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Abstract

We give alternative computations of the Schur multiplier of Sp(2g,Z/DZ),
when D is divisible by 4 and g ≥ 4: a first one using K-theory arguments based
on the work of Barge and Lannes and a second one based on the Weil represen-
tations of symplectic groups arising in abelian Chern-Simons theory. We can
also retrieve this way Deligne’s non-residual finiteness of the universal central
extension �Sp(2g,Z). We prove then that the image of the second homology into
finite quotients of symplectic groups over a Dedekind domain of arithmetic
type are torsion groups of uniformly bounded size. In contrast, quantum rep-
resentations produce for every prime p, finite quotients of the mapping class
group of genus g ≥ 3 whose second homology image has p-torsion. We further
derive that all central extensions of the mapping class group are residually
finite and deduce that mapping class groups have Serre’s property A2 for trivial
modules, contrary to symplectic groups. Eventually we compute the module of
coinvariants H2(sp2g (2))Sp(2g,Z/2kZ) = Z/2Z.

Keywords: Symplectic groups, group homology, mapping class group, central
extension, quantum representation, residually finite.
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1 Introduction and statements

Let Σg,k denote a connected oriented surface of genus g with k boundary compo-
nents and Mg,k be its mapping class group, namely the group of isotopy classes
of orientation preserving homeomorphisms that fix point-wise the boundary com-
ponents. If k = 0, we simply write Mg for Mg,0. The action of Mg on the integral
homology of Σg equipped with some symplectic basis gives a surjective homomor-
phism Mg → Sp(2g,Z), and it is a natural and classical problem to compare the
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properties of these two groups. The present paper is concerned with the central
extensions and 2-homology groups of these two groups and their finite quotients
and is a sequel to Funar 2011 and Funar and Pitsch 2020.

Our first result is:

Theorem 1 – The second homology group of finite principal congruence quotients of
Sp(2g,Z), g ≥ 4 is

H2(Sp(2g,Z/DZ)) =
{

Z/2Z, ifD ≡ 0 (mod 4),
0, otherwise.

This result when D is not divisible by 4 is an old theorem of Stein (see Stein 1973,
Thm. 2.13 and Prop. 3.3.a) while the case D ≡ 0 (mod 4) remained open for a
while, as mentioned in Putman 2012, remarks after Thm. 3.8, because the condition
D . 0 (mod 4) seemed essential for all results in there. A short proof using geometric
group theory was obtained by the authors in Funar and Pitsch 2020 and another
proof was independently obtained in Benson et al. 2018 (see also Benson 2019).
One of our aims here is to present alternative proofs based on mapping class group
representations arising in the U (1) Chern-Simons theory and K-theory, respectively.

The analogous result for special linear groups has long been known. The equality
H2(SL(2,Z/DZ)) = Z/2Z, for D ≡ 0(mod 4) was proved in Beyl 1986 and for large n
Dennis and Stein proved using K-theoretic methods that H2(SL(n,Z/DZ)) = Z/2Z,
for D ≡ 0(mod 4), while H2(SL(n,Z/DZ)) = 0, otherwise, see Dennis and Stein 1973,
Cor. 10.2.

Our main motivation for carrying the computation of Theorem 1 was to better
understand the (non-)residual finiteness of central extensions. The second result of
this paper is the following:

Theorem 2 – The universal central extension �Sp(2g,Z) is not residually finite when
g ≥ 4 since the image of the center under any homomorphism into a finite group has
order at most two. Moreover, the image of the center has order two under the natural
homomorphism of �Sp(2g,Z) into the universal central extension of Sp(2g,Z/DZ), where
D is a multiple of 4 and g ≥ 4.

The first part of this result is the statement of Deligne’s non-residual finiteness theorem
from Deligne 1978, which was stated for g ≥ 2. In what concerns the sharpness
statement, in Putman 2012, Thm. F the author has previously obtained the existence
of finite index subgroups of �Sp(2g,Z) which contain 2Z but not Z. We provide
some explicit constructions of such finite index normal subgroups. The relation
between Theorems 1 and 2 is somewhat intricate. For instance, the statement
H2(Sp(2g,Z/DZ)) ∈ {0,Z/2Z}, for g ≥ 4 is a consequence of Deligne’s theorem. This
statement and the second part of Theorem 2 actually imply Theorem 1 and this is
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1. Introduction and statements

our first proof of the latter. However, we can reverse all implications and using now
a different proof of Theorem 1, based on K-theory arguments, we derive from it
another proof of Theorem 2. In particular, this provides a new proof of Deligne’s
theorem, independent of Moore’s theory of topological central extensions from
Moore 1968.

Remark 1 – Deligne proved that the image of twice the generator of the center of�Sp(2g,Z) under any homomorphism into a finite group is trivial, for any g ≥ 2.
Moreover, the intersection of the finite index subgroups of �Sp(2g,Z) is precisely the
subgroup generated by twice the center generator, when g ≥ 4. Theorem 2 provides
explicit morphisms into finite groups for which the generator of the center maps
into a nontrivial element.

Remark 2 – Note that H2(Sp(6,Z)) = Z ⊕Z/2Z, according to Stein 1975, while
Sp(4,Z/4Z) is not perfect. Thus the central extension by Z considered in Deligne
1978 is not the universal central extension of Sp(2g,Z), when g ∈ {2,3}. The com-
putation of the Schur multiplier for small g was completed in Benson et al. 2018:
H2(Sp(2g,Z/DZ)) = Z/2Z⊕Z/2Z, for g ∈ {2,3} and D ≡ 0 (mod 4). This corrects a
misprint in Funar and Pitsch 2020, where for g = 3 we only proved that the Schur
multiplier is nontrivial.

The theorem stated in Deligne 1978 is much more general and covers higher rank
Chevalley groups over number fields. The proof of Theorem 2 also shows that
the residual finiteness of central extensions is directly related to the torsion of
the second homology of finite quotients of the group. Then the general form of
Deligne’s theorem can be used to obtain bounds for the torsion arising in the second
homology of finite quotients of symplectic groups over more general rings. First,
we have:

Theorem 3 – Let A be the ring of S-integers of a number field which is not totally
imaginary and g ≥ 3 an integer. Then there is a uniform bound (independent of g
and F) for the order of the torsion group p∗(H2(Sp(2g,A))) ⊆ H2(F) for any surjective
homomorphism p : Sp(2g,A)→ F onto a finite group. Here p∗ :H2(Sp(2g,A))→H2(F)
denotes the map induced in homology and all homology groups are considered with
(trivial) integral coefficients.

The result is a rather immediate consequence of the general Deligne theorem from
Deligne 1978, along with classical results from Borel and Serre 1971 and Bass,
Milnor, and Serre 1967 on the congruence subgroup problem.

Remark 3 – With slightly more effort we can show that this holds also when the
number field is totally imaginary due to the finiteness of the congruence kernel.
Furthermore, the result holds for any Chevalley group instead of the symplectic
group, with a similar proof. More generally it holds under the conditions of Deligne

111



Finite quotients L. Funar and W. Pitsch

1978, namely for every absolutely simple simply connected algebraic group G over
a number field K, S a finite set of places of K containing all archimedean ones and
such that

∑
v∈S rankG(Kv) ≥ 2 and A the associated ring of S-integers. The quasi-

split assumption in Deligne 1978 was removed in Raghunathan 1984. However, for
the sake of simplicity we will only consider symplectic groups in the sequel.

Theorem 3 contrasts with the abundance of finite quotients of mapping class groups:

Theorem 4 – For any prime p and g ≥ 3 there exist surjective homomorphisms π :
Mg → F onto finite groups F such that π∗(H2(Mg )) ⊆H2(F) has p-torsion elements, and
in particular is not trivial.

We prove this result by exhibiting explicit finite quotients of the universal central
extension of a mapping class group that arise from the so-called quantum represen-
tations. We refine here the approach in Funar 2011 where the first author proved
that central extensions of Mg by Z are residually finite. In the meantime, it was
proved in Funar 2013; Masbaum and Roberts 1995 by more sophisticated tools
that the set of quotients of mapping class groups contains arbitrarily large rank
finite groups of Lie type. Notice however that the family of quotients obtained in
Theorem 4 are different in nature than those obtained in Funar 2013; Masbaum and
Reid 2012, although their source is the same (see Proposition 8 for details).

Theorem 4 shows that in the case of non-abelian quantum representations of map-
ping class groups there is no finite central extension for which all projective rep-
resentations could be lifted to linear representations, when the genus is g ≥ 2 (see
Corollary 3 for the precise statement).

When G is a discrete group we denote by Ĝ its profinite completion, i.e. the pro-
jective limit of the directed system of all its finite quotients. There is a natural
homomorphism i : G→ Ĝ which is injective if and only if G is residually finite. A
discrete Ĝ-module is an abelian group endowed with a continuous action of Ĝ. We
will simply call them Ĝ-modules in the sequel. We say that a Ĝ-module is trivial if
the Ĝ-action is trivial. Recall following Serre 1994, p. I.2.6 that:

Definition 1 – A discrete group G has property An for the finite Ĝ-module M if the
homomorphism Hk(Ĝ,M)→ Hk(G,M) is an isomorphism for k ≤ n and injective
for k = n+ 1. Furthermore G is called good if it has property An for all n and for all
finite Ĝ-modules.

It is known, for instance, that all groups have property A1.

Now, Deligne’s theorem on the non-residual finiteness of the universal central
extension of Sp(2g,Z) actually is equivalent to the fact that Sp(2g,Z) has not
property A2 for the trivial Sp(2g,Z)-modules (see also Grunewald, Jaikin-Zapirain,
and Zalesskii 2008).
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Our next result is:

Theorem 5 – For g ≥ 4 the mapping class group Mg has property A2 for the trivial
M̂g-modules.

Our proof also yields the following:

Corollary 1 – Central extensions of Mg , g ≥ 4, by finite abelian groups are virtually
trivial and can be obtained as pull-backs from central extensions of finite quotients of Mg .

The last part of this article is devoted to a partial extension of the method used
by Putman in Putman 2012 to compute H2(Sp(2g,Z/DZ)), when D ≡ 0 (mod 4),
using induction. One key point is to show that there is a potential Z/2Z factor
that appears for H2(Sp(2g,Z/4Z)). Although we couldn’t complete the proof of
Theorem 1 this way, our main result in this direction may be of independent interest.
Set sp2g (p) for the additive group of those 2g-by-2g matrices M with entries in

Z/pZ that satisfy the equation M⊤Jg + JgM ≡ 0(mod p), where Jg =
(

0 1g
−1g 0

)
is the

symplectic form. Then sp2g (p) is endowed with a natural Sp(2g,Z/pZ)-action.

Theorem 6 – For any integers g ≥ 4, k ≥ 1 and prime p, the space of co-invariants in
homology is:

H2(sp2g (p))Sp(2g,Z/pkZ) =
{

0, if p is odd,
Z/2Z, if p = 2.

An immediate consequence of this result is the alternative H2(Sp(2g,Z/4Z)) ∈
{0,Z/2Z}, without use of Deligne’s theorem.

The plan of this article is the following.

In Section 2 we prove Theorem 1. Although it is easy to show that the groups
H2(Sp(2g,Z/2kZ)) are cyclic for g ≥ 4, their non-triviality is much more involved.
That this group is trivial for k = 1 is a known fact, for instance by Stein’s results Stein
1978. We give two different proofs of the non-triviality, each one of them having its
advantages and disadvantages in terms of bounds for detections or sophistication.
The first proof is K-theoretical in nature and uses a generalization of Sharpe’s exact
sequence relating K-theory to symplectic K-theory due to Barge and Lannes Barge
and Lannes 2008. Indeed, by the stability results, this Z/2Z should correspond
to a class in KSp2(Z/4Z). There is a natural map from this group to a Witt group
of symmetric non-degenerate bilinear forms on free Z/4Z-modules, and it turns

out that the class is detected by the class of the bilinear map of matrix
(
2 1
1 2

)
. The

second proof uses mapping class groups. We show that there is a perfect candidate
to detect this Z/2Z that comes from a Weil representation of the symplectic group.
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This is, by construction, a representation of Sp(2g,Z) into a projective unitary group
that factors through Sp(2g,Z/4nZ). To show that it detects the factor Z/2Z it is
enough to show that this representation does not lift to a linear representation.
We will show that the pull-back of the representation on the mapping class group
Mg does not linearize. This proof relies on deep results from Gervais 1996. The
projective representation that we use is related to the theory of theta functions on
symplectic groups, this relation is explained in an appendix to this article.

In Section 3 we first state the relation between the torsion in the second homology
of a perfect group and residual finiteness of its universal central extension. We then
prove Theorem 3 for Dedekind domains by analyzing Deligne’s central extension.
We further specify our discussion to the group Sp(2g,Z), and show how the result
stated in Theorem 1 allows to show that Deligne’s result is sharp.

Finally in Section 4 we discuss the case of the mapping class groups and prove
Theorem 4 and Theorem 5 using the quantum representations that arise from the
SU (2)-TQFT’s. These representations are the non-abelian counterpart of the Weil
representations of symplectic groups, which might be described as the quantum
representations that arise from the U (1)-TQFT.

Finally, in appendix A we give a small overview of the relation between Weil
representations and extensions of the symplectic group.

In all this work, unless otherwise specified, all (co)homology groups are with
coefficients in Z, and we drop it from the notation so that for a group G, H∗(G) =
H∗(G;Z) and H ∗(G) =H ∗(G;Z).

2 Proof of Theorem 1

2.1 Preliminaries

Let D = pn1
1 p

n2
2 · · ·p

ns
s be the prime decomposition of an integer D. Then, according

to Newman and Smart 1964, Thm. 5 we have Sp(2g,Z/DZ) = ⊕si=1Sp(2g,Z/pnii Z).
Since symplectic groups are perfect for g ≥ 3, see e.g. Putman 2012, Thm. 5.1, from
the Künneth formula, we derive:

H2(Sp(2g,Z/DZ)) = ⊕si=1H2(Sp(2g,Z/pnii Z)).

Then, from Stein’s computations for D . 0 (mod 4), see Stein 1973, 1978, Theorem
1 is equivalent to the statement:

H2(Sp(2g,Z/2kZ)) = Z/2Z, for all g ≥ 4, k ≥ 2.

We will freely use in the sequel two classical results due to Stein. Stein’s isomorphism
theorem, see Stein 1973, Prop. 3.3.(a), states that there is an isomorphism:

H2(Sp(2g,Z/2kZ)) ≃H2(Sp(2g,Z/2k+1
Z)), for all g ≥ 3, k ≥ 2.
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2. Proof of Theorem 1

Further, Stein’s stability theorem from Stein 1973, Thm. 2.13 states that the stabiliza-
tion homomorphism Sp(2g,Z/2kZ) ↪→ Sp(2g + 2,Z/2kZ) induces an isomorphism:

H2(Sp(2g,Z/2kZ)) ≃H2(Sp(2g + 2,Z/2kZ)), for all g ≥ 4, k ≥ 1.

Therefore, to prove Theorem 1 it suffices to show that:

H2(Sp(2g,Z/2kZ)) = Z/2Z, for some g ≥ 4, k ≥ 2.

We provide hereafter two different proofs of this statement, each having its own
advantage.

The first proof, based on an extension of Sharpe’s sequence in symplectic K-theory
from Barge and Lannes 2008, gives the result already for Sp(2g,Z/4Z). Moreover,
this proof does not rely on Deligne’s theorem.

