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Abstract

In this paper, we study a class of convolution operators on the space of
distributions that enlarge the well-studied class of passive operators. In this
larger class, we are able to associate, to each operator, a holomorphicfunction
in the right half-plane with a specific constraint on its range, determined by
the operator. Afterwards, we investigate whether the properties of causality
and slow growth hold automatically in our larger class of convolution operators.
Finally, an alternative class of convolution operators is also considered.
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transform.
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1 Introduction

Convolution operators have applications in many areas of science, e.g. mechanics,
thermodynamics and electromagnetism. In electromagnetic theory, many processes
can be represented as a relation between the input and output signal of some
process or device called a system. As the signals entering and leaving a system
are mathematically often modeled by distributions, we may consider the system
to be represented by an operator on the space of distributions. Under some basic
assumptions such as linearity and continuity, cf. Remark 2, any operator on the
space of distributions may be written as a convolution with a fixed distribution,
see Schwartz 1952; Zemanian 1968b. Standard examples of such systems and
their modeling convolution operators can be found among electrical circuits, e.g.
Bernland, Luger, and Gustafsson 2011, Sec. 5.1 and Vladimirov 1979, pg. 315.

The theory of passive systems, or passive operators, is the theory of such con-
volution operators, which also satisfy the condition of passivity, cf. Definition 1.
In electromagnetism, this condition is interpreted as the system being unable to
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produce its own energy. The usefulness of this theory is dependent on a classical
result which states that every convolution operator satisfying the condition of pas-
sivity may be represented in terms of a holomorphicfunction on the right half-plane
having non-negative real part, cf. Theorem 1.

Outside of electromagnetism, the classical theory of passive operators has been
considered in the scalar-valued setting, e.g. Nussenzveig 1972; Wohlers and Beltrami
1965; Zemanian 1965, in the matrix-valued setting, e.g. Vladimirov 1979; Youla,
Castriota, and Carlin 1959; Zemanian 1968b, and in the operator-valued setting,
e.g. Zemanian 1972. More recently, greater focus has been placed on the study of
infinite-dimensional systems, e.g. Guiver, Logemann, and Opmeer 2017; Staffans
2002, and applications of operator-valued setting, e.g. Hanyga and Seredyńska
2008.

The physics interpretation of the theory of passive operators is also its drawback.
Hence, one would like to be able to adapt the classical theory to a class of operators
which satisfy a more general condition than passivity, one which could be inter-
preted as the electromagnetic system either producing some of its own energy, or
being supplied energy form an outside source. We are thus interested in identifying
a more general condition than the classical condition of passivity that would allow
us generalize the main result of the classical theory.

In this paper, we define a condition called pseudo-passivity and successfully
translate some of the most important results of the classical theory to this larger
setting. More precisely, we define a class of convolution operators we call pseudo-
passive causal operators of slow-growth, cf. Definition 3, and associate, to each such
operator, a holomorphicfunction in the right half-plane, cf. Theorem 2. Furthermore,
we investigate the relationship between the conditions of pseudo-passivity, causality
and slow growth, cf. Theorem 3.

The structure of the paper is as follows. In Section 2, we briefly recall the
main results of the theory of passive operators and introduce the class of pseudo-
passive operators. Section 3 is then devoted to establishing the correspondence
between these operators and certain holomorphicfunctions in the right half-plane,
while Section 4 investigates whether the conditions of causality and slow growth
are automatically satisfied within the class of pseudo-passive operators. Finally,
in Section 5, we consider an analogous generalization of the theory of scattering
passive operators, cf. Definitions 4 and 5, while some concluding statements are
presented in Section 6.

2 Background

Let us first set the notation that we will use throughout the paper and recall the
necessary bits and pieces of distribution theory, cf. Zemanian 1965. The right-half
plane is denoted by C+ := {z ∈ C | Re[z] > 0} and we introduce the abbreviations L1 :=
L1(R,C) and L1

loc := L1
loc(R,C). Let also D := C∞0 (R,C) and D′ be the usual spaces
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of test functions and distributions, S and S ′ the spaces of Schwartz functions and
Schwartz distributions, and E and E ′ the spaces of smooth functions and compactly
supported distributions, respectively. We define the inclusion ι : L1

loc ↪→ D
′ as

ι : f 7→ Tf , where the distribution Tf is defined, for any test function ϕ ∈ D, as

⟨Tf ,ϕ⟩ :=
∫
R
f (t)ϕ(t)dt.

We say that a distribution U is non-zero on an open subset Ω ⊆ R if there
exists a test function ϕ ∈ D with supp(ϕ) ⊆Ω such that ⟨U,ϕ⟩ , 0. Furthermore,
a distribution U is called non-negative definite if〈

U,t 7→
∫ ∞
−∞
ϕ(τ)ϕ(τ − t)dτ

〉
≥ 0

for any test function ϕ ∈ D′ , cf. Zemanian 1965, pg. 304.
The support of a distribution U is defined as

supp(U ) := {t ∈ R | U is non-zero in every open neighbourhood of t}.

An important subspace of distributions is the space of right-sided distributions D′r,
which consists of all distributions U ∈ D′ such that there exists a number t ∈ R
(depending on U ) for which supp(U ) ⊆ [t,∞).

Another important object in the theory of operators on distributions is the
Laplace transform, cf. Zemanian 1965, Sec. 8. We define the Laplace transform L(f )
of a function f with supp(f ) ⊆ [t,∞) for some t ∈ R and τ 7→ e−c τf (τ) ∈ L1 for some
c ∈ R as

L(f )(s) :=
∫ ∞
t
f (τ)e−s τ dτ,

where s ∈ C with Re[s] ≥ c. IfU is a distribution such thatU ∈ D′r and (τ 7→ e−c τ )U ∈
S ′ for some c ∈ R, we define its Laplace transform L(U ), for s ∈ C with Re[s] ≥ c, as

L(U )(s) := ⟨(τ 7→ e−c τ )U,ξ 7→ ρ(ξ)e−(s−c)ξ⟩,

where ρ is any smooth function with support bounded on the left such that ρ ≡ 1 on
some neighbourhood of supp(U ).

