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Abstract

Building on a result by Tao, we show that a certain type of simple closed
curve in the plane given by the union of the graphs of two 1-Lipschitz functions
inscribes a square whose sidelength is bounded from below by a universal
constant times the maximum of the difference of the two functions.
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Introduction

A subset Γ of the plane R
2 is said to inscribe a square if it contains the four vertices

of a square with positive sidelength. The Square Peg Problem raised by Toeplitz2 in
1911 can be stated as follows (we recall that a (continuous) curve γ : [0,1]→R

2 is
called closed if γ(0) = γ(1) and simple if the function t ∈ [0,1) 7→ γ(t) is injective):

Square Peg Problem. Let γ : [0,1]→ R
2 be a simple closed continuous curve. Does

γ([0,1]) necessarily inscribe a square?

1Laboratoire J.A. Dieudonné, Université Côte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
2Toeplitz, 1911, “Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Verän-

derlichen”.
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Figure 1 – A square in red inscribed in the blue curve

The answer to the Square Peg Problem is known to be "Yes" for curves with
enough regularity (e.g. convex, piecewise analytic or locally monotone curves)
but remains open in its full generality (in the case of merely continuous simple
closed curves). For further details, we refer for example the interested reader to
the survey by Matschke3. The absence of positive result in the continuous case is
due, in particular, to the lack of positive lower bound for the sidelengths of squares
inscribed in smooth simple closed curves (or any curve in a set which is dense, in
some sense, in the set of continuous simple closed curves). As a matter of fact, if we
could show for instance that smooth simple closed curves always inscribe a square
whose sidelength is bounded from below by some quantity depending continuously
on the curve (such as for example the area enclosed by the curve or its diameter)
then it would allow us to prove, by a simple argument of approximation, that any
(continuous) simple closed curve inscribes a square. As of now, the only known
quantitative result is due to Matschke in the very specific case of simple closed
continuous curves contained in some annulus4. The aim of the present paper is to
provide other examples, it is precisely to show that we can bound from below the
sidelength of squares inscribed in the type of sets investigated by Tao5.

Another way to state the Square Peg Problem is to see it as a problem of intersec-
tion of a set with its set of opposite square corners. We say that a triple (O,P ,R) in
(R2)3 is a square corner if the three points O,P ,R are distinct and if

R = Rotπ/2O (P ),

where Rotπ/2O : R2→R
2 denotes the rotation of angle π/2 about the point O. Then,

denoting by SC ⊂ (R2)3 the set of square corners, we call opposite corner of a

3Matschke, 2014, “A survey on the square peg problem”.
4Ibid., Theorem 3.4.
5Tao, 2017, “An integration approach to the Toeplitz square peg problem”.
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triple (O,P ,R) ∈ SC the unique point Q = Q(O,P ,R) which makes the quadrilat-
eral (OPQR) a square (see Figure 2), that is

Q(O,P ,R) := P +
−−−→
OR .

O

P

R

Q

Figure 2 – The point R is the image of P by the rotation of angle π/2 about O and Q
is the opposite corner to O in the square (OPQR)

Now, given a subset Γ of the plane, we define its set of opposite square corners,
denoted by SOSC(Γ ), as the set of opposite corners of all square corners in Γ , that is

SOSC(Γ ) :=
{
Q(O,P ,R) | (O,P ,Q) ∈ SC ∩ Γ 3

}
.

If Γ = γ([0,1]) with γ : [0,1]→ R
2 a simple closed curve, then this set can also be

written as (see Figure 3)

SOSC(Γ ) :=
⋃

t,u,v∈[0,1)

{
Q(γ(t),γ(u),γ(v)) ∈R2 |u , t and γ(v) = Rotπ/2γ(t)(γ(u))

}
.

