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Abstract

We obtain expected number of arrivals, absorption probabilities and expected
time until absorption for an asymmetric discrete random walk on a graph in the
presence of multiple function barriers. On each edge of the graph and in each
vertex (barrier) specific probabilities are defined.
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1 Introduction
Random walk can be used in various disciplines: in economics to model share
prices and their derivatives, in medicine and biology where absorbing barriers
give a natural model for a wide variety of phenomena, in physics as a simplified
model of Brownian motion, in ecology to describe individual animal movements
and population dynamics, in statistics to analyze sequential test procedures, in
computer science to estimate the size of the World Wide Web using randomized
algorithms. Burioni and Cassi (2005) give a review of random walks on graphs,
where the generalization of the concept of dimension to inhomogeneous structures,
using infinite graphs, is considered. Durhuus, Jonsson, and Wheater (2006) develop
techniques to obtain rigorous bounds on the behavior of random walks on combs.
Using these bounds they calculate the spectral dimension of random combs with
infinite teeth at random positions or teeth with random but finite length. Random
walks have been studied for decades on regular structures such as lattices. We now
give a brief historical review of the use of barriers in a one-dimensional discrete
random walk. Weesakul (1961) discussed the classical problem of random walk
restricted between a reflecting and an absorbing barrier. Using generating functions
he obtains explicit expressions for the probability of absorption. Lehner (1963)
studies one-dimensional random walk with a partially reflecting barrier using
combinatorial methods. Gupta (1966) introduces the concept of a multiple function
barrier (MFB): a state that can absorb, reflect, let through or hold for a moment.
Dua, Khadilkar, and Sen (1976) find the bivariate generating functions of the
probabilities of a particle reaching a certain state under different conditions. Percus
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(1985) considers an asymmetric random walk, with one or two boundaries, on a one-
dimensional lattice. At the boundaries, the walker is either absorbed or reflected
back to the system. Using generating functions the probability distribution of being
at position m after n steps is obtained, as well as the mean number of steps until
absorption. El-Shehawey (2000) obtains absorption probabilities at the boundaries
for a random walk between one or two partially absorbing boundaries as well as the
conditional mean for the number of steps before stopping given the absorption at
a specified barrier, using conditional probabilities. In this paper we obtain expected
number of arrivals, absorption probabilities and expected time until absorption for
an asymmetric discrete random walk with multiple function barriers. Our graph
consists of multiple function barriers (vertices) and states on the edges between the
MFB’s. On each edge of the graph a random walk with its own states and jumping
probabilities is introduced. When the walker reaches a multiple function barrier
a random process is activated according to a set of probabilities, or the particle
is absorbed in the barrier. Each barrier has its own probability parameters. In
section 2 we use generating functions to find the expected number of arrivals to
any state, the probability of absorption and the expected time until absorption.
In section 3 we analyze some examples of graphs with multiple function barriers:
a star graph and a cycle graph.

2 A graph with multiple function barriers

2.1 Description of the random walk

In a finite graph we have vertices M[0],M[1], . . . ,M[N ] representing the MFB’s.
Between M[i] and M[j] there is a random walk with a finite number of states n[i, j],
which we number 1,2, . . . ,n[i, j] in the direction from M[i] to M[j] when i < j.

Example 1 – Random walk on an interval with two reflecting/absorbing barriers:
 

M[0] M[1] n 1 2 

Example 2 – Random walk on a triangle:

 
M[0] M[1] n[0,1] 1 

M[2] 

1 
1 

n[1,2] 
n[0,2] 
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2. A graph with multiple function barriers

We will use the abbreviation [i, j] for the edge between M[i] and M[j]. Each random
walk from M[i] to M[j] has its own parameters p = p[i, j] and q = q[i, j], where p is
the one-step forward probability and q one-step backward probability (p+q = 1). We
demand p[i, j].q[i, j] > 0 for each i and j. In M[i] there is probability p∗[i,j] to move
one step in the direction of M[j] (0 ≤ i, j ≤N ) and probability p∗[i,i] for absorption in

M[i] (0 ≤ i ≤N ), where
∑N

j=0p
∗
[i,j] = 1 (i = 0,1, . . . ,N ). We start in M[0].

2.2 Expected number of arrivals

We are interested in the expected number of arrivals in the MFB’s as well as the ex-

pected number of arrivals in the other states of the graph. Let p(m)
ij be the probability

that the system is in state j after m steps when starting in i. If j is not a MFB:

Xj = Xj (z) = Xi,j (z) =
∞∑

m=0

p
(m)
ij zm.