A fundamental concept in the theory of distributions is the convolution. First,
we note that for two distributions U,V ∈ D′ there exists precisely one distribution
V ⊗U ∈ (C∞0 (R2,C))′ with the property that

⟨V ⊗U, (t1, t2) 7→ ϕ1(t1)ϕ2(t2)⟩ = ⟨V ,ϕ1⟩⟨U,ϕ2⟩.

The distribution V ⊗U is called the direct product of V and U and can be defined in
two equivalent ways, either as

⟨V ⊗U,ψ⟩ := ⟨V ,t1 7→ ⟨U,t2 7→ ψ(t1, t2)⟩⟩
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or as

⟨V ⊗U,ψ⟩ := ⟨U,t2 7→ ⟨V ,t1 7→ ψ(t1, t2)⟩⟩,

where ψ ∈ C∞0 (R2,C) is any test function (in two variables), cf. Nussenzveig 1972
and Zemanian 1965, Sec. 5.2. We may now define the convolution V ∗U as

⟨V ∗U,ϕ⟩ := ⟨V ⊗U, (t1, t2) 7→ ϕ(t1 + t2)⟩,

whereϕ ∈ D is any test function. We note that the direct product of two distributions
always exists, but the convolution of two distributions does not necessarily exist.
This follows from the observation that the function (t1, t2) 7→ ϕ(t1 + t2) never has
compact support (unless ϕ ≡ 0), yielding restrictions on the supports of U and V .
However, it is not a problem to define the convolution of two distributions if both
are in S ′ , or if both are in D′r, or as long as at least one of them has compact support.

Consider now a convolution operator R on D′ with defining distribution Y ∈ D′ ,
i.e. R = Y ∗, where Dom(R) is taken as the largest possible domain of definition, cf.
Zemanian 1965, 1968b. By the definition of the convolution between distributions,
we may be certain that Dom(R) always contains at least all compactly supported
distributions. Furthermore, a convolution operator R is called real if it maps real
distributions to real distributions, where, we recall, a distribution U ∈ D′ is called
real if ⟨U,ϕ⟩ ∈ R for any test function ϕ ∈ D taking only real values.

Let us now recall the standard definition of passive operators, cf. Zemanian
1965.

Definition 1 – A convolution operatorR = Y ∗ is called a passive operator if it satisfies
the following three conditions:

(a) passivity on ι(D): for any number t ∈ R and any test function ϕ ∈ D it holds
that R(ι(ϕ)) ∈ ι(L1

loc) and

Re
[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
≥ 0, (1)

where ψ := ι−1(R(ι(ϕ))),

(b) causality: supp(Y ) ⊆ [0,∞),

(c) slow growth: Y ∈ S ′ .

Remark 1 – The appearance of the conditions of causality and slow growth in
Definition 1 turns out to be superfluous, cf. Section 4. Any convolution operator
that satisfies the condition of passivity will automatically be causal and of slow
growth. For these reasons, operators satisfying Definition 1 are referred to as passive
operators instead of passive causal operators of slow growth. When other types of
convolution operators are also being considered, cf. Section 5, we refer to operators
satisfying Definition 1 as admittance passive operators.
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Remark 2 – A convolution operator on D′ may be characterized via four conditions:
single-valuedness, linearity, strong continuity and time-translation invariance, cf.
Schwartz 1959 and Zemanian 1968b, Thm. 2.

We note that condition of passivity requires that the operators R maps distri-
butions arising from test functions to distributions arising from locally integrable
functions.

Example 1 – We check in this first example that the operator R = δ′0∗ is a passive
operator.

If ϕ ∈ D is any test function, we note first that

δ′0 ∗ Tϕ = Tϕ′

and, as such, it holds that

ι−1(δ′0 ∗ Tϕ) = ϕ′ .

Using integration by parts, we now calculate, for any t ∈ R, that∫ t

−∞
ϕ(τ)ϕ′(τ)dτ = |ϕ(t)|2 −

∫ t

−∞
ϕ(τ)ϕ′(τ)dτ.

Reorganizing the above equality yields

Re
[∫ t

−∞
ϕ(τ)ϕ′(τ)dτ

]
=

1
2
|ϕ(t)|2 ≥ 0,

showing that the operator R is indeed passive. ♢

It is a well-known result that any passive operator can be uniquely described
in terms of the Laplace transform W := L(Y ) of its defining distribution Y . The
conditions of causality and slow growth assure the existence of W as a holomorphic-
function in the right half-plane, while the condition of passivity restricts the range
of the function W . In particular, the following class of functions is to be considered,
cf. Zemanian 1965, 1968b.

Definition 2 – A holomorphicfunction p : C+ → C for which Re[p(s)] ≥ 0 for all
s ∈ C+ and p(s) ∈ R for s ∈ (0,∞) is called a positive-real function.

The following theorem now describes the correspondence between real pas-
sive operators and positive-real functions, cf. Zemanian 1965, Thm. 10.4-1 and
Zemanian 1965, Thm. 10.6-1.

Theorem 1 – Let R = Y ∗ be a real passive operator. Then, the Laplace transform of
its defining distribution Y exists and is a positive-real function. Conversely, for any
positive-real function W , the operator R := L−1(W )∗ is a real passive operator.
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Remark 3 – Without the assumption that the operator R = Y ∗ is real, it still holds
that the Laplace transform of its defining distribution Y exists and is holomor-
phicfunction in the right half-plane having non-negative real part, cf. Zemanian
1965, Thm. 10.4-1. Conversely, for any holomorphicfunction in the right half-plane
having non-negative real part, its inverse Laplace transform L−1(W ) exists and can
be used to define a convolution operator, cf. Zemanian 1965, Thm. 10.6-1.