γ(t)

γ(u)

γ(v)

Q(γ(t),γ(u),γ(v))

Rotπ/2γ(t)(Γ )

Figure 3 – The set SOSC(Γ ) is the union over t ∈ [0,1) of opposite corners of the
form Q(γ(t),γ(u),γ(v)) where γ(u),γ(v) are such that (γ(t),γ(u),γ(v)) is a square
corner
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By construction of the set of opposite square corners, the Square Peg Problem is
equivalent to asking whether the set Γ ∩SOSC(Γ ) is empty or not: A set Γ = γ([0,1]),
with γ : [0,1]→R

2 a simple closed curve, does inscribe a square if and only if the
set Γ ∩SOSC(Γ ) is not empty.

Figure 4 – In red a discretization of SOSC(Γ ) with Γ the ellipse of equation 4x2 +y2 =
4

Classical transversality arguments can be used to demonstrate6 that the set of
opposite square corners of a generic smooth simple closed curve is a (non necessarily
connected7) compact smooth manifold of dimension 1 immersed in the plane
(see Figures 4 and 5). Moreover, according to well-known results on the Square
Peg Problem in the generic smooth case asserting that generic smooth (simple
closed) curves inscribe an odd number of squares, one is inclined to think that the
intersection of a set with its set of opposite square corners generically contains
exactly a finite number of points which is an odd multiple of 4. This conclusion
follows from existing results which are based on purely topological methods that
do not rely on the set of opposite square corners, and as we said before, this type of
approach does not allow, a priori, any estimation on the sidelength of the squares in
terms of the “geometry" of the curve. This is not the case of the method proposed in
Tao (2017), where Tao proves a conservation lemma (see Lemma 1) that allows to

6As a matter if fact, an appropriate Multijet Transversality Theorem (see e.g. Golubitsky and
Guillemin (1973, Theorem 4.13 p. 57)) allows to show that for a generic smooth simple closed curve,
the set of (t,u,v) ∈ S1 such that (γ(t),γ(u),γ(v)) ∈ SC is a compact smooth submanifold of dimension
1 of (S1)3 and that the set of opposite square corners of the curve is the image of that set by a smooth
immersion.

7For example, we can show that if we consider the ellipse Γ of Figure 4 and replace for ϵ > 0 small
the (short) piece of Γ joining Aϵ := (1− ϵ,2

√
2ϵ − ϵ2) to Bϵ := (1− ϵ,2

√
2ϵ+ ϵ2) by a (simple non-closed)

curve from Aϵ to Bϵ contained in the ball centered at (1,0) with radius 10
√
ϵ and with a non-empty set of

opposite square corners, then this small deformation generates a new connected component of SOSC(Γ )
for ϵ small enough.
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resolve the Square Peg Problem whenever the set of opposite square corners has a
peculiar form.

Figure 5 – In red a discretization of SOSC(Γ ) where Γ is the blue set

Before proceeding further, we mention that similar constructions of sets of oppo-
site vertices have been used by Matschke8 to deal with the problem of quadrilaterals
inscribed in convex curves (see also Akopyan and Avvakumov (2018)). As in our
paper, his results are based on a conservation lemma (see Lemma 1) by Karasev9

and Tao10 and considerations in terms of area of some sets related to the set of
opposite vertices. We refer the reader to Matschke (2021) for further details.

In Tao (2017), Tao considers simple closed curves given by the union of the
graphs of two functions with “small” Lipschitz constants. Given an interval I =
[T0,T1], two functions f ,g : I →R such that

f (T0) = g(T0), f (T1) = g(T1) and f (t) < g(t) ∀t ∈ (T0,T1)

and setting

Γ := Γ f ∪ Γ g with Γ f := Graphf (I), Γ g := Graphg (I),

he shows, roughly speaking11, that, if f and g are (1− ϵ)-Lipschitz for some ϵ > 0,
then the set SOSC(Γ ) is the union of the four sets (see Figure 6)

S1 =
{
Q(O,P ,R) | (O,P ,Q) ∈ SC ∩

(
Γ f × Γ f × Γ g

)}
,

S2 =
{
Q(O,P ,R) | (O,P ,Q) ∈ SC ∩

(
Γ f × Γ g × Γ f

)}
,

8Matschke, 2021, “Quadrilaterals inscribed in convex curves”.
9Karasëv, 2013, “On two conjectures of Makeev”.