For the second proof, the starting point is the following intermediary result:

Proposition 1 – We have H2(Sp(2g,Z/2kZ)) ∈ {0,Z/2Z}, when g ≥ 4 and k ≥ 2.

This was obtained in Funar and Pitsch 2020, Prop. 3.1 as an immediate consequence
of Deligne’s theorem. A direct proof of the alternative H2(Sp(2g,Z/4Z)) ∈ {0,Z/2Z}
when g ≥ 4 will be given in Section 5.1, under the form of Corollary 4 of Theorem
6. When g = 3 our arguments only provide a weaker statement, namely that
H2(Sp(6,Z/2kZ)) ∈ {0,Z/2Z,Z/2Z⊕Z/2Z}.

Then it will be enough to find a non-trivial extension of Sp(2g,Z/2kZ) by Z/2Z for
some g ≥ 4, k ≥ 2.

Our second proof seems more elementary and provides an explicit non-trivial
central extension of Sp(2g,Z/4nZ) by Z/2Z, for all integers n ≥ 1. Moreover,
it does not use Stein’s isomorphism theorem and relies instead on the study of
the Weil representations of symplectic groups, or equivalently abelian quantum
representations of mapping class groups. Since these representations come from
theta functions this approach is deeply connected to Putman’s approach. In fact
the proof of the Theorem F in Putman 2012 is based on his Lemma 5.5 whose proof
needed the transformation formulas for the classical theta nulls.

2.2 A K-theory computation of H2(Sp(2g,Z/4Z))

The proof below uses slightly more sophisticated tools which were developed in
Barge and Lannes 2008 and allow us to bypass Deligne’s theorem. According to
Stein’s stability theorem Stein 1973 it is enough to prove that H2(Sp(2g,Z/4Z)) =
Z/2Z, for g large. It is well-known that the second homology of the linear and
symplectic groups can be interpreted in terms of the K-theory group K2. Denote by
K1(A),K2(A) and KSp1(A), KSp2(A) the groups of algebraic K-theory of the stable
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linear groups and symplectic groups over the commutative ring A, respectively. See
Hahn and O’Meara 1989 for definitions. Our claim is equivalent to the fact that
KSp2(Z/4Z) = Z/2Z.

For an arbitrary ring R, the group V (R) is defined as follows (see Barge and Lannes
2008, Section 4.5.1). Consider the set of triples (L;q0,q1), where L is a free R-
module of finite rank and q0 and q1 are non-degenerate symmetric bilinear forms.
Two such triples (L;q0,q1) and (L′;q′0,q

′
1) are equivalent, if there exists an R-linear

isomorphism a : L→ L′ such that a∗◦q′0◦a = q0 and a∗◦q′1◦a = q1. Under orthogonal
sum these triples form a monoid. The group V (R) is by definition the quotient of
the Grothendieck group associated to the monoid of such triples by the subgroup
generated by Chasles’ relations, that is the subgroup generated by the elements of
the form:

[L;q0,q1] + [L;q1,q2]− [L;q0,q2].

Our key ingredient is the exact sequence from Barge and Lannes 2008, Thm. 5.4.1,
which is a generalization of Sharpe’s exact sequence (see Hahn and O’Meara 1989,
Thm. 5.6.7) in K-theory:

K2(Z/4Z)→ KSp2(Z/4Z)→ V (Z/4Z)→ K1(Z/4Z)→ 1. (1)

We first show:

Lemma 1 – The homomorphism K2(Z/4Z)→ KSp2(Z/4Z) is trivial.

Proof (Proof of Lemma 1). Recall from Barge and Lannes 2008 that this homomor-
phism is induced by the hyperbolization inclusion SL(g,Z/4Z)→ Sp(2g,Z/4Z),
which sends the matrix A to A⊕ (A−1)⊤. By stability of the homology groups of the
special linear and symplectic groups it is enough to show that the induced map

H :H2(SL(g,Z/4Z))→H2(Sp(2g,Z/4Z))

is trivial for g ≥ 5.

Together with the hyperbolization, mod 4 reduction of the coefficients gives us a
commutative diagram:

H2(SL(g,Z)) H2(Sp(2g,Z))

H2(SL(g,Z/4Z)) H2(Sp(2g,Z/4Z))

It is known that H2(SL(g,Z)) = Z/2Z, when g ≥ 5 and H2(Sp(2g,Z)) = Z, when g ≥
4, see e.g. Matsumoto 1969 and Milnor 1971, Thm. 10.1, Thm. 5.10, Remark. More-
over, the homomorphism induced in homology H2(SL(g,Z))→H2(SL(g,Z/4Z)) by
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2. Proof of Theorem 1

the reduction mod 4 of coefficients is surjective, see Milnor 1971, section 10 pp.
92. Alternatively, we can infer it from the proof Funar and Pitsch 2020, Prop. 3.2.
Actually, Dennis proved that this map is an isomorphism and hence both groups are
isomorphic to Z/2Z, see Dennis and Stein 1975. It follows that the hiperbolization
map h is trivial, and so is H . □

Remark 4 – An alternative argument is as follows. The hyperbolization homomor-
phism H : K2(Z/4Z) → KSp2(Z/4Z) sends the Dennis-Stein symbol {r, s} to the
Dennis-Stein symplectic symbol [r2, s], see e.g. Hahn and O’Meara 1989, Paragraph
5.6.2. According to Stein 1973, Prop. 3.3 (b) the group K2(Z/4Z) is generated by
{−1,−1} and thus its image by H is generated by [1,−1] = 0.

Going back to Sharpe’s exact sequence, it is known that:

K1(Z/4Z) � (Z/4Z)∗ �Z/2Z, (2)

and the problem is to compute the discriminant map V (Z/4Z)→ K1(Z/4Z).

Recall from Barge and Lannes 2008, Section 4.5.1 that there is a canonical map from
V (R) to the Grothendieck-Witt group of symmetric non-degenerate bilinear forms
over free modules that sends the class [L;q0,q1] to q1 − q0. Since Z/4Z is a local
ring, we know that SK1(Z/4Z) = 1 and hence by Barge and Lannes 2008, Corollary
4.5.1.5 we have a pull-back square of abelian groups:

V (Z/4Z) I(Z/4Z)

(Z/4Z)∗ (Z/4Z)∗/((Z/4Z)∗)2

where I(Z/4Z) is a the augmentation ideal of the Grothendieck-Witt ring of Z/4Z.
But (Z/4Z)∗ = {1,3}, and only 1 is a square, hence the bottom arrow in the square
is an isomorphism Z/2Z � Z/2Z. Thus V (Z/4Z) � I(Z/4Z) and the kernel of
V (Z/4Z)→ (Z/4Z)∗ � K1(Z/4Z) is the kernel of the discriminant homomorphism
I(Z/4Z) → (Z/4Z)∗/((Z/4Z)∗)2. To compute V (Z/4Z) it is therefore enough to
compute the Witt ring W (Z/4Z). Recall that this is the quotient of the monoid of
symmetric non-degenerate bilinear forms over finitely generated projective modules
modulo the sub-monoid of split forms. A bilinear form is split if the underlying free
module contains a direct summand N such that N = N⊥. By a classical result of
Kaplansky, finitely generated projective modules over Z/4Z are free. Then, from
Milnor and Husemoller 1973, Lemma 6.3 any split form can be written in matrix
form as:(

0 1
1 A

)
,

for some symmetric matrix A, where 1 denotes the identity matrix. Isotropic
submodules form an inductive system, and therefore any isotropic submodule is
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contained in a maximal one. These have all the same rank. In the case of a split
form this rank is necessarily half of the rank of the underlying free module, which
is therefore even. The main difficulty in the following computation is due to the fact
that 2 is not a unit in Z/4Z, so that the classical Witt cancellation lemma is not true.
As usual, for any invertible element u of Z/4Z we denote by ⟨u⟩ the non-degenerate
symmetric bilinear form on Z/4Z of determinant u.

Proposition 2 – The Witt ring W (Z/4Z) is isomorphic to Z/8Z, and it is generated by
the class of ⟨−1⟩.

The computation of W (Z/4Z) was obtained independently in Gurevich and Hadani
2012.

The discriminant of ω =
(
2 1
1 2

)
is −1 and in the proof of Proposition 2 below we

show that its class is non-trivial in W (Z/4Z) and hence it represents a non-trivial
element in the kernel of the discriminant map I(Z/4Z)→ (Z/4Z)∗/(Z/4Z)∗2. From
the Cartesian diagram above we get that it also represents a non-trivial element
in the kernel of the leftmost vertical homomorphism V (Z/4Z)→ K1(Z/4Z). In
particular KSp2(Z/4Z) is Z/2Z.

Proof (Proof of Proposition 2). According to Milnor and Husemoller 1973, p. I.3.3
every symmetric bilinear form is equivalent to a direct sum of a diagonal form (with
invertible entries) and a bilinear form β on a submodule N ⊆ V such that β(x,x) is
not a unit, for every x ∈N . Thus, given a free Z/4Z-module L, any non-degenerate
symmetric bilinear form on L is an orthogonal sum of copies of ⟨1⟩, of ⟨−1⟩ and of a
bilinear form β on a free summand N such that for all x ∈N we have β(x,x) ∈ {0,2}.
Fix a basis e1, · · · , en of N . Let B denote the matrix of β in this basis. Expanding
the determinant of β along the first column we see that there must be an index
i ≥ 2 such that β(e1, ei) = ±1, for otherwise the determinant would not be invertible.
Without loss of generality we may assume that i = 2 and that β(e1, e2) = 1. Replacing

if necessary ej for j ≥ 3 by ej −
β(e1,ej )
β(e1,e2)e2, we may assume that B is of the form:s 1 0

1 t c
0 c⊤ A


where A and c are a square matrix and a row matrix respectively, of the appropriate
sizes, and s, t ∈ {0,2}. Since st = 0, the form β restricted to the submodule generated
by e1 and e2 defines a non-singular symmetric bilinear form and therefore N =
⟨e1, e2⟩ ⊕ ⟨e1, e2⟩⊥, where on the first summand the bilinear form is either split (if at
least one of s or t is 0) or is ω. By induction we have that any symmetric bilinear
form is an orthogonal sum of copies of ⟨1⟩,⟨−1⟩, of

ω =
(
2 1
1 2

)
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2. Proof of Theorem 1

and split spaces.

It’s a classical fact (see Milnor and Husemoller 1973, Chapter I) that inW (Z/4Z) one
has ⟨1⟩ = −⟨−1⟩. Also ⟨−1⟩⊕ ⟨−1⟩⊕ ⟨−1⟩⊕ ⟨−1⟩ is isometric to −ω⊕⟨−1⟩⊕ ⟨1⟩. To see
this notice that, if e1, . . . , e4 denotes the preferred basis for the former bilinear form,
then the matrix in the basis e1+e2, e1+e3, e1−e2−e3, e4 is precisely −ω⊕⟨−1⟩⊕⟨1⟩. Also,
in the Witt ring ⟨1⟩ ⊕ ⟨−1⟩ = 0, so 4⟨−1⟩ = −ω. Finally, if we denote by e1, e2, e3, e4
the preferred basis of the orthogonal sum ω⊕ω, then a direct computation shows
that the subspace generated by e1 + e3 and e2 + e4 is isotropic, hence 2ω = 0 and in
particular ω has order at most 2. All these show that W (Z/4Z) is generated by ⟨−1⟩
and that this form is of order at most 8. It remains to show that ω is a non-trivial
element to finish the proof.

Assume the contrary, namely that there is a split form σ such that ω⊕ σ is split. We
denote by A the underlying module of ω and by {a,b} its preferred basis. Similarly,
we denote by S the underlying space of σ of dimension 2n and by {e1, . . . , en, f1, . . . , fn}
a basis that exhibits it as a split form. Let F denote the submodule generated by
f1, . . . , fn. By construction e1, . . . , en generate a totally isotropic submodule E of rank
n in A⊕ S, and since it is included into a maximal isotropic submodule, we can
adjoin to it a new element v such that v,e1, . . . , en is a totally isotropic submodule of
A⊕S, and hence has rank n+ 1. By definition there are unique elements x,y ∈Z/4Z
and elements ε ∈ E and φ ∈ F such that v = xa+ yb + ε +φ. Since v is isotropic we
have:

2x2 + 2xy + 2y2 + 2σ (ε,φ) + σ (φ,φ) ≡ 0 (mod 4).

Since E ⊕Z/4Zv is totally isotropic, then (ω⊕ σ )(ei ,v) = 0, for every 1 ≤ i ≤ n. Now,
σ (ei , ε) = 0, since E is isotropic in S, (ω⊕ σ )(ei , a) = 0 and (ω⊕ σ )(ei ,b) = 0, so that
σ (ei ,φ) = 0. In particular, since φ belongs to the dual module to E with respect to σ ,
φ = 0, so the above equation implies:

2x2 + 2xy + 2y2 ≡ 0 (mod 4).

But now this can only happen when x and y are multiples of 2 in Z/4Z. Therefore
reducing mod 2, we find that v mod 2 belongs to the Z/2Z -vector space generated
by the mod 2 reduction of the elements e1, . . . , en, and by Nakayama’s lemma this
contradicts the fact that the Z/4Z-module generated by v,e1, . . . , en has rank n+ 1.□

Remark 5 – In Dennis and Stein 1975 the authors prove that K2(Z/2kZ) = Z/2Z
for any k ≥ 2. If we had proved directly that the class of the symmetric bilin-

ear form
(

2k−1 1
1 2k−1

)
generates the kernel of the homomorphism I(Z/2kZ)→

(Z/2kZ)∗/(Z/2kZ)∗2, which is of order two for all k ≥ 2, then the Sharpe-type exact
sequence of Barge and Lannes would yield KSp2(Z/2kZ) = Z/2Z, for any k ≥ 2.
This would permit us to do without Stein’s stability results. However the description

119



Finite quotients L. Funar and W. Pitsch

of the Witt group W f (Z/2kZ) seems more involved for k ≥ 3 and it seems more
cumbersome than worthy to fill in all the details.

2.3 Detecting the non-trivial class via Weil representations

Preliminaries on Weil representations

The projective representation that we use is related to the theory of theta functions
on symplectic groups, this relation being briefly explained in an appendix to this
article. Although the Weil representations of symplectic groups over finite fields
of characteristic different from 2 is a classical subject present in many textbooks,
the slightly more general Weil representations associated to finite rings of the form
Z/kZ received less consideration until recently. They first appeared in print as
representations associated to finite abelian groups in Kloosterman 1946 for genus
g = 1 and were extended to locally compact abelian groups in Weil 1964, Chapter I,
and independently in the work of Igusa and Shimura on theta functions Hano 1969;
Igusa 1964; Shimura 1966 and in the physics literature Hannay and Berry 1980.
They were rediscovered as monodromies of generalized theta functions arising in
the U (1) Chern-Simons theory in Funar 1993, 2000; Gocho 1992 and then in finite-
time frequency analysis, see Kaiblinger and Neuhauser 2009 and references from
there. In Funar 1993, 2000; Gocho 1992 these are projective representations of the
symplectic group factorizing through the finite congruence quotients Sp(2g,Z/2kZ),
which are only defined for even k ≥ 2. However, for odd k the monodromy of theta
functions leads to representations of the theta subgroup of Sp(2g,Z). These also
factor through the image of the theta group into the finite congruence quotients
Sp(2g,Z/2kZ). Notice however that the original Weil construction works as well
for Z/kZ with odd k, see e.g. Gurevich, Hadani, and Howe 2010; Kaiblinger and
Neuhauser 2009.

