1−p1
, . . . ,wP1

) as k
tends to infinity, and arguing by induction as in Coulombel (2015), we can show
that (33) and Assumption 3 imply that each component (wk

j1
)k∈N, j1 ∈ Z, has a limit

as k tends to infinity. This limit is denoted wj1
for any j1 ∈ Z. Then (33) implies

that the sequence w, which does not necessarily belong to ℓ2(Z;C), satisfies the two
recurrence relations (observe that the recurrence relation (35) only holds on (−∞,0)
and not on Z):

∀j1 ∈ Z,
p1∑

ℓ1=−r1

aℓ1
(z,η)wj1+ℓ1

= 0, (34)

∀j1 ≤ 0,
p1∑

ℓ1=−r1

z∂zaℓ1
(z,η)wj1+ℓ1

= 0. (35)

• We define the source terms:

∀j1 ∈ Z, Fk
j1

:=
p1∑

ℓ1=−r1

aℓ1
(zk ,ηk)wk

j1+ℓ1
, Gk

j1
:=

p1∑
ℓ1=−r1

zk∂zaℓ1
(zk ,ηk)wk

j1+ℓ1
,

which, according to (33), satisfy

lim
k→0

∑
j1∈Z
|Fk

j1
|2 = 0, lim

k→0

∑
j1≤0

|Gk
j1
|2 = 0. (36)
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We also introduce the vectors (here T denotes transposition)

∀j1 ∈ Z, W k
j1

:=
(
wk
j1+p1

, . . . ,wk
j1+1−r1

)T
, W j1

:=
(
wj1+p1

, . . . ,wj1+1−r1

)T
,

and the matrices inMp1+r1(C):

L(z,η) :=


−ap1−1(z,η)/ap1

(z,η) . . . . . . −a−r1(z,η)/ap1
(z,η)

1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 , (37)

M(z,η) :=


−∂zap1−1(z,η)/∂zap1

(z,η) . . . . . . −∂za−r1(z,η)/∂zap1
(z,η)

1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 . (38)

The matrix L is well-defined on U ×Rd−1 thanks to Assumption 3. The matrix M is
also well-defined on U ×Rd−1 because for any η ∈ Rd−1, Assumption 3 asserts that
ap1

( · ,η) is a nonconstant polynomial whose roots lie in D. From the Gauss-Lucas
Theorem, the roots of ∂zap1

( · ,η) lie in the convex hull of those of ap1
( · ,η), hence in

D. Therefore ∂zap1
( · ,η) does not vanish on U . In the same way, ∂za−r1( · ,η) does not

vanish on U .
With our above notation, the vectors W k

j1
, W j1

, satisfy the one step recurrence
relations:

∀j1 ∈ Z, W k
j1+1 = L(zk ,ηk)W k

j1
+
(
Fk
j1+1/ap1

(zk ,ηk),0, . . . ,0
)T

, (39)

W j1+1 = L(z,η)W j1
, (40)

∀j1 ≤ −1, W k
j1+1 = M(zk ,ηk)W k

j1
+
(
Gk
j1+1/(z

k∂zap1
(zk ,ηk)),0, . . . ,0

)T
, (41)

W j1+1 = M(z,η)W j1
. (42)

The recurrence relations (40), (42) are just an equivalent way of writing (34), (35).

• From Assumption 3 and the above application of the Gauss-Lucas Theorem, we
already know that both matrices L(z,η) and M(z,η) are invertible for (z,η) ∈ U×Rd−1.
Furthermore, a quick analysis shows that κ ∈ C \ {0} is an eigenvalue of L(z,η) if
and only if z is a solution to the dispersion relation (4). Assumption 2 therefore
shows that L(z,η) has no eigenvalue on S1 for (z,η) ∈ U ×Rd−1 for otherwise the
von Neumann condition would not hold. (This eigenvalue splitting property dates
back at least to Kreiss (1968).) However, central eigenvalues on S1 may occur for L
when z belongs to S1 (see Coulombel (2013) for a thorough analysis of the leap-frog
scheme).

176



3. Semigroup estimates for discrete initial boundary value problems

As in Coulombel (2015), the crucial point for proving Lemma 3 is that Assump-
tion 2 in its new form still precludes central eigenvalues of M for all z ∈ U . Namely,
let us show that for all z ∈ U and all η ∈ Rd−1, M(z,η) has no eigenvalue on S1. This
property holds because otherwise, for some (z,η) ∈ U ×Rd−1, there would exist a root
κ1 ∈ S1 to the characteristic polynomial of M(z,η), that is (up to multiplying by
a nonzero factor):

p1∑
ℓ1=−r1

z∂zaℓ1
(z,η)κℓ1

1 = 0.