The generalization of Definition 1 that we are interested in is the class of convo-
lution operators given by the following definition.

Definition 3 – A convolution operator R = Y ∗ is called a pseudo-passive causal oper-
ator of slow growth if it satisfies the following three conditions:

(a’) pseudo-passivity on ι(D): there exist a number N ∈ N0 and vectors ⇀
c,

⇀

d ∈ RN+1,
such that for any number t ∈ R and any test function ϕ ∈ D, it holds that
R(ι(ϕ)) ∈ ι(D) and

Re
[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
≥

N∑
j=0

∫ t

−∞

(
cj |ϕ(j)(τ)|2 + dj |ψ(j)(τ)|2

)
dτ, (2)

where ψ := ι−1(R(ι(ϕ))) (if
⇀

d =
⇀
0, the requirement that R(ι(ϕ)) ∈ ι(D) may be

weakened to R(ι(ϕ)) ∈ ι(L1
loc)),

(b) causality: supp(Y ) ⊆ [0,∞),

(c) slow growth: Y ∈ S ′ .
Example 2 – The first example of a pseudo-passive causal operator of slow growth
is −δ0∗, i.e. a convolution with the negative of the Dirac distribution. Indeed, since

ι−1(δ0 ∗ Tϕ) = ϕ

for any test function ϕ ∈ D, it holds, for any t ∈ R, that

Re
[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
= Re

[∫ t

−∞
ϕ(τ)ι−1(−δ0 ∗ Tϕ)(τ)dτ

]
= −

∫ t

−∞
|ϕ(τ)|2 dτ.

In other words, the operator −δ0∗ satisfies the condition of pseudo-passivity for
N = 0, c0 = −1 and d0 = 0. ♢

Example 3 – Assume that an operator R satisfies the condition of pseudo-passivity
with equality for some number N ∈ N0 and vectors ⇀

c,
⇀

d ∈ RN+1. Then, the oper-
ator −R satisfies condition (2) with equality for the same number N and vectors
−⇀c,−

⇀

d ∈ RN+1. ♢

In the next two sections, we will now focus on the following questions. First, how
does the condition of pseudo-passivity restrict the range of the Laplace transform
of the operator, cf. Section 3, and second, are the conditions of causality and slow
growth superfluous as in the passive case, cf. Section 4.
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3 The Laplace transform

It is clear that the Laplace transform of the defining distribution of a pseudo-
passive causal operator of slow growth exists, as it follows from the conditions of
causality and slow growth. Therefore, we may investigate how the condition of
pseudo-passivity restricts the range of the Laplace transform.

First, let us adopt an existing lemma to suit the condition of pseudo-passivity, cf.
Zemanian 1963, Lem. 6 and Zemanian 1965, Lem. 1, pg. 305.

Lemma 1 – Let R be a pseudo-passive causal convolution operator of slow growth. Then,
the condition of pseudo-passivity is also satisfied for all Schwartz functions.

Proof. By the condition of slow growth, it holds that ι(S) ⊆Dom(R). Take, therefore,
any Schwartz function ϕ ∈ S and let {fn}n∈N ⊆ D be a sequence of test functions that
converges to ϕ in the topology of S . Since the operator R satisfies the condition
of pseudo-passivity, we have R(ι(fn)) ∈ ι(D) for all n ∈ N and, by Zemanian 1965,
Thm. 5.7-1, it holds that R(ι(ϕ)) ∈ ι(S). Introducing gn := ι−1(R(ι(fn))), we may
conclude, by Zemanian 1965, Lem. 1, pg. 305, that∣∣∣∣∣∣Re

[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
−Re

[∫ t

−∞
fn(τ)gn(τ)dτ

]∣∣∣∣∣∣→ 0

as n→∞.
On the other hand, the right-hand side of inequality (2) for the functions fn

clearly converges to the right-hand side of inequality (2) for the function ϕ. Fur-
thermore, since inequality (2) holds for any function fn, it must also hold for the
function ϕ. This finishes the proof. □

The established process of deriving the restriction on the range of the Laplace
transform of the defining distribution of a passive operator, cf. Zemanian 1965, pp.
306–307, may now be adapted to suit our generalization.

Take, therefore, ϕ ∈ S . Then, by Lemma 1 and its proof, we have that R(ι(ϕ)) ∈
ι(S) and it holds for ψ := ι−1(R(ι(ϕ))) that

ψ(ξ) = ⟨Y ,t′ 7→ ϕ(ξ − t′)⟩.

Furthermore, it also holds for any t ∈ R that

Re
[∫ t

−∞
ϕ(τ)ψ(τ)dτ

]
= Re

[∫ t

−∞
ϕ(τ)⟨Y ,t′ 7→ ϕ(τ − t′)⟩dτ

]
≥

N∑
j=0

∫ t

−∞

(
cj |ϕ(j)(τ)|2 + dj |ψ(j)(τ)|2

)
dτ.
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Let t ∈ R and s ∈ C+. Let also ϕ ∈ S be any function with the property that
ϕ(ξ) = esξ for all ξ ∈ (−∞, a), where a > t. For example, take ϕ(ξ) := esξg(ξ − a − 1)
where

g(ξ) :=


1; ξ ≤ 0,
exp

(
1− 1

1−ξ2

)
; 0 < ξ < 1,

0; ξ ≥ 1.

(3)

Since supp(Y ) ⊆ [0,∞), it holds that

Re
[∫ t

−∞
ϕ(τ)⟨Y ,t′ 7→ ϕ(τ − t′)⟩dτ

]
= Re

[∫ t

−∞
esτ⟨Y ,t′ 7→ es(τ−t

′)⟩dτ
]

= Re[⟨Y ,t′ 7→ e−st
′
⟩]
∫ t

−∞
e2Re[s]τ dτ = Re[W (s)]

∫ t

−∞
e2Re[s]τ dτ.

