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Abstract

Let A be a nonempty finite subset of Zd which is not contained in a hyper-
plane, q ∈ Z with |q| > 1 and m ∈ Z such that |q|+ 2d − 1 ≤m ≤ (|q|+ 2d − 1)2. In
this paper it is shown that

|A+ q ·A| ≥
(

m
|q|+ 2d − 1

)
|A| − c

where c depends only on q,d and m. In particular, taking m = (|q|+ 2d − 1)2, this
results confirms a conjecture of A. Balog and G. Shakan.
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1 Introduction

We denote by Z,N and R the set of integers, natural numbers and real numbers,
respectively; we consider 0 < N. In this paper, d will denote a nonnegative integer.
For any nonempty subsets A and A′ of Rd and q ∈ R, set

A+A′ := {a+ a′ : a ∈ A, a′ ∈ A′}
−A := {−a : a ∈ A}
q ·A := {qa : a ∈ A}.

Let V be a R-vector space. An affine subspace W of V is a translation of a linear
subspace W ′ of V ; we write dimW := dimW ′. The minimal affine subspace con-
taining A is known as the affine hull and we will denote it by affA; set dimA :=
dimaffA. The canonical basis of Rd will be denoted by {e1,e2, . . . ,ed}. Set Zd :={∑d

j=1njej : n1,n2, . . . ,nd ∈ Z
}

and 0 :=
∑d

i=1 0ei .
The study of the sum of dilates has had new and interesting results in the

last few years, see Balog and Shakan 2014, Balog and Shakan 2015, Cilleruelo,
Hamidoune, and O. 2009, Cilleruelo, M., and Vinuesa 2010, Du, Cao, and Sun 2015,
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Fiz Pontiveros 2013, Hamidoune and Rué 2011, Ljujic 2013, Plagne 2011, Shakan
2016. Most of these results deal with the sum of dilations in one-dimensional spaces.
However, A. Balog and G. Shakan proved the following high-dimensional result.

Theorem 1 – Let A be a nonempty finite subset of Zd with dimA = d > 1 and q ∈ Z
such that |q| > 1. Then

|A+ q ·A| ≥ (|q|+ d + 1) |A| − c (1)

where c is a constant which depends only on q and d.

Proof. See Balog and Shakan 2015, Thm. 3. □

Balog and Shakan conjectured that the coefficient |q|+d + 1 in (1) could be improved
to |q| + 2d − 1, see Balog and Shakan 2015, Conj. 1. Furthermore, they gave an
example which shows that |q|+ 2d − 1 is the best possible. This conjecture is the
main motivation of this paper. To state the main result, write for all i, j ∈ Z,

ci,j := 4j4i
.

Theorem 2 – Let A be a nonempty finite subset of Zd , q ∈ Z with |q| > 1 and m ∈ Z such
that |q|+ 2dimA− 1 ≤m ≤ (|q|+ 2dimA− 1)2. Then

|A+ q ·A| ≥ m
|q|+ 2dimA− 1

|A| − cdimA,m.

The particular case dimA = d and m = (|q|+ 2dimA− 1)2 confirms the conjecture of
Balog and Shakan.

We sketch the content of this paper. In Section 2 we state auxiliary results that
will be needed later. In Section 3 we shall study the partitions A = A1⊎A2 such that

(A1 + q ·A)∩ (A2 + q ·A) = ∅. (2)

Also, in Section 3, we study the partitions A = A1 ⊎A2 which satisfy the stronger
condition: for all i, j, i′ , j ′ ∈ {1,2} with (i, j) , (i′ , j ′), we have that

(Ai + q ·Aj )∩ (Ai′ + q ·Aj ′ ) = ∅.

The most important results of Section 3 will be Lemma 7 and Lemma 8, and they
will be fundamental tools in the proof of Theorem 2. The proof of Theorem 2 will
be done by induction on dimA and m. We will take a partition A = A1 ⊎A2 with
A1 and A2 nonempty satisfying (2), and we will proceed using the hypothesis of
induction depending on whether

i) dimA1 < dimA or dimA2 < dimA.

ii) dimA1 = dimA2 = dimA.

Case ii) follows from the ideas that Balog and Shakan used in Balog and Shakan
2014, Balog and Shakan 2015 and Shakan 2016. Case i) is the one where more work
needs to be done. The conclusion of the proof of Theorem 2 is done in Section 4.
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2 Preliminaries

In this section we will state some auxiliary results that will be needed in the proof
of Theorem 2. We start with a fundamental result.

Theorem 3 – Let A1 and A2 be nonempty finite subsets of Rd . Then

|A1 +A2| ≥ |A1|+ |A2| − 1.

Proof. See Grynkiewicz 2013, Thm. 3.1. □

For any affine subspace V of Rd , we denote by Rd /V the set of equivalence classes
with respect to the relation a ∼ b if {a} + V = {b} + V ; we consider Rd /V with its
usual R−vector space structure, and we denote by πV : Rd → Rd /V the canonical
projection. For any subset A of Rd /V , we have that the dimension of the affine hull
of A is at most |A| − 1. This implies easily the following fact.

Remark 1 – Let A1 and A2 be nonempty finite subsets of Rd . Then

|πaffA1
(A1 +A2)| ≥ 1 + dimπaffA1

(aff(A1 +A2))

= 1 + dimaff(A1 +A2)−dimaffA1

= 1 + dim(A1 +A2)−dimA1.

We shall need two consequences of Theorem 3.