For convenience, the coordinates of η are denoted (η2, . . . ,ηd). Using the defini-
tion (5) of aℓ1

, and defining κ := (κ1,eiη2 , . . . ,eiηd ) ∈ (S1)d , we have found a root z ∈ U
to the relation

s+1∑
σ=1

σQ̂σ (κ)zσ−1 = 0. (43)

This is where the new form of Assumption 2 matters. Namely, we know that for
all κ ∈ (S1)d , the roots of the polynomial equation (4) lie in D and if there are roots
on the boundary S1, then they must necessarily be simple. Applying again the
Gauss-Lucas Theorem, we know that the roots to (43) lie in the convex hull of those
to (4) and therefore belong to D (because the only possibility for (43) to have a root
on the boundary S1 would be that (4) admits a double root on S1 but this degeneracy
is precluded by Assumption 2). The Gauss-Lucas Theorem thus shows that the roots
to the relation (43) do not belong to U . Hence M(z,η) has no eigenvalue on S1 for
any (z,η) ∈ U ×Rd−1.

• At this stage, we know that for (z,η) ∈ U ×Rd−1, the eigenvalues of M(z,η) split
into two groups: those in U , which we call the unstable ones, and those in D, which
we call the stable ones. For (z,η) ∈ U ×Rd−1, we then introduce the spectral projector
Πs

M(z,η), resp. Πu
M(z,η), of M(z,η) on the generalized eigenspace associated with

eigenvalues in D, resp. U . These projectors are analytic with respect to (z,η) on
U ×Rd−1. We can integrate from −∞ to 0 the recurrence relation (41) and get

Πs
M(zk ,ηk)W k

0 =
1

zk∂zap1
(zk ,ηk)

∑
j1≤0

M(zk ,ηk)|j1 |Πs
M(zk ,ηk)

(
Gk
j1
,0, . . . ,0

)T
.

The projector Πs
M depends analytically on (z,η) ∈ U ×Rd−1. Furthermore, since the

spectrum of M does not meet S1 for (z,η) ∈ U ×Rd−1, there exists a constant C > 0
and a parameter δ ∈ (0,1) that are independent of k ∈ N and such that

∀j1 ≤ 0, ∥M(zk ,ηk)|j1 |Πs
M(zk ,ηk)∥ ≤ Cδ|j1 |.
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We thus get a uniform estimate with respect to k:

|Πs
M(zk ,ηk)W k

0 |
2 ≤ C

∑
j1≤0

|Gk
j1
|2.

Passing to the limit and using (36), we get Πs
M(z,η)W 0 = 0, or in other words

W 0 = Πu
M(z,η)W 0. Furthermore, since (W j1

)j1≤0 satisfies the recurrence relation (42)
with W 0 in the generalized eigenspace of M(z,η) associated with eigenvalues in U ,

we find that (W j1
)j1≤0 decays exponentially at −∞ and thus belongs to ℓ2(−∞,0).

• The sequence (W j1
)j1≤0 satisfies both recurrence relations (40) and (42), which

equivalently means that the complex valued sequence (wj1
)j1≤0 satisfies the two

recurrence relations (34) and (35) for j1 ≤ 0. Hence (wj1
)j1≤0 satisfies the recurrence

relation associated with the greatest common divisor of the polynomials associated
with (34) and (35). In other words, the vector W 0 belongs to the generalized
eigenspace (of either L or M) associated with the common eigenvalues of M(z,η)

and L(z,η). Since we already know that M(z,η) has no eigenvalue on S1 and that
W 0 belongs to the generalized eigenspace of M(z,η) associated with eigenvalues
in U (the unstable ones), we can conclude that W 0 also belongs to the generalized
eigenspace of L(z,η) associated with those common eigenvalues of M(z,η) and L(z,η)
in U .

The final argument is the following. The matrix L(z,η) has Nu eigenvalues in

U , N s in D and N c on S1 (all eigenvalues are counted with multiplicity). (Since
z may belong to S1, N c is not necessarily zero.) With rather obvious notations,
we let Πu,s,c

L (z,η) denote the corresponding spectral projectors of L for (z,η) suffi-
ciently close to (z,η). In particular, the Nu eigenvalues corresponding to Πu

L(z,η)

lie in U uniformly away from S1 for (z,η) sufficiently close to (z,η). We can then
integrate (39) from +∞ to 0 and derive (for k sufficiently large):

Πu
L(zk ,ηk)W k

0 = − 1
ap1

(zk ,ηk)

∑
j1≥0

L(zk ,ηk)−j1−1Πu
L(zk ,ηk)

(
Fk
j1
,0, . . . ,0

)T
.