Expected number of arrivals in j when starting in i:

xj = xi,j = Xj (1).

For MFB M[j]:

Yj = Yj (z) = Yi,j (z) =
∞∑

m=0

p
(m)
i,M[j]z

m.

Expected number of arrivals in M[j] when starting in i:

yj = yi,j = Yj (1).

On edge [i, j]:

ρ = ρ[i, j] =
p[i, j]
q[i, j]

; n = n[i, j].

Theorem 1 – yk (k = 0,1 . . . ,N ) is the unique solution of
∑N

j=0uijyj = −δ(i,0) (i =
0,1 . . .N ) where

uij =
[

(1− ρ)ρn

1− ρn+1

]
p∗[j,i] (j < i, ρ , 1),

uij =
[

1− ρ
1− ρn+1

]
p∗[j,i] (j > i, ρ , 1),

uij =
p∗[j,i]
n+ 1

(j , i, ρ = 1),

uii = −1 +
∑

j<i,ρ,1

[
ρ(1− ρn)
1− ρn+1

]
p∗[i,j] +

∑
j>i,ρ,1

[
1− ρn

1− ρn+1

]
p∗[i,j] +

∑
j,i,ρ=1

[ n
n+ 1

]
p∗[i,j].
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Proof. CASE 1: (z , 1)∨ (p , q). We prove the results of CASE 1 in 5 steps.

Step 1 – The random walk between M[i] and M[j] (0 ≤ i < j ≤ N ) is described by
considering the last step of the random walk:

Xk = pzXk−1 + qzXk+1, (1)

where Xk = X
[i,j]
k , p = p[i, j],q = q[i, j]. Characteristic equation:

qzλ2 −λ+ pz = 0 (2)

with solutions λ1 and λ2 with λ1 > λ2 and λ1λ2 = p
q = ρ. So:

Xk = aλk
1 + bλk

2 (λ1 > λ2). (3)

Step 2 – We express a and b in Yi and Yj . Focus on states 1 and n = n[i, j] between
M[i] and M[j] (0 ≤ i < j ≤N ) and their neighbors. Considering the last step of the
random walk we get:

X1 = p∗[i,j]zYi + qzX2, (4)

Xn = pzXn−1 + p∗[j,i]zYj . (5)

Using (3), (4) and (5) we get:

(λn+1
2 −λn+1

1 )a = λn+1
2

p∗[i,j]
p

Yi −
p∗[j,i]
q

Yj , (6)

(λn+1
2 −λn+1

1 )b =
p∗[j,i]
q

Yj −λn+1
1

p∗[i,j]
p

Yi . (7)

Step 3 – We express X1 and Xn in Yi and Yj . Using (3) with k = 1 and k = n in
combination with (6) and (7) gives:

q(λn+1
2 −λn+1

1 )X1 = (λ2 −λ1)p∗j,iYj + (λn
2 −λ

n
1)p∗i,jYi (i < j), (8)

p(λn+1
2 −λn+1

1 )Xn = (λ2 −λ1)(λ1λ2)np∗i,jYi +λ1λ2(λn
2 −λ

n
1)p∗j,iYj (i < j).

We need the last formula for j < i, so we interchange i and j:

p(λn+1
2 −λn+1

1 )Xn = (λ2 −λ1)(λ1λ2)np∗j,iYj +λ1λ2(λn
2 −λ

n
1)p∗i,jYi (j < i). (9)
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2. A graph with multiple function barriers

Step 4 – Focus on M[i] and its neighbors X1[i, j] (j > i) and Xn[i, j] (j < i). Using (8)
and (9) we get, considering the last step of the random walk:

Yi =
∑
j>i

q[i, j]zX1[i, j] +
∑
j<i

p[i, j]zXn[i, j] + δ(i,0)

= z
∑
j>i

(λn+1
2 −λn+1

1 )−1
[
(λ2 −λ1)p∗j,iYj + (λn

2 −λ
n
1)p∗i,jYi

]
+z

∑
j<i

(λn+1
2 −λn+1

1 )−1
[
(λ2−λ1)(λ1λ2)np∗j,iYj +λ1λ2(λn

2−λ
n
1)p∗i,jYi

]
+δ(i,0)

= zYi


∑
j>i

[
λn

2 −λ
n
1

λn+1
2 −λn+1

1

]
p∗[i.j] +

∑
j<i

[
λ1λ2(λn

2 −λ
n
1)

λn+1
2 −λn+1

1

]
p∗[i,j]


+ zYj


∑
j>i

[
λ2 −λ1

λn+1
2 −λn+1

1

]
p∗[j,i] +

∑
j<i

[
(λ2 −λ1)(λ1λ2)n

λn+1
2 −λn+1

1

]
p∗[j,i]

+ δ(i,0).