Corollary 1 – Let A1 and A2 be nonempty finite subsets of Rd . Then

|A1 +A2| ≥ |πaffA1
(A2)|(|A1| − 1) + |A2| ≥ |πaffA1

(A2)||A1|.

Proof. Since |πaffA1
(A2)| ≤ |A2|, it suffices to prove the left-hand side inequality. Set

π := πaffA1
and π(A2) = {z1, z2, . . . , zn}. For each i ∈ {1,2, . . . ,n}, write Bi := π−1(zi)∩A2.

On the one hand, for each i, j ∈ {1,2, . . . ,n} with i , j, we have that Bi and Bj are
contained in distinct translations of affA1; therefore A1+Bi and A1+Bj are contained
in distinct translations of affA1 and hence

|A1 +A2| =
n∑
i=1

|A1 +Bi |. (3)

On the other hand, for each i ∈ {1,2, . . . ,n}, Theorem 3 leads to

|A1 +Bi | ≥ |A1|+ |Bi | − 1. (4)
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Finally

|A1 +A2| =
n∑
i=1

|A1 +Bi |
(
by (3)

)
≥

n∑
i=1

(|A1| − 1) + |Bi |
(
by (4)

)
=

n∑
i=1

(|A1| − 1) +
n∑
i=1

|Bi |

= |π(A2)|(|A1| − 1) + |A2|. □

Corollary 2 – Let A1 and A2 be nonempty finite subsets of Rd . Set d1 := dimA1,
d2 := dimA2 and d3 := dim(A1 +A2). Then

|A1 +A2| ≥ (1 + d3 − d1)|A1|+ (1 + d3 − d2)|A2| − (1 + d3 − d1)(1 + d3 − d2).

Proof. The proof is by induction on d3. If d3 = 0, then |A1 +A2| = |A1| = |A2| = 1 and
d1 = d2 = 0 so the statement is trivial. We assume from now on that d3 > 0 and that
the statement holds for all 0 ≤ d′ < d3. If d3 = d1 and d3 = d2, then the statement
follows from Theorem 3. It remains to complete the induction when d1 < d3 or
d2 < d3; without loss of generality assume that d1 < d3. Also, translating if necessary,
we assume that A1 and A2 contain the origin; hence

dim(affA1 ∩ affA2) + dim(affA1 + affA2) = dimaffA1 + dimaffA2. (5)

Set π := πaffA1
. Write π(A2) = {z1, z2, . . . , zn} and Bi := π−1(zi) ∩ A2 for each i ∈

{1,2, . . . ,n}. Take i ∈ {1,2, . . . ,n}, and note that Bi is contained in a translation of
affA1. Moreover, since Bi ⊆ A2, it is also contained in affA2, and therefore Bi is
contained in a translation of affA1 ∩ affA2. Insomuch as aff(A1 +A2) = affA1 + affA2,
we conclude by (5) that

dimBi ≤ dim(affA1 ∩ affA2) = d1 + d2 − d3. (6)

Since Bi is contained in a translation of affA1, the affine hull of A1+Bi is a translation
of affA1; in particular dimA1 + Bi = d1 < d3. Thus we can apply the induction
hypothesis on the pair (A1,Bi), and we obtain that

|A1 +Bi | ≥ |A1|+ (1 + d1 −dimBi)|Bi | − (1 + d1 −dimBi)

≥ |A1|+ (1 + d3 − d2)|Bi | − (1 + d3 − d2).
(
by (6)

)
(7)

Set πi := πaffBi
. Recall that dim(A1 +Bi) = d1. Hence Remark 1 applied to the pair

(Bi ,A1) leads to

|πi(Bi +A1)| ≥ 1 + d1 −dimBi . (8)
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Corollary 1 applied to (Bi ,A1) leads to

|Bi +A1| ≥ |πi(A1)||Bi |, (9)

and thus

|A1 +Bi | ≥ |πi(A1)||Bi |
(
by (9)

)
= |πi(Bi +A1)||Bi |

≥ (1 + d1 −dimBi)|Bi |
(
by (8)

)
≥ (1 + d3 − d2)|Bi |.

(
by (6)

)
(10)

From Remark 1 applied to the pair (A1,A2),

n = |π(A1 +A2)| ≥ 1 + d3 − d1.

On the one hand, (7) yields

1+d3−d1∑
i=1

|A1 +Bi | ≥ (1 + d3 − d1)|A1|+ (1 + d3 − d2)

1+d3−d1∑
i=1

|Bi |


− (1 + d3 − d1)(1 + d3 − d2). (11)

On the other hand, (10) leads to

n∑
i=2+d3−d1

|A1 +Bi | ≥ (1 + d3 − d2)
n∑

i=2+d3−d1

|Bi |. (12)

For each i, j ∈ {1,2, . . . ,n} with i , j, A1 + Bi and A1 + Bj are contained in distinct
translations of affA1; in particular they are disjoint and therefore

|A1 +A2| =
n∑
i=1

|A1 +Bi |. (13)

Finally

|A1 +A2| =
n∑
i=1

|A1 +Bi |
(
by (13)

)
≥ (1 + d3 − d1)|A1|+ (1 + d3 − d2)|A2|

− (1 + d3 − d1)(1 + d3 − d2),
(
by (11),(12)

)
and this completes the induction. □
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For any nonempty subsets A1 and A2 of Rd , set

δ(A1,A2) :=

1 if dimA1 = dim(A1 ∪A2) or dimA2 = dim(A1 ∪A2);
0 otherwise.