On the other hand, for such a function ϕ, it holds that

ψ(ξ) = ⟨Y ,t′ 7→ es(ξ−t
′)⟩ = esξ⟨Y ,t′ 7→ e−st

′
⟩ = esξW (s)

for any ξ ∈ (−∞, t]. For the derivatives of the functions ϕ and ψ, it similarly holds
that

ϕ(j)(ξ) = sjesξ and ψ(j)(ξ) = sjesξW (s)

for any j ∈ N and any ξ ∈ (−∞, t].
As such, we calculate that

N∑
j=0

∫ t

−∞

(
cj |ϕ(j)(τ)|2 + dj |ψ(j)(τ)|2

)
dτ =

N∑
j=0

|s|2j
(
cj + |W (s)|2dj

)∫ t

−∞
e2Re[s]τ dτ,

yielding

Re[W (s)]
∫ t

−∞
e2Re[s]τ dτ ≥

N∑
j=0

|s|2j
(
cj + |W (s)|2dj

)∫ t

−∞
e2Re[s]τ dτ.

Since the integral
∫ t
−∞ e2Re[s]τ dτ is positive for any s ∈ C+, we conclude that

Re[W (s)] ≥
N∑
j=0

|s|2j
(
cj + |W (s)|2dj

)
. (4)

Additionally, if the operator R was real, this translates to the Laplace transform W
as the property that W (s) ∈ R if s ∈ (0,∞). Thus, we arrive at the following theorem.
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Theorem 2 – Let R = Y ∗ be a pseudo-passive causal operator of slow-growth satisfying
condition (2) for some number N ∈ N0 and some vectors ⇀

c,
⇀

d ∈ RN+1. Then, the Laplace
transform W := L(Y ) of its defining distribution exists and is a holomorphicfunction in
the right half-plane satisfying condition (4). Furthermore, if the operator R is assumed to
be real, it holds that W (s) ∈ R if s ∈ (0,∞).

Remark 4 – It remains open whether all holomorphicfunctions in the right half-
plane satisfying condition (4) can be realized as the Laplace transform of the defin-
ing distribution of some pseudo-passive causal operator of slow growth. In the
passive case, such a statement for the class of positive-real functions is made pos-
sible by the existence of an integral representation formula for which the inverse
Laplace transform can be explicitly calculated, cf. Zemanian 1965, Thm. 10.5-1 and
Zemanian 1965, Thm. 10.6-1.

Example 4 – Let us consider the geometry of the case N = 0 of inequality (4) in
detail, i.e. we are investigating the geometry of the range of a holomorphicfunction
W : C+→ C for which there exists numbers c,d ∈ R, such that the inequality

Re[W (s)] ≥ c+ d|W (s)|2 (5)

holds for any s ∈ C+. If this is the case, we have that Ran(W ) ⊆ A, where the set A is
defined as

A := {σ ∈ C | Re[σ ] ≥ c+ d|σ |2} = {(x,y) ∈ R2 | x ≥ c+ dx2 + dy2)}.

Geometrically, the set A is bounded by a circle or line in R2, with the precise picture
being the following.

If c = d = 0, we have A = C+∪ iR, as expected. Similarly, if c , 0, but d = 0, we get
the half-plane {σ ∈ C | Re[σ ] ≥ c}. Therefore, it remains to consider the case d , 0
and c ∈ R, where the inequality x ≥ c+ dx2 + dy2 may be rewritten as

− cd ≥ (x2 − x
d ) + y2 or 1−4cd

4d2 ≥ (x − 1
2d )2 + y2

if d > 0 and as

− cd ≤ (x2 − x
d ) + y2 or 1−4cd

4d2 ≤ (x − 1
2d )2 + y2

if d < 0. Thus, the shape of the set A is characterized in terms of the parameters c
and d in the following way.

(i) We have A = C if d < 0 and 1− 4cd ≤ 0.

(ii) We have A being the area outside and including the circle 1−4cd
4d2 = (x− 1

2d )2 +y2

if d < 0 and 1− 4cd > 0.

(iii) We have A equal to the half-plane {(x,y) ∈ R | x ≥ c} if d = 0.
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(iv) We have A being the area inside and including the circle 1−4cd
4d2 = (x − 1

2d )2 + y2

if d > 0 and 1− 4cd > 0.

(v) We have A = { 1
2d } ⊆ C if d > 0 and 1− 4cd = 0.

(vi) We have A being empty if d > 0 and 1− 4cd < 0.

In Figure 1 below, we see visualizations of the set A for different parameters c
and d. The parameters (c,d) = (−1,−1) (top left) fall into case (i), the parameters
(c,d) = (0,−1) (top centre), (c,d) = (2,−1) (top right) and (c,d) = (−1

8 ,−
1

10 ) (middle
left) all fall into case (ii), the parameters (c,d) = (0,0) (middle centre) fall into case
(iii), the parameters (c,d) = (−2, 1

8 ) (middle right), (c,d) = (0, 1
3 ) (bottom left) and

(c,d) = (0,1) (bottom centre) all fall into case (iv), and the parameters (c,d) = (1,1)
(bottom right) fall into case (vi). ♢

Figure 1 – Visualizations of the set A from Example 4. The plot area is always the
square [−3,3]2 ⊆ R2.
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4 Causality and slow growth

As already mentioned in Section 2, any convolution operator that satisfies the
condition of passivity (1) on ι(D) must be given by a Schwartz distribution with
support only on the positive half-line.

As we will soon see, this generalizes at least to some convolution operators
satisfying the condition of pseudo-passivity. In particular, the following theorem
holds.

Theorem 3 – Let R = Y ∗ be a convolution operator satisfying the condition of pseudo-
passivity with

⇀

d =
⇀
0. Then, R also satisfies the conditions of causality and slow growth.

The proof of this theorem is split into two parts, covered by Propositions 1 and 2,
respectively.

