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Abstract

In this paper, we consider the space of entire functions of minimal type
growth for a proximate order. We study the surjectivity of corresponding in-
finite order differential equations in the cases of regular singular type and of
Korobeı̆nik type.
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1 Introduction

The topic of characterization of infinite order differential operators in terms of the
growth of their coefficients has a long history. The interest in this kind of problems,
which lay at the heart of the early study of hyperfunctions, arose from the variations
on Koethe’s duality theorem. The infinite order differential operator acting on
a certain space of holomorphic functions has been studied by several authors, for
example: Martineau2 and Momm3.

On the other hand, recently, quantum physicists have developed an important
theory regarding a phenomenon which is called “superoscillations”. The study
of superoscillations naturally leads to the analysis of a large class of convolution
operators acting on spaces of entire functions. In particular, the key point to address
these questions is the continuity of these operators on appropriate spaces. And it
leads to the article of Aoki, Colombo, Sabadini, and Struppa4 in which the authors

1Graduate School of Science, Chiba University, Japan
2Martineau, 1967, “Équations différentielles d’ordre infini”.
3Momm, 1990, “Partial differential operators of infinite order with constant coefficients on the space

of analytic functions on the polydisc”.
4Aoki, Colombo, et al., 2018a, “Continuity of some operators arising in the theory of superoscilla-

tions”.
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offer explicit proofs of continuity of such operators by using some recent advances
in the study of entire functions.

Furthermore, Aoki, Ishimura, Okada, Struppa, and Uchida5 characterized con-
tinuous endomorphism of the space of entire functions of normal type or minimal
type with respect to a given order. Since we established some solvability conditions
of the infinite order PDEs for the case of normal type with respect to proximate
order in Ishimura and Jin (2019), the duality between the space of normal type
entire functions and the space of minimal type entire functions leads us to study
the solvability conditions for the case of minimal type.

However, the proofs of main results in Ishimura and Jin (2019) cannot be simply
applied because the duality arguments that were central in Aoki, Colombo, et al.
(2018b) and Aoki, Ishimura, et al. (2020) cannot be used in this case. Hence, we
will establish the solvability conditions in the cases of two types, which are called
“regular singular type” and “Korobeı̆nik type”, by the different approaches.

2 Notations and recall

In this article, we employ the same notations as Ishimura and Miyake 2007:
for multi-indexes α = (α1, . . . ,αn) ∈ N

n with N := {0,1,2,3, . . . } and a point z :=
(z1, . . . , zn) ∈Cn, we set:

|α| := α1 + · · ·+αn, α! := α1! · · ·αn!,

|z| :=
√
|z1|2 + · · ·+ |zn|2,

#»

|z| :=
(
|z1|, . . . , |zn|

)
,

Dα
z :=

∂|α|

∂zα1
1 · · ·∂z

αn
n

, Hn
k :=

(
n+ k − 1

k

)
=

(n+ k − 1)!
(n− 1)!k!

.

For any σ > 0, we define the Banach space

Bwσ
:=

{
f ∈ O(Cn)

∣∣∣∣ ∥f ∥wσ
:= sup

z∈Cn

∣∣∣f (z)
∣∣∣e−wσ (z) <∞

}
with the norm ∥ ·∥wσ

, wherewσ (z) := σ |z|ρ(|z|). A differentiable function ρ(r) : R+→R+
is a proximate order of order ρ > 0 provided that:

(i) limr→∞ρ(r) = ρ;

(ii) limr→∞ρ′(r)r lnr = 0.

Let ϕ(q) be the inverse function of q = rρ(r) for all sufficiently large q ∈ R. Since
it is well-known that rρ(r) is strictly increasing for all sufficiently large r > 0, we

5Aoki, Ishimura, et al., 2020, “Characterization of Continuous Endomorphisms in the Space of Entire
Functions of a Given Order”.
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may assume the function ϕ(q) is strictly increasing on q ∈ [0,∞). For any q ∈N, we
define

Aq :=
(
ϕ(q)ρ

eρ

)q
ρ

.

We define the locally convex space of entire functions of type at most σ ⩾ 0 with
respect to a proximate order ρ(r):

E
ρ(r)
σ := lim←−−

ε→0

Bwσ+ε
.

Now we consider the space of entire functions of minimal type with respect to the
proximate order ρ(r)

E
ρ(r)
0 := lim←−−

ε→0

Bwε
;

and the space of entire functions of normal type with respect to the proximate order
ρ(r)

Eρ(r) := lim−−→
σ→∞

Bwσ
.