Lemma 1 – Let A1 and A2 be nonempty subsets of Rd such that dim(A1 ∪A2) = d and
q ∈ Z. Then

dim(A1 + q ·A2) ≥ d − 1 + δ(A1,A2)

Proof. Since A1 + q · A2 contains a copy of A1, if dimA1 = d, then d = dimA1 ≤
dim(A1 + q ·A2). In the same way, if dimA2 = d, then dimq ·A2 = d and thereby
d = dimq ·A2 ≤ dim(A1 + q ·A2).

Now we prove that dim(A1 +q ·A2) ≥ d−1 for arbitrary A1 and A2. Set π := πaffA1
.

Hence

dimπ(A1 + q ·A2) = dim(A1 + q ·A2)−dimA1

dimπ(A1 ∪A2) = dim(A1 ∪A2)−dimA1. (14)

Thus, since π is linear, we have that in Rd /affA1

dimπ(A1 + q ·A2) = dimπ(q ·A2) = dimπ(A2). (15)

Also, insomuch as |π(A1)| = 1,

dimπ(A1 ∪A2) = dim(π(A1)∪π(A2)) ≤ (dimπ(A2)) + 1. (16)

Then

dim(A1 + q ·A2) = dimπ(A1 + q ·A2) + dimA1

(
by (14)

)
= dimπ(A2) + dimA1

(
by (15)

)
≥ (dimπ(A1 ∪A2))− 1 + dimA1

(
by (16)

)
= (d −dimA1)− 1 + dimA1

(
by (14)

)
= d − 1. □

For any affine subspace V of Rd , we say that V is defined over Z if there are linear
equations over Z such that V is its solution space. Notice that if there is A ⊆ Zd such
that affA = V , then V is defined over Z. We will need some results of the geometry
of numbers. We start with an easy consequence of Cassels 1997, Ch. 1 Cor. 3.
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Lemma 2 – Let V be a linear subspace of Rd defined over Z. Then there is {f1,f2, . . . ,fd}
a basis of Zd such that {f1,f2, . . . ,fdimV } is a basis of Zd ∩V .

For any nonempty subset A of Zd , we denote by ⟨A⟩ the subgroup of Zd generated
by A. We say that A is Zd-reduced if ⟨A−A⟩ = Zd ; if no confusion is possible with d,
we simply say that A is reduced. Note that if A is Zd-reduced, then dimA = d. For
arbitrary subsets A of Zd with dimA = d, ⟨A−A⟩ is a sublattice of Zd . Thus we get
the following fact.

Remark 2 – Let A be a nonempty finite subset of Zd . If dimA = d, there is a bijective
affine map φ : Rd → Rd such that φ(A) is reduced.

Given an ordered basis B = {f1,f2, . . . ,fd} of Zd and an ordered subset B′ =
{fi1 ,fi2 , . . . ,fik } of B, define

πB,B′ : Rd −→ Rk , πB,B′

 d∑
i=1

zifi

 =
k∑

j=1

zijej .

Note that πB,B′ (Zd) = Zk . Moreover, we have the following trivial fact.

Remark 3 – Let B be an ordered basis of Zd and B′ be a nonempty ordered subset
of B with k := |B′ |. If A is Zd-reduced, then πB,B′ (A) is Zk-reduced.

Before we conclude this section, we recall two results of Balog and Shakan. Let A be
a nonempty subset of Zd , q ∈ Z and π : Zd → Zd /q ·Zd the canonical projection. We
say that A is q-domain if π(A) = Zd /q ·Zd .

Lemma 3 – Let A be a nonempty subset of Zd and q ∈ Z with |q| > 1. If A is q-domain,
then

|A+ q ·A| ≥
(
d + |q|d

)
|A| − d(d + 1)

2
|q|d .

Proof. See Balog and Shakan 2015, Lemma 1. □

Lemma 4 – Let A be a nonempty subset of Zd , q ∈ Z with |q| > 1 and π : Zd → Zd /q ·Zd

be the canonical projection. Set π(A) = {z1, z2, . . . , zn} and take b1,b2, . . .bn ∈ A such that
π(bi) = zi for each i ∈ {1,2, . . . ,n}. Write Bi := π−1(zi)∩A and B′i := q−1 · (Bi − {bi}) for
each i ∈ {1,2, . . . ,n}. For all i ∈ {1,2, . . . ,n}, if B′i is not q-domain, then

|Bi + q ·A| ≥ |Bi + q ·Bi |+ min
1≤j≤n

|Bj |.

Proof. See Balog and Shakan 2015, Lemma 4. □
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3 q-weak partitions and q-partitions

Let A1 and A2 be nonempty subsets of Zd and q ∈ Z. We say that (A1,A2) is a q-weak
pair if

(A1 + q · (A1 ∪A2))∩ (A2 + q · (A1 ∪A2)) = ∅.

We say that (A1,A2) is a q-pair if, for all i, j, i′ , j ′ ∈ {1,2} with (i, j) , (i′ , j ′), we have
that

(Ai + q ·Aj )∩ (Ai′ + q ·Aj ′ ) = ∅.

Hence we have that if (A1,A2) is a q-pair, then it is a q-weak pair.

Remark 4 – Let B1,B2, . . . ,Bn be nonempty subsets of Zd , {1,2 . . . ,n} = I1⊎ I2 a parti-
tion with I1 and I2 nonempty, and q ∈ Z.

i) Assume that for all i, j ∈ {1,2, . . . ,n} with i , j,Bi + q ·
n⋃
i=1

Bi

∩
Bj + q ·

n⋃
i=1

Bi

 = ∅.