4.1 Causality

That passivity implies causality was first observed by Youla, Castriota, and Carlin
1959, Thm. 1, see also Zemanian 1965, Lem. 3, pg. 303. In order to establish
whether causality is also implied by the condition of pseudo-passivity, we recall
a lemma that establishes that the condition of causality needs only to be checked on
the subset ι(D) ⊆Dom(R) for it to hold on all of Dom(R), cf. Zemanian 1965, Lem.
2, pg. 301.

Lemma 2 – Let R be a convolution operator and write ψ := ι−1(R(ι(ϕ))) for ϕ ∈ D. If
for any number t0 ∈ R, we have that ψ(ξ) = 0 for ξ ∈ (−∞, t0) whenever ϕ(ξ) = 0 for
ξ ∈ (−∞, t0), then the operator R satisfies the condition of causality.

We may now adopt the proof of the classical result of Zemanian 1965, Lem. 3,
pg. 303, in order to prove the first part of Theorem 3.

Proposition 1 – Let R = Y ∗ be a convolution operator satisfying the condition of pseudo-
passivity with

⇀

d =
⇀
0. Then, R also satisfies the condition of causality.

Proof. Let ϕ1 ∈ D be an arbitrary test function with ψ1 := ι−1(R(ι(ϕ1))). Let also
a ∈ R be a free parameter. Take now t0 ∈ R arbitrary and let ϕ ∈ D be a test function,
such that ϕ(ξ) = 0 for all ξ ∈ (−∞, t0). If we manage to show that the function
ψ := ι−1(R(ι(ϕ))) is also identically zero in the same interval, then the result follows
by Lemma 2.

Define a new test function ϕ2 := ϕ1 + aϕ. Then, it holds for ψ2 := ι−1(R(ι(ϕ2)))
that ψ2 = ψ1 + aψ. Furthermore, by assumption on the operator R, it holds for any
x < t0 that

Re
[∫ x

−∞
ϕ2(τ)ψ2(τ)dτ

]
≥

N∑
j=0

cj

∫ x

−∞
|ϕ(j)

2 (τ)|2 dτ
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for some number N ∈ N0 and some vector ⇀
c ∈ RN+1. Now, using the property that

ϕ(ξ) = 0 for all ξ ∈ (−∞, t0), we calculate that

Re
[∫ x

−∞
ϕ2(τ)ψ2(τ)dτ

]
= Re

[∫ x

−∞
(ϕ1 + aϕ)(τ)(ψ1 + aψ)(τ)dτ

]
= Re

[∫ x

−∞
ϕ1(τ)ψ1(τ)dτ

]
+ aRe

[∫ x

−∞
ϕ1(τ)ψ(τ)dτ

]
.

On the other hand, due to the same property of the function ϕ, we also have
ϕ2(ξ) = ϕ1(ξ) for all ξ ∈ (−∞,x], which also transfers over to all derivatives of the

functions ϕ1 and ϕ2, i.e. ϕ(j)
2 (ξ) = ϕ(j)

1 (ξ) for all ξ ∈ (−∞,x] and all j ∈ N. Thus, we
conclude that

Re
[∫ x

−∞
ϕ1(τ)ψ1(τ)dτ

]
+ aRe

[∫ x

−∞
ϕ1(τ)ψ(τ)dτ

]
≥

N∑
j=0

cj

∫ x

−∞
|ϕ(j)

1 (τ)|2 dτ,

where the inequality holds for any value of the free parameter a. But this now
means that

Re
[∫ x

−∞
ϕ1(τ)ψ(τ)dτ

]
= 0

for all x ∈ (−∞, t0), otherwise the parameter a could be chosen large enough (in
absolute value) as to break the inequality.

Observe now that the last equality may be rewritten as

Re
[∫ x

−∞
ϕ1(τ)ψ(τ)dτ

]
=
∫ x

−∞
Re[ϕ1](τ)Re[ψ](τ)dτ +

∫ x

−∞
Im[ϕ1](τ)Im[ψ](τ)dτ = 0. (6)

Since ϕ1 ∈ D is arbitrary, let us see first what is implied by equality (6) when the
function ϕ1 only takes non-negative real values. If that is the case, then∫ x

−∞
ϕ1(τ)Re[ψ](τ)dτ = 0,

implying that Re[ψ] ≡ 0 on supp(ϕ1). However, the support of ϕ1 can also be chosen
arbitrarily, hence Re[ψ] ≡ 0 on (−∞, t0). If, instead, the function ϕ1 only takes values
that are non-negative multiples of i, an analogous reasoning yields that Im[ψ] ≡ 0
on (−∞, t0). This gives the desired result. □

Remark 5 – If
⇀

d ,
⇀
0, the above proof fails as it does not necessarily hold that

N∑
j=0

dk

∫ x

−∞
|ψ(k)

2 (τ)|2 dτ ≥
N∑
j=0

dk

∫ x

−∞
|ψ(k)

1 (τ)|2 dτ.
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4. Causality and slow growth

4.2 Slow growth

That passivity implies slow-growth was observed, for example, by Zemanian 1963.
In fact, his result is slightly stronger as it only requires that the operator R = Y ∗
satisfies the condition of weak passivity on ι(D), i.e. for any test function ϕ ∈ D it
holds that R(ι(ϕ)) ∈ ι(L1

loc) and

Re
[∫ ∞
−∞
ϕ(τ)ψ(τ)dτ

]
≥ 0, (7)

where ψ := ι−1(R(ι(ϕ))). This turns out to be sufficient to conclude that the defining
distribution Y is non-negative definite, cf. Zemanian 1963, Thm. 1, and afterwards
invoking a result of Schwartz saying that any non-negative definite distribution is
in S ′ , cf. Schwartz 1959.

We may now prove the second part of Theorem 3.

Proposition 2 – Let R = Y ∗ be a convolution operator satisfying the condition of pseudo-
passivity with

⇀

d =
⇀
0. Then, R also satisfies the condition of slow growth.