Using the uniform exponential decay of L(zk ,ηk)−j1−1Πu
L(zk ,ηk) (with respect to j1)

and the convergence (36), we finally end up with

Πu
L(z,η)W 0 = 0.

Since W 0 belongs to the generalized eigenspace of L associated with those common
eigenvalues of M(z,η) and L(z,η) in U , we can conclude that W 0 equals zero. Apply-
ing the recurrence relation (40), the whole sequence (W j1

)j1∈Z is zero, which yields
the expected contradiction. □
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3.3 End of the proof

The end of the proof of Theorem 1 follows, as in Coulombel (2015), from a super-
position argument, see Benzoni-Gavage and Serre (2007, chapter 4) for a similar
argument in the context of continuous problems. The solution to (1) with nonzero
initial data is decomposed as the sum of a solution to an auxiliary problem (28)
(that auxiliary problem incorporates the initial data) and of a solution to a problem
of the form (1) with zero initial data (hence our earlier treatment of that case). The
analysis in Coulombel (2015) can be applied again word for word so we feel free to
refer the reader to that earlier work.

A Numerical schemes with two time levels

As we have seen in the proof of Proposition 2, the construction of energy and dissi-
pation functionals for finite difference operators is dictated, through the Plancherel
Theorem, by the analogous construction for recurrence relations. The inconvenience
in the proof of Lemma 1 is that the construction of the forms qe and qd depends
on whether the roots of the polynomial P are simple. There is however one case
that can be dealt with in a unified way and for which the coefficients of the forms qe
and qd depend in a very simple and explicit way on the coefficients of P . Namely,
we have the following result in the case of degree two polynomials10 (the case of
degree one polynomials is actually even simpler).

Lemma 4 (Energy-dissipation for second order recurrence relations) – Let

P := aX2 + bX + c ∈ C[X],

be a complex polynomial of degree 2 (a , 0), that satisfies the following two properties:

• The two roots of P are located in D.

• If P has a double root, then it is located in D.

Then the Hermitian form qe, resp. qd , defined on C2 by:

∀(x1,x2) ∈ C2, qe(x1,x2) := 2|a|2|x2|2 + 2Re
(
ax2bx1

)
+
(
|a|2 + |c|2

)
|x1|2,

qd(x1,x2) :=
(
|a|2 − |c|2

)
|x2|2 + 2Re

(
ax2bx1

)
− 2Re

(
bx2cx1

)
+
(
|a|2 − |c|2

)
|x1|2,

10Our attempts to obtain an analogue of Lemma 4 with ‘explicit’ Hermitian forms for degree three
polynomials have been unsuccessful so far, not mentioning higher degrees.
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is positive definite, resp. nonnegative. Furthermore, for any sequence (vn)n∈N with values
in C, there holds:

∀n ∈ N, 2Re
(
T(P ′(T)vn)P (T)vn

)
= 2|P (T)vn|2 + qe(v

n+1,vn+2)− qe(vn,vn+1) + qd(vn,vn+1). (44)

The defining equations for qe and qd in Lemma 4 show that, if P is a polynomial
whose coefficients are trigonometric polynomials on Rd , then the coefficients of qe
and qd can also be chosen as trigonometric polynomials on Rd (this is not the case,
in general, with our construction in Lemma 1).

Proof. The validity of (44) is a mere algebra exercise. One can for instance expand
the left hand side of (44), which reads:

2Re
(
(2avn+2 + bvn+1)(avn+2 + bvn+1 + cvn)

)
,

and verify that it coincides with the right hand side of (44) (a good starting point
for this calculation is first to subtract 2|P (T)vn|2 to the latter quantity and factorize
P (T)vn within the real part before expanding). The relation (44) can be also derived
by noting that the above forms qe and qd in Lemma 4 differ from those given in the
proof of Lemma 1 by the standard telescopic “add and subtract” trick. Namely, if
z1, z2 denote the two roots of P , then qe equivalently reads:

qe(x1,x2) = |a|2
∣∣∣x2 − z2x1

∣∣∣2 + |a|2
∣∣∣x2 − z1x1

∣∣∣2 + |a|2(1− |z1|2)(1− |z2|2)|x1|2, (45)

where the two first terms in the sum on the right hand side of (45) correspond to the
Lagrange polynomials P1(T)x1 and P2(T)x1, see (14), and the last term on the right
hand side of (45) has been added in order to keep qe positive definite in case the
roots z1 and z2 coincide. If these roots coincide, then they belong to D (this last term
was absent in Coulombel (2015) since the roots were assumed to be simple). The
link with the defining equation for qe in Lemma 4 is made by using the relations:

a(z1 + z2) = −b, az1z2 = c.

It is clear from the above alternative definition (45) that qe is positive definite under
the assumptions we have made for the polynomial P .