By Lemma 1 in Ishimura and Jin 2019, they are (FS)-space and (DFS)-space, respec-
tively.

By the proof of Theorem 1.23 in P. Lelong and L. Gruman Lelong and Gruman
1986, we remark the following lemma:

Lemma 1 – For every δ > 0 with δ <
1
ρ

, there exists T0 > 0 such that if t ⩾ T0, we have

(
1
ρ
− δ

)
d
dt

ln t <
d
dt

lnϕ(t) <
(

1
ρ

+ δ

)
d
dt

ln t. (1)

We recall the following lemma of Ishimura and Jin 2019 (Corollary 1).

Lemma 2 – If an entire function f (z) =
∑

α∈Nn
fαz

α belongs to E
ρ(r)
σ , then

limsup
|α|=q→∞

(∣∣∣fα ∣∣∣Aq

) ρ
q
⩽ (
√
n)ρ σ.

Conversely, if f (z) satisfies this estimate, then we have f (z) ∈ Eρ(r)
√
n
ρ
σ

.
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In particular, when σ = 0, we have that:

Proposition 1 – An entire function f (z) =
∑

α∈Nn
fαz

α belongs to E
ρ(r)
0 if and only if we

have

limsup
|α|→∞

(∣∣∣fα ∣∣∣A|α|) 1
|α|

= 0.

3 Infinite order partial differential equations in E
ρ(r)
0

We employ the same notation and terminology as Ishimura and Jin 2019: for an
infinite order partial differential operator

P = P (z,Dz) =
∑
α∈Nn

aα(z)Dα
z , where aα(z) :=

∑
β∈Nn

a
β
αz

β ,

we define the transpose of P = P (ζ,Dζ):

tP := tP (z,Dz) :=
∑
β∈Nn

( ∑
α∈Nn

a
β
αz

α

)
D

β
z .

For a formal power series f (z) :=
∑

ν fνz
ν ∈ C[[z]], the characteristic matrix of

operator P is

CP :=
(
c
µ
ν

)
µ,ν

:=
(∑
λ⩽ν
λ⩽µ

ν!
λ!

a
µ−λ
ν−λ

)
µ,ν

: CN
n
→C

N
n
. (2)

And the characteristic matrix of the transpose of operator P is

CtP =
(∑
λ⩽ν
λ⩽µ

ν!
λ!

aν−λµ−λ

)
µ,ν

=
(
ν!
µ!
cνµ

)
µ,ν

. (3)

Note that for any formal power series f (z) =
∑

ν∈Nn fνz
ν and g(z) =

∑
µ∈Nn gµz

µ, we
have P f = g if and only if (see Ishimura and Jin 2019 page 80)∑

ν∈Nn

c
µ
νfν =

∑
ν∈Nn

(∑
λ⩽ν
λ⩽µ

ν!
λ!

a
µ−λ
ν−λ

)
fν = gµ (4)
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for all µ ∈Nn. Similarly, we have tP f = g if and only if∑
ν∈Nn

ν!
µ!
cνµfν =

∑
ν∈Nn

(∑
λ⩽ν
λ⩽µ

ν!
λ!

aν−λµ−λ

)
fν = gµ. (5)

In this article, as in the paper Ishimura and Jin (2019), we will study the partial
differential operator of regular singular type and Korobeı̆nik type.

4 Partial differential equations of regular
singular type

We recall that a partial differential operator

P =
∑
α∈Nn

aα(z)Dα
z

is of regular singular type provided that

aα(z) =
∑
β⩾α

a
β
αz

β .

Theorem 1 – Let a continuous linear operator P : E
ρ(r)
0 → E

ρ(r)
0 be of regular singular

type as differential operator. Suppose that the following conditions hold:

1. there exist C, κ > 0 such that for all µ ∈Nn,

Cκ|µ| ⩽
∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣;
2. for any δ > 0, there exists N > 0 such that∣∣∣∣∑λ⩽ν

ν!
λ! a

µ−λ
ν−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
µ!
λ! a

µ−λ
µ−λ

∣∣∣∣ ⩽
A|ν|
A|µ|
· δ
|µ−ν|∣∣∣µ∣∣∣n−1

whenever
∣∣∣µ∣∣∣ > N and ν < µ.

Then P : E
ρ(r)
0 → E

ρ(r)
0 is surjective; so is an isomorphism of Fréchet spaces.