Proof. Due to the assumption on the operator R, it holds, in particular, that

Re
[∫ ∞
−∞
ϕ(τ)ψ(τ)dτ

]
≥

N∑
j=0

cj

∫ ∞
−∞
|ϕ(j)(τ)|2 dτ (8)

for any ϕ ∈ D, with ψ := ι−1(R(ι(ϕ))). Furthermore, observe that for any j ∈ N0, it
holds that∫ ∞

−∞
|ϕ(j)(τ)|2 dτ

= (−1)j
∫ ∞
−∞
ϕ(τ)ϕ(2j)(τ)dτ = (−1)j

∫ ∞
−∞
ϕ(τ)ι−1(δ(2j)

0 ∗ Tϕ)(τ)dτ.

Here, the first of the above equalities follows after integrating by parts j-times,
while the second equality holds due to the fact that

δ
(m)
0 ∗ Tϕ = Tϕ(m)

for any ϕ ∈ D and any m ∈ N0.
We conclude now that inequality (8) may be written as

Re
[∫ ∞
−∞
ϕ(τ)ι−1(Ỹ ∗ Tϕ)(τ)dτ

]
≥ 0,
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where the distribution Ỹ is defined as

Ỹ := Y −
N∑
j=0

(−1)jcjδ
(2j)
0 .

In other words, we have shown that the operator R̃ := Ỹ ∗ satisfies the condition of
weak passivity on ι(D), cf. condition (7).

By the discussion at the beginning of Section 4.2, it now holds that Ỹ ∈ S ′,
yielding further that Y ∈ S ′ . This finishes the proof. □

Remark 6 – If
⇀

d ,
⇀
0, then the above method of proof fails as we are unable to write∫ ∞

−∞
|ψ(j)(τ)|2 dτ = kj

∫ ∞
−∞
ϕ(τ)ι−1(U ∗ Tϕ)(τ)dτ

for some kj ∈ C and some distribution U ∈ S ′ .

5 Scattering pseudo-passive operators

The theory of (admittance) passive operators comes with a related theory of scat-
tering passive operators, which may be defined as follows, cf. Wohlers and Beltrami
1965; Zemanian 1968b.

Definition 4 – A convolution operator S = Z∗ is called a scattering passive causal
operator of slow growth if it satisfies the following three conditions:

(s) scattering passivity on ι(D): for any number t ∈ R and any test function ζ ∈ D
it holds that S(ι(ζ)) ∈ ι(D) and∫ t

−∞

(
|ζ(τ)|2 − |η(τ)|2

)
≥ 0, (9)

where η := ι−1(S(ι(ζ))),

(b) causality: supp(Z) ⊆ [0,∞),

(c) slow growth: Z ∈ S ′ .

Inspired by Definition 3, we may now consider the following generalization of
scattering passive operators.

Remark 7 – Below, the Kronecker δ-symbol is written as ∂0,j instead of δ0,j in order
to avoid confusion with the Dirac distribution δ0.
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5. Scattering pseudo-passive operators

Definition 5 – A convolution operator S = Z∗ is called a scattering pseudo-passive
causal operator of slow growth if it satisfies the following three conditions:

(s’) scattering pseudo-passivity on ι(D): There exist a number N ∈ N0 and vectors
⇀
F,

⇀
G ∈ RN+1, such that for any number t ∈ R and any test function ζ ∈ D it

holds that S(ι(ζ)) ∈ ι(D) and

N∑
j=0

∫ t

−∞

(
(∂0,j −Fj )|ζ(j)(τ)|2 − (∂0,j +Fj )|η(j)(τ)|2

)
dτ

≥ 2
N∑
j=0

Gj Re
[∫ t

−∞
ζ(j)(τ)η(j)(τ)dτ

]
, (10)

where η := ι−1(S(ι(ζ))) and ∂0,j denotes the Kronecker δ-symbol,

(b) causality: supp(Z) ⊆ [0,∞),

(c) slow growth: Z ∈ S ′ .

Example 5 – Let us consider the operators S± := ±δ0∗. If ζ ∈ D, then S± ∗ Tζ = ±Tζ ,
yielding that

η := ι−1(S±(ι(ζ))) = ±ζ.

Using this, we calculate that∫ t

−∞

(
(1−F0)|ζ(j)(τ)|2 − (1 +F0)|ζ(j)(τ)|2

)
dτ = −2F0

∫ t

−∞
|ζ(τ)|2 dτ.

Therefore, the operator S+ satisfies condition (10) for N = 0 and any numbers F0
and G0 such that F0 ≤ −G0, and satisfies condition (10) with equality for N = 0 and
F0 = −G0. On the other hand, the operator S− satisfies condition (10) for N = 0 and
any numbers F0 and G0 such that F0 ≤ G0, and satisfies condition (10) with equality
for N = 0 and F0 = G0. ♢

Example 6 – Assume that an operator S satisfies condition (10) with equality for
some number N ∈ N0 and vectors

⇀
F,

⇀
G ∈ RN+1. Then, the operator −S satisfies

condition (10) with equality for the same number N and vectors
⇀
F,−

⇀
G ∈ RN+1. ♢

5.1 Transition between admittance and scattering operators

The background to the transition between admittance and scattering passive op-
erators is the algebraic equivalence between inequalities (1) and (9). Indeed, one
sees this by writing ϕ = ζ + η and ψ = ζ − η, for ζ,η ∈ D. Furthermore, by using
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Pseudo-passive causal convolution operators of slow growth M. Nedic

the same transformation, one can also establish an algebraic equivalence between
inequalities (2) and (10), where the relations between the vectors ⇀

c,
⇀

d and the vectors
⇀
F,

⇀
G become Fj = cj + dj and Gj = cj − dj . For the transformation ϕ = ζ + η and

ψ = ζ − η to make sense in terms of convolution operators, we must consider the
convolution algebra of right-sided distributions.