Let us now turn to the dissipation form qd . In agreement with the alternative
expression (45) for qe, the reader can check that the form qd given in Lemma 4 can
be alternatively defined by the expression:

qd(x1,x2) = |a|2(1− |z1|2)
∣∣∣x2 − z2x1

∣∣∣2 + |a|2(1− |z2|2)
∣∣∣x2 − z1x1

∣∣∣2
+ |a|2(1− |z1|2)(1− |z2|2)

(
|x1|2 − |x2|2

)
,
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where the two first terms in the sum on the right hand side read as in (15), and the
very last term on the right hand side has been added in order to keep the balance
law (44) valid (the “add and subtract” trick). Expanding the square moduli in the
expression of qd , we find that the form qd can be represented by the Hermitian
matrix:

|a|2
 1− |z1|2|z2|2 −

(
(1− |z1|2)z2 + (1− |z2|2)z1

)
−
(
(1− |z1|2)z2 + (1− |z2|2)z1

)
1− |z1|2|z2|2

 ,
whose trace is clearly nonnegative since z1 and z2 belong to D. Furthermore, up to
the positive |a|4 factor, its determinant equals:(

1− |z1|2|z2|2
)2
−
∣∣∣(1− |z1|2)z2 + (1− |z2|2)z1

∣∣∣2.
Expanding the square modulus and factorizing, the latter quantity is found to be
equivalently given by:(

1− |z1|2
)(

1− |z2|2
)(

1 + |z1|2|z2|2 − 2Re(z2z1)
)
,

which is bounded from below by the nonnegative quantity:(
1− |z1|2

)2(
1− |z2|2

)2
.

Hence the determinant of qd is nonnegative, so qd is nonnegative. The proof of
Lemma 4 is complete. □

Lemma 4 has an important consequence for the Cauchy problem (8) with s = 1
(finite difference operators with two time levels, as the leap-frog scheme11). Namely,
if we follow the proof of Proposition 2 with the aim of constructing some energy
and dissipation functionals for (8), we introduce the multiplier M as in (20) and
obtain the relation (21). In the case s = 1, the polynomial Pκ reads:

Pκ(X) = Q̂2(κ)X2 + Q̂1(κ)X + Q̂0(κ),

If the Cauchy problem (8) is ℓ2-stable, then the polynomial Pκ satisfies the conditions
of Lemma 4 for any κ ∈ (S1)d . Hence we can apply Lemma 4 and rewrite (21) as:

2⟨Mvn,Lvn⟩−∞,+∞ = 2|||Lvn|||2−∞,+∞ +E(vn+1,vn+2)−E(vn,vn+1) +D(vn,vn+1),
(46)

11Gustafsson, Kreiss, and Oliger, 1995, Time dependent problems and difference methods.
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with (here we apply the Plancherel Theorem ‘backwards’):

E(vn,vn+1) :=
∫
Rd

2|Q̂2(κ)|2|�vn+1(ξ)|2 + 2Re
(
Q̂2(κ)�vn+1(ξ)Q̂1(κ)v̂n(ξ)

)
+
(
|Q̂2(κ)|2 + |Q̂0(κ)|2

)
|v̂n(ξ)|2 dξ

(2π)d
,

= 2|||Q2v
n+1|||2−∞,+∞ + 2⟨Q2v

n+1,Q1v
n⟩−∞,+∞

+ |||Q2v
n|||2−∞,+∞ + |||Q0v

n|||2−∞,+∞,

and, similarly:

D(vn,vn+1) := |||Q2v
n+1|||2−∞,+∞ − |||Q0v

n+1|||2−∞,+∞

+ 2⟨Q2v
n+1,Q1v

n⟩−∞,+∞ − 2⟨Q1v
n+1,Q0v

n⟩−∞,+∞

+ |||Q2v
n|||2−∞,+∞ − |||Q0v

n|||2−∞,+∞.

The interesting feature of these expressions is that both E and D correspond to the
sum, with respect to j ∈ Zd , of local energy and dissipation densities Ej(vn,vn+1),
resp. Dj(vn,vn+1), which depend on finitely many values of the sequences vn,vn+1

near j. For instance, the local density Ej (vn,vn+1) can be defined by:

Ej (v
n,vn+1) := 2|Q2v

n+1
j |2 + 2(Q2v

n+1
j )(Q1v

n
j ) + |Q2v

n
j |

2 + |Q0v
n
j |

2.

Hence there is now a genuine hope to extend the definition of E and D to more
general domains by means of sums of local quantities which do not rely on the
Fourier transform, and/or to take the energy-dissipation balance law (46) as a start-
ing point for deriving stability estimates for finite volume space discretizations on
unstructured meshes. This is left to a future work.
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