Step 5 – If (z = 1)∧ (ρ > 1) then λ1 = ρ;λ2 = 1. If (z = 1)∧ (ρ < 1) then λ1 = 1;λ2 = ρ.
We get the result by observing the coefficients of yi and yj and the constants.

CASE 2: (z = 1)∧ (p = q). We can use the same method as in CASE 1, but now with x
and y instead of X and Y , starting with xk = ak + b, but we prefer a faster way by
applying l’Hospitals rule in the asymmetric case:

lim
ρ→1

(1− ρ)ρn

1− ρn+1 =
1

n+ 1
= lim

ρ→1

1− ρ
1− ρn+1 ,

lim
ρ→1

ρ(1− ρn)
1− ρn+1 =

n
n+ 1

= lim
ρ→1

1− ρn

1− ρn+1 . □

Theorem 2 – Case ρ , 1:

xk =
(1− ρk)

p∗[j,i]
q yj + (ρk − ρn+1)

p∗[i,j]
p yi

1− ρn+1 . (10)

Case ρ = 1:

xk =
kp∗[j,i]yj + (n+ 1− k)p∗[i,j]yi

2(n+ 1)
. (11)

Proof. Case ρ , 1: Use (3), (6) and (7) with z = 1 and λ1 = ρ;λ2 = 1(ρ > 1) or
λ1 = 1;λ2 = ρ(ρ < 1). The result of ρ = 1 is obtained by applying l’Hospitals rule for
the asymmetric case. □
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Theorem 3 –

N∑
j=0

p∗[j,j]yj = 1. (12)

Proof. Consider first ρ , 1. Using Theorem 1 we get:

N∑
i=0

uij = ujj +
∑
i<j

uij +
∑
i>j

uij

= −1 +
∑
j<i

[
ρ(1− ρn)
1− ρn+1

]
p∗[i,j] +

∑
j>i

[
1− ρn

1− ρn+1

]
p∗[i,j]

+
∑
i<j

[
1− ρ

1− ρn+1

]
p∗[j,i] +

∑
i>j

[
(1− ρ)ρn

1− ρn+1

]
p∗[j,i].

Interchange i and j in the first two summations and add terms with
∑

i<j and
∑

i>j :

N∑
i=0

uij = −1 +
∑
i,j

p∗[j,i] = −p∗[j,j]. (13)

We also have (Theorem 1)
∑N

j=0uijyj = −δ(i,0) (i = 0,1 . . .N ), so
∑N

i=0
∑N

j=0uijyj =

−1. Using (13) we get:
∑N

i=0
∑N

j=0uijyj =
∑N

j=0

[∑N
i=0uij

]
yj = −

∑N
j=0p

∗
[j,j]yj . The

symmetric case ρ = 1 proceeds along the same lines. □

2.3 Expected time until absorption

Let tk be the expected time until absorption when starting in M[k] (k = 0,1, . . . ,N ).

Theorem 4 – tk (k = 0,1 . . . ,N ) is the unique solution of
∑N

j=0 vijtj = τi (i = 0,1 . . .N )
where

vij =
[

(1− ρ)ρn

1− ρn+1

]
p∗[i,j] (j > i, ρ , 1),

vij =
[

1− ρ
1− ρn+1

]
p∗[i,j] (j < i, ρ , 1),

vij =
p∗[i,j]
n+ 1

(j , i, ρ = 1),

vii = −1 +
∑

j<i,ρ,1

[
ρ(1− ρn)
1− ρn+1

]
p∗[i,j] +

∑
j>i,ρ,1

[
1− ρn

1− ρn+1

]
p∗[i,j] +

∑
j,i,ρ=1

[ n
n+ 1

]
p∗[i,j],
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2. A graph with multiple function barriers

τi = −1 +
∑

j<i,ρ,1

[
n− (n+ 1)ρ+ ρn+1

(p − q)(1− ρn+1)

]
p∗[i,j]

+
∑

j>i,ρ,1

[
1− (n+ 1)ρn +nρn+1

(p − q)(1− ρn+1)

]
p∗[i,j] −

∑
j,i,ρ=1

np∗[i,j].