Proof. Assume that P f = g ∈ Eρ(r)
0 , where

f (z) =
∑
µ∈Nn

fµz
µ and g(z) =

∑
µ∈Nn

gµz
µ.
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In view of Proposition 1, it suffices to show that for any ε > 0, there exists D > 0
such that∣∣∣fµ∣∣∣ ⩽D

ε|µ|
A|µ|

(6)

for all
∣∣∣µ∣∣∣ ∈N. We prove it by induction on

∣∣∣µ∣∣∣ ∈N.
By condition (1) and Proposition 1, we have that there exists D0 > 0 such that∣∣∣gµ∣∣∣∣∣∣cµµ∣∣∣ ⩽D0

ε|µ|
A|µ|

for all
∣∣∣µ∣∣∣ ∈N. Put δ := ε/4. Condition (2) implies that there exist N , Dδ > 0 such

that

(a) if |ν| ⩽N , then∣∣∣cµν ∣∣∣∣∣∣cµµ∣∣∣ ⩽Dδ
A|ν|
A|µ|
· δ
|µ−ν|∣∣∣µ∣∣∣n−1 ;

(b) if |ν| > N , then∣∣∣cµν ∣∣∣∣∣∣cµµ∣∣∣ ⩽ A|ν|
A|µ|
· δ
|µ−ν|∣∣∣µ∣∣∣n−1 .

Remark that

lim
q→∞

1
qn−1

q∑
k=1

(1
4

)k
Hn
q−k ⩽

∞∑
k=1

(1
4

)k
lim
q→∞

Hn
q−1

qn−1

=
1

3(n− 1)!
lim
q→∞

(n+ q − 2)!
(q − 1)!qn−1

⩽
1

3(n− 1)!
lim
q→∞

(
n+ q − 2

q

)n−1

=
1

3(n− 1)!
. (7)

Hence, there exists M >N such that

N∑
|ν|=0

Dδ

(1
4

)|µ−ν|
<

1
12

and
1∣∣∣µ∣∣∣n−1

|µ|∑
j=1

(1
4

)j
Hn
|µ|−j <

5
12

whenever
∣∣∣µ∣∣∣ >M. And there exists D > 2D0 such that (6) holds for all

∣∣∣µ∣∣∣ ⩽M.
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Assume that (6) holds for
∣∣∣µ∣∣∣ = q − 1, where q − 1 ⩾ M. When

∣∣∣µ∣∣∣ = q, by the
assumption of induction, we have that

1∣∣∣cµµ∣∣∣
∣∣∣∣∑
ν<µ

c
µ
νfν

∣∣∣∣ ⩽ N∑
|ν|=0

∣∣∣cµν ∣∣∣∣∣∣cµµ∣∣∣ |gν |+
q−1∑

|ν|=N+1

∣∣∣cµν ∣∣∣∣∣∣cµµ∣∣∣ |fν |
⩽

N∑
|ν|=0

Dδ
A|ν|
Aq
· δ
|µ−ν|
qn−1 ·D

ε|ν|

A|ν|
+
|µ|−1∑
|ν|=N+1

A|ν|
Aq
· δ
|µ−ν|
qn−1 ·D

ε|ν|

A|ν|

=
D

qn−1 ·
εq

Aq

 N∑
|ν|=0

Dδ

(1
4

)|µ−ν|
+

q−1∑
|ν|=N+1

(1
4

)|µ−ν|
⩽

D

qn−1 ·
εq

Aq

 1
12

+
q∑

j=1

(1
4

)j
Hn
q−j

 < D
2
· ε

q

Aq
.

Finally, applying (4), we have that

∣∣∣fµ∣∣∣ ⩽
∣∣∣gµ∣∣∣∣∣∣cµµ∣∣∣ +

1∣∣∣cµµ∣∣∣
∣∣∣∣∑
ν<µ

c
µ
νfν

∣∣∣∣ < D0
εq

Aq
+
D
2
· ε

q

Aq
< D

εq

Aq
,

as desired. □

We call P an operator of Euler type provided that P has the form:

P =
∑
α∈Nn

aαz
αDα

z ,

where aα ∈C for all α ∈Nn.

Corollary 1 – If P is of Euler type, then P : E
ρ(r)
0 → E

ρ(r)
0 is an isomorphism if and only

if there exist C, κ > 0 such that for all µ ∈Nn, we have

Cκ|µ| ⩽
∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣.
Proof. We only need to prove the necessity. Suppose that P f = g, where

f :=
∑
µ∈Nn

fµz
µ and g :=

∑
µ∈Nn

gµz
µ.