It is well-known, see Weil 1964, sections 43, 44 or Ranga Rao 1993, Prop. 5.8, that
these projective Weil representations lift to linear representations of the integral
metaplectic group, which is the pull-back of the symplectic group in a double
cover of Sp(2g,R). The usual way to resolve the projective ambiguities is to use
the Maslov cocycle (see e.g. Turaev 1994). Moreover, it is known that the Weil
representations over finite fields of odd characteristic and over C actually are linear
representations. In fact the vanishing of the second power of the augmentation
ideal of the Witt ring of such fields (see e.g. Lam 2004; Suslin 1987) implies that the
corresponding metaplectic extension splits. This contrasts with the fact that Weil
representations over R (or any local field different from C) are true representations
of the real metaplectic group and cannot be linearized (see e.g. Lam 2004). The
Weil representations over local fields of characteristic 2 are subtler as they are rather
representations of a double cover of the so-called pseudo-symplectic group (see
Weil 1964 and Gurevich and Hadani 2012 for recent work).
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2. Proof of Theorem 1

Let k ≥ 2 be an integer, and denote by ⟨,⟩ the standard bilinear form on (Z/kZ)g ×
(Z/kZ)g → Z/kZ. The Weil representation we consider is a representation in the
unitary group of the complex vector space C

(Z/kZ)g endowed with its standard
Hermitian form. Notice that the canonical basis of this vector space is canonically
labeled by elements in (Z/kZ)g .

It is well-known (see e.g. Igusa 1972) that Sp(2g,Z) is generated by the matrices

having one of the following forms:
(

1g B
0 1g

)
where B = B⊤ has integer entries,(

A 0
0 (A⊤)−1

)
where A ∈ GL(g,Z) and

(
0 −1g
1g 0

)
.

We can now define the Weil representations (see the Appendix for more details) on
these generating matrices as follows:

ρg,k

(
1g B
0 1g

)
= diag

(
exp

(
π
√
−1
k
⟨m,Bm⟩

))
m∈(Z/kZ)g

, (3)

where diag stands for diagonal matrix with given entries;

ρg,k

(
A 0
0 (A⊤)−1

)
= (δA⊤m,n)m,n∈(Z/kZ)g , (4)

where δ stands for the Kronecker symbol;

ρg,k

(
0 −1g
1g 0

)
= k−g/2 exp

(
−2π
√
−1⟨m,n⟩
k

)
m,n∈(Z/kZ)g

. (5)

It is proved in Funar 2000; Gocho 1992, that for even k these formulas define a
unitary representation ρg,k of Sp(2g,Z) in U (C(Z/kZ)g )/R8. Here U (CN ) = U (N )
denotes the unitary group of dimension N and R8 ⊂U (1) ⊂U (CN ) is the subgroup
of scalar matrices whose entries are roots of unity of order 8. For odd k the same
formulas define representations of the theta subgroup Sp(2g,1,2) (see Funar 2000;
Igusa 1964, 1972). Notice that by construction ρg,k factors through Sp(2g,Z/2kZ)
for even k and through the image of the theta subgroup in Sp(2g,Z/kZ) for odd k.

Our definition gives us a map ρg,k : Sp(2g,Z)→U (C(Z/kZ)g ) satisfying the cocycle
condition:

ρg,k(AB) = η(A,B)ρg,k(A)ρg,k(B)

for all A,B ∈ Sp(2g,Z) and some η(A,B) ∈ R8.
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Outline of the proof of Theorem 1

The key step is to establish the following:

Proposition 3 – The projective Weil representation ρg,k of Sp(2g,Z), for g ≥ 3 and even
k does not lift to linear representations of Sp(2g,Z), namely it determines a generator of
the group H2(Sp(2g,Z/2kZ);Z/2Z).

Remark 6 – For odd k it was already known that Weil representations did not
detect any non-trivial element, i.e. that the projective representation ρg,k lifts to a
linear representation Andler and Ramanan 1996. We will give a very short outline
of this at the end of the Appendix.

Proposition 1 states that the Schur multiplier H2(Sp(2g,Z/DZ)) is either trivial
or Z/2Z, while Proposition 3 provides an explicit nontrivial central extension
of Sp(2g,Z/DZ) by Z/2Z, when D ≡ 0(mod 4). Therefore H2(Sp(2g,Z/DZ)) is
nontrivial, and hence isomorphic to Z/2Z, thereby proving Theorem 1.

To prove Proposition 3 we first note that the projective Weil representation ρg,k de-
termines a central extension of Sp(2g,Z/2kZ) by Z/2Z, since it factors through the
integral metaplectic group, by Weil 1964. We will prove that this central extension is
non-trivial thereby proving the claim. The pull-back of this central extension along
the homomorphism Sp(2g,Z)→ Sp(2g,Z/2kZ) is a central extension of Sp(2g,Z)
by Z/2Z and it is enough to prove that this last extension is non-trivial.

It turns out to be easier to describe the pull-back of this central extension over the
mapping class group Mg of the genus g closed orientable surface.

Definition 2 – Let M̃g be the pull-back of the above central extension, associated to
the projective Weil representation ρg,k , along the homomorphism Mg → Sp(2g,Z).

By the stability results of Harer 1983 for g ≥ 5, and the low dimensional com-
putations in Pitsch 1999 and Korkmaz and Stipsicz 2003 for g ≥ 4, the natu-
ral homomorphism Mg → Sp(2g,Z), obtained by choosing a symplectic basis in
the surface homology, induces isomorphisms H2(Mg ;Z) → H2(Sp(2g,Z);Z) and
H2(Sp(2g,Z);Z)→H2(Mg ;Z) for g ≥ 4. In particular in this range the class of the
central extension M̃g is a generator of H2(Mg ;Z/2Z).

In contrast for g = 3, there is an element of infinite order in H2(M3;Z) such that its
reduction mod 2 is the class of the central extension M̃3, however H2(M3;Z/2Z) =
Z/2Z⊕Z/2Z. This follows from the computation H2(M3;Z) = Z⊕Z/2Z, see e.g.
Sakasai 2012, Thm. 4.9, Cor. 4.10. Note that H2(Sp(6,Z);Z) = Z⊕Z/2Z, according
to Stein 1975.

Therefore, we can reformulate Proposition 3 at least for g ≥ 4 in equivalent form in
terms of the mapping class group:
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2. Proof of Theorem 1

Proposition 4 – If g ≥ 4 then the class of the central extension M̃g is a generator of the
group H2(Mg ;Z/2Z) ≃Z/2Z.

The proof is an explicit computation, which turns out to be also valid when g = 3.
This proves that the central extension coming from the Weil representation (and
hence its cohomology class with Z/2Z coefficients) for g = 3 is non-trivial. This
implies that H2(Sp(6,Z/DZ)) , 0, when D ≡ 0(mod 4). In fact in Benson et al. 2018
the authors proved that H2(Sp(6,Z/4Z);Z) = Z/2Z⊕Z/2Z.

The rest of this section is devoted to the proof of Proposition 3.

A presentation of M̃g and the proof of Proposition 3

The method we use is from Gervais 1996 and was already used in Funar and
Kashaev 2014 for computing central extensions arising in quantum Teichmüller
space. We start with a number of notations and definitions. Recall that Σg,r denotes
the orientable surface of genus g with r boundary components. If γ is a curve on a
surface, then Dγ denotes the right Dehn twist along the curve γ .

Definition 3 – A chain relation C on the surface Σg,r is given by an embedding
Σ1,2 ⊆ Σg,r and the standard chain relation on this 2-holed torus, namely

(DaDbDc)
4 =DeDd ,

where a,b,c,d,e are the following curves of the embedded 2-holed torus:

a

c

e b d

Definition 4 – A lantern relation L on the surface Σg,r is given by an embedding
Σ0,4 ⊆ Σg,r and the standard lantern relation on this 4-holed sphere, namely

Da0
Da1

Da2
Da3

=Da12
Da13

Da23
, (6)

where a0, a1, a2, a3, a12, a13, a23 are the following curves of the embedded 4-holed
sphere:
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a

aa
0

3

a

a

a12

13

23

a

1

2

The following lemma is a simple consequence of a deep result of Gervais 1996, Thm.
B:

Lemma 2 – Let g ≥ 3, then the group Mg has the following presentation:

1. Generators are all Dehn twists Da along all non-separating simple closed curves a
on Σg .

2. Relations:

(a) Braid type 0 relations:

DaDb =DbDa,

for each pair of disjoint non-separating simple closed curves a and b;

(b) Braid type 1 relations:

DaDbDa =DbDaDb,

for each pair of non-separating simple closed curves a and b which intersect
transversely in one point;

(c) One lantern relation for a 4-holed sphere embedded in Σg so that all boundary
curves are non-separating;

(d) One chain relation for a 2-holed torus embedded in Σg so that all boundary
curves are non-separating.

The key step in proving Proposition 4 and hence Proposition 3 is to find an explicit
presentation for the central extension M̃g from Definition 2. If we choose arbitrary
lifts D̃a ∈ M̃g for each of the Dehn twists Da ∈ Mg , then M̃g is generated by the
elements D̃a plus a central element z of order at most 2.

Proposition 5 – Suppose that g ≥ 3. Then the group M̃g has the following presentation.

1. Generators:

(a) With each non-separating simple closed curve a in Σg is associated a generator
D̃a;
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2. Proof of Theorem 1

(b) One (central) element z, z , 1.

2. Relations:

(a) Centrality:

zD̃a = D̃az, (7)

for any non-separating simple closed curve a on Σg ;

(b) Braid type 0 relations:

D̃aD̃b = D̃bD̃a, (8)

for each pair of disjoint non-separating simple closed curves a and b;

(c) Braid type 1 relations:

D̃aD̃bD̃a = D̃bD̃aD̃b, (9)

for each pair of non-separating simple closed curves a and b which intersect
transversely at one point;

(d) One lantern relation for a 4-holed sphere embedded in Σg so that all boundary
curves are non-separating:

D̃a0
D̃a1

D̃a2
D̃a3

= D̃a12
D̃a13

D̃a23
, (10)

(e) One chain relation for a 2-holed torus embedded in Σg so that all boundary
curves are non-separating:

(D̃aD̃bD̃c)
4 = zD̃eD̃d . (11)

(f) Scalar equation:

z2 = 1. (12)

In Gervais 1996, Thm. C and Cor. 4.3 the author proved that the universal central
extension of the mapping class group has the presentation given in Proposition 5
except for the relation (f) reading z2 = 1. Therefore our group M̃g from Definition 2
will be the non-trivial central extension of Mg by Z/2Z obtained from the universal
central extension of Mg by reducing mod 2 its kernel.

This will prove Proposition 4 and hence Proposition 3.
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Proof of Proposition 5

By a slight abuse of language, we still denote ρg,k the projective representation
of Mg obtained from the Weil representation ρg,k by the composition with the

projection Mg → Sp(2g,Z). Let then �ρg,k(Mg ) ⊂ U (C(Z/kZ)g ) be the pull-back of
ρg,k(Mg ) ⊂U (C(Z/kZ)g )/R8 along this composition.

By definition M̃g fits into a commutative diagram:

0 Z/2Z M̃g Mg 1

0 Z/2Z �ρg,k(Mg ) ρg,k(Mg ) 1

This presents M̃g as a pull-back and therefore the relations claimed in Proposition
5 will be satisfied if and only if they are satisfied when we project them both into
Mg and �ρg,k(Mg ) ⊂U (C(Z/kZ)g ). If this is the case then M̃g will be a quotient of the
group obtained from the universal central extension by reducing mod 2 the center
and that surjects onto Mg . But, as the mapping class group is Hopfian there are only
two such groups: first, Mg ×Z/2Z with the obvious projection on Mg and second,
the mod 2 reduction of the universal central extension. Then relation (e) shows that
we are in the latter case.
The projection on Mg is obtained by killing the center z, and by construction the
projected relations are satisfied inMg and we only need to check them in the unitary
group.

Lemma 3 – For any lifts D̃a of the Dehn twists Da we have D̃aD̃b = D̃bD̃a and thus the
braid type 0 relations (b) are satisfied.

Proof. The commutativity relations are satisfied for particular lifts and hence for
arbitrary lifts. □

Lemma 4 – There are lifts D̃a of the Dehn twists Da, for each non-separating simple
closed curve a such that we have

D̃aD̃bD̃a = D̃bD̃aD̃b

for any simple closed curves a,b with one intersection point and thus the braid type 1
relations (c) are satisfied.

Proof. Consider an arbitrary lift of one braid type 1 relation (to be called the
fundamental one), which has the form D̃aD̃bD̃a = zkD̃bD̃aD̃b. Change then the
lift D̃b to zkD̃b. With the new lift the relation above becomes D̃aD̃bD̃a = D̃bD̃aD̃b.

Choose now an arbitrary braid type 1 relation of Mg , say DxDyDx =DyDxDy . There
exists a 1-holed torus Σ1,1 ⊂ Σg containing x,y, namely a neighborhood of x∪ y. Let
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2. Proof of Theorem 1

T be the similar torus containing a,b. Since a,b and x,y are non-separating there
exists a homeomorphism ϕ : Σg,r → Σg,r such that ϕ(a) = x and ϕ(b) = y. We have
then

Dx = ϕDaϕ
−1, Dy = ϕDbϕ

−1.

Let us consider now an arbitrary lift ϕ̃ ∈ M̃g of ϕ, which is well-defined only up to
a central element, and set

D̃x = ϕ̃D̃aϕ̃
−1, D̃y = ϕ̃D̃bϕ̃

−1.

These lifts are well-defined since they do not depend on the choice of ϕ̃ (the central
elements coming from ϕ̃ and ϕ̃−1 mutually cancel). Moreover, we have then

D̃xD̃yD̃x = D̃yD̃xD̃y

and so the braid type 1 relations (c) are all satisfied. □

Lemma 5 – The choice of lifts of all D̃x, with x non-separating, satisfying the require-
ments of Lemma 4 is uniquely defined by fixing the lift D̃a of one particular Dehn
twist.

Proof. In fact the choice of D̃a fixes the choice of D̃b. If x is a non-separating
simple closed curve on Σg , then there exists another non-separating curve y which
intersects it in one point. Thus, by Lemma 4, the choice of D̃x is unique. □

Lemma 6 – One can choose the lifts of Dehn twists in M̃g so that all braid type relations
are satisfied and the lift of the lantern relation is trivial, namely

D̃aD̃bD̃cD̃d = D̃uD̃vD̃w,

for the non-separating curves in the fixed embedded Σ0,4 ⊂ Σg .

Proof. An arbitrary lift of that lantern relation is of the formD̃aD̃bD̃cD̃d = zkD̃uD̃vD̃w.
In this case, we change the lift D̃a to z−kD̃a and adjust the lifts of all other Dehn
twists along non-separating curves in the unique way such that all braid type
1-relations are satisfied. Then, the required form of the lantern relation is satisfied
too. □

We say that the lifts of the Dehn twists are normalized if all braid type relations and
one lantern relation are lifted in a trivial way.

Now Proposition 5 follows from the following lemma, whose proof is rather calcula-
tory and is postponed to the next subsection.

Lemma 7 – If all lifts of the Dehn twist generators are normalized then (D̃aD̃bD̃c)4 =
zD̃eD̃d , where z2 = 1 and z , 1.
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Proof of Lemma 7

We denote by Tγ the action of Dγ in homology. Moreover we denote by Rγ the
matrix in U (C(Z/kZ)g ) corresponding to the prescribed lift ρg,k(Tγ ) of the projective
representation. The level k is fixed through this section and we drop the subscript k
from now on.