Proof. Step 1 – Let mk = mk[i, j] (k = 1,2, . . . ,n[i, j]) be the expected time until ab-
sorption when starting on edge [i, j] in state k (k = 1,2, . . . ,n[i, j]). We have, consider-
ing the next step in the random walk:

mk = p(mk+1 + 1) + q(mk−1 + 1) = pmk+1 + qmk−1 + 1 (k = 1,2, . . . ,n[i, j])

with general solution (case ρ , 1):

mk = aρ−k + b − k
p − q

(k = 0,1, . . . ,n[i, j] + 1). (14)

Step 2 – We express a and b in ti and tj using (14) with k = 0 and k = n+ 1: m0 =

a+b = ti and mn+1 = aρ−n−1+b− n+1
p−q = tj gives (1−ρn+1)a = −ρn+1ti+ρn+1tj+ρn+1

(
n+1
p−q

)
and (1− ρn+1)b = ti − ρn+1tj − ρn+1

(
n+1
p−q

)
.

Step 3 – Using the expressions for a and b we get, using (14):

m1 =
(1− ρn)ti + (ρn − ρn+1)tj

1− ρn+1 +
(n+ 1)(ρn − ρn+1)
(p − q)(1− ρn+1)

− 1
p − q

(i < j),

mn =
(1− ρ)ti + (ρ − ρn+1)tj

1− ρn+1 +
(n+ 1)(ρ − ρn+1)

(p − q)(1− ρn+1)
− n
p − q

(i < j).

We need the last formula with i > j, so by interchanging i and j we get:

mn =
(1− ρ)tj + (ρ − ρn+1)ti

1− ρn+1 +
(n+ 1)(ρ − ρn+1)

(p − q)(1− ρn+1)
− n
p − q

(i > j).

Step 4 – Consider ρ = 1 on edge [i, j]: mk = 1
2mk−1 + 1

2mk+1 + 1 gives

mk = ak + b − k2 (k = 0,1, . . . ,n[i, j] + 1).

Along the same lines as in case ρ , 1 we get:

m1 =
nti + tj
n+ 1

+n (i < j),

mn =
nti + tj
n+ 1

+n (i > j).

The same formula are found by applying l’Hospitals rule twice in case of ρ , 1.
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Step 5 – Substituting the values of m1 and mn and considering the next step of the
random walk:

ti =
∑
j>i

p∗[i,j](m1[i, j] + 1) +
∑
j<i

p∗[i,j](mn[i, j] + 1) + p∗[i,i].1

= 1 +
∑
j>i

p∗[i,j]m1[i, j] +
∑
j<i

p∗[i,j]mn[i, j]

= 1 +
∑

j>i,ρ,1

p∗[i,j]

 (1− ρn)ti + (ρn − ρn+1)tj
1− ρn+1 +

(n+ 1)(ρn − ρn+1)
(p − q)(1− ρn+1)

− 1
p − q


+

∑
j<i,ρ,1

p∗[i,j]

 (1− ρ)tj + (ρ − ρn+1)ti
1− ρn+1 +

(n+ 1)(ρ − ρn+1)

(p − q)(1− ρn+1)
− n
p − q


+

∑
j>i,ρ=1

p∗[i,j]

[
nti + tj
n+ 1

+n

]
+

∑
j<i,ρ=1

p∗[i,j]

[
nti + tj
n+ 1

+n

]
,

where i = 0,1, . . . ,N . By observing the coefficients of ti and tj and the constants we
obtain the result.

3 Examples of multiple function barrier graphs

3.1 A finite star graph

We consider a star graph where the starting state is in the center M[0]. In a finite
star graph we demand:

N∑
i=0

p∗[0,i] = 1,
N∏
i=1

p∗[0,i] , 0,

p∗[i,0] + p∗[i,i] = 1 (i = 1,2, . . . ,N ).