First we show that c
µ
µ , 0 for all µ ∈Nn. Assume that there exists γ ∈Nn such that

c
γ
γ = 0. Set g := gγz

γ , where gγ , 0. Then we have g ∈ Eρ(r)
0 because of Proposition 1.
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On the other hand, in view of (4), there doesn’t exist f ∈ Eρ(r)
0 such that P f = g,

which contradicts the surjectivity of P : E
ρ(r)
0 → E

ρ(r)
0 .

To show the conclusion, we prove the inequality

limsup
|µ|→∞

 1∣∣∣cµµ∣∣∣


1
|µ|

<∞

by contradiction. Assume that there exists an infinite subset S ⊂N
n such that 0 is

the only limit point of the sequence
(
|cαα |

1
|α|
)
α∈S

. Set

gµ :=


∣∣∣cµµ∣∣∣
A|µ|

µ ∈ S

0 µ < S

.

It follows that g(z) ∈ Eρ(r)
0 from Proposition 1. Since P : E

ρ(r)
0 → E

ρ(r)
0 is an isomor-

phism, we have that f (z) = P −1g(z) ∈ Eρ(r)
0 . Therefore,

limsup
|µ|→∞

(∣∣∣fµ∣∣∣A|µ|) 1
|µ| = limsup

|µ|→∞


∣∣∣gµ∣∣∣∣∣∣cµµ∣∣∣ ·A|µ|


1
|µ|

= 1,

which implies a contradiction that f (z) < E
ρ(r)
0 . □

Example 1 – Let n = 1, ρ(r) ≡ ρ > 0. In the following cases, P =
∑
aα(z)Dα

z satisfies
the conditions of Theorem 1.

1. with k > 0, define

a
β
α :=



kα

α!
β = α

(−k)α

α!
β = α + 1

0 otherwise

.

2. with ρ ⩾ 1 and k , −1, define

a
β
α :=



kα

α!
β = α

(−1)α

α! (β −α)!
β > α

0 otherwise

.
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5 Partial differential equations of Korobeı̆nik type

A partial differential operator

P =
∑
α∈Nn

aα(z)Dα
z

is of Korobeı̆nik type provided that

aα(z) =
∑
β⩽α

a
β
αz

β .

In the rest of this section, we suppose ρ > 1: in this case, the equation s = rρ(r)−1 has
the unique solution r = λ(s) for all s large enough. A proximate order ρ∗(s) is said to
be a conjugate proximate order of ρ(r) if it satisfied for large s (so for large r)

ρ∗(s) :=
ρ(r)

ρ(r)− 1
i.e.

1
ρ(r)

+
1

ρ∗(s)
= 1. (8)

By Lelong and Gruman (1986, Proposition 9.4), we have that ρ∗(s) is indeed a proxi-
mate order. Set ρ∗ := lims→∞ρ∗(s). Then we have 1

ρ + 1
ρ∗ = 1.

As the case of r = ϕ(t), let s = ϕ∗(u) be a differentiable function being the inverse
function of u = sρ

∗(s) when u is sufficiently large. We set also

A∗q :=
(
ϕ∗(q)ρ

∗

eρ∗

) q
ρ∗

.

We recall a proposition of Ishimura and Jin (2019, Proposition 3):

Proposition 2 – Suppose ρ > 1. The map(
Eρ(r)

)′ ∼−→ E
ρ∗(s)
0 : T 7→ T̂ (ζ) := Tz(e

z·ζ)

is a continuous bijection of Fréchet spaces; so an isomorphism.

Since both of E
ρ(r)
0 and Eρ(r) are reflexive, we have that

Corollary 2 – Suppose ρ > 1. The map

T 7→ T̂ :
(
E
ρ(r)
0

)′ ∼−→ Eρ∗(s)
is a continuous bijection of Fréchet spaces; so an isomorphism.

To prove our main result, we need to characterize the Cauchy sequence in Eρ(r). So
we need the following lemma.
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Lemma 3 – If for each q ∈Z+, r := r(q) is the solution of equation

d
dr

(
rq e−σr

ρ(r))
= 0. (9)

Then

lim
q→∞

Aq eσr
ρ(r)

rq


1
q

=
( 1
σ

)1
ρ
.

Proof. By computing the equation, we have that

t
q

=
1

σ
(
ρ′(r)r lnr + ρ(r)

)
where t := rρ(r). Since r →∞ as q→∞, we have that for any ε1 > 0, there exists
N1 > 0 such that

1
σρ
− ε1 <

t
q
<

1
σρ

+ ε1

whenever q, t > N1. In view of Lemma 1, for any ε2 > 0, there exists N2 > 0 such that
(1) holds for all q, t > N2.