Our strategy is as follows. We show that the braid relations are satisfied by the
matrices Rγ . It remains to compute the defect of the chain relation in the matrices
Rγ .

Consider an embedding of Σ1,2 ⊂ Σg such that all curves from the chain relation are
non-separating, and thus like in the figure below:

a
b

c

d

e

f

By construction, the action of the subgroup generated byDa,Db,Dc,Dd ,De andDf on
the homology of the surface Σg preserves the symplectic subspace generated by the
homology classes of b,f ,a,e and acts trivially on its orthogonal complement. Now
the Weil representation behaves well with respect to the direct sum of symplectic
matrices and this enables us to focus our attention on the action of this subgroup
on the 4-dimensional symplectic subspace generated by b,f ,a,e and to use the
representation ρ2. In this basis the symplectic matrices associated to the above
Dehn twists are:

Ta =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 , Tb =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Tc =


1 0 0 0
0 1 0 0
−1 1 1 0
1 −1 0 1

 ,

Td = Te =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 , Tf =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
Notice that Tb = J−1TaJ , where J is the matrix of the standard symplectic structure.

Set q = exp
(
πi
k

)
, which is a 2k-th root of unity. We will change slightly the basis

{θm,m ∈ (Z/kZ)g } of our representation vector space in order to exchange the two
obvious parabolic subgroups of Sp(2g,Z).
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The element ρg

(
0 −1g
1g 0

)
will be central in our argument, we will denote it by S.

Specifically we fix the basis given by −Sθm, with m ∈ (Z/kZ)g . We have then:

Ra = diag(q⟨Lax,x⟩)x∈(Z/kZ)2 , where La =
(

1 0
0 0

)
,

Rc = diag(q⟨Lcx,x⟩)x∈(Z/kZ)2 , where Lc =
(

1 1
1 1

)
,

and

Re = Rd = diag(q⟨Lex,x⟩)x∈(Z/kZ)2 , where Le =
(

0 0
0 1

)
.

We set now:

Rb = S3RaS and Rf = S3ReS.

Lemma 8 – The matrices Ra,Rb,Rc,Rf ,Re are normalized lifts, namely the braid rela-
tions are satisfied.

We postpone the proof of this lemma a few lines.

For u,v ∈N, let us denote by G(u,v) the Gauss sum:

G(u,v) =
∑

x∈Z/vZ
exp

(
2π
√
−1ux2

v

)
.

According to Lang 1970, pp. 85-91 the value of the Gauss sum is

G(u,v) = dG
(u
d
,
v
d

)
, if g.c.d.(u,v) = d,

and for g.c.d.(u,v) = 1 we have:

G(u,v) =


ε(v)

(
u
v

)√
v, for odd v,

0, for v = 2(mod 4),

ε(u)
(
v
u

)(
1+
√
−1√

2

)√
2v, for v = 0(mod 4),

where
(
u
v

)
is the Jacobi symbol and

ε(a) =
{

1, if a = 1(mod 4),√
−1, if a = 3(mod 4).
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Remember that the Jacobi (or the quadratic) symbol
(
P
Q

)
is defined only for odd Q

by the formula:( P
Q

)
=

s∏
i=1

(
P
qi

)
where Q = q1q2...qs is the prime decomposition of Q, and for prime q the quadratic
symbol (also called the Legendre symbol in this setting) is given by:(

P
q

)
=


0, if P ≡ 0(mod q)
1, if P = x2(mod q) and P . 0(mod q),
−1, otherwise.

while(P
1

)
= 1.

The quadratic symbol satisfies the following reciprocity law( P
Q

)(Q
P

)
= (−1)

P−1
2

Q−1
2 ,

when both P and Q are odd.

Denote by ω = 1
2G(1,2k). The lift of the chain relation is of the form:

(RaRbRc)
4 = µReRd ,

for some µ ∈ U (1). Our aim now is to compute the value of µ. Set X = RaRbRc,

Y = X2 and Z = X4. Let m,n ∈ (Z/kZ)2, m =
(
m1
m2

)
and n =

(
n1
n2

)
.

The entry Xm,n of the matrix X is given by:

Xm,n = k−1ωδn2,m2
q−(n1−m1)2+m2

1+(n1+n2)2
.

This implies Ym,n = 0 if δm2,n2
= 0. If m2 = n2 then:

Ym,n = k−2ω2
∑

r1∈Z/kZ
q−(m1−r1)2+m2

1+(r1+n2)2−(n1−r1)2+r2
1 +(n1+n2)2

=

= k−2ω2
∑

r1∈Z/kZ
qm

2
2+n2

2+2n1n2+2r1(m1+m2+n1).

Therefore Ym,n = 0, unless m1 +m2 +n1 = 0. Assume that m1 +m2 +n1 = 0. Then:

Ym,n = k−1ω2qm
2
2+n2

2+2n1n2 = k−1ω2q−2m1m2 .

130



2. Proof of Theorem 1

It follows that: Zm,n =
∑
r∈(Z/kZ)2 Ym,rYr,n vanishes, except when m2 = r2 = n2 and

r1 = −(m1 +m2), n1 = −(r1 + r2) =m1. Thus Z is a diagonal matrix. If m = n then:

Zm,n = Ym,rYr,n = k−2ω4q−2m1m2−2r1r2 = k−2ω4q2m2
2 .

We have therefore obtained:

(RaRbRc)
4 = k−2ω4R2

e

and thus µ = k−2ω4 = 1
k2

(
G(1,2k)

2

)4
. This proves that whenever k is even we have

µ = −1. Since this computes the action of the central element z, it follows that z , 1.
This ends the proof of Lemma 7.

Proof (Proof of Lemma 8). We know that Rb is S3RaS, where S is the S-matrix, up to
an eighth root of unity. The normalization of this root of unity is given by the braid
relation:

RaRbRa = RbRaRb.

We have therefore:

(Rb)m,n = k−2
∑

x∈(Z/kZ)2

q⟨Lax,x⟩+2⟨n−m,x⟩.

This entry vanishes except when m2 = n2. Assume that n2 =m2. Then:

(Rb)m,n = k−1
∑

x1∈Z/kZ
qx

2
1+2(n1−m1)x1 = k−1q−(n1−m1)2

∑
x1∈Z/kZ

q(x1+n1−m1)2
= k−1q−(n1−m1)2

ω

where ω = 1
2
∑
x∈Z/2kZ q

x2
is a Gauss sum. We have first:

(RaRbRa)m,n = k−1ωδm2,n2
q−(n1−m1)2+m2

1+n2
1 = k−1ωδm2,n2

q2n1m1 .

Further

(RbRa)m,n = k−1ωδm2,n2
q−(n1−m1)2+n2

1

so that:

(RbRaRb)m,n = k−2ω2
∑

r∈(Z/kZ)2

δm2,r2δn2,r2q
−(m1−r1)2+r2

1−(r1−n1)2
=

= k−1ω2δm2,n2
q2m1n1

∑
r1∈Z/kZ

q−(r1−m1+n1)2
= k−1ωδm2,n2

q2n1m1 .

Similar computations hold for the other pairs of non-commuting matrices in the set
Rb,Rc,Rf ,Re. This ends the proof of Lemma 8. □
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3 Residual finiteness, finite quotients and their second
homology

3.1 Residual finiteness for perfect groups

Perfect groups have a universal central extension with kernel canonically isomorphic
to their second integral homology group. In this section we show how to translate
the residual finiteness problem for the universal central extension for a perfect
group Γ into a homological problem about H2(Γ ). We will need the following
lemmas from Funar and Pitsch 2020, Lemma 2.1 & Lemma 2.2:

Lemma 9 – Let Γ and F be perfect groups, Γ̃ and F̃ their universal central extensions
and p : Γ → F be a group homomorphism. Then there exists a unique homomorphism
p̃ : Γ̃ → F̃ lifting p such that the following diagram is commutative:

1 H2(Γ ) Γ̃ Γ 1

1 H2(F) F̃ F 1

p∗ p̃ p

where p∗ =H2(p) is the map induced by p in homology.

Lemma 10 – Let Γ be a finitely generated perfect group and Γ̃ be its universal central
extension. We denote by C the central group ker(̃Γ → Γ ) of Γ̃ .

1. Suppose that the finite index (normal) subgroup H ⊆ Γ has the property that
the image of H2(H) into H2(Γ ) contains dC, for some d ∈ Z. Let F = Γ /H be
the corresponding finite quotient of Γ and p : Γ → F the quotient map. Then
d · p∗(H2(Γ )) = 0, where p∗ : H2(Γ )→ H2(F) is the homomorphism induced by p.
In particular, if p∗ :H2(Γ )→H2(F) is surjective, then d ·H2(F) = 0.

2. Assume that F is a finite quotient of Γ and let d ∈ Z such that d · p∗(H2(Γ )) = 0.
For instance, this is satisfied when d ·H2(F) = 0. Let F̃ denote the universal central
extension of F. Then the homomorphism p : Γ → F has a unique lift p̃ : Γ̃ → F̃ and
the kernel of p̃ contains d ·C. Observe that since F is finite, H2(F) is also finite,
hence we can take d = |H2(F)|.

3.2 Proof of Theorem 3

Let K be a number field, R be the set of inequivalent valuations of K and S ⊂R be a
finite set of valuations of K including all the Archimedean (infinite) ones. Let

O(S) = {x ∈K : v(x) ≤ 1, for all v ∈ R\ S}

be the ring of S-integers in K and q ⊂O(S) be a nonzero ideal. By Kv we denote the
completion of K with respect to v ∈ R. Following Bass, Milnor, and Serre 1967, we
call a domain A which arises as O(S) above a Dedekind domain of arithmetic type.
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Let A = O(S) be a Dedekind domain of arithmetic type and q be an ideal of A.
Denote by Sp(2g,A,q) the kernel of the surjective homomorphism p : Sp(2g,A)→
Sp(2g,A/q). The surjectivity is not a purely formal fact and follows from the fact
that in these cases the symplectic group coincides with the so-called "elementary
symplectic group", and that it is trivial to lift elementary generators of Sp(2g,A/q)
to Sp(2g,A); for a proof of this fact when A = Z see Hahn and O’Meara 1989, Thm.
9.2.5. The restriction to K which are not totally imaginary comes from the result
of Bass, Milnor, and Serre 1967 which states that symplectic groups Sp(2g,A), for
g ≥ 3 have the congruence subgroup property.

Consider the central extension of Sp(2g,A) constructed by Deligne in Deligne
1978, as follows. Let µ (respectively µv for a non-complex place v) be the group
of roots of unity in K (and respectively Kv). By convention one sets µv = 1
for a complex place v. Moore showed in Moore 1968 that there exists a uni-
versal topological central extension �Sp(2g,Kv) of Sp(2g,Kv) by a discrete group
π1(Sp(2g,Kv)). When v is a non real place Moore proved that there is an isomor-
phism between π1(Sp(2g,Kv)) and µv . For a real place v, it is well-known that
π1(Sp(2g,Kv)) = Z. Set also Sp(2g)S =

∏
v∈S Sp(2g,Kv) and recall that Sp(2g,A) is

a subgroup of Sp(2g)S . Then the universal topological central extension �Sp(2g)S
of Sp(2g)S is isomorphic to the universal covering

∏
v∈S

�Sp(2g,Kv) by the abelian

group π1(Sp(2g)S ) =
∏
v∈S π1(Sp(2g,Kv)). Denote then by �Sp(2g,A)

D
the inverse

image of Sp(2g,A) in the universal covering �Sp(2g)S of Sp(2g)S . Then �Sp(2g,A)
D

is
a central extension of Sp(2g,A) which fits in an exact sequence:

1→ π1(Sp(2g)S )→ �Sp(2g,A)
D
→ Sp(2g,A)→ 1. (13)

There is a natural surjective homomorphism π1(Sp(2g,Kv))→ µv , for all places v.
When composed with the map µv → µ sending x to x[µv :µ] we obtain a homomor-
phism:

RS : π1(Sp(2g)S )→ µ. (14)

Deligne’s theorem from Deligne 1978 states that the intersection of all finite index

subgroups of �Sp(2g,A)
D

coincides with kerRS , when g ≥ 2. Then, Lemmas 9 and 10

would prove the statement of Theorem 3 if we knew that �Sp(2g,A)
D

is the universal
central extension of Sp(2g,A). This is, for instance, the case when A = Z and g ≥ 4,
but not true in full generality. In order to circumvent this difficulty, we drop out
the torsion part of the kernels of the two central extensions.

The key step in proving Theorem 3 is a result stating the equivalence between
the non-residual finiteness of Deligne’s central extension and the existence of a
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uniform bound for the 2-homology of the finite congruence quotients, whose proof
is postponed a few lines later.

Proposition 6 – The following statements are equivalent:

1. There exists a homomorphism R :
∏
v∈S π1(Sp(2g,Kv)) → G, where G is a fi-

nite group such that every finite index subgroup of the Deligne central extension�Sp(2g,A)
D

, for g ≥ 3, contains kerR.

2. For fixed A and g ≥ 3 there exists some uniform (independent on g and q) bound
for the size of the finite torsion groups H2(Sp(2g,A/q)), for any nontrivial ideal q
of A.

Proof (Proof of Theorem 3). Deligne’s result from Deligne 1978 yields an effective
uniform bound for the size of the torsion group of H2(Sp(2g,A/q)), since the first
statement of Proposition 6 holds for R = RS . Eventually, Sp(2g,A) has the con-
gruence subgroup property, for g ≥ 2, according to Bass, Milnor, and Serre 1967,
namely any surjective homomorphism Sp(2g,A)→ F onto a finite group F factors
through some finite congruence quotient Sp(2g,A/q). This proves our claim. □

The main steps in the proof of Proposition 6 are the following. First, the natural
homomorphism H2(Sp(2g,A))→ H2(Sp(2g,A/q)) is surjective, for any g ≥ 3. Fur-
ther, the groups H2(Sp(2g,A)) stabilize for large enough g (depending on A) so that
there are upper bounds (independent on g) on the number of its generators and on
the size of its torsion part. Therefore, the finite abelian group H2(Sp(2g,A/q)) has
uniformy bounded size if and only if there is some uniform bound for the orders of
the images of the generators of the free part of H2(Sp(2g,A)). The homomorphism
between the universal central extension of Sp(2g,A) and the Deligne extension
induces a map between their kernels H2(Sp(2g,A))→

∏
v∈S π1(Sp(2g,Kv)). This

map is an isomorphism at the level of their free parts. Therefore H2(Sp(2g,A/q))
has uniformly bounded size if and only if the image of

∏
v∈S π1(Sp(2g,Kv)) through

homomorphisms of the Deligne central extension into finite groups has uniformly
bounded size.

Before proceeding, we collect some of the results involved in the proof of Proposition
6. We first need the following technical proposition, whose proof can be found in
Funar and Pitsch 2020:

Proposition 7 – The homomorphism p∗ : H2(Sp(2g,A))→ H2(Sp(2g,A/q)) is surjec-
tive for any ideal q ⊆ A and g ≥ 3.

Although the Deligne central extension is not in general the universal central
extension, it is not far from it. The free part of the kernel of the universal central
extension can be determined by means of:
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3. Residual finiteness, finite quotients and their second homology

Lemma 11 – We have:

H2(Sp(2g,A);R) = R⊗
Z

∏
v∈S∩R(S)

π1(Sp(2g,Kv)),

where R(S) denotes the real Archimedean places in S.