Then
(⋃

i∈I1 Bi ,
⋃

i∈I2 Bi

)
is a q-weak pair.

ii) Assume that for all i, j, i′ , j ′ ∈ {1,2, . . . ,n} with (i, j) , (i′ , j ′),(
Bi + q ·Bj

)
∩

(
Bi′ + q ·Bj ′

)
= ∅.

Then
(⋃

i∈I1 Bi ,
⋃

i∈I2 Bi

)
is a q-pair.

Let A be a subset of Zd , A = A1⊎A2 a partition and q ∈ Z. We say that A = A1⊎A2 is
a q-weak partition if (A1,A2) is a q-weak pair. We say that A = A1⊎A2 is a q-partition
if (A1,A2) is a q-pair.

Remark 5 – Let B be an ordered basis of Zd , B′ be a nonempty ordered subset of B
and A a subset of Zd .

i) If πB,B′ (A) = A1 ⊎A2 is a q-weak partition, then

A =
(
π−1
B,B′ (A1)∩A

)
⊎

(
π−1
B,B′ (A2)∩A

)
is a q-weak partition.

ii) If πB,B′ (A) = A1 ⊎A2 is a q-partition, then

A =
(
π−1
B,B′ (A1)∩A

)
⊎

(
π−1
B,B′ (A2)∩A

)
is a q-partition.
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The next two results study the existence of q-weak partitions and q-partitions of A
when A is Zd-reduced and |A| is small.

Lemma 5 – Let A be a reduced subset of Zd and q ∈ Z with |q| > 1. If |A| ≤ 2d, then
there is a q-partition A = A1 ⊎A2.

Proof. The proof will be done by induction on d. First assume that d = 1. Since
A is Z-reduced, ⟨A−A⟩ = Z, and therefore |A| > 1. Insomuch as |A| ≤ 2d = 2, we
conclude that |A| = 2; write A = {a1,a2}. We have that A = {a1} ⊎ {a2} is a q-partition
and the basis of induction is proven. From now on we assume that d > 1 and that the
claim holds for all 1 ≤ d′ < d. Let π : Zd → Zd /q ·Zd be the canonical projection and
write π(A) = {z1, z2, . . . , zn}. Set Bi := π−1(zi)∩A for each i ∈ {1,2, . . . ,n}. Inasmuch as
⟨A−A⟩ = Zd , we have that π(A)−π(A) generates Zd /q ·Zd and therefore n ≥ 2 (since
|q| > 1). We deal with two cases.

• Assume that for all i, j, i′ , j ′ ∈ {1,2, . . . ,n} with (i, j) , (i′ , j ′),(
Bi + q ·Bj

)
∩

(
Bi′ + q ·Bj ′

)
= ∅.

Then Remark 4 ii) implies that A = B1 ⊎ (A \B1) is a q-partition.

• Assume that there are i, j, i′ , j ′ ∈ {1,2, . . . ,n} with (i, j) , (i′ , j ′) such that(
Bi + q ·Bj

)
∩

(
Bi′ + q ·Bj ′

)
,∅. (17)

Since π(Bi + q ·Bj ) = {zi} and π(Bi′ + q ·Bj ′ ) = {zi′ }, we get from (17) that i = i′.
Let a,a′ ∈ Bi , b ∈ Bj and b′ ∈ Bj ′ be such that

a+ qb = a′ + qb′ . (18)

Insomuch as (i, j) , (i′ , j ′) and i = i′ , we notice that a , a′ (otherwise b = b′ and
thereby j = j ′). Let V be the linear subspace of Rd generated by a− a′. Since
a− a′ ∈ Zd \ {0}, note that V is a 1-dimensional subspace of Rd defined over Z.
From Lemma 2, there is an ordered basis B := {f1,f2, . . . ,fd} of Zd such that {fd}
is a basis of Zd ∩V . Set the ordered set B′ := {f1,f2, . . . ,fd−1}. On the one hand,
πB,B′ (A) is Zd−1-reduced by Remark 3. On the other hand, since a , a′, we
also have that b , b′ . However, (18) implies that a− a′ ,b−b′ ∈ V , and hence

πB,B′ (a) = πB,B′ (a
′) and πB,B′ (b) = πB,B′ (b

′). (19)

Since a , a′ , b , b′ , and |A| ≤ 2d, we get that |πB,B′ (A)| ≤ 2d−2 from (19). Then
πB,B′ (A) ⊆ Zd−1 satisfies the hypothesis of induction, and therefore there is
a q-partition πB,B′ (A) = A′1⊎A

′
2. Set A1 := π−1

B,B′ (A
′
1)∩A and A2 := π−1

B,B′ (A
′
2)∩A.

Remark 5 ii) implies that A = A1 ⊎A2 is a q-partition, and this concludes the
induction. □
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Lemma 6 – Let A be a reduced subset of Zd and q ∈ Z with |q| > 1. If |A| ≤ 2d + 1, then
there is a q-weak partition A = A1 ⊎A2 such that |A1| = 1.