The space D′r, cf. Section 2, equipped with the operations + and ∗, i.e. addition
and convolution of distributions, becomes an algebra over C. The unity for the
convolution operation is the Dirac distribution, i.e.

U ∗ δ0 = δ0 ∗U =U

for any U ∈ D′r (this holds even for U ∈ D′). Therefore, the convolution inverse of
a distribution U ∈ D′r, if it exists, is a distribution U ∗−1 ∈ D′r, such that

U ∗U ∗−1 =U ∗−1 ∗U = δ0.

In our case, we must, for an admittance passive operator R = Y ∗, be able to solve
the equation

ζ − η = ι−1(Y ∗ Tζ+η)

for the function η. Formally, the solution is

η = ι−1((δ0 +Y )∗−1 ∗ (δ0 −Y ) ∗ Tζ),

and for this expression to be well-defined, we must be able to define the convolution
inverse of the distribution δ0 +Y .

If the operator R = Y ∗ is a real admittance passive operator, then we may define
the distribution (δ0 +Y )∗−1 in the following way, cf. Zemanian 1968b, pg. 418. Due
to the assumption on R, the function W := L(Y ) is a positive-real function, and the
same holds for the function s 7→ (1 +W (s))−1. As the inverse Laplace transform of
this function exists by Theorem 1, we may define

(δ0 +Y )∗−1 := L−1(s 7→ (1 +W (s))−1).

Furthermore, by Theorem 1, the operator

R̃ = (δ0 +Y )∗−1∗ (11)

will also be a real admittance passive operator and, thus, it holds that supp((δ0 +
Y )∗−1) ⊆ [0,∞) and (δ0 +Y )∗−1 ∈ S ′ . Thus, the convolution operator S = Z∗ with

Z := (δ0 +Y )∗−1 ∗ (δ0 −Y )

is well defined and is a scattering passive operator, as the properties of Y and
(δ0 + Y )∗−1 guarantee that supp(Z) ⊆ [0,∞) and Z ∈ S ′, while the condition of
scattering passivity is fulfilled automatically due to the algebraic equivalence of
inequalities (1) and (9) as discussed previously.
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5. Scattering pseudo-passive operators

If R = Y ∗ is an admittance passive operator instead, i.e. the operator is no longer
assumed to be real, the distribution (δ0 +Y )∗−1 may still be defined via the inverse
Laplace transform as before. However, the operator R̃, defined as before, will not
necessarily be a passive operator and the operator S = Z∗, with the distribution
Z defined as before, will automatically only satisfy the condition of scattering
passivity. The condition of scattering passivity does, however, independently imply
that supp(Z) ⊆ [0,∞), cf. Zemanian 1968b, pg. 425.

If R = Y ∗ is an admittance pseudo-passive operator, then we are, in general,
unable to define the distribution (δ0 + Y )∗−1 via the inverse Laplace transform as
was done in the previous cases. However, if it exists, we may define the operator
S = Z∗ with the distribution Z defined as before, which will automatically satisfy
the condition of scattering pseudo-passivity. We will discuss later, in Sections 5.3
and 5.4, whether the condition of scattering pseudo-passivity implies the conditions
of causality and/or slow-growth for at least some special cases. Separately, the
precise relationship between the existence of a Laplace transform and the condition
of causality, without assuming any form of (pseudo)-passivity, has been considered
in e.g. Zemanian 1968a.

5.2 The Laplace transform

We may determine the restrictions on the range of the Laplace transform of the
defining distribution of a scattering pseudo-passive operator of slow growth S via
an analogous procedure to the one presented in Section 3. Therefore, let t ∈ R
be arbitrary, take any s ∈ C+ and choose a function ζ ∈ S with the property that
ζ(ξ) = esξ for all ξ ∈ (−∞, a), where a > t. Recall that an example of such a function
is ζ(ξ) := esξg(ξ − a − 1) where the function g is defined as in formula (3).

In this case, we have that S(ι(ϕ)) ∈ ι(S) and it holds for η := ι−1(S(ι(ζ))) that

η(ξ) = ⟨Z,t′ 7→ ζ(ξ − t′)⟩.

For the derivatives and anti-derivatives of the functions ζ and η, it holds that

ζ(j)(ξ) = sjesξ and η(j)(ξ) = sjesξW (s)

for any j ∈ N0 and any ξ ∈ (−∞, t], where W := L(Z) denotes the Laplace transform
of the defining distribution Z of the operator S.

We calculate now that

N∑
j=0

∫ t

−∞

(
(δ0,j −Fj )|ζ(j)(τ)|2 − (δ0,j +Fj )|η(j)(τ)|2

)
dτ

=
N∑
j=0

|s|2j
(
(δ0,j −Fj )− (δ0,j +Fj )|W (s)|2

)∫ t

−∞
e2Re[s]τ dτ
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and

N∑
j=0

Gj Re
[∫ t

−∞
ζ(j)(τ)η(j)(τ)dτ

]
=

N∑
j=0

Gj |s|2jRe[W (s)]
∫ t

−∞
e2Re[s]τ dτ,

yielding that

N∑
j=0

|s|2j
(
(δ0,j −Fj )− (δ0,j +Fj )|W (s)|2

)
≥ 2

N∑
j=0

Gj |s|2jRe[W (s)]. (12)

As before, if the operator S was real, this translates to the Laplace transform W as
the property that W (s) ∈ R if s ∈ (0,∞). We summarize this result in the following
proposition.

Proposition 3 – Let S = Z∗ be a scattering pseudo-passive causal operator of slow-
growth satisfying condition (10) for some N ∈ N0 and

⇀
F,

⇀
G ∈ RN+1. Then, the Laplace

transform W := L(Z) of its defining distribution exists and is a holomorphicfunction
on C+ satisfying, for each s ∈ C+, the inequality (12). Furthermore, if the operator S is
assumed to be real, it holds that W (s) ∈ R if s ∈ (0,∞).