Proof. In the case where A is the ring of integers of a number field this is basically
the result of Borel computing the stable cohomology of arithmetic groups from
Borel 1974, pp. 276. For the general case see Borel 1972; Borel and Serre 1971. □

Furthermore, we have the following general statement:

Lemma 12 – The group H2(Sp(2g,A)) is finitely generated.

Proof. This follows from the existence of the Borel-Serre compactification Borel and
Serre 1971 associated to an arithmetic group. □

For a finitely generated abelian group A we denote by F(A) its free part and by T (A)
its torsion subgroup, so that A = F(A)⊕ T (A).

It is known that Sp(2g,A) is perfect, when g ≥ 3. It has then a universal central exten-
sion �Sp(2g,A) by H2(Sp(2g,A)). Consider the quotients

E = �Sp(2g,A)/T (H2(Sp(2g,A))) and D = �Sp(2g,A)
D
/T (π1(Sp(2g)S )). Then E and

D are central extensions of Sp(2g,A) by torsion-free groups.

Lemma 13 – There is a natural embedding of central extensions E→D which lifts the
identity of Sp(2g,A) and identifies E with a finite index normal subgroup of D.

Proof. From Lemma 11 and the above description of fundamental groups
π1(Sp(2g,Kv)) due to Moore 1968, both F(H2(Sp(2g,A))) and F(π1(Sp(2g)S )) are
isomorphic to the abelian group

∏
v∈S∩R(S)π1(Sp(2g,Kv)), because the non real

places only provide torsion factors of π1(Sp(2g)S ).

By universality of the central extension �Sp(2g,A), there is a homomorphism�Sp(2g,A) → �Sp(2g,A)
D

lifting the identity of Sp(2g,A); it induces a homomor-
phism between the quotients ι : E → D sending the kernel of the first exten-
sion into the kernel of the second one, namely such that ι(F(H2(Sp(2g,A)))) ⊆
F(π1(Sp(2g)S )). The linear map induced between the associated real vector spaces
ι ⊗ 1

R
: H2(Sp(2g,A)) ⊗

Z
R → π1(Sp(2g)S ) ⊗

Z
R can be identified with the map

induced in homology by the inclusion Sp(2g,A)→ Sp(2g)S . Recall that Sp(2g,A) is
a discrete subgroup of the locally compact group Sp(2g)S . A consequence of the
Garland-Matsushima vanishing theorem from Borel 1981, Thm. 6.4 states that the
map induced by the inclusion at the level of H2 is an isomorphism for large enough
g. This implies that the restriction ι : F(H2(Sp(2g,A)))→ F(π1(Sp(2g)S )) is injective.
Thus ι should be injective, as well, because it is a lift of the identity of Sp(2g,A). □
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Lemma 14 – The orders of the groups T (H2(Sp(2g,A))), g ≥ 2, are bounded from above
by a constant which only depends on A.

Proof. From Stein’s surjective stability Stein 1978 the embeddings Sp(2g,A) →
Sp(2g + 2,A) induce surjective maps H2(Sp(2g,A))→H2(Sp(2g + 2,A)), for g larger
than a constant depending on A. The claim follows now, because the abelian groups
H2(Sp(2g,A)) are finitely generated, by Lemma 12. □

Proof (Proof of Proposition 6). Recall that p : Sp(2g,A)→ Sp(2g,A/q) is the surjec-
tive homomorphism induced by the reduction mod q. Let p∗ : H2(Sp(2g,A)) →
H2(Sp(2g,A/q)) be the corresponding homorphism in homology, which is surjective
according to Proposition 7. By Lemma 9 there exists a lift p̃ : �Sp(2g,A)→ �Sp(2g,A/q)
of p, whose restriction to the kernel is precisely p∗.

Bounding the size of H2(Sp(2g,A/q)) is equivalent to bounding the size of the finite
group F =H2(Sp(2g,A/q))/p∗(T (H2(Sp(2g,A)))), according to Lemma 14. Note that
p̃ induces a surjective homomorphism p̃ : E→ F.

Assume now that the Deligne central extension has the property from the first
statement of the proposition. Lemma 13 identifies E with a finite index subgroup
of D. Consider the representation IndDE p̃ : D → F̃ induced from p̃ : E → F. Its

image is a finite group F̃, which is a quotient of the Deligne extension �Sp(2g,A)
D

.
By our hypothesis, we have kerIndDE p̃ ⊇ kerR, and hence there is some surjective
homomorphism λ : G→ F̃ so that:

IndDE p̃|π1(Sp(2g)S ) = λ ◦R.

In particular the image p̃(H2(Sp(2g,A))) ⊆ F̃ is covered by G and hence has uni-
formly bounded size.

Conversely, assume that there exists some k(A) ∈ Z \ {0} such that
k(A) ·H2(Sp(2g,A/q)) = 0, for every ideal q ⊂ A. Then the surjectivity of p∗ im-
plies that p∗(k(A) · c) = 0, for every ideal q and c ∈H2(Sp(2g,A)).

This implies that f∗(|µ| · k(A) · c) = 0, for every morphism f : Sp(2g,A)→ F onto a
finite group F, where |µ| is the cardinal of the finite group µ. In fact, by Bass, Milnor,
and Serre 1967 the congruence subgroup kernel is the finite cyclic group µ, when
K is totally imaginary (i.e. it has no non-complex places), and is trivial if K has at
least one non-complex place. This means that for any finite index normal subgroup
H (e.g. kerf ) there exists an elementary subgroup ESp(2g,A,q) contained in H ,
where ESp(2g,A,q) ⊆ Sp(2g,A,q) is a normal subgroup of finite index dividing
|µ|. Therefore f (−) factors through the quotient Sp(2g,A)/ESp(2g,A,q) and the
composition f (|µ| · −) factors through Sp(2g,A/q). Since H2(Sp(2g,A/q)) is k(A)-
torsion we obtain f∗(|µ| · k(A) · c) = 0, as claimed.
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In particular, we can apply this equality to the morphism f between the universal
central extensions of Sp(2g,A) and F. The restriction of f∗ to the free part of
H2(Sp(2g,A)) is then trivial on multiples of |µ| · k(A). Thus these multiple elements
lie in the kernel of any homomorphism of �Sp(2g,A) into a finite group. This proves
Proposition 6. □

3.3 Proof of Theorem 2

Consider an arbitrary surjective homomorphism q̂ : �Sp(2g,Z)→ F̂ onto some finite
group F̂. We set F = F̂/q̂(C), where C = ker( �Sp(2g,Z) → Sp(2g,Z)). Then there
is an induced homomorphism q : Sp(2g,Z)→ F. Since F is finite the congruence
subgroup property for the symplectic groups (see Bass, Milnor, and Serre 1967;
Mennicke 1965a,b) implies that there is some D such that q factors as s ◦ p, where
p : Sp(2g,Z)→ Sp(2g,Z/DZ) is the reduction mod D and s : Sp(2g,Z/DZ)→ F is a
surjective homomorphism.

1 C �Sp(2g,Z) Sp(2g,Z) 1

Sp(2g,Z/DZ)

1 q̂(C) F̂ F 1

q̂ q

p

Since F, a quotient of a symplectic group with g ≥ 4 , is perfect it has a universal
central extension F̃. By Lemma 9, there exists then unique lifts p̃ : �Sp(2g,Z)→�Sp(2g,Z/DZ), q̃ : �Sp(2g,Z)→ F̃ and s̃ : �Sp(2g,Z/DZ)→ F̃ of the homomorphisms
p,q and s, respectively such that q̃ = s̃ ◦ p̃.

1 H2(F) F̃ F 1

1 q̂(C) F̂ F 1

θ

Since F̃ is universal there is a unique homomorphism θ : F̃ → F̂ which lifts the
identity of F. We claim that θ◦q̃ = q̂. Both homomorphisms are lifts of q and q̃ = s̃◦p̃,
by the uniqueness claim of Lemma 9. Thus θ◦ q̃ = α · q̂, where α is a homomorphism
on �Sp(2g,Z) with target q̂(C) = ker(F̂→ F), which is central in F̂. Since �Sp(2g,Z) is
universal we have H1( �Sp(2g,Z)) = 0 and thus α is trivial, as claimed. Summing up,
we have q̂ = θ ◦ q̃ = θ ◦ s̃ ◦ p̃.

We know that H2(Sp(2g,Z/DZ)) ∈ {0,Z/2Z}, when g ≥ 4, and from Lemma 9
we obtain that p̃(2c) = 2 · p∗(c) = 0, where c is the generator of H2(Sp(2g,Z)). In
particular, 2 · q̂(c) = 0 ∈ F̂, as claimed.
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Moreover, Lemma 9 along with Proposition 7 provide a surjective homomorphism
onto the universal central extension of Sp(2g,Z/DZ), when D ≡ 0 (mod 4). Thus,
by Theorem 1 the image of the center of �Sp(2g,Z) has order two, as claimed.

Remark 7 – Note thatH2(Sp(6,Z/DZ)) ∈ {0,Z/2Z,Z/2Z⊕Z/2Z}, extending Funar
and Pitsch 2020, Prop. 3.1. This is a consequence of Proposition 7 and the fact that
H2(Sp(6,Z);Z) = Z⊕Z/2Z, according to Stein 1975. Then Proposition 3 shows that
the image of some element of the center of �Sp(6,Z) in �Sp(6,Z/DZ) has order two,
when D ≡ 0 (mod 4).

Remark 8 – Using the results in Brownstein and Lee 1992, 1994 we can obtain that
H2(Sp(4,Z/DZ)) = 0, if D , 2 is prime and H2(Sp(4,Z/2Z)) = Z/2Z. Notice that
Sp(4,Z/2Z) is not perfect, but the extension �Sp(4,Z) still makes sense.

An immediate corollary of Theorem 1 is the following K-theory result:

Corollary 2 – For g ≥ 4 we have

KSp2,2g (Z/DZ) =
{

Z/2Z, ifD ≡ 0(mod 4),
0, otherwise.

Proof. According to Stein’s stability results (Stein 1973, Thm 2.13, and Stein 1978)
we have

KSp2,2g (Z/DZ) � KSp2(Z/DZ), for g ≥ 4, (15)

and

KSp2,2g (Z/DZ) �H2(Sp(2g,Z/DZ)), for g ≥ 4. (16)
□

Remark 9 – The analogous result that K2,n(Z/DZ) ∈ {0,Z/2Z}, if n ≥ 3 was proved
a long time ago (see Dennis and Stein 1975).

4 Mapping class group quotients

4.1 Preliminaries on quantum representations

The results of this section are the counterpart of those obtained in Section 2.3, by
considering SU (2) instead of abelian quantum representations. The first author
proved in Funar 2011 that central extensions of the mapping class group Mg by Z

are residually finite. The same method actually can be used to show the abundance
of finite quotients with large torsion in their second homology and to prove that the
mapping class group has property A2 trivial modules.
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A quantum representation is a projective representation, depending on an integer
k, which lifts to a linear representation ρ̃k : Mg (12) → U (N (k,g)) of the central
extension Mg (12) of the mapping class group Mg by Z. The latter representation
corresponds to invariants of 3-manifolds with a p1-structure. In Masbaum and
Roberts 1995 and Gervais 1996 the authors gave a precise description of this exten-
sion. Namely, the cohomology class cMg (12) ∈H2(Mg ,Z) associated to this extension
equals 12 times the signature class χ. It is known (see Korkmaz and Stipsicz 2003)
that the group H2(Mg ) is generated by χ, when g ≥ 3. Recall that χ is one fourth of
the Meyer signature class. We denote more generally by Mg (n) the central extension
by Z whose class is cMg (n) = nχ.

It is known that Mg is perfect and H2(Mg ) = Z, when g ≥ 4 (see Pitsch 1999, for
instance). Thus, for g ≥ 4, Mg has a universal central extension by Z, which can
be identified with the central extension Mg (1). This central extension makes sense
for M3, as well, although it is not the universal central extension since H2(M3) =
Z⊕Z/2Z. However, using its explicit presentation for g = 3 we derive that Mg (1) is
perfect for g ≥ 3.

Let c be the generator of the center of Mg (1), which is 12 times the generator of the
center of Mg (12). Denote by Mg (1)n the quotient of Mg (1) obtained by imposing
cn = 1; this is a non-trivial central extension of the mapping class group by Z/nZ.
We will say that a quantum representation ρ̃p detects the center ofMg (1)n if it factors
through Mg (1)n and is injective on its center.

Consider the SO(3)-TQFT with parameter A = −ζ(p+1)/2
p , where ζp is a primitive p-th

root of unity, so that A is a primitive 2p root of unity with A2 = ζp. This data leads
to a quantum representation ρ̃p and it was computed in Masbaum and Roberts 1995
that ρ̃p(c) = A−12−p(p+1).

Lemma 15 – For each prime power qs there exists some quantum representation ρ̃p
which detects the center of Mg (1)qs .

Proof. We noted that ρ̃p(c) = ζ−12−p(p+1)
2p , where ζ2p is a 2p-root of unity.

1. If q is a prime number q ≥ 5 we let p = qs. Then 2p divides p(p + 1) and
ρ̃p(c) = ζ−12

2p = ζ−6
p is of order p = qs. Thus the representation ρ̃p detects the

center of Mg (1)qs .

2. If q = 2, we set p = 2. Then ρ̃2(c) = ζ2, and ρ̃2 detects the center of Mg (1)2.

3. Set now p = 12r for some integer r > 1 to be fixed later. Then ρ̃p(c) =

ζ
−12−12r(12r+1)
24r = ζ

−1−r(12r+1)
2r = ζ−1−r

2r . This 2r-th root of the unit has order
l.c.m.(1 + r,2r)/(1 + r) = 2r/g.c.d.(1 + r,2r). An elementary computation shows
that g.c.d.(1 + r,2r) = 1 or 2 depending on whether r is even or odd.
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• If q = 2s+1 with s ≥ 1, we set r = 2s. Then ζ−1−2s
2·2s is of order 2s+1, the

representation ρ̃p detects the center of Mg (1)2s+1 .

• If g = 3s with s ≥ 1, we set r = 3s. Then ζ−1−3s
2·3s is of order 3s, the represen-

tation ρ̃p detects the center of Mg (1)3s . □

4.2 Proof of Theorem 4

We have first the following lemma from (Funar and Pitsch 2020, Lemma 2.3):

Lemma 16 – Let G be a perfect finitely presented group, G̃ denote its universal central
extension, p : G→ F be a surjective homomorphism onto a finite group F and p̂ : G̃→ Γ

be some lift of p to a finite central extension Γ of F. Assume that the image C = p̂(Z(G̃))
of the center Z(G̃) of G̃ contains an element of order q. Then there exists an element of
p∗(H2(G)) ⊆H2(F) of order q.

Remark 10 – A cautionary remark is in order. Assume thatH2(G) = Z in the lemma
above and that let H = kerp. If the image of H2(H) in H2(G) is dZ then we can
only assert that the image p∗(H2(G)) in H2(F) is of the form Z/d′Z, for some divisor
d′ of d, which might be proper divisor. For instance taking G = Sp(2g,Z) and
F = Sp(2g,Z/DZ), where D is even and not multiple of 4, then d = 2 by Putman
2012, Thm. F, while d′ = 1 as H2(Sp(2g,Z/DZ)) = 0. The apparent contradiction
with Lemma 16 comes from the fact that we required the existence of a lift p̂ : G̃→ Γ

for which the image of the center has order d. If H were perfect, as it is the case
when F = Sp(2g,Z/2Z) then the universal central extension H̃ would come with a
homomorphism H̃ → G̃. Although the image of H̃ is a finite index subgroup, it is
not, in general, a normal subgroup of G̃. Passing to a finite index normal subgroup
of H̃ would amount to changeH into a smaller subgroup H ′ and hence F is replaced
by a larger quotient F′ .

