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Abstract

In this survey article, we explore operator aspects in extremal properties of
Bernstein-type polynomial inequalities. We shall also see that a linear operator
which send polynomials to polynomials and have zero-preserving property
naturally preserve Bernstein’s inequality.
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1 Introduction

Polynomials play an important role in applied sciences in general and are funda-
mental objects in harmonic and complex analysis in particular. Polynomials find
their place everywhere in Mathematics. The extremal properties of polynomials are
extensively used in approximation theory and numerical analysis. The problems
related to applied mathematics are dependent on polynomials to a greater degree.
The study of extremal properties of the derivatives of polynomials started with some
scientific investigations by well-known Russian chemist Dmitri Mendeleev (for ref-
erence see Milovanovic, Rassias, and Mitrinovic 1994, chapter 6). Mathematically,
Mendeleev’s problem amounts to estimate |p′(t)| on −1 ≤ t ≤ 1 for a quadratic poly-
nomial p(t) satisfying −1 ≤ p(t) ≤ 1 for −1 ≤ t ≤ 1. Mendeleev was himself able to
find the solution. In fact, he found that −4 ≤ p′(t) ≤ 4 for t ∈ [−1,1] and p(t) = 1−2t2

is the extremal polynomial. Mendeleev communicated his conclusions to the dis-
tinguished Russian Mathematician A. A. Markov 1889, who extended Mendeleev’s
result to general real polynomials and obtained the following generalization.

1Government College of Engineering & Technology, Safapora J& K, India
2Chandigarh University, Punjab, India
3Chandigarh University, Punjab, India

187



On operators preserving inequalities between polynomials S. Mattoo et al.

Theorem 1 – If a polynomial p(t) of degree n with real coefficients satisfy −1 ≤ p(t) ≤ 1
over [−1,1], then

|p′(t)| ≤ n2 for − 1 ≤ t ≤ 1.

The inequality cannot be improved as equality holds for p(t) = cos(narccos t).

This result of Markov marked the beginning in the research of extremal properties
of polynomials. Subsequently, his younger brother V. A. Markov 1916 obtained a
best possible estimate for the modulus of sth derivative, |p(s)(t)| where s ≤ n.

It was a few years later, another Russian Mathematician Serge Bernstein 1912
while looking for its analogue for complex polynomials over |z| ≤ 1 obtained the
following theorem.

Theorem 2 – If f (z) is a complex-polynomial having degree at most n, then for |z| = 1

|f ′(z)| ≤ n max
|w|=1
|f (w)|. (1)

The bound is sharp as is shown by f (z) = azn, a , 0.

Proof. Let M represent the maximum of |f (z)| over |z| ≤ 1. Therefore, |f (z)| < τM |zn|
for τ ∈ C with |τ | > 1 and |z| ≤ 1. This implies by invoking Rouché’s theorem that
the polynomial F(z) = f (z) + τMzn has no zeros outside |z| < 1.

To complete the proof, two important properties of the derivative are needed:
(1) Linearity (2) zero preserving property for polynomials.

The first property is obvious. The second property is a special case of Gauss-
Lucas theorem. According to which for any non-constant polynomial f (z), all the
zeros of f ′(z) are completely enclosed in the smallest convex polygon formed by the
zeros of f (z).

Therefore by utilizing this zero-preserving property along the linearity of the
derivative, we conclude that every zero of F′(z) = f ′(z) + τnMzn−1 is in |z| < 1. This
implies

|f ′(z)| ≤ nM |z|n−1 for |z| ≥ 1. (2)

If inequality (2) were not true, then we could find δ ∈ C with |δ| ≥ 1 such that
|f ′(δ)| > nM |δ|n−1. Now, if we choose τ = −f ′(δ)/nMδn−1 then |τ | > 1 and F′(δ) =
0, which is a contradiction since no zero of F(z) lie outside |z| < 1. This verifies
inequality (2) and consequently the proof is completed. □

In Bernstein’s inequality, equality holds iff f (z) = azn where a , 0. That is, if every
zero of f (z) is at origin and the inequality gets strict when f (z) = 0 has a non-zero
root. This suggests that if no zero of f (z) is at origin then the upper bound in (2)
may be improved. This fact was deeply examined by Paul Erdös which lead him to
conjecture that if f (z) does not vanish in open disk |z| < 1 then in the upper bound
of (2), n can be replaced by n/2. Peter D Lax 1944 was the first one to prove this
conjecture. In fact, he proved:
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2. Bn-operator

Theorem 3 – For any polynomial f (z) of degree at most n such that f (z) , 0 for |z| < 1
then

|f ′(z)| ≤ n
2

max
|z|=1
|f (z)| where |z| = 1.