If σρ ⩽ 1, integrating (1) from q to t, obtain that(
1
ρ
− ε2

)
ln

t
q
< ln

ϕ(t)
ϕ(q)

<

(
1
ρ

+ ε2

)
ln

t
q

for all q, t > N2. Hence, for all q, t > max{N1,N2}, we have(
1
ρ
− ε2

)
ln

(
1
σρ
− ε1

)
< ln

ϕ(t)
ϕ(q)

<

(
1
ρ

+ ε2

)
ln

(
1
σρ

+ ε1

)
.

When σρ > 1, by the same process, obtain that for all q, t > max{N1,N2},(
1
ρ

+ ε2

)
ln

(
1
σρ
− ε1

)
< ln

ϕ(t)
ϕ(q)

<

(
1
ρ
− ε2

)
ln

(
1
σρ

+ ε1

)
.

Finally, since r→∞ (so does t) as q→∞, we have that

lim
q→∞

1
q

ln
rqe−σr

ρ(r)

Aq
= lim

q→∞
1
q

(
lnϕ(t)q − σt − lnAq

)
= lim

q→∞

(
−σt
q

+ ln
ϕ(t)
ϕ(q)

)
+

1
ρ

ln(eρ)

= −1
ρ

+
1
ρ

ln
(

1
σρ

)
+

1
ρ

ln(eρ) =
1
ρ

ln
1
σ
. □

Now, by the preceding lemma, we can characterize the Cauchy sequence in Eρ(r).
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Lemma 4 – Suppose f j(z) :=
∑

α∈Nn f
j
αzα ∈ Eρ(r) for each j ∈ Z+. Then the following

three statements are equivalent.

(a) f j (z)→ 0 as j→∞ in Eρ(r);

(b) there exists δ > 0 such that for any ε > 0, there exists N > 0 such that∣∣∣∣f j
α

∣∣∣∣ ⩽ ε
δ|α|

A|α|

whenever j > N and α ∈Nn;

(c) there exists δ > 0 such that for any ε > 0, there exists N > 0 such that∣∣∣∣f j
α

∣∣∣∣ ⩽ ε
A∗|α|
α!

δ|α|

whenever j > N and α ∈Nn.

Proof. Note that (a) is equivalent to that:

(a)′ there exists σ > 0 such that for any ε > 0, there exists N > 0 such that∥∥∥f j (z)
∥∥∥
wσ

< ε whenever j > N .

(a)⇒(b). It follows from (a)′ that we have that for any ε > 0, there exists N1 > 0
such that

sup
|z|⩽s

∣∣∣f j (z)
∣∣∣ ⩽ εeσs

ρ(s)

whenever s > 0 and j > N1. Let
#»

S := (s, . . . , s) and r := s
√
n. By Cauchy’s inequality,

for any ε > 0, there exists N2 > N1 such that for any
#»

S ∈ Rn
+ (so for any r > 0), we

have that∣∣∣∣f j
α

∣∣∣∣ =
1
α!

∣∣∣∣∂αz f j (0)
∣∣∣∣ ⩽ 1

#»

S α
sup
#»

|z|⩽ #»
S

∣∣∣f j (z)
∣∣∣ ⩽ (1

s

)|α|
sup
|z|⩽s
√
n

∣∣∣f j (z)
∣∣∣

⩽
(1
s

)|α|
εeσ (s

√
n)ρ(s

√
n)

=
(√

n
r

)|α|
εeσr

ρ(r)

whenever j > N2 and α ∈Nn. When α = 0, it’s trivial. For each α ∈Nn \ {0}, we
choose some r satisfying (9). Applying Lemma 3, obtain that for any τ > 0, there
exist C, N3 > N2 such that∣∣∣∣f j

α

∣∣∣∣ ⩽ (√
n
r

)|α|
εeσr

ρ(r)
= (
√
n)|α| · ε

A|α|
·
A|α|eσr

ρ(r)

r |α|

⩽ (
√
n)|α| · Cε

A|α|
· (σ + τ)

|α|
ρ =

Cε
A|α|

((
σ + τ

)1
ρ
√
n

)|α|
whenever j > N3 and α ∈Nn \ {0}.
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(b)⇒(a). First, we claim that if ρ, σ > 0, then

limsup
|α|→∞

(∥zα∥wσ

A|α|

) 1
|α|
⩽

( 1
σ

)1
ρ
.