Proof (Proof of Theorem 4). By a classical result of Malcev 1940, finitely generated
subgroups of linear groups over a commutative unital ring are residually finite. This
applies to the images of quantum representations. Hence there are finite quotients
F̃ of these for which the image of the generator of the center is not trivial. By Lemma
15 we may find quantum representations for which the order of the image of the
center can have arbitrary prime power order p. Hence, for any prime p there are
finite quotients F̃ of Mg (1) in which the image of the center has an element of order
p. We apply Lemma 16 to the quotient F of F̃ by the image of the center to get finite
quotients of the mapping class group with arbitrary prime order elements in the
second homology. □
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4.3 Some finite quotients of mapping class groups

Concrete finite quotients with arbitrary torsion in their homology can be constructed
from mapping class groups as follows. Let p be a prime different from 2 and 3. Recall
that we have a linear representation ρ̃p :Mg (12)→U (N (p,g)) which lifts a projective
representation ρp :Mg (12)→ PU (N (p,g)). Moreover, Mg (1) is naturally embedded
in Mg (12), by sending the generator of the center into 12 times the generator of
the center of Mg (12), see Funar 2011. According to Gilmer and Masbaum 2007 for
prime p, we have that ρ̃p(Mg (1)) ⊆U (N (p,g))∩GL(Op), where Op is the following
ring of cyclotomic integers

Op =
{

Z[ζp], ifp ≡ −1(mod4)
Z[ζ4p], ifp ≡ 1(mod4).

Let us then consider the principal ideal m = (1 − ζp) which is a prime ideal of
Op. It is known that prime ideals of Op are maximal and then Op/mn is a finite
ring for every n. Let then Γp,m,n be the image of ρ̃p(Mg (1)) into the finite group
GL(N (p,g),Op/mn) and Fp,m,n be the quotient Γp,m,n/⟨ρ̃p(c)⟩ by the image of the
center of Mg (1). We derive a surjective homomorphism ψp,m,n :Mg → Fp,m,n and a
lift ψ̃p,m,n :Mg (1)→ Γp,m,n.

The image ρ̃p(c) of the generator c into Γp,m,n is the scalar root of unity ζ−6
p , which is

a non-trivial element of order p in the ring Op/mn and hence an element of order
p into GL(N (p,g),Op/mn). Notice that this is a rather exceptional situation, which
does not occur for other prime ideals in unequal characteristic (see Proposition 8).

Lemma 16 implies then that the image (ψp,m,n)∗(H2(Mg )) within H2(Fp,m,n) contains
an element of order p. This result also shows the contrast between mapping class
group representations and Weil representations:

Corollary 3 – If g ≥ 3, p is prime and p < {2,3} (or more generally, p does not divide 12
and not necessarily prime), then ρ̃p(Mg (1)) is a non-trivial central extension of ρp(Mg ).
Furthermore, under the same hypotheses on g and p, if m = (1− ζp), then the extension
Γp,m,n of the finite quotient Fp,m,n is non-trivial.

Proof. The kernel of the homomorphism ρ̃p(M̃g (1))→ ρp(Mg ) is a finite cyclic group
of 2p-th roots of unity. Therefore ker(Γp,m,n → Fp,m,n) is also some finite cyclic
group ν. If the latter extension were trivial then we could find an isomorphism
Γp,m,n→ Fp,m,n × ν. Since g ≥ 3 the group Mg is perfect and thus Mg (1) and hence
Γp,m,n are also perfect. Thus the projection on the second factor Γp,m,n→ ν must be
trivial. This contradicts the fact that the image of the generator c of ker(Mg (1)→Mg )
is an element of order p in Γp,m,n and hence the group of roots of unity ν has at least
order p. Thus the extension Γp,m,n→ Fp,m,n is nontrivial. This argument implies the
first claim, as well. □
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Remark 11 – Although the group M2 is not perfect, because H1(M2) = Z/10Z, it
still makes sense to consider the central extension M̃2 arising from the TQFT. Then
the computations above show that the results of Theorem 4 and Corollary 3 hold
for g = 2 if p is a prime and p < {2,3,5}.

Remark 12 – The finite quotients Fp,m,n associated to the ramified principal ideal
m = (1− ζp) were previously considered by Masbaum in Masbaum 2008.

When p ≡ −1(mod4) the authors of Funar 2013; Masbaum and Reid 2012 found
many finite quotients of Mg by using more sophisticated means. However, the
results of Funar 2013; Masbaum and Reid 2012 and the present ones are of a rather
different nature. Assume that n is a prime ideal of Op such that Op/n is the finite
field Fq with q elements. In fact the case of equal characteristics n = m = (1− ζp) is
the only case where non-trivial torsion can arise, according to:

Proposition 8 – If n is a prime ideal of unequal characteristic (i.e. such that g.c.d.(p,q) =
1) and p,q ≥ 5 then the image (ψp,m,n)∗(H2(Mg )) within H2(Fp,m,n) is trivial. Moreover,
for all but finitely many prime ideals n of unequal characteristic both groups Γp,n,1 and
Fp,n,1 coincide with SL(N (p,g),Fq) and hence H2(Fp,n,1) = 0.

Proof. The image of a p-th root of unity scalar in SL(N (p,g),Fq) is trivial, as soon
as g.c.d.(p,q) = 1. Thus Γp,n,n → Fp,n,n is an isomorphism and hence the image of
H2(Mg ) into H2(Fp,n,n) must be trivial. A priori this does not mean that H2(Fp,n,n) =
0. However, Masbaum and Reid proved in Masbaum and Reid 2012 that for all
but finitely many prime ideals n in Op the image Γp,n,1 ⊆ GL(N (p,g),Fq) is the
whole group SL(N (p,g),Fq). It follows that the projection homomorphism Mg (1)→
SL(N (p,g),Fq) factors through Mg → SL(N (p,g),Fq). But H2(SL(N,Fq)) = 0, for
N ≥ 4,q ≥ 5, as SL(N,Fq) itself is the universal central extension of P SL(N,Fq). □

4.4 Property A2 and the proof of Theorem 5

Recall that an equivalent formulation of Serre’s property A2 is

Definition 5 – LetG be a discrete group and Ĝ its profinite completion. ThenG has
property A2 for the finite Ĝ-module M if the homomorphism Hk(Ĝ,M)→Hk(G,M)
is an isomorphism for k ≤ 2 and injective for k = 3.

Proposition 9 – Let g ≥ 4 be an integer. For any finitely generated abelian group A and
any central extension

1→ A→ E→Mg → 1

the group E is residually finite.

The key result that interlocks between Proposition 9 and property A2 is:

142



4. Mapping class group quotients

Proposition 10 – 1. A residually finite group G has property A2 for all finite Ĝ-
modules M if and only if any extension by a finite abelian group is residually
finite.

2. Moreover for trivial Ĝ-modules it is enough to consider central extensions of G.

Then Theorem 5 is a consequence of the two propositions above.

Proof of Proposition 9

First we treat the following special case:

Proposition 11 – For any integer n ≥ 2, the group Mg (1)n obtained by reducing mod n
a generator of the center of Mg (1) is residually finite.

Proof. Write Z/nZ as a finite product of cyclic groups of prime power order Z/nZ =
Z/pr11 Z × · · · ×Z/prss Z. Then this isomorphism induces an embedding Mg (1)n ↪→
Mg (1)pr11

× · · · ×Mg (1)prss , and it suffices to prove Proposition 11 when n is a prime
power. Since Mg is known to be residually finite Grossman 1974, by Malcev’s result
on the residual finiteness of finitely generated linear groups, it is enough to find
for each prime power qs a linear representation of the universal central extension
Mg (1) that factors through Mg (1)qs and detects its center, and this is what Lemma
15 provides.

Proof (Proof of Proposition 9). We will use below that a group is residually finite if
and only if finite index subgroups are residually finite. Given our central extension

1→ A→ E→Mg → 1

the five term exact sequence in homology reduces to:

H2(Mg ;Z)→ A→H1(E,Z)→ 0

because the mapping class group is perfect. Therefore, any element f ∈ E that is not
in A projects non-trivially in the mapping class group and is therefore detected by
a finite quotient of this group. If f ∈ A but is not in the image of H2(Mg ;Z), then
it projects non-trivially into the finitely generated abelian group H1(E;Z), and is
therefore detected by a finite abelian quotient of E. It remains to detect the elements
in the image of H2(Mg ;Z). Recall the following result:

Lemma 17 – Let A be a finitely generated abelian group, B a subgroup of A. Then there
exists a direct factor C of A that contains B as a subgroup of finite index.

Apply this lemma to the image B of H2(Mg ;Z) into A, let pC be the projection onto
the subgroup C and consider the push-out diagram:
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1 A E Mg 1

1 C EC Mg 1

pC

Then it is sufficient to prove that EC is residually finite in order to show that E is
residually finite.

Now, the mapping class group Mg is perfect, and therefore we have a push-out
diagram:

1 H2(Mg ;Z) Mg (1) Mg 1

1 C EC Mg 1

where the first row is the universal central extension, and the arrow H2(Mg ;Z)→ C
is the one appearing in the five term exact sequence of the bottom extension. Recall
that for g ≥ 4, H2(Mg ;Z) = Z. Two cases could occur:

1. Either H2(Mg ;Z)→ C is injective and in this case EC contains the residually
finite group Mg (1) as a subgroup of finite index, and this is known to be
residually finite (see Funar 2011).

2. Or the image of H2(Mg ;Z)→ C is a cyclic group Z/kZ and EC contains as a
finite index subgroup the reduction mod k of the universal central extension,
and we conclude by applying Proposition 11. □

Proof of Proposition 10 (1)

Assume that every extension of G by a finite abelian group is residually finite. Let
x ∈H2(G;A) be represented by the extension:

1→ A→ E→ G→ 1.

By the equivalent property D2 (see the next subsection), it is enough to find a finite
index subgroup H ⊆ G such that x is zero in H2(H ;A). Observe that property A1,
and thus D1, is automatic. Since E is residually finite, for each non-trivial element
a ∈ A choose a finite quotient Fa of E in which the image of a is not identity. Let Ba
be the image of A in Fa, and Qa = Fa/Ba. Denote by FA,BA and QA the products of
these finitely many groups over the non-trivial elements in A. Then the diagonal
map E→ FA fits into a commutative diagram:

1 A E G 1

1 BA FA QA 1
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Let K be the kernel ker(G→QA). Then K is a finite index normal subgroup and the
pull back of x to H2(K ;A) is trivial.

Conversely, assume that the residually finite group G has property A2 and let

1→ A→ E→ G→ 1

be an extension of G by the finite abelian group A. Then, by Serre 1994, Ex. 2 Ch.
I.2.6, we have a natural short exact sequence of profinite completions:

1→ Â→ Ê→ Ĝ→ 1

that fits into a commutative diagram
1 A E G 1

1 Â Ê Ĝ 1

Since A is finite A ≃ Â, and since G is residually finite the rightmost downward
arrow is an injection. By the five lemma the homomorphism E ↪→ Ê is also injective,
and hence E is residually finite as it is a subgroup of a profinite group.

Proof of proposition 10 (2) and property En

It would be nice, but probably difficult, to understand under which assumptions
property A2 for a residually finite, finitely presented group G and all finite trivial
Ĝ-modules implies property A2. However, there exists a stronger related condition
on groups for which this kind of statement will hold. Serre introduced several
properties in Serre 1994, Ex. 1, I.2.6 as follows. One says that a residually finite
group G has property:

1. (An) if H j(Ĝ;M)→ H j(G;M) is bijective for j ≤ n and injective for j = n+ 1,
for all finite Ĝ-modules M.

2. (Bn) ifH j (Ĝ;M)→H j (G;M) is surjective for j ≤ n and for all finite Ĝ-modules
M.

3. (Cn) if for each finite Ĝ-module M and x ∈H j(G;M), 1 ≤ j ≤ n, there exists a
discrete Ĝ-module M ′ containing M such that the image of x in H j(G;M ′) is
zero.

4. (Dn) if for each finite Ĝ-module M and x ∈H j(G;M), 1 ≤ j ≤ n, there exists a
subgroup H ⊆ G of finite index in G such that the image of x in H j(H ;M) is
zero.

5. (En) if Ĥ j (G;M) = 0, for 1 ≤ j ≤ n and for all finite Ĝ-modules M.
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Then Serre stated that properties An, Bn, Cn and Dn are equivalent. It is easy to see
that these properties are also equivalent when we fix the Ĝ-module M, or we let it
run over the finite trivial Ĝ-modules.

Denote by Ĥn(G;M) = limH⊂f GH
n(H ;M), where the direct limit is taken with respect

with the directed set of H ⊂f G, meaning that H is a finite index subgroup of G.
The directed set of inclusions homomorphisms induces a homomorphism

Hn(G;M)→ Ĥn(G;M)

Note that if the homomorphisms H j(G;M)→ Ĥ j(G;M) have zero image, for 1 ≤
j ≤ n, then condition (Dn) is satisfied. Conversely, if condition (Dn) is verified,
and H j(G;M) are finite for 1 ≤ j ≤ n, then there exists some finite index subgroup
H ⊂f G such that the image of the restriction homomorphismH j (G;M)→H j (H ;M)
is trivial. By the universality of the direct limit the homomorphism H j(G;M)→
Ĥ j (G;M) factors throughH j (H ;M) and hence its image is zero. In any case property
(Dn) is a consequence of property (En). An interesting fact concerning the latter is
the following:

Proposition 12 – If a residually finite group G has property En for all finite trivial
Ĝ-modules then it has property En.

Proof. First we can easily step from Fp-coefficients to any trivial G-module.

Lemma 18 – Condition (Dn) for G and all finite trivial Ĝ-modules Fp implies (Dn) for
G and all finite trivial Ĝ-modules M.

The second ingredient allows us to pass from all trivial coefficients to arbitrary
coefficients:

Lemma 19 – Condition (En) for G and all finite trivial Ĝ-modules M implies (En) for G
and all finite trivial Ĝ-modules M.