Proof. Translating if necessary, we assume that 0 ∈ A. Let π : Zd → Zd /q ·Zd be the
canonical projection. Since

⟨A⟩ = ⟨A− {0}⟩ = ⟨A−A⟩ = Zd ,

we have that π(A) generates the group Zd /q · Zd . Insomuch as |q| > 1, the group
Zd /q ·Zd has rank d. Therefore any subset which generates Zd /q ·Zd has at least d
nonneutral elements; hence, since 0 ∈ A, we obtain that

|π(A)| ≥ d + 1. (20)

Write π(A) = {z1, z2, . . . , zn} and Bi := π−1(Bi)∩A for each i ∈ {1,2, . . . ,n}. Without loss
of generality assume that

|B1| ≤ |B2| ≤ . . . ≤ |Bn|. (21)

On the one hand, for all i, j ∈ {1,2, . . . ,n} with i , j,

(Bi + q ·A)∩ (Bj + q ·A) = ∅.

Thus Remark 4 i) implies that A = B1 ⊎ (A \B1) is a q-weak partition. On the other
hand, insomuch as |A| ≤ 2d + 1, we get from (20) and (21) that |B1| = 1. □

Let A be a nonempty subset of Rd , and A = A1 ⊎A2 a partition with A1 and
A2 nonempty. We say that A = A1 ⊎ A2 is low-dimensional if dimA1 < dimA or
dimA2 < dimA. We say that A = A1 ⊎ A2 is flat if there is i ∈ {1,2} such that
dimAi < dimA and |πaffAi

(A)| ≤ 2(dimA−dimAi). The previous two lemmas will
have useful applications as we shall see in the next two results.

Lemma 7 – Let A be a reduced subset of Zd and q ∈ Z with |q| > 1. Assume that there is
a flat partition of A. Hence there is a q-partition A = A1 ⊎A2 such that, if d1 := dimA1
and d2 := dimA2, then

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ 2δ(A1,A2)|A|
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − 2(1 + d − d1)(1 + d − d2).

Proof. Let A = A′1 ⊎A′2 be a partition with dimA′1 < dimA and |πaffA′1(A)| ≤ 2(d −
dimA′1). Set V := affA′1 and k := d − dimV ; translating if necessary, assume that
0 ∈ A′1 so V is a linear subspace of Rd defined over Z. From Lemma 2, there is an
ordered basis B := {f1,f2, . . . ,fd} of Zd such that {fk+1,fk+2, . . . ,fd} is an ordered basis
of V ∩Zd . Set B′ := {f1,f2, . . . ,fk} and π := πB,B′ . The function

φ : Rk → Rd /V , φ

 k∑
i=1

aiei

 = πV

 k∑
i=1

aifi
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is an isomorphism and φ ◦π = πV . Thus

|π(A)| = |πV (A)| ≤ 2k. (22)

Note that π(A) is Zk-reduced by Remark 3. Thus, from (22), the assumptions of
Lemma 5 are satisfied by π(A), and therefore there is a q-partition π(A) = A′′1 ⊎A

′′
2 .

Taking A1 := π−1(A′′1 )∩A and A2 := π−1(A′′2 )∩A, Remark 5 ii) implies that A = A1⊎A2
is a q-partition. Set δ := δ(A1,A2). The definition of q-partition yields that the sets
Ai + q ·Aj for i, j ∈ {1,2} are pairwise disjoint. Thus

|A+ q ·A| = |A1 + q ·A1|+ |A2 + q ·A2|+ |A1 + q ·A2|+ |A2 + q ·A1|. (23)

Now Lemma 1 applied to (A1,A2) and (A2,A1) leads to

dim(A1 + q ·A2) ≥ d − 1 + δ

dim(A2 + q ·A1) ≥ d − 1 + δ. (24)

We apply Corollary 2 to (A1,q ·A2) and (A2,q ·A1), and we get by (24) that

|A1 + q ·A2| ≥ (δ+ d − d1)|A1|+ (δ+ d − d2)|A2| − (δ+ d − d1)(δ+ d − d2)

|A2 + q ·A1| ≥ (δ+ d − d1)|A1|+ (δ+ d − d2)|A2| − (δ+ d − d1)(δ+ d − d2). (25)

Thus, from (23) and (25), we get that

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ 2δ|A|
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − 2(1 + d − d1)(1 + d − d2). □

Lemma 8 – Let A be a reduced subset of Zd and q ∈ Z with |q| > 1. Assume that there
is a low-dimensional q-weak partition. Also assume that all low-dimensional q-weak
partitions of A are not flat. Hence there is a q-weak partition A = A1 ⊎A2 such that, if
d1 := dimA1 and d2 := dimA2, then

|A+ q ·A| ≥ |A1 + q ·A|+ |A2 + q ·A2|+ 2(d − d2)(|A2| − 1)

|A+ q ·A| ≥ |A2 + q ·A|+ |A1 + q ·A1|+ 2(d − d1)(|A1| − 1)

and

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ min{|A1|, |A2|}
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − 2max{(d − d1), (d − d2)}.

Proof. For any low-dimensional q-weak partition A = A′1 ⊎A
′
2, we have by assump-

tion that it is not flat; thus, since |πRd (A)| = 1 = 2(d −dimRd) + 1, we get that that
for all q-weak partition A = A′1 ⊎A

′
2,

|πaffA′i
(A)| ≥ 2(d −dimA′i) + 1 ∀ i ∈ {1,2}. (26)
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From the family of low-dimensional partitions of A (which is not empty by as-
sumption), take A = A′1 ⊎ A′2 with min{dimA′1,dimA′2} minimal (in particular
min{dimA′1,dimA′2} < d). The proof of the statement is divided into two cases.