In fact, for all r > 0 and |α| ∈N, we have that

∥zα∥wσ

A|α|
= sup
|z|=r

|zα |e−wσ (z)

A|α|
⩽

r |α| e−σr
ρ(r)

A|α|
.

For each |α| ∈N, we choose some r > 0 such that the right-hand side of the above
inequality attains its maximum, which means (9) is satisfied. And the conclusion
follows from Lemma 3.

For any δ > 0, we choose some σ , τ > 0 such that 0 < τ < σ − δρ. In view of
Lemma 2, we have that there exist D, C > 0 such that for any ε > 0, there exists
N > 0 such that∥∥∥f j (z)

∥∥∥
wσ
⩽

∑
α∈Nn

∣∣∣∣f j
α

∣∣∣∣∥zα∥wσ
⩽

∑
α∈Nn

ε
δ|α|

A|α|
·D

( 1
σ − τ

)|α|
ρ
A|α|

⩽ εD
∑
α∈Nn

(
δρ

σ − τ

)|α|
ρ

< εC

whenever j > N . Since C is independent of ε, we have (a)′ .
(b)⇔(c). It suffices to show that there exist C, K > 0 such that

1

CK |µ|
⩽

µ!
A|µ|A

∗
|µ|
⩽ CK |µ|

for all µ ∈Nn. Let q :=
∣∣∣µ∣∣∣. Then we have

AqA
∗
q =

ϕ(q)q

(eρ)
q
ρ

·
ϕ∗(q)q

(eρ∗)
q
ρ∗

= q
q

ρ(r) q
q

ρ∗(s)

1
e

(
1
ρ

) 1
ρ
(

1
ρ∗

) 1
ρ∗

q

= qq
(

1
eρ

(
ρ − 1

) ρ−1
ρ

)q
.

Let ⌊ qn ⌋ := max
{
j ∈ Z : j ⩽ q

n

}
. Observe that q

n ⩾ ⌊
q
n ⌋ ⩾

q
n − 1 ⩾ q

n+1 holds for all
sufficiently large q ∈N. Hence, by Stirling’s approximation, we have that

qq ⩾ µ! ⩾
(⌊q
n

⌋
!
)n
⩾

(⌊q
n

⌋ 1
e

)⌊ qn ⌋·n
⩾

(
q

e(n+ 1)

)q−n
⩾ qq

1
qn

(
1

e(n+ 1)

)q
⩾ qq

(
1

e(n+ 1)2

)q
for all sufficiently large q ∈ N. Combining the above equation and these two
inequalities, we see the desired inequalities. □

60



5. Partial differential equations of Korobeı̆nik type

Theorem 2 – Let ρ > 1 and a continuous linear operator P : E
ρ(r)
0 → E

ρ(r)
0 be of Ko-

robeı̆nik type as partial differential operator. Suppose that the following conditions
hold:

1. there exist C, κ > 0 such that for all µ ∈Nn, we have that

Cκ|µ| ⩽
∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣;
2. there exists R > 0 such that for all ν < µ, we have that∣∣∣∣∑λ⩽µ

1
λ!a

ν−λ
µ−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
1
λ!a

µ−λ
µ−λ

∣∣∣∣ ⩽
A∗|ν|
A∗|µ|

R|µ−ν|.

Then P : E
ρ(r)
0 → E

ρ(r)
0 is surjective; so is an epimorphism of Fréchet spaces.

Proof. By Corollary 2, we have that P : E
ρ(r)
0 → E

ρ(r)
0 is surjective if and only if the

following two statements hold:

(a) tP : Eρ∗(s)→Eρ∗(s) is injective;

(b) P
(
Eρ(r)

)
is closed in Eρ(r).

Since the characteristic matrix CtP is “lower triangular” (see (3)), we have that (a) is
satisfied. To prove (b), by closed range theorem, we only need to show that tP

(
Eρ∗(s)

)
is closed in Eρ∗(s). Assume that

(i) Ŝj , T̂ j ∈ Eρ∗(s) for all j ∈Z+, where

Ŝj (ζ) :=
∑
α∈Nn

Ŝ
j
αζ

α , T̂ j (ζ) :=
∑
α∈Nn

T̂
j
αζ

α ;

(ii) tP (T̂ j ) = Ŝj for each j ∈Z+;

(iii) The sequence (Ŝj )j∈Z+
is a Cauchy sequence in Eρ∗(s).