The sharpness of this inequality is shown by f (z) = azn + b where |a| = |b| , 0.

Professor Ralph P. Boas suggested a research problem to find analogue of Theorem
3 in the case when f (z) does not vanish for |z| < R, R > 0. The subcase R ≥ 1 of this
problem was resolved by M.A. Malik 1969 but the actual problem still remains open.
The results of Lax and Malik were improved in several ways. In particular, M.A.
Qazi 1992 obtained some remarkable improvements by involving the coefficients of
polynomials in the bound.

These kind of inequalities are usually called as Markov Bernstein type inequali-
ties. Several authors have penned down monographs on this topic and numerous
papers concerning this area have been published.

2 Bn-operator

We have seen in Bernstein’s inequality that linearity and zero-preserving property
of the derivative play an essential role in the proof given above. In fact, it was
Rahman and Schmeisser 2002, p. 538 who in their celebrated monograph, Analytic
Theory of Polynomials, showed that any operator satisfying these two properties
satisfy Bernstein-type inequalities. They named such operators as Bn-operator.

Definition 1 – Let the space of polynomials over the field of complex numbers of
degree at most n be denoted by Pn and P 0

n ⊂ Pn be set of those polynomials whose
all zeros lie in |z| ≤ 1. A linear operator T : Pn→Pn is called Bn-operator if f ∈ P 0

n
then T [f ] ∈ P 0

n .

In the same monograph (Rahman and Schmeisser 2002, p. 539), the following
theorem is also presented for Bn-operators.

Theorem 4 – Let f (z) be a complex-polynomial and have degree at most n. Moreover, if
ϕn(z) = zn and T is a Bn-operator, then

|T [f ](z)| ≤ |T [ϕn](z)|max
|z|=1
|f (z)| for |z| ≥ 1.

The inequality cannot be sharpened under this hypothesis as one can easily verify that
f (z) = azn, a , 0 is extremal.

It is pertinent to mention here that the above theorem follows in the similar lines
as of the proof of Bernstein’s inequality given in the introductory section. To
comprehend the similitude in proofs, here we also would like to write-down a proof
of above theorem.
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Proof (Proof of Theorem 4). Let us denote the maximum of |f (z)| over |z| = 1 by M.
Then |f (z)| < λM |zn| for λ ∈C with |λ| > 1 and |z| ≤ 1. Again by employing Rouché’s
theorem, we obtain that all the zeros of polynomial F(z) = f (z) +λMzn are in |z| < 1.

Here, the linearity and zero-preserving property are carried by Bn-operator.
Therefore for any Bn-operator T , every zero of T [F](z) = T [f ](z) + λMT [ϕn](z)
resides in |z| < 1, where ϕn(z) = zn. This implies

|T [f ](z)| ≤ |T [ϕn](z)|M for |z| ≥ 1. (3)

If inequality (3) were false, then a complex number say w could be found with |w| ≥ 1
such that |T [f ](w)| > |T [ϕn](w)|M. Now, if we choose λ = −T [f ](w)/T [ϕn](w)M then
|λ| > 1 and T [F](w) = 0. This is straightforward contradiction about the region
containing zeros of T [F]. Hence, inequality (3) is valid and accordingly the proof
gets complete. □

From above theorem, it is evident that the operators which are linear and have zero-
preserving property preserve Bernstein-type inequalities for polynomials. Although
the original proof of Bernstein’s inequality does not use these two properties intrin-
sically. But a natural question arises: Does there exist non-linear zero-preserving
operators that preserve Bernstein-type inequalities? This question has not been
studied extensively.

The next result which is an analogue of Theorem 3 for Bn-operators was also
obtained by Rahman and Schmeisser 2002, p. 539.

Theorem 5 – Let f ∈ Pn and does not vanish for |z| < 1, then for any Bn-operator T ,

|T [f ](z)| ≤
|T [1](z)|+ |T [ϕn](z)|

2
max
|z|=1
|f (z)| for |z| ≥ 1,

where ϕn(z) = zn. Indeed, this result is also best possible and f (z) = uzn + v, |u| = |v| , 0,
is a polynomial for which equality holds in this inequality.