Example with N = 4:
 

M[1] M[2] 

M[4] 

M[0] 

M[3] 

We use the notation: pi = p[0, i], qi = q[0, i], ρi = pi
qi

(i = 1,2, . . . ,N ).
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3. Examples of multiple function barrier graphs

Expected number of arrivals

To obtain the expected number of arrivals in the finite star graph, we use Theorem
1:

∑N
j=0uijyj = −δ(i,0) (i = 0,1 . . .N ). We get (case ρ , 1):

yi =
[
−ui0
uii

]
y0 =

 (1− ρi)ρni p
∗
[0,i]

(1− ρi) + ρi(1− ρni )p∗[i,i]

y0 (i = 1,2, . . . ,N ). (15)

When ρ = 1 we get:

yi =
p∗[0,i]

1 +nip
∗
[i,i]

y0 (i = 1,2, . . . ,N ). (16)

Instead of the first equation of
∑N

j=0uijyj = −δ(i,0) (i = 0,1 . . .N ) we use the result

of Theorem 3:
∑N

j=0p
∗
[j,j]yj = 1, which leads to:

y0 =
1

p∗[0,0] +
∑N

i=1,ρi,1

[ (1−ρi )ρni p
∗
[0,i]

(1−ρi )+ρi (1−ρni )p∗[i,i]

]
+
∑N

i=1,ρi=1

[
p∗[0,i]

1+nip∗[i,i]

] . (17)

Mean absorption time with absorbing barriers

We consider a star graph with starting point M[0] in the center and all other MFB’s
are absorbing:

N∑
i=0

p∗[0,i] = 1,
N∏
i=1

p∗[0,i] , 0, p∗[i,i] = 1 (i = 1,2, . . . ,N ).

We use the notation:

pi = p[0, i], qi = q[0, i], ni = n[0, i], ρi =
pi
qi

(i = 1,2, . . . ,N ).

Let for i = 1,2, . . . ,N :

αi =
1− ρnii

1− ρni+1
i

, βi =
1− (1 +ni)ρ

ni
i +niρ

ni+1
i

(pi − qi)(1− ρ
ni+1
i )

(ρi , 1),

αi =
ni

ni + 1
, βi = −ni (ρi = 1).

Theorem 4 gives:

t0 =
τ0

v00
=

1−
∑N

i=1βip
∗
[0,i]

1−
∑N

i=1αip
∗
[0,i]

.
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3.2 An infinite star graph with absorbing barriers

In this subsection we consider an infinite star graph where all barriers (except the
start position M[0]) are absorbing: p∗[i,i] = 1 (i = 1,2, . . .).

Theorem 5 –

y0 =
1

1−
∑∞

i=1,ρi,1

[
1−ρni

1−ρn+1
i

]
p∗[0,i] −

∑∞
i=1,ρi=1

[
n

1+n

]
p∗[0,i]

(n = ni), (18)

yi =
(1− ρi)ρni p

∗
[0,i]

1− ρn+1
i

y0 (ρi , 1; n = ni ; i = 1,2, . . . ), (19)

yi =
p∗[0,i]
1 +n

y0 (ρi = 1; n = ni ; i = 1,2, . . . ). (20)

Proof. Use (15),(16) and (17) with p∗[i,i] = 1(i = 1,2, . . . ,N ) and rewrite (17) to the
form in (18) by using p∗[i,i] = 1. Finally note that

∑
p∗[0,i] is a majorant of both∑[

n
1+n

]
p∗[0,i] and

∑[ 1−ρni
1−ρn+1

i

]
p∗[0,i]. □

3.3 A positive oriented finite cycle graph

We have N + 1 barriers in the finite cycle graph: M[0],M[1], . . . ,M[N ]. We start in
M[0]. When the random walk is in M[i] then absorption can happen or we move
one step in the direction of M[i + 1]. The state space is mod (N + 1): when arriving
in M[N ], there can be a step in the direction of M[N + 1] where M[N + 1] = M[0].
We have:

p∗[i,i] + p∗[i,i+1] = 1 (i = 0,1, . . . ,N ). (21)

Example with N = 3:

 
 

M[0] 

M[3] M[2] 

M[1] 

We use the notation: ρi = ρ[i, i + 1]; ni = n[i, i + 1].
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3. Examples of multiple function barrier graphs

Expected number of arrivals

Theorem 6 –

yk =
∏k

i=1Mi∑N
m=0p

∗
[m,m]

∏m
i=1Mi

(k = 0,1, . . . ,N )
( 0∏
i=1

Mi = 1
)
. (22)

• Case ρ , 1:

Mi =
p∗[i−1,i]

1 +
[ 1−ρn
ρn(1−ρ)

]
p∗[i,i]

(i = 1,2, . . . ,N ), ρ = ρi , n = ni . (23)

• Case ρ = 1:

Mi =
p∗[i−1,i]

1 +nip
∗
[i,i]

(i = 1,2, . . . ,N ). (24)

Proof. We use (21) and Theorem 1 to obtain: yi = −ui,i−1
uii

yi−1 (i = 1,2, . . . ,N ). Let

Mi = −ui,i−1
uii

, ρ = ρi and n = ni then M[i] =
p∗[i−1,i]

1+[ 1−ρn
(1−ρ)ρn ]p∗[i,i]

(ρ , 1) and M[i] =
p∗[i−1,i]

1+np∗[i,i]

(ρ = 1). Because of yi = Miyi−1 (i = 1,2, . . . ,N ) we have yk =
(∏k

i=1Mi

)
y0 (k =

0,1, . . . ,N ) where we define
∏0

i=1Mi = 1. By theorem 3 we have
∑N

j=0p
∗
[j,j]yj = 1.