• Assume that |πaffA′1(A)| ≥ 2(d − dimA′1) + 2 or |πaffA′2(A)| ≥ 2(d − dimA′2) + 2;
without loss of generality suppose that

|πaffA′1(A)| ≥ 2(d −dimA′1) + 2. (27)

Take A1 := A′1 and A2 := A′2, and write π1 := πaffA1
and π2 := πaffA2

. Since
A = A1 ⊎A2 is q-weak, A1 + q ·A and A2 + q ·A are disjoint. Thus

|A+ q ·A| = |A1 + q ·A|+ |A2 + q ·A|. (28)

Now, for i ∈ {1,2}, we have that Ai + q · (A∩ affAi) and Ai + q · (A \ affAi) are
disjoint so

|A1 + q ·A| ≥ |A1 + q ·A1|+ |A1 + q · (A \ affA1)|
|A2 + q ·A| ≥ |A2 + q ·A2|+ |A2 + q · (A \ affA2)|. (29)

On the one hand,

|A1 + q · (A \ affA1)| ≥ |π1(q · (A \ affA1))||A1|
(
by Cor. 1

)
= |π1(A \ affA1)||A1|
≥ (|π1(A)| − 1)|A1|

≥ (2(d − d1) + 1)|A1|.
(
by (27)

)
(30)

On the other hand,

|A2 + q · (A \ affA2)| ≥ |π2(q · (A \ affA2))||A2|
(
by Cor. 1

)
= |π2(A \ affA2)||A2|
≥ (|π2(A)| − 1)|A2|

≥ 2(d − d2)|A2|.
(
by (26)

)
(31)

From (28)–(31), note that

|A+ q ·A| ≥ |A1 + q ·A|+ |A2 + q ·A2|+ 2(d − d2)|A2|
|A+ q ·A| ≥ |A2 + q ·A|+ |A1 + q ·A1|+ (2(d − d1) + 1)|A1|,

and

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ |A1|
+ 2(d − d1)|A1|+ 2(d − d2)|A2|,

and this concludes this case.
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3. q-weak partitions and q-partitions

• Assume that

|πaffA′1(A)| = 2(d −dimA′1) + 1

|πaffA′2(A)| = 2(d −dimA′2) + 1. (32)

Without loss of generality assume that dimA′1 = min{dimA′1,dimA′2}. Set
V := affA′1 and k := d −dimV ; translating if necessary, we assume that 0 ∈ A′1
so V is a linear subspace of Rd defined over Z. From Lemma 2, there is an
ordered basis B := {f1,f2, . . . ,fd} of Zd such that {fk+1,fk+2, . . . ,fd} is an ordered
basis of V ∩Zd . Set B′ := {f1,f2, . . . ,fk} and π := πB,B′ . The function

φ : Rk → Rd /V , φ

 k∑
i=1

aiei

 = πV

 k∑
i=1

aifi


is an isomorphism and φ ◦π = πV . Thus

|π(A)| = |πV (A)| = 2k + 1. (33)

Note that π(A) is Zk-reduced by Remark 3. Thus, from (33), the assumptions
of Lemma 6 is satisfied by π(A), and therefore there is a q-weak partition
π(A) = A′′1 ⊎A

′′
2 with |A′′1 | = 1. Taking A1 := π−1(A′′1 )∩A and A2 := π−1(A′′2 )∩A,

Remark 5 i) implies that A = A1⊎A2 is a q-weak partition. Furthermore, since
|A′′1 | = 1,

|πV (A1)| = |π(A1)| = 1

|πV (A2)| = |π(A2)| = |π(A)| − 1. (34)

Note that A = A1 ⊎A2 is low-dimensional since A1 is contained in a transla-
tion of V by (34). From the minimality of dimA′1 = min{dimA′1,dimA′2}, we
have that dimA1 ≥ dimA′1; however, since A1 is contained in a translation of
V = affA′1 by (34), we conclude that dimA1 = dimA′1, and therefore affA1 is
a translation of V . Write π1 := πaffA1

and π2 := πaffA2
; thus πV = π1. Inasmuch

as affA1 is a translation of V , we get from (34) that A2 does not intersect affA1;
therefore

A2 = A \ affA1. (35)

By (33) and (34),

|π1(A2)| = |π(A)| − 1 = 2(d −dimA1). (36)

Since A = A1⊎A2 is q-weak, it follows that A1 +q ·A and A2 +q ·A are disjoint.
Thus

|A+ q ·A| = |A1 + q ·A|+ |A2 + q ·A|. (37)
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Now, for i ∈ {1,2}, we have that Ai + q · (A∩ affAi) and Ai + q · (A \ affAi) are
disjoint so

|A1 + q ·A| ≥ |A1 + q ·A1|+ |A1 + q · (A \ affA1)|
|A2 + q ·A| ≥ |A2 + q ·A2|+ |A2 + q · (A \ affA2)|. (38)

On the one hand,

|A1 + q · (A \ affA1)| = |A1 + q ·A2|
(
by (35)

)
≥ |π1(q ·A2)|(|A1| − 1) + |q ·A2|

(
by Cor. 1

)
= |π1(A2)|(|A1| − 1) + |A2|

= 2(d − d1)|A1|+ |A2| − 2(d − d1).
(
by (36)

)
(39)

On the other hand,

|A2 + q · (A \ affA2)| ≥ |π2(q · (A \ affA2))||A2|
(
by Cor. 1

)
= |π2(A \ affA2)||A2|
≥ (|π2(A)| − 1)|A2|

≥ 2(d − d2)|A2|.
(
by (26)