This proves the claim of Proposition 12. □

In the proof of Lemma 19 we will make use of the following rather well-known
result:

Lemma 20 – If J ⊆ I are two directed sets such that J is cofinal in I , then for any direct
system of abelian groups (Ai , fij ) indexed by I we have

lim
α,β∈J

(Aα , fαβ) = 0, if and only if lim
i,j∈I

(Ai , fij ) = 0.
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Proof (Proof of Lemma 18). This follows from decomposing the finite trivial
Ĝ-module, i.e. a finite abelian group A, into p-primary components and then
use induction on the rank of the composition series of A and the 5-lemma. □

Proof (Proof of Lemma 19). Let now M be an arbitrary finite G-module. Let KM be
the kernel of the G-action on M. We denote by A the trivial G-module which is
isomorphic as an abelian group to M. By hypothesis condition (En) is satisfied
for the group G and the trivial module A, so that Ĥ j(G;A) = 0, 1 ≤ j ≤ n. Since
M is finite KM is of finite index in G. Consider the set JM = {H ⊂f KM } of finite
index subgroups of KM ⊆ G. This is a subset of the directed set IG of finite index
subgroups of G. Further JM is cofinal in IG with respect to the inclusion as any
subgroup H ∈ IG contains the subgroup H ∩ KM ⊂f KM . According to Lemma
20 we have then limH⊂f KM H

j(H ;A) = 0. Furthermore, for each H ⊆ KM the H-
modules A and M are isomorphic as both are trivial. Thus there exists a canonical
family of isomorphisms iH : H j(H ;A) � H j(H ;M) which is compatible with the
direct structures on the cohomology groups indexed by JM = {H ⊂f KM }. We have
therefore limH⊂f KM H

j(H ;M) = 0. However using again Lemma 20 for the sets JM
and IG in the reverse direction we obtain Ĥ j (G;M) = 0, 1 ≤ j ≤ n. □

Proof (End of proof of Proposition 10 (2)). Let G be a residually finite group. Every
x ∈ H2(G;Fp) is represented by a central extension E of G by Z/pZ. By the proof
of Proposition 10 (1) E is residually finite if and only if there exists a finite index
subgroup H ⊆ G such that the image of x in H2(H ;Fp) is zero. By Lemma 18

this is equivalent to the group G having property D2 for all trivial Ĝ-modules M.
Therefore, G has property A2 for all trivial Ĝ-modules M if all central extensions
by Z/pZ are residually finite, for all primes p. □

Remark 13 – The analog of Lemma 18 holds also for property An, with the same
proof. Hovewer, this is not clear for Lemma 19.

Remark 14 – The discussion about property En clarifies some of the statements in
Grunewald, Jaikin-Zapirain, and Zalesskii 2008. Specifically, Lemmas 3.1. and
3.2. from Grunewald, Jaikin-Zapirain, and Zalesskii 2008 concern only property En
instead of property An. Nevertheless, the main result of Grunewald, Jaikin-Zapirain,
and Zalesskii 2008 is valid with the same proof.

4.5 Proof of Corollary 1

Lemma 21 – An extension E of the residually finite group G by a finite group A is
residually finite if and only if it is virtually trivial.
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Proof. If E is residually finite then there is a finite index subgroup ∆ ⊂ E with
∆∩A = {1}. Then the projection E→ G restricts to an isomorphism on ∆ and hence
the extension splits over the image of ∆ in G. Conversely, if the extension E splits
over a finite index subgroup ∆ ⊆ G then ∆ ⊂ E is residually finite and of finite index
in E and hence E must be residually finite, as well. □

Lemma 22 – An extension E of the group G by a finite group A is the pull-back of some
extension of a finite group F by some surjective homomorphism f : G→ F if and only if
it is virtually trivial.

Proof. If E splits over the finite index subgroup ∆ ⊆ G, then the image ∆ ⊆ E of a
section intersects A trivially. By passing to a finite index subgroup of ∆ we can
assume that ∆ is a normal subgroup of E. Then the extension E is the pull-back of
the extension

1→ A→ E/∆→ G/∆→ 1

In the reverse direction, a pull-back of an extension by f : G→ F is split over the
finite index subgroup kerf . □

Now, Proposition 9 along with Lemmas 21 and 22 imply Corollary 1.

5 Towards an inductive proof of Theorem 1

5.1 Motivation

For a prime p, an integer k ≥ 1 we have two fundamental extensions:

1→ Sp(2g,Z,pk)→ Sp(2g,Z)→ Sp(2g,Z/pkZ)→ 1,

and

1→ sp2g (p)→ Sp(2g,Z/pk+1
Z)→ Sp(2g,Z/pkZ)→ 1. (17)

In particular, every element in Sp(2g,Z,pk) can be written as 12g + pkA, for some

matrix A with integer entries. If the symplectic form is written as Jg =
(

0 1g
−1g 0

)
then the matrix A satisfies the equation A⊤Jg + JgA ≡ 0(mod p). Then we set sp2g (p)
for the additive group of those matrices with entries in Z/pZ that satisfy the
equation M⊤Jg + JgM ≡ 0(mod p). In particular this subgroup is independent of the
integer k.

The homomorphism jq : Sp(2g,Z,pk)→ sp2g (p) sending 12g + pkA onto A (mod p) is
surjective (see Sato 2010).
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The different actions of the symplectic group Sp(2g,Z) that sp2g (p) inherits from
these descriptions coincide. We will use in this text the action that is induced by the
conjugation action on Sp(2g,Z,p) via the surjective map jq. Notice that clearly this
action factors through Sp(2g,Z/pZ).

The second page of the Hochschild-Serre spectral sequence associated to the exact
sequence (17) in low degrees is as follows:

H2(sp2g (p))Sp(2g,Z/pkZ)
0 H1(Sp(2g,Z/pkZ);sp2g (p))
Z 0 H2(Sp(2g,Z/pkZ))

(18)

In fact from Funar and Pitsch 2020, Lemma 3.5 we know that

H1(sp2g (p))Sp(2g,Z/pkZ) =H1(sp2g (p))Sp(2g,Z/pZ) = 0.

as the action of Sp(2g,Z/pkZ) on sp2g (p) factors through the action of Sp(2g,Z/pZ).

Thus the calculations needed for an inductive computation of H2(Sp(2g,Z/2kZ))
are the result in Theorem 6 and the following theorem, see Putman 2012, Thm. G:

Theorem 7 – For any odd prime p, any integer k ≥ 1 and any g ≥ 3 we have:

H1(Sp(2g,Z/pkZ),sp2g (p)) = 0. (19)

Moreover, this holds true also when p = 2 and k = 1.

Unfortunately we do not know whether H1(Sp(2g,Z/2kZ);sp2g (2)) = 0 or not for
k ≥ 2. However this is true when k = 1 and we derive:

Corollary 4 – Assume Theorem 6 holds. Then H2(Sp(2g,Z/4Z)) ∈ {0,Z/2Z}, for all
g ≥ 4.

Proof. Proposition 7 implies that H2(Sp(2g,Z/4Z)) is cyclic, for g ≥ 4. Since
H2(Sp(2g,Z/2Z)) = 0, and H1(Sp(2g,Z/2Z),sp2g (2)) = 0 from Putman’s theorem 7,
the only non-zero term of the second page of the Hochschild-Serre spectral sequence
above computing the cohomology of Sp(2g,Z/4Z) is H2(sp2g (2))Sp(2g,Z/2Z). Then,
by Theorem 6 the rank of H2(Sp(2g,Z/4Z)) is at most 1, which proves the claim.□

5.2 Generators for the module sp2g(p)

We describe first a small set of generators of sp2g (p) as an Sp(2g,Z)-module. Denote
by Mg (R) the R-module of g-by-g matrices with entries from the ring R. A direct

computation shows that a matrix
(
A B
C D

)
∈ M2g (Z/pZ) written by blocks is in
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sp2g (p) if and only if A+D⊤ ≡ 0 (mod p) and both B and C are symmetric matrices.
It will be important for our future computations to keep in mind that the subgroup
GL(g,Z) ⊂ Sp(2g,Z) preserves this decomposition into blocks. From this description
we immediately get a set of generators of sp2g (p) as an additive group. Recall that
eij ∈Mg (R) denotes the elementary matrix whose only non-zero coefficient is 1 at
the place ij. Define now the following matrices in sp2g (p) for i, j ∈ {1,2, . . . , g}:

uij =
(
0 eij + eji
0 0

)
, uii =

(
0 eii
0 0

)
, lij =

(
0 0

eij + eji 0

)
, lii =

(
0 0
eii 0

)
, (20)

rij =
(
eij 0
0 −eji

)
, nii =

(
eii 0
0 −eii

)
. (21)

Therefore we have:

Proposition 13 – As an Sp(2g,Z/pZ)-module, sp2g (p) is generated by rij ,nii ,uij , uii ,
lij and lii , where i, j ∈ {1,2, . . . , g}.

And as GL(g,Z/pZ)-module we have:

Lemma 23 – Let Symg (Z/pZ) ⊂Mg (Z/pZ) denote the submodule of symmetric matri-
ces. We have an identification of GL(g,Z)-modules:

sp2g (p) = Mg (Z/pZ)⊕ Symg (Z/pZ)⊕ Symg (Z/pZ).

The action of GL(g,Z/pZ) on Mg (Z/pZ) is by conjugation, the action on the first copy
Symg (Z/pZ) is given by x ·A = xAx⊤ and on the second copy Symg (Z/pZ) is given by
x ·A = (x⊤)−1Ax−1.

A set of generators for Mg (Z/pZ) is given by the set of elements rij and nii , 1 ≤ i, j ≤ g,
i , j. The two copies of Symg (Z/pZ) are generated by the matrices lij and uij respectively,
where 1 ≤ i, j ≤ g.

5.3 Proof of Theorem 6

Notice first that as the action of Sp(2g,Z/pkZ) factors through Sp(2g,Z/pZ) via
the mod pk−1 reduction map, for any k ≥ 2 we have H2(sp2g (p);Z)Sp(2g,Z/pkZ) ≃
H2(sp2g (p))Sp(2g,Z/pZ). Also, as sp2g (p) is an abelian group there is a canonical
isomorphism:

H2(sp2g (p)) = ∧2sp2g (p). (22)
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Let M denote the set of elements rij and nii , 1 ≤ i, j ≤ g, i , j and S denote the set
of elements lij and uij , where 1 ≤ i, j ≤ g. The group ∧2sp2g (p) is generated by the
set of exterior powers of pairs of generators given in Proposition 13, which we split
naturally into three disjoint subsets:

1. The subset S ∧ S of exterior powers uij ∧ lkl , lij ∧ lkl , uij ∧ukl .

2. The subset S ∧M of exterior power lij ∧nkk , uij ∧nkk , lij ∧ rkl and uij ∧ rkl .

3. The subset M ∧M of exterior powers rij ∧ rkl , rij ∧nkk and njj ∧nii .

We will first show that the image of S ∧ S and S ∧M is 0 in ∧2sp2g (p), and in a
second time we will show how the Z/2Z factor appears in the image of M ∧M. It
will also be clear from the proof why there is no such non-trivial element in odd
characteristic.

We use constantly the trivial fact that the action of Sp(2g,Z/pZ) is trivial on the
coinvariants module. So to show the nullity of the image of a generator it is enough
to show that in each orbit of a generating element of S ∧ S or S ∧M there is the
0 element. We will in particular heavily use the fact that the symmetric group
Sg ⊂ GL(g,Z/pZ) ⊂ Sp(2g,Z/pZ) acts on the basis elements by permuting the
indices. Notice that the symmetric group action respects the above partition into
three sets of elements. To emphasize when we use such a permutation to identify
two elements in the co-invariant module we will use the notation � instead of =.

Nullity of the generators in S ∧S. Picking one representative in each Sg-orbit we
are left with the following elements. Here “Type” refers to the number of distinct
indexes that appear in the wedge, as this is the only thing that really matters. Of
course type IV elements appear only for g ≥ 4.

1. Type I: u11 ∧ l11.

2. Type II: u11 ∧ u22, l11 ∧ l22, u11 ∧ l22, u11 ∧ u12, l11 ∧ l12, u12 ∧ l12, u12 ∧ l22,
u11 ∧ l12.

3. Type III: u11 ∧u23, l11 ∧ l23, u12 ∧u23, l12 ∧ l23, u11 ∧ l23, l11 ∧u23, u12 ∧ l23.

4. Type IV: u12 ∧u34, l12 ∧ l34, u12 ∧ l34.

Using the fact that Jg · uij = −lij , one can identify some generators in S ∧ S, for
instance u11 ∧u22 = l11 ∧ l22, and we are left with:

1. Type I: u11 ∧ l11.

2. Type II: u11 ∧u22 , u11 ∧ l22, u11 ∧u12, u11 ∧ l12, u12 ∧ l12, u12 ∧ l22.
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3. Type III: u11 ∧u23, , u12 ∧u23, u11 ∧ l23, u12 ∧ l23.

4. Type IV: u12 ∧u34, u12 ∧ l34.

We consider now two families of elements in the symplectic group, for 1 ≤ i , j ≤ g:

τuij =
(
1g eii + ejj
0 1g

)
, τ lij =

(
1g 0

eii + ejj 1g

)
.

A direct computation shows that:

τuij ·ukℓ = ukℓ , τuij · rij = rij −uij , for all i, j,k,ℓ (23)

τ lij · lkℓ = lkℓ , τ lij · rij = rij + lij , for all i, j,k,ℓ (24)

In particular, we obtain:

τuij · (ukℓ ∧ rij ) = ukℓ ∧ rij −ukℓ ∧uij (25)

and

τ lij · (lkℓ ∧ rij ) = lkℓ ∧ rij + lkℓ ∧ lij (26)

This shows that all elements of the form u ∧ u or l ∧ l vanish in the module of
coinvariants, except possibly for u11 ∧u22 and l11 ∧ l22. We are left then with:

1. Type I: u11 ∧ l11.

2. Type II: u11 ∧u22 , u11 ∧ l22, u11 ∧ l12, u12 ∧ l12, u12 ∧ l22.

3. Type III: u11 ∧ l23, u12 ∧ l23.

4. Type IV: u12 ∧ l34.

Consider the exchange map Eij , i , j, defined by ai →−bi , bi → ai , aj →−bj , bj → aj ,
and all other basis elements fixed. By construction, these maps act as follows:
Eij ·uij = −lij , Eij ·uii = −lii , Eij ·ujj = −ljj and Eij ·ukl = ukl if {i, j} ∩ {k, l} = ∅.

Denoting in the same way the (trivial!) action on the quotient module of coinvariants
(∧2sp2g (p))Sp2(2g,Z/pZ), we find:

1. u11 ∧ l23 = E23 · (u11 ∧ l23) = −u11 ∧u23 = 0.

2. u12 ∧ l22 = E12 · (u12 ∧ l22) = −l12 ∧−u22 = u11 ∧ l12.
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3. u11 ∧u22 = E23 · (u11 ∧u22) = −u11 ∧ l22.

4. u12 ∧ l34 = E34 · (u12 ∧ l34) = u12 ∧−u34 = 0.

Thus the coinvariants module is generated by the classes of the following elements:

1. Type I: u11 ∧ l11.

2. Type II: u11 ∧ l22, u11 ∧ l12, u12 ∧ l12.

3. Type III: u12 ∧ l23.

We now use the action of the following symplectic maps, for 1 ≤ i , j ≤ g:

Aij =
(
1g − eji 0

0 1g + eij

)
.

By direct computation we obtain:

Aij ·uii = uii +ujj −uij , Aij ·ujj = ujj , Aik ·uij = uij −ujk , Aki ·uij = uij

and

Aij · lii = lii + ljj − lij , Aij · ljj = ljj , Aik · lij = lij − ljk , Aki · lij = lij

for pairwise distinct values of the indices i, j,k. Further, we derive the following
equalities that hold in the quotient module of coinvariants:

1. u12 ∧ l23 = A13 · (u12 ∧ l23) = (u12 −u23)∧ l23, so 0 = u23 ∧ l23 � u12 ∧ l12.

2. u22 ∧ l32 = A13 · (u22 ∧ l32) = u22 ∧ (l32 + l12), so u11 ∧ l12 � u22 ∧ l12 = 0.

3. u12 ∧ l34 = A23 · (u12 ∧ l34) = u12 ∧ (l34 + l24) , so u12 ∧ l23 � u12 ∧ l24 = 0.

4. u11 ∧ l11 = A12 · (u11 ∧ l11) = (u11 +u22 −u12)∧ l11, so
u22 ∧ l11 = u12 ∧ l11 = E12 · (l12 ∧u11) = 0.