Combining the last two results gives (22). □

Mean absorption time

We use the notation:

pi = p[i, i + 1], qi = q[i, i + 1], ni = n[i, i + 1], ρi =
pi
qi

(i = 0,1, . . . ,N ).

Let for i = 0,1, . . . ,N :

αi =
1− ρnii

1− ρni+1
i

, βi =
1− (1 +ni)ρ

ni
i +niρ

ni+1
i

(pi − qi)(1− ρ
ni+1
i )

, γi =
(1− ρi)ρ

ni
i

1− ρni+1
i

(ρi , 1),

αi =
ni

ni + 1
, βi = −ni , γi =

1
ni + 1

(ρi = 1).

Using Theorem 4 we obtain:

vi,i+1 = γip
∗
[i,i+1], vi,i = −1 +αip

∗
[i,i+1], τi = −1 + βip

∗
[i,i+1],

ti+1 =
τi − vi,iti
vi,i+1

= λiti +µi , λi =
−vi,i
vi,i+1

, µi =
τi

vi,i+1
(i = 0,1, . . . ,N ),(Cont. next page)
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tk+1 = t0

k∏
i=0

λi +
k−1∑
i=0

µi

k∏
j=i+1

λj (k = 0,1, . . . ,N ),

t0 = tN+1 =

∑N−1
i=0 µi

∏N
j=i+1λj

1−
∏N

i=0λi

.

3.4 A positive oriented infinite cycle graph

Theorem 7 – • Case ρ , 1: If
∑∞

i=0p
∗
[i,i] converges and

liminf
i→∞

ρi > 0, limsup
i→∞,ρi<1

ρi < 1, liminf
i→∞,ρi>1

ρi > 1,

then:

yk =
∏k

i=1Mi∑∞
m=0p

∗
[m,m]

∏m
i=1Mi

(k = 0,1, . . . )
( 0∏
i=1

Mi = 1
)
, (25)

where Mi is given by (23).

• Case ρ = 1: We get (25) when
∑∞

i=0nip
∗
[i,i] converges, where Mi is given by (24).

Proof. We use: If 0 ≤ ωi < 1 then
∏∞

i=1(1 −ωi) converges to a non-zero number if
and only if

∑∞
i=1ωi converges. We define a relation ∽ between two sequences

∑
ai

and
∑
bi :

∑
ai ∽

∑
bi if and only if both sequences converges. Let ωi = 1−Mi .

Case ρ , 1: Using 23 we get:

0 < ωi =
(1− ρni )p∗[i,i] + (1− ρi)ρni p

∗
[i−1,i−1]

(1− ρni )p∗[i,i] + (1− ρi)ρni
< 1.

If only a finite number of the ρi are in the neighbor of 0 and 1 (liminfi→∞ρi > 0,
limsupi→∞,ρi<1ρi < 1, liminfi→∞,ρi>1ρi > 1) then by the comparison criterium and
limi→∞p∗[i,i] = 0:∑

ωi =
∑ (1− ρni )p∗[i,i] + (1− ρi)ρni p

∗
[i−1,i−1]

(1− ρni )p∗[i,i] + (1− ρi)ρni

∽
∑ (1− ρni )p∗[i,i] + (1− ρi)ρni p

∗
[i−1,i−1]

(1− ρi)ρni
∽
∑

p∗[i,i].

Case ρ = 1: Using 24 we get: 0 < ωi =
nip
∗
[i,i]+p

∗
[i−1,i−1]

nip
∗
[i,i]+1 < 1. By the comparison

criterium and limi→∞nip
∗
[i,i] = 0:∑

ωi =
∑ nip

∗
[i,i] + p∗[i−1,i−1]

nip
∗
[i,i] + 1

∽
∑

[nip
∗
[i,i] + p∗[i−1,i−1]] ∽

∑
nip
∗
[i,i]

(because of ni ≥ 1). □
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