Example 7 – As in Example 4, we investigate in detail the geometric shape of the
range of the function W when N = 0. Using inequality (12), i.e.

(1−F)− (1 +F)|W (s)|2 ≥ 2GRe[W (s)],

we have that Ran(W ) ⊆ B, where the set B is defined as

B := {σ ∈ C | (1−F)− (1 +F)|σ |2 ≥ 2GRe[σ ]}
= {(x,y) ∈ R2 | (1−F)− (1 +F)(x2 + y2) ≥ 2G x}.

The geometric picture of this set B is the following.
If F = −1, there are no square terms in the definition of the set B, meaning that

we get a half-plane. Else, if F , −1, we may divide by the number 1 +F to get

1−F
1 +F

≥ x2 + y2 +
2G

1 +F
x or

1−F2 +G2

(1 +F)2 ≥
(
x − G

1 +F

)2
+ y2

if F > −1 and

1−F
1 +F

≤ x2 + y2 +
2G

1 +F
x or

1−F2 +G2

(1 +F)2 ≤
(
x − G

1 +F

)2
+ y2

if F < −1. Thus, the shape of the set B is characterized in terms of the parameters F
and G in the following way.
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(i) We have B = C if F < −1 and 1−F2 +G2 ≤ 0.

(ii) We have B being the area outside and including the circle

1−F2 +G2

(1 +F)2 =
(
x − G

1 +F

)2
+ y2 (13)

if F < −1 and 1−F2 +G2 > 0.

(iii) We again have B = C if F = −1 and G = 0.

(iv) We have b equal to the half-plane {(x,y) ∈ R | 2 ≥ G x} if F = −1 and G , 0.

(v) We have B being the area inside and including the circle (13) if F > −1 and
1−F2 +G2 > 0.

(vi) We have B = { G1+F } ⊆ C if F > −1 and 1−F2 +G2 = 0.

(vii) We have B being empty if F > −1 and 1−F2 +G2 < 0. ♢

5.3 Causality

For scattering pseudo-passive causal operators of slow growth, we may establish two
instances where the condition of scattering pseudo-passivity implies the condition
of causality.

Proposition 4 – Let S = Z∗ be a convolution operator satisfying the condition of scatter-
ing pseudo-passivity (10) with F0 > −1, Fj ≥ 0 for j > 0 and

⇀
F =

⇀
G. Then, S also satisfies

the condition of causality.

Proof. Take t0 ∈ R arbitrary and let ζ ∈ D be a test function, such that ζ(ξ) = 0 for
all ξ ∈ (−∞, t0). By Lemma 2, it suffices to show that the function η := ι−1(S(ι(ζ))) is
also identically zero in the same interval.

Taking into account the assumption that
⇀
F =

⇀
G, we may rewrite condition (10) as∫ x

−∞
|ζ(τ)|2 dτ ≥

∫ x

−∞
|η(τ)|2 dτ +

N∑
j=0

Fj

∫ x

−∞
|(ζ(j) − η(j))(τ)|2 dτ,

where x ∈ (−∞, t0). Using also the assumption that ζ(ξ) = 0 for all ξ ∈ (−∞, t0), the
previous inequality simplifies to

0 ≥
N∑
j=0

(∂0,j +Fj )
∫ x

−∞
|η(j)(τ)|2 dτ.

However, by the assumptions on the entries of the vector
⇀
F, the right-hand side of

the above inequality is non-negative, finishing the proof. □
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Proposition 5 – Let S = Z∗ be a convolution operator satisfying the condition of scatter-
ing pseudo-passivity (10) with

⇀
F =

⇀
0 and

⇀
G ∈ RN+1. Then, S also satisfies the condition

of causality.

Proof. By the assumption on the operator S, we may, for functions ζ and η as in the
proof of Proposition 4, rewrite condition (10) as∫ x

−∞
|ζ(τ)|2 dτ ≥

∫ x

−∞
|η(τ)|2 dτ + 2

N∑
j=0

Gj Re
[∫ x

−∞
ζ(j)(τ)η(j)(τ)dτ

]
.

Taking into account the assumption that ζ(ξ) = 0 for all ξ ∈ (−∞, t0) yields

0 ≥
∫ x

−∞
|η(τ)|2 dτ,

which, by Lemma 2, finishes the proof. □

5.4 Slow growth

Whether the condition of scattering pseudo-passivity implies the condition of slow
growth remains inconclusive. The proof of Proposition 2 relied on the possibility to
construct, out of the defining distribution Y of the operator R, a distribution Ỹ such
that the operator R̃ = Ỹ ∗ satisfied the condition of weak passivity and, afterwards,
relying on Zemanian 1963, Thm. 1. Already for a convolution operator satisfying
the condition of scattering passivity, such a method of proof fails due to the absence
of an analogue of Zemanian’s result for the scattering case.

6 Conclusion

We infer from Theorems 2 and 3 that pseudo-passive causal operators of slow
growth satisfying condition (2) with

⇀

d =
⇀
0 exhibit many of the properties that hols

for the classic case of passive operators. Namely, the condition of pseudo-passivity
with

⇀

d =
⇀
0 implies the conditions of causality and slow growth, and a restriction on

the range of the Laplace transform of the defining distribution of the operator may
be obtained. For operators which satisfy condition (2) with

⇀

d ,
⇀
0, we are still able

to obtain a restriction on the range of the Laplace transform, but we are, using the
methods of proof presented here, unable to determine whether the conditions of
causality and slow growth are still automatically implied.

For scattering pseudo-passive causal operators of slow growth, restrictions on the
range of the Laplace transform of their defining distributions are also obtained, cf.
Proposition 3, but the relations between the conditions scattering pseudo-passivity,
causality and slow-growth are not strong as in the previous case, cf. Propositions 4
and 5.
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