5. u22 ∧ l11 = A12 · (u22 ∧ l11) = u22 ∧ (l11 + l12 + l22) so
u11 ∧ l11 � u22 ∧ l22 = −u22 ∧ l12 � −u11 ∧ l12 = 0.

This finishes the computation.
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Nullity of the generators in S ∧M. Here we separate between two types of gener-
ators:

1. Generators of the form uks ∧nii and lks ∧nii for arbitray k,s, i.

We let the matrix τℓij of the previous section act on these generators. A direct
computation shows that, for arbitrary values of k,s, i, j with i , j, we have:

τℓij · lks = lks and τℓij ·ujj = ujj − ljj −njj .

Therefore, relying on our previous computations:

0 = τℓij · (ℓks ∧ujj ) = lks ∧ (ujj − ljj −nj ) = −lks ∧njj

To get the nullity for elements of the form u ∧n, we apply Jg to the previous
element, and use the fact that, up to a sign, Jg exchanges the elements uij and
lij while fixing nii .

2. For the elements of the form uks ∧ rij and lks ∧ rij for arbitrary k,s, i, j and i , j,
we apply the element

τℓi =
(
1g 0
eii 1g

)
.

By direct computation we obtain:

τℓi ·uij = uij − rij + lii and τℓi · lks = lks.

Therefore, for i , j and k,s arbitrary we find:

0 = τℓi · (uij ∧ lks) = (uij − rij + lii)∧ lks = −rij ∧ lks.

By applying Jg and using that Jg · rij = −rji we get the nullity for uks ∧ rij .

Image ofM∧M. First we will do a small detour through bilinear forms on matrices.
Until the very end we work on an arbitrary field K. Recall that Mn(K) denotes the
K-vector space of n-by-n matrices with entries in K and 1n ∈Mn(K) the identity
matrix. Note that, if i , j, the inverse of 1n + eij is 1n − eij and that elementary
matrices multiply according to the rule eijest = δjseit . We start by a very classical
result:

Lemma 24 – Let tr denote the trace map. Then for any field K and any integer n the
homomorphism:

Mn(K) → Hom(Mn(K),K)
A 7→ B{ tr(AB)

is an isomorphism.
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A little less classical is:

Theorem 8 – Let n ≥ 2. The K-vector space HomGL(n,K)(Mn(K),Mn(K)) has dimen-
sion 2. It is generated by the identity map IdMn(K) and by the map Ψ (M) = tr(M)1n.

Proof. It is easy to check that the two equivariant maps IdMn(K) and Ψ are linearly
independent. Indeed, evaluating a linear dependence relation αIdMn(K) + βΨ = 0
on e12 one gets α = 0 = β.

Fix an arbitrary φ ∈ HomGL(n,K)(Mn(K),Mn(K)). Denote by A = (aij ) the matrix
φ(e11). Consider two integers 1 < s , t ≤ n. From the equality (1n + est)e11(1n − est) =
e11 we deduce that:

φ(e11) = (1n + est)φ(e11)(1n − est) (27)

= φ(e11) + estφ(e11)−φ(e11)est − estφ(e11)est (28)

= φ(e11) +
∑

1≤j≤n
atjesj −

∑
1≤i≤n

aiseit − atsest (29)

Therefore, for 1 < s , t ≤ n we have:∑
1≤j≤n

atjesj −
∑

1≤i≤n
aiseit − atsest = 0 (30)

The first term in this sum is a matrix with only one non-zero row, the second a
matrix with only one non-zero column and the third a matrix with a single (possibly)
non-zero entry. The only common entry for this three matrices appears for j = t and
i = s, where we get the equation att − ass − ats = 0. Otherwise, atj = 0, for all j , t,
and ais = 0, for all i , s. Observe that, in particular, ats = 0. Summing up, either in
the column s or in the row t of the matrix A, the only possible non-zero elements
are those that appear in the equation att − ass = 0.

Letting s and t vary, one deduces that ats = 0, and A = φ(e11) is of the form λe11 +
µ
∑n
i=2 eii for two scalars λ,µ ∈K.

Let Tij be the invertible matrix that interchanges the basis vectors i and j. Then
TijeiiTij = ejj , TijejjTij = eii and TijekkTij = ekk for k , i and k , j. Therefore,
φ(ejj ) = φ(T1je11T1j ) = T1jφ(e11)T1j . And from the description of φ(e11) one gets:

φ(ejj ) = λejj +
∑
i,j

µeii , for all 1 ≤ j ≤ n.

From the relation (1n + eij )eii(1n − eij ) = eii − eij we get:

φ((1n + eij )eii(1n − eij )) = φ(eii)−φ(eij ) (31)

= (1n + eij )φ(eii)(1n − eij )(Cont. next page) (32)
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= φ(eii) + eijφ(eii)−φ(eii)eij − eijφ(eii)eij , (33)

and in particular:

φ(eij ) = −eijφ(eii) +φ(eii)eij + eijφ(eii)eij (34)

= −µeij +λeij (35)

= (λ−µ)eij (36)

This shows that φ is completely determined by φ(eii) and that the K-vector space
HomGLn(K)(Mn(K),Mn(K)) has dimension at most 2. Observe that the identity map
IdMn(K) corresponds to λ = 1,µ = 0 and that Ψ corresponds to λ = µ = 1. □

From these two results we deduce the result that will save us from lengthy compu-
tations:

Proposition 14 – Let n ≥ 2. For any field K the vector space of bilinear forms on
Mn(K) invariant under conjugation by GL(n,K) has as basis the bilinear maps (A,B) 7→
tr(A)tr(B) and (A,B) 7→ tr(AB). If char(K) , 2, the subspace of alternating bilinear
forms is trivial. If char(K) = 2 the space of bilinear alternating forms is generated by the
form (A,B) 7→ tr(A)tr(B) + tr(AB).

Consider now the canonical map

∧2 (Mg (Z/pZ))→∧2(Mg (Z/pZ))GLg (Z/pZ)→∧2(sp2g (p))GL(g,Z/pZ)→

→∧2(sp2g (p))Sp(2g,Z/pZ). (37)

By construction its image is the span of the image of M∧M in ∧2(sp2g (p))Sp(2g,Z/pZ).
By Proposition 14, it is 0 if p is odd and it is at most Z/2Z if p = 2.

Further, the unique GL(g,Z/2Z)-invariant alternating form on Mg (Z/2Z) does
not vanish on the element e11 ∧ e22 and hence we have a nontrivial element of
∧2(Mg (Z/2Z))GL(g,Z/2Z), which is a submodule of ∧2(sp2g (2))GL(g,Z/2Z). Note that
the image of e11 ∧ e22 in ∧2(sp2g (2))GL(g,Z/2Z) is the class of the element n11 ∧n22.

Furthermore, fix a symplectic basis {ai ,bi}1≤i≤g of Z2g . Then, the 2g+1 transvections
along the elements ai ,bj − bj+1 for 1 ≤ i ≤ g and 1 ≤ j ≤ g − 1, bg−1 and bg generate
Sp(2g,Z/2Z), for instance because they are the canonical images of the set of
Dehn twists generators of the mapping class group considered by Humphries in
Humphries 1979. One checks directly, using all elements we know they vanish in
∧2(sp2g (2))Sp(2g,Z/2Z), that the action of these generators on n11 ∧n22 is trivial and
hence it defines an element of ∧2(sp2g (2))Sp(2g,Z/2Z). This finishes our proof.
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Remark 15 – It is clear from the proof that the copy Z/2Z we have detected is
stable, in the sense that the homomorphism

∧2(sp2g (2))Sp(2g,Z/2Z)→∧2(sp2g+2(2))Sp(2g+2,Z/2Z)

is an isomorphism, for all g ≥ 3, since both are detected by the obvious stable
element n11 ∧n22.

A Appendix: Weil representations using theta func-
tions

A.1 Weil representations at level k, for even k

Let Sg be the Siegel space of g × g symmetric matrices Ω of complex entries having
the imaginary part ImΩ positive defined. We represent any element γ ∈ Sp(2g,Z)

as
(
A B
C D

)
where A,B,C,D are g × g matrices. There is a natural Sp(2g,Z) action

on C
g ×Sg given by

γ · (z,Ω) = ((((CΩ+D)⊤)−1)z, (AΩ+B)(CΩ+D)−1). (38)

The dependence of the classical theta function θ(z,Ω) on Ω is expressed by a
functional equation which describes its behavior under the action of Sp(2g,Z).
Let Γ (1,2) be the so-called theta group consisting of elements γ ∈ Sp(2g,Z) which
preserve the quadratic form

Q(n1,n2, ...,n2g ) =
g∑
i=1

nini+g ∈Z/2Z,

which means that Q(γ(x)) = Q(x)(mod 2). Then Γ (1,2) may be alternatively de-
scribed as the set of those elements γ having the property that the diagonals of
A⊤C and B⊤D are even. Let ⟨,⟩ denote the standard hermitian product on C

2g . The
functional equation, as stated in Mumford 1984 is:

θ(γ · (z,Ω)) = ζγdet(CΩ+D)1/2 exp(π
√
−1⟨z, (CΩ+D)−1Cz⟩)θ(z,Ω),

for γ ∈ Γ (1,2), where ζγ is a certain 8th root of unity.

If g = 1 we may suppose that C > 0 or C = 0 and D > 0 so we have Im(CΩ+D) ≥ 0
for Ω in the upper half plane. Then we will choose the square root (CΩ+D)1/2 in
the first quadrant. Now we can express the dependence of ζγ on γ as follows:

1. for even C and odd D, ζγ =
√
−1

(D−1)/2
( C|D | ),
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2. for odd C and even D, ζγ = exp(−π
√
−1C/4)(DC ),

where ( xy ) is the usual Jacobi symbol, see Hardy and Wright 1979.

For g > 1 it is less obvious to describe this dependence. We fix first the choice of the

square root of det(CΩ+D) in the following manner: let det
1
2

(
Z√
−1

)
be the unique

holomorphic function on Sg satisfying(
det

1
2

(
Z
√
−1

))2

= det
(
Z
√
−1

)
,

and taking in
√
−11g the value 1. Next define

det
1
2 (CΩ+D) = det

1
2 (D)det

1
2

(
Ω
√
−1

)
det

1
2

(
−Ω−1 −D−1C
√
−1

)
,

where the square root of det(D) is taken to lie in the first quadrant. Using this
convention we may express ζγ as a Gauss sum for invertible D, see Freitag 1987, pp.
26-27:

ζγ = det−
1
2 (D)

∑
ℓ∈Zg /DZ

g

exp(π
√
−1⟨ℓ,BD−1ℓ⟩), (39)

and in particular we recover the formula from above for g = 1. On the other hand

for γ =
(
A 0
0 (A⊤)−1

)
we have ζγ = (detA)−1/2. We recall that a multiplier system

(Freitag 1987) for a subgroup Γ ⊂ Sp(2g,R) is a map m : Γ −→ C
∗ such that

m(γ1γ2) = s(γ1,γ2)m(γ1)m(γ2).

An easy remark is that, once a multiplier system m is chosen, the product A(γ,Ω) =
m(γ)j(γ,Ω) verifies the cocycle condition

A(γ1γ2,Ω) = A(γ1,γ2Ω)A(γ2,Ω),

for γi ∈ Γ . Then another formulation of the dependence of ζγ on γ is to say that
it is the multiplier system defined on Γ (1,2). Remark that using the congruence
subgroup property due to Mennicke (Mennicke 1965a,b) and Bass, Milnor and Serre
(Bass, Milnor, and Serre 1967) any two multiplier systems defined on a subgroup of
the theta group are identical on some congruence subgroup.

When γ =
(

1g B
0 1g

)
then the multiplier system is trivial, ζγ = 1, and eventually

for γ =
(

0 −1g
1g 0

)
we have ζγ = exp(π

√
−1g/4). Actually this data determines

completely ζγ .

158



A. Appendix: Weil representations using theta functions

Denote det
1
2 (CΩ+D) = j(γ,Ω). Then there exists a map

s : Sp(2g,R)× Sp(2g,R) −→ {−1,1}

satisfying

j(γ1γ2,Ω) = s(γ1,γ2)j(γ1,γ2Ω)j(γ2,Ω).

Consider now the level k theta functions. For m ∈ (Z/kZ)g these are defined by

θm(z,Ω) =
∑

ℓ∈m+kZg
exp

(
π
√
−1
k

(⟨ℓ,Ωℓ⟩+ 2⟨ℓ,z⟩)
)

(40)

or, equivalently, by

θm(z,Ω) = θ(m/k,0)(kz,kΩ).

where θ(∗,∗) are the theta functions with rational characteristics (Mumford 1984)
given by

θ(a,b)(z,Ω) =
∑
ℓ∈Zg

exp
(
π
√
−1
k

(⟨ℓ + a,Ω(ℓ + a)⟩+ 2⟨ℓ + a,z+ b⟩)
)

(41)

for a,b ∈Qg . Obviously θ(0,0) is the usual theta function.

Let us denote by R8 ⊂ C
∗ the group of 8th roots of unity. Then R8 becomes also a

subgroup of the unitary group U (n) acting by scalar multiplication. Consider also
the theta vector of level k:

Θk(z,Ω) = (θm(z,Ω))m∈(Z/kZ)g .

Proposition 15 (Funar 1993, 2000; Gocho 1992) – The theta vector satisfies the fol-
lowing functional equation:

Θk(γ ·(z,Ω)) = ζγdet(CΩ+D)1/2 exp(kπ
√
−1⟨z, (CΩ+D)−1Cz⟩)ρg (γ)(Θk(z,Ω)) (42)

where

1. γ belongs to the theta group Γ (1,2) if k is odd and to Sp(2g,Z) elsewhere.

2. ζγ ∈ R8 is the (fixed) multiplier system described above.

3. ρg : Γ (1,2) −→U (C(Z/kZ)g ) is a group homomorphism. For even k the correspond-
ing map ρg : Sp(2g,Z) −→U (C(Z/kZ)g )) becomes a group homomorphism (denoted
also by ρg when no confusion arises) when passing to the quotient U (C(Z/kZ)g )/R8.

4. ρg is determined by the points (1-3) above.

Remark 16 – This result is stated also in Igusa 1972 for some modified theta func-
tions but in less explicit form.
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A.2 Linearizability of Weil representations for odd level k

The proof for the linearizability of the Weil representation associated to Z/kZ for
odd k was first given by A. Andler (see Andler and Ramanan 1996, Appendix A
III) and then extended to other local rings in Cliff, McNeilly, and Szechtman 2000.
Let η : Sp(2g,Z) × Sp(2g,Z)→ R8 ⊂ U (1) be the cocycle determined by the Weil

representation associated to Z/kZ. The image S2 of
(
−1g 0

0 −1g

)
is the involution

S2θm = θ−m, m ∈ (Z/kZ)g .

Thus S4 = 1 and S2 has eigenvalues +1 and −1. Moreover S2 is central and hence
the Weil representation splits according to the eigenspaces decomposition. Further,
the determinant of each factor representation is a homogeneous function whose
degree is the respective dimension of the factor. Therefore we could express, for
each one of the two factors, η to the power the dimension of the respective factor as
a determinant cocycle. The difference between the two factors’ dimensions is the
trace of S2, namely 1 for odd k and 2g for even k. This implies that η, for odd k,
and η2g , for even k is a boundary cocycle. However η8 = 1 and hence for even k and
g ≥ 3 this method could not give any non-trivial information about η.
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