We shall show that (T̂ j )j∈Z+
is a Cauchy sequence in Eρ∗(s). By Lemma 4 (b), it

suffices to show that there exists δ > 0 such that for any ε > 0, there exists N > 0
such that∣∣∣∣T̂ i

µ − T̂
j
µ

∣∣∣∣ ⩽ ε
δ|µ|
A∗|µ|

(10)

for all i, j > N and
∣∣∣µ∣∣∣ ∈N. Prove it by induction on

∣∣∣µ∣∣∣ ∈N.
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Since Ŝ i − Ŝj → 0 as i, j→∞ in Eρ∗(s), by condition (1) and Lemma 4 (b), there
exist C, κ, K > 0 such that for any ε > 0, there exists N1 > 0 such that

1∣∣∣cµµ∣∣∣
∣∣∣∣Ŝ i

µ − Ŝ
j
µ

∣∣∣∣ ⩽ Cκ|µ| · ε
2C
·
(K
κ

)|µ|
· 1
A∗|µ|

=
ε
2
· K
|µ|

A∗|µ|
(11)

whenever i, j > N1 and
∣∣∣µ∣∣∣ ∈N. We choose some δ > max{2n+1R,K}, where R is given

by condition (2).
It’s obvious that there exists N > N1 such that (10) holds for all i, j > N and∣∣∣µ∣∣∣ = 0. Assume that (10) holds for

∣∣∣µ∣∣∣ = q − 1. When
∣∣∣µ∣∣∣ = q, we have that

1∣∣∣cµµ∣∣∣
∣∣∣∣∣∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

)∣∣∣∣∣ ⩽∑
ν<µ

ν!
µ!
·
A∗|ν|
A∗|µ|

R|µ−ν| · ε δ|ν|

A∗|ν|

= ε
δ|µ|
A∗|µ|

∑
ν<µ

ν!
µ!

(R
δ

)|µ−ν|
⩽ ε

δ|µ|
A∗|µ|
· R
δ
· 2n ⩽

ε
2
· δ
|µ|

A∗|µ|
for all i, j > N , since for any µ ∈Nn, we have (see Ishimura and Jin (2019, Lemma 3))∑

ν<µ

ν!
µ!
⩽ 2n.

Finally, applying (5), we have that there exists N > 0 such that∣∣∣∣T̂ i
µ − T̂

j
µ

∣∣∣∣ ⩽
∣∣∣∣∣∣∣ 1

c
µ
µ

(
Ŝ i
µ − Ŝ

j
µ

)∣∣∣∣∣∣∣+
∣∣∣∣∣ 1

c
µ
µ

∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

)∣∣∣∣∣ ⩽ ε
δ|µ|
A∗|µ|

whenever i, j > N , as desired. □

Theorem 3 – Let ρ > 1 and a continuous linear operator P : E
ρ(r)
0 → E

ρ(r)
0 be of Ko-

robeı̆nik type as partial differential operator. Suppose that the following conditions
hold:

1. there exist C, κ > 0 such that for all µ ∈Nn, we have that

Cκ|µ| ⩽
∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣;
2. there exists R > 0 such that for all ν < µ, we have that∣∣∣∣∑λ⩽µ

1
λ!a

ν−λ
µ−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
1
λ!a

µ−λ
µ−λ

∣∣∣∣ ⩽
A|µ|
A|ν|
· ν!
µ!

R|µ−ν|.

Then P : E
ρ(r)
0 → E

ρ(r)
0 is surjective; so is an epimorphism of Fréchet spaces.
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Proof. Considering Lemma 4 (c) and the proof of Theorem 2, we only need to prove
that there exists δ > 0 such that for any ε > 0, there exists N > 0 such that∣∣∣∣T̂ i

µ − T̂
j
µ

∣∣∣∣ ⩽ ε
A|µ|
µ!

δ|µ| (12)

for all i, j > N and
∣∣∣µ∣∣∣ ∈N. In the rest proof of Theorem 2, replacing A∗q (resp., A∗|ν|)

by µ!/A|µ| (resp., ν!/A|ν|), we have the desired inequality (12). □

Theorem 4 – Let ρ > 1 and a continuous linear operator P : E
ρ(r)
0 → E

ρ(r)
0 be of Ko-

robeı̆nik type as partial differential operator. Suppose that the following conditions
hold:

1. there exist C, κ > 0 such that for all µ ∈Nn, we have that

Cκ|µ| ⩽
∣∣∣∣∣∑
λ⩽µ

µ!
λ!

a
µ−λ
µ−λ

∣∣∣∣∣;
2. there exists R > 0 such that for all ν < µ, we have that∣∣∣∣∑λ⩽µ

1
λ!a

ν−λ
µ−λ

∣∣∣∣∣∣∣∣∑λ⩽µ
1
λ!a

µ−λ
µ−λ

∣∣∣∣ ⩽
A|µ|
A|ν|
· R
|µ−ν|∣∣∣µ∣∣∣n−1 .