)
(40)

From (37)–(40), note that

|A+ q ·A| ≥ |A1 + q ·A|+ |A2 + q ·A2|+ 2(d − d2)|A2|
|A+ q ·A| ≥ |A2 + q ·A|+ |A1 + q ·A1|+ 2(d − d1)|A1|+ |A2| − 2(d − d1),

and

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ |A2|
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − 2(d − d1),

and this concludes this case. □

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof. (Theorem 2) We start the proof with three reductions. First, translating if
necessary, we will assume that 0 ∈ A. Second, note that if dimA < d, then there
is a basis B := {f1,f2, . . . ,fd} of Zd such that B′ := {f1,f2, . . . ,fdimA} is a basis of
affA∩Zd . Thus πB,B′ satisfies that dimπB,B′ (A) = dimA = dimRdimA, πB,B′ (A) ⊆
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4. Proof of Theorem 2

ZdimA, |πB,B′ (A)| = |A| and |πB,B′ (A+ q ·A)| = |A+ q ·A|; hence we will assume from
now on that dimA = d. Third, since dimA = d, Remark 2 allows us to assume that
A is reduced.

Recall that for each i, j ∈ Z, we have that ci,j = 4j4i
. The proof of Theorem 2 is

done first by induction on d and then on m. First note that if d = 0, A and A+ q ·A
are singletons and hence

|A+ q ·A| = 1 ≥ m
|q| − 1

|A| − c0,m.

Thus, from now on, we assume that the statement is true for all 0 ≤ d′ < d. Now
assume that m = |q|+ 2d − 1. Then Theorem 3 leads to

|A+ q ·A| ≥ 2|A| − 1 ≥
|q|+ 2d − 1
|q|+ 2d − 1

|A| − cd,|q|+2d−1.

From now on, we will assume that the statement holds for all |q|+ 2d − 1 ≤m′ < m.
To complete the induction, we will divide the proof into two cases.

• Assume that there is a low-dimensional q-weak partition of A. This case will
also be divided into two subcases.

⋆ Assume that there is a flat q-weak partition of A. From Lemma 7, there
is a q-partition A = A1 ⊎A2 such that, if d1 := dimA1, d2 := dimA2 and
c1 := 2(1 + d − d1)(1 + d − d2), then

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ 2δ(A1,A2)|A|
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − c1. (41)

If d1 < d and d2 < d, then the induction hypothesis yields that

|A1 + q ·A1| ≥ (|q|+ 2d1 − 1)|A1| − cd1,(|q|+2d1−1)2

|A2 + q ·A2| ≥ (|q|+ 2d2 − 1)|A2| − cd2,(|q|+2d2−1)2 (42)

and thereby

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|

+ 2(d − d1)|A1|+ 2(d − d2)|A2| − c1

(
by (41)

)
≥ (|q|+ 2d − 1)|A| − cd1,(|q|+2d1−1)2

− cd2,(|q|+2d2−1)2 − c1

(
by (42)

)
≥ m
|q|+ 2d − 1

|A| − cd,m.
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If d1 = d or d2 = d, we have that δ(d1,d2) = 1. For any i ∈ {1,2}, we have
by the hypothesis of induction,

|Ai + q ·Ai | ≥

(|q|+ 2di − 1)|Ai | − cdi ,(|q|+2d−1)2 if di < d;
m−1
|q|+2d−1 |Ai | − cd,m−1, if di = d.

and in any case

|Ai + q ·Ai |+ 2(d − di)|Ai | ≥
m− 1

|q|+ 2d − 1
|Ai | − cd,m−1. (43)

Thus

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ 2|A|

+ 2(d − d1)|A1|+ 2(d − d2)|A2| − c1

(
by (41)

)
≥ m− 1
|q|+ 2d − 1

|A|+ 2|A| − 2cd,m−1 − c1

(
by (43)

)
≥ m
|q|+ 2d − 1

|A| − cd,m.

⋆ Assume that all the low-dimensional q-weak partitions of A are not
flat. Hence we can apply Lemma 8 to A and it implies that there is
a q-weak partition A = A1 ⊎A2 such that if d1 := dimA1, d2 := dimA2
and c2 := 2max{(d − d1), (d − d2)}, then

|A+ q ·A| ≥ |A1 + q ·A|+ |A2 + q ·A2|+ 2(d − d2)(|A2| − 1)

|A+ q ·A| ≥ |A2 + q ·A|+ |A1 + q ·A1|+ 2(d − d1)(|A1| − 1) (44)

and

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ min{|A1|, |A2|}
+ 2(d − d1)|A1|+ 2(d − d2)|A2| − c2; (45)

without loss of generality assume that |A1| = min{|A1|, |A2|}. For any
i ∈ {1,2}, we have by the hypothesis of induction,

|Ai + q ·Ai | ≥

(|q|+ 2di − 1)|Ai | − cdi ,(|q|+2d−1)2 if di < d;
m−1
|q|+2d−1 |Ai | − cd,m−1, if di = d.