3 Inequalities Preserving Operators

It is obvious from Gauss Lucas theorem that T ≡ d(s)

dz(s) represents a Bn-operator and
an analogous result of Bernstein’s inequality for sth derivative of polynomial f (z)
having degree n takes the following form.∣∣∣∣∣∣ d(s)

dz(s)
f (z)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ d(s)

dz(s)
zn

∣∣∣∣∣∣max
|z|=1
|f (z)| f or |z| = 1 (s < n).

It is natural to seek characterization of operators preserving Bernstein-type inequal-
ities. In this direction, we shall refer the readers to some well-known operators

190



3. Inequalities Preserving Operators

which fall under this characterization. The first result, we ought to present here
is due to V.K. Jain 1997. He proved that an operator T on Pn which sends f (z)
to T [f ](z) := zf ′(z) + nβ

2 f (z) is a Bn-operator if β ∈ C with |β| ≤ 1. In this case, the
corresponding Bernstein-type inequality is;∣∣∣∣∣zf ′(z) +

nβ

2
f (z)

∣∣∣∣∣ ≤ n

∣∣∣∣∣1 +
β

2

∣∣∣∣∣max
|z|=1
|f (z)| for |z| = 1.

The next operator we are going to present here is due to Aziz and N. A. Rather
2012. In this manuscript, they developed a unified method to arrive at various
polynomial inequalities including the inequalities of Bernstein and of Jain. They
showed that the operator which sends an nth degree polynomial f (z) to f (Rz) −
βf (rz) +α

{(
R+1
r+1

)n
− |β|

}
f (rz) is a Bn-operator, where R ≥ r ≥ 1 and α,β belongs to

closed unit circle |z| ≤ 1. Their analogue of Bernstein’s inequality also included
results concerning the growth of polynomials.

For given two nth degree polynomials p(z) =
∑n

j=0
(n
j

)
ajz

j and g(z) =
∑n

j=0
(n
j

)
bjz

j ,

Schur-Szegö composition is defined by p ∗ g(z) =
∑n

j=0
(n
j

)
ajbjz

j . By Schur-Szegö
composition theorem, if all the zeros of f (z) and g(z) are of modulus at most r and
s respectively, then the moduli of the zeros of f ∗ g cannot exceed rs. Now, if we
fix a polynomial h(z) having degree n and all zeros in |z| ≤ 1, then the operator
which sends an nth degree polynomial f (z) to f ∗h(z) is clearly a Bn-operator. In this
direction, the next result concerning this operator is due to Gulzar and N. A. Rather
2018.

Theorem 6 – Let f (z) be a polynomial and have degree n. Further, let h(z) =
∑n

j=0 hjz
j

be of degree n and have all zeros in |z| ≤ 1, then

|f ∗ h(z)| ≤ |hn|max
|z|=1
|f (z)| for |z| = 1.

The estimate is sharp and f (z) = azn is the extremal polynomial.

For the choice h(z) =
∑n

j=0
(n
j

)
jzj the above inequality condenses to Bernstein’s

inequality.
Like Schur-Szegö composition, several other types of ’compositions’ were studied

by Mathematicians. Moris Marden 1996, p. 86 in his comprehensive book also
discussed a composition of two polynomials wherein he proved that if the zeros of
polynomials p(z) of degree n and g(z) = µ0 +

(n
1
)
µ1z + . . .+

(n
n

)
µnz

n respectively are in
|z| ≤ r and in the circular region: |z| ≤ s|z − σ |, s > 0, then the zeros of

f (z) = µ0p(z) +µ1p
′(z)

(σz)
1!

+ . . .+µnp
(n)(z)

(σz)n

n!

are in the circle |z| ≤max(r, rs). Recently, N. A. Rather, Dar, and Gulzar 2021 showed
in the following result that the hypothesis of Marden’s theorem can be relaxed with
regards to the degrees of f (z) and g(z).

191



On operators preserving inequalities between polynomials S. Mattoo et al.

Theorem 7 – If every zero of nth degree polynomial p(z) is of modulus at most r and the
polynomial

g(z) = µ0 +
(
n
1

)
µ1z+ . . .+

(
n
m

)
µmz

m

has no zero outside the region |z| ≤ s|z − σ |, s > 0, then the polynomial

f (z) = µ0p(z) +µ1p
′(z)

(σz)
1!