Then P : E
ρ(r)
0 → E

ρ(r)
0 is surjective; so is an epimorphism of Fréchet spaces.

Proof. Considering Lemma 4 (c) and the proof of Theorem 2, we only need to prove
that there exists δ > 0 such that for any ε > 0, there exists N > 0 such that (12) holds
for all i, j > N and

∣∣∣µ∣∣∣ ∈N. We prove it by induction on
∣∣∣µ∣∣∣ ∈N.

For the similar reason of (11), we have that there exists K > 0 such that for any
ε > 0, there exists N1 > 0 such that

1∣∣∣cµµ∣∣∣
∣∣∣∣Ŝ i

µ − Ŝ
j
µ

∣∣∣∣ ⩽ εK |µ|
2
·
A|µ|
µ!

whenever i, j > N1 and
∣∣∣µ∣∣∣ ∈N. In view of (7), we may choose some δ > max{R,K}

such that

1
mn−1

m∑
k=1

(R
δ

)k
Hn
m−k ⩽

∞∑
k=1

(R
δ

)k Hn
m−1

mn−1 =
R

δ −R
·
Hn
m−1

mn−1 <
1
2

for all m ∈N.
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It is obvious that there exists N > N1 such that (12) holds for all i, j > N and∣∣∣µ∣∣∣ = 0. Assume that (10) holds for
∣∣∣µ∣∣∣ = q − 1. When

∣∣∣µ∣∣∣ = q, we have that

1∣∣∣cµµ∣∣∣
∣∣∣∣∣∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

)∣∣∣∣∣ ⩽∑
ν<µ

ν!
µ!
·
A|µ|
A|ν|
· R
|µ−ν|∣∣∣µ∣∣∣n−1 · ε

A|ν|
ν!

δ|ν|

= ε
A|µ|
µ!
· δ|µ|∣∣∣µ∣∣∣n−1

∑
ν<µ

(R
δ

)|µ−ν|
⩽ ε

A|µ|
µ!
· δ
|µ|
2

for all i, j > N . Finally, applying (5), we have that there exists N > 0 such that∣∣∣∣T̂ i
µ − T̂

j
µ

∣∣∣∣ ⩽
∣∣∣∣∣∣∣ 1

c
µ
µ

(
Ŝ i
µ − Ŝ

j
µ

)∣∣∣∣∣∣∣+
∣∣∣∣∣ 1

c
µ
µ

∑
ν<µ

ν!
µ!
cνµ

(
T̂ i
ν − T̂

j
ν

)∣∣∣∣∣ ⩽ ε
A|µ|
µ!

δ|µ|

whenever i, j > N , as desired. □

Remark 1 – Theorem 3 (2) and Theorem 4 (2) are not comparable. For example, let
n ⩾ 3 and∣∣∣cνµ ∣∣∣∣∣∣cµµ∣∣∣ :=


A|µ|
A|ν|
· ν!
µ!

∣∣∣µ− ν∣∣∣ = 1 and ν < µ

0 otherwise

.

Then we see that Theorem 3 (2) is satisfied but Theorem 4 (2) is not satisfied. On
the other hand, let n ⩾ 1, N ∈N, and∣∣∣cνµ ∣∣∣∣∣∣cµµ∣∣∣ :=


A|µ|
A|ν|
· 1∣∣∣µ∣∣∣n−1 0 ⩽ |ν| ⩽N and ν < µ

0 otherwise

.

Then we see that Theorem 4 (2) is satisfied but Theorem 3 (2) is not satisfied.

Example 2 – Let n = 1, ρ(r) ≡ ρ > 1. In the following cases, P =
∑

α∈Nn
aα(z)Dα

z

satisfies the conditions of Theorem 2–4.

1. with k > 0, define

a
β
α :=



kα

α!
β = α

(−k)α−1

(α − 1)!
β = α − 1

0 otherwise

.
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2. with k , −1, define

a
β
α :=



kα

α!
β = α

(−1)β

β!

(
1

(α − β)!

)2
β < α

0 otherwise

.
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