In any case, we obtain that

|Ai + q ·Ai |+ 2(d − di)|Ai | ≥
m− 1

|q|+ 2d − 1
|Ai | − cd,m−1. (46)
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First suppose that

|A1| ≤
1

|q|+ 2d − 1
|A|. (47)

Then

|A+ q ·A| ≥ |A1 + q ·A|+ |A2 + q ·A2|

+ 2(d − d2)(|A2| − 1)
(
by (44)

)
≥ |A1 + q ·A|+ m− 1

|q|+ 2d − 1
|A2|

− cd,m−1 − 2(d − d2)
(
by (46)

)
≥ |A1|+ |A| − 1 +

m− 1
|q|+ 2d − 1

|A2|

− cd,m−1 − 2(d − d2)
(
by Thm. 3

)
≥ m
|q|+ 2d − 1

|A| − cd,m.
(
by (47)

)
Now suppose that

|A1| ≥
1

|q|+ 2d − 1
|A|. (48)

Then

|A+ q ·A| ≥ |A1 + q ·A1|+ |A2 + q ·A2|+ |A1|

+ 2(d − d1)|A1|+ 2(d − d2)|A2| − c2

(
by (45)

)
≥ m− 1
|q|+ 2d − 1

|A|+ |A1| − 2cd,m−1 − c2

(
by (46)

)
≥ m
|q|+ 2d − 1

|A| − cd,m.
(
by (48)

)
• Assume that there are no low-dimensional q-weak partitions of A. Denote

by π : Zd → Zd /q ·Zd the canonical projection. Write π(A) = {z1, z2, . . . , zn} and
Bi := π−1(zi)∩A for each i ∈ {1,2, . . . ,n}; furthermore, for each i ∈ {1,2, . . . ,n},
choose bi ∈ Bi and write B′i := q−1 · (Bi − {bi}). We divide the proof into two
subcases.

⋆ Assume that there is i ∈ {1,2 . . . ,n} such that B′i is not q-domain; without
loss of generality assume that B′1 is not q-domain. For each j ∈ {1,2, . . . ,n},
set A1,j := Bj and A2,j := A \Bj . Hence, from Remark 4, A = A1,j ⊎A2,j is
a q-weak partition; furthermore, the assumption implies that dimA1,j =
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dimA2,j = d for all j ∈ {1,2, . . . ,n}. Since A = A1,j⊎A2,j is q-weak , A1,j+q·A
and A2,j + q ·A are disjoint so

|A+ q ·A| = |A1,j + q ·A|+ |A2,j + q ·A|. (49)

For i ∈ {1,2} and j ∈ {1,2, . . . ,n}, by the hypothesis of induction on Ai,j , we
have that

|Ai,j + q ·Ai,j | ≥
m− 1

|q|+ 2d − 1
|Ai,j | − cd,m−1. (50)

First suppose that there is j ∈ {1,2, . . . ,n} such that

|A1,j | ≤
1

|q|+ 2d − 1
|A|. (51)

Then

|A+ q ·A| = |A1,j + q ·A|+ |A2,j + q ·A|
(
by (49)

)
≥ |A1,j + q ·A|+ |A2,j + q ·A2,j |

≥ |A1,j + q ·A|+ m− 1
|q|+ 2d − 1

|A2,j | − cd,m−1

(
by (50)

)
≥ |A1,j |+ |A| − 1 +

m− 1
|q|+ 2d − 1

|A2,j | − cd,m−1

(
by Thm. 3

)
≥ m
|q|+ 2d − 1

|A| − cd,m.
(
by (51)

)
Now suppose that

min
1≤j≤n

|A1,j | = min
1≤j≤n

|Bj | ≥
1

|q|+ 2d − 1
|A|. (52)

Since B′1 is not q-domain, Lemma 4 leads to

|A1,1 + q ·A| ≥ |A1,1 + q ·A1,1|+ min
1≤j≤n

|Bj |. (53)

Then

|A+ q ·A| = |A1,1 + q ·A|+ |A2,1 + q ·A|
(
by (49)

)
≥ |A1,1 + q ·A1,1|+ min

1≤j≤n
|A1,j |+ |A2,1 + q ·A2,1|

(
by (53)

)
≥ m− 1
|q|+ 2d − 1

|A|+ min
1≤j≤n

|A1,j | − 2cd,m−1

(
by (50)

)
≥ m
|q|+ 2d − 1

|A| − cd,m.
(
by (52)

)
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⋆ Assume that B′j is q-domain for all j ∈ {1,2, . . . ,n}. Since Bi + q ·A an Bj + q ·A
are disjoint for all i, j ∈ {1,2, . . . ,n} with i , j, we have that

|A+ q ·A| =
n∑
i=1

|Bi + q ·A| ≥
n∑
i=1

|Bi + q ·Bi |. (54)

For all i ∈ {1,2, . . . ,n}, Lemma 3 applied to B′i leads to

|B′i + q′ ·B′i | ≥ (d + |q|d)|B′i | −
d(d + 1)

2
|q|d . (55)

Since d > 0 and |q| > 1, we get that

d + |q|d ≥ |q|+ 2d − 1. (56)

Finally

|A+ q ·A| ≥
n∑
i=1

|Bi + q ·Bi |
(
by (54)

)
=

n∑
i=1

|B′i + q ·B′i |

≥
n∑
i=1

(
(d + |q|d)|B′i | −

d(d + 1)
2

|q|d
) (

by (55)
)

= (d + |q|d)
n∑
i=1

|B′i | −n
d(d + 1)

2
|q|d

= (d + |q|d)
n∑
i=1

|Bi | −n
d(d + 1)

2
|q|d

≥ (d + |q|d)|A| − d(d + 1)
2

|q|2d
(
since n ≤ |q|d

)
≥ (|q|+ 2d − 1)|A| − d(d + 1)

2
|q|2d

(
by (56)

)
≥ m
|q|+ 2d − 1

|A| − cd,m,

and this concludes the induction. □
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