+ . . .+µmp
(m)(z)

(σz)m

m!

has all its zeros in |z| ≤max(r, rs)

By using this Theorem, they N. A. Rather, Dar, and Gulzar 2021 introduced an

operator N which takes f ∈ Pn into N [f ] ∈ Pn where N [f ](z) :=
∑m

i=0µi
(
nz
2

)i f (i)(z)
i! ,

and µi , i = 0,1,2, . . . ,m are chosen such that every zero of φ(z) =
∑m

i=0
(n
i

)
µiz

i ,m ≤ n
lie in |z| ≤ |z − n

2 |. It is obvious from Theorem 7 that the operator N is a Bn-operator.
They also obtained the following Bernstein-type inequality for this operator.

Theorem 8 – If f (z) is a polynomial and have degree at most n, then

|N [f ](z)| ≤ |N [ϕn](z)|max
|z|=1
|f (z)|, f or |z| ≥ 1, (4)

where ϕn(z) = zn. This bound is also best possible and for f (z) = eiα max|z|=1 |f (z)|zn,
α ∈R, equality holds in (4).

4 Bernstein’s Inequality in Lp-norm

Let f ∈ Pn, then the Hardy space norm is defined by

∥f ∥p =
(

1
2π

2π∫
0

|f (eiθ)|pdθ
)1/p

, 0 < p <∞;

and the Mahler measure by

∥f ∥0 = exp
(

1
2π

2π∫
0

ln
(
|f (eiθ)|

)
dθ

)
.

It is not hard to see that limp→0+ ∥f ∥p = ∥f ∥0. Also note that the supremum norm
satisfies limp→∞ ∥f ∥p = max|z|=1 |f (z)|.

If f ∈ Pn then

∥f ′∥p ≤ n∥f ∥p, 0 ≤ p ≤∞ (5)
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5. Concluding Remarks

Inequality (5) is an extension of (1) in the Hardy space norm settings. Zygmund
1932 proved this inequality for p ≥ 1. It was unknown for quite a long time, whether
inequality (5) holds for 0 < p < 1 or not. Later, this case was settled by Arestov 1982.
For p = 0, (5) is a consequence of a remarkable inequality of De Bruijn and Springer
1947.

Like the above extension of Bernstein’s inequality by Zygmund, most of the
Bernstein-type inequalities brought up in the first three sections of this review paper
have also been extended in the Hardy space norm (see Aziz and N. Rather 2012; Aziz
and N. Rather 1997; Gulzar 2016; Mir, Dewan, and Singh 2010). Those inequalities
are usually called as Zygmund-type inequalities. Moreover, all the Bernstein-
type inequalities in sup-norm mentioned in this paper can be easily derived from
Theorem 4 by choosing the Bn-operator T suitably. Like sup-norm counterparts,
from the expected extension of Theorem 4, the Zygmund-type inequalities for
different Bn-operators should be derivable in a unified manner.

In one of most cited papers of Arestov 1982, one of his results may be considered
as an extension of Theorem 4 in Hardy space norm. For f (z) =

∑n
j=0 ajz

j ∈ Pn and ϑ =

(ϑ0,ϑ1, . . . ,ϑn) ∈ Cn+1, Arestov introduced the linear operator Λϑf (z) =
∑n

j=0ϑjajz
j

in Pn. He called Λϑ admissible if one of the following properties is preserved by it.

(i) f (z) having every zeros in {z ∈C : |z| ≤ 1},

(ii) f (z) having every zeros in {z ∈C : |z| ≥ 1}.

We end this section with the following result of Arestov.

Theorem 9 – Let Θ : R→R be a convex & non-decreasing function and Ψ (x) = Θ(lnx)
then for each f ∈ Pn and every admissible operator Λϑ ,

2π∫
0

Ψ
(
|Λϑf (eiθ)|

)
dθ ≤

2π∫
0

Ψ
(
λ(ϑ)|f (eiθ)|

)
dθ,

where λ(ϑ) = max(|ϑ0|, |ϑn|).

One can get (5) from above inequality by taking Ψ (x) = xp, p ∈ (0,∞).

5 Concluding Remarks

From the proof of theorem 4, one gets an impression that it is hard to get the proof
without putting the linearity of a Bn-operator or its zero-preserving feature in use.
There are many operators defined on Pn which have zero-preserving property like
Nagy’s generalized derivative (see Cheung et al. 2015) but are not linear. A natural
question one can ask here is that, whether theorem 4 holds for those operators which
are not linear but does preserve location of zeros. Similarly, to what extent one
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can withhold the zero-preserving property and keep linearity to achieve theorem 4.
Moreover, when it comes to the question of extending theorem 4 in Lp-norm setting
via theorem 9, a representation of a Bn-operator is needed.

These and many other questions concerning Markov Bernstein type inequalities
are intended to be taken up in a subsequent work in the future.
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