10Tao, 2017, “An integration approach to the Toeplitz square peg problem”.
11The result on SOSC(Γ ) that we are stating here is not rigorously correct, we refer the reader to Tao’s

paper (ibid.) or to Lemma 3 and Remarks 1, 2 for a better understanding of the situation.
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S3 =
{
Q(O,P ,R) | (O,P ,Q) ∈ SC ∩

(
Γ g × Γ g × Γ f

)}
,

S4 =
{
Q(O,P ,R) | (O,P ,Q) ∈ SC ∩

(
Γ g × Γ f × Γ g

)}
,

Figure 6 – The set SOSC(Γ ), with Γ the set in blue, is the union of the four non-blue
simple curves

and moreover each of those sets is a Lipschitz simple curve joining the point
P0 := (T0, f (T0)) = (T0, g(T0)) to the point P1 := (T1, f (T1)) = (T1, g(T1)). Then, Tao
applies a conservation lemma (see Lemma 1) to show that the (signed) area enclosed
by Γ g and S1 has to be zero. Which implies that the two curves Γ g \ {P0, P1} and S1
must intersect and so proves12 the existence of a square inscribed in Γ . The idea of
this present paper is simply to show that a “quantification" of Tao’s approach allows
to obtain the following result:

Theorem 1 – There is a universal constant C > 0 such that the following property
holds: Let I = [T0,T1] be interval and f ,g : I → R be 1-Lipschitz functions such that
f (T0) = g(T0), f (T1) = g(T1) and f (t) < g(t) for all t ∈ (T0,T1), then the set

Graphf (I)∪Graphg (I)

inscribes a square of sidelength at least

C ·max
t∈I

{
g(t)− f (t)

}
.

The proof of Theorem 1 is sketched in the next section and given with full
detail in Section 2. It provides a constant C equal to 0.018 which seems very far

12As we said, we sketch here a simplified version of Tao’s proof, we refer the reader to Tao (2017) for
the complete proof.

66



1. A rough idea of the proof of Theorem 1

from being sharp since computer simulations13 suggest that the optimal constant
of Theorem 1 is probably 0.5. Although moderately interesting, Theorem 1 shows
at least that Tao’s approach might provide an efficient method to quantify the size
of squares inscribed in simple closed curves in term of the geometry of the curve
and thus might be certainly useful to settle the Square Peg Problem in the general
case. But the road is long, there are a number of issues. As an example, the second
part of the proof of Theorem 1 relies heavily on the 1-Lipschitzness assumption on
the functions (see next section), can we weaken this assumption? More precisely,
does a variant of Theorem 1 (where max{g − f } can be replaced by another quantity
depending on f and g) holds true if we assume that f ang g are smooth (or by
approximation only continuous), but not necessarily 1-Lipschitz, and that the set
SOSC(Γ ) contains a simple Lipschitz curve connecting (T0, f (T0)) = (T0, g(T0)) to
(T1, f (T1)) = (T1, g(T1))?

The paper is organized as follows: The main idea of the proof of Theorem 1
is explained in Section 1, its complete proof is given in Section 2, and technical
lemmas are stated and proved in Section 3.

1 A rough idea of the proof of Theorem 1

The proof of Theorem 1 is based on two observations. The first one, due to Karasev14

and Tao15, is a result showing that some quantity is conserved along a quadruple of
curves which traverse squares (see Figure 7). We refer the reader to Tao (2017) for
its proof and more details on the meaning of the integrals involved.

γ1

γ2

γ3

γ4

Figure 7 – For every t, (γ1(t)γ2(t)γ3(t)γ4(t)) is a square

13We wrote a computer program in Python to generate at random pairs (f ,g) of piecewise affine
functions as in Theorem 1 and compute the corresponding inscribed squares. We have always found
largest inscribed squares with sidelength ≥ 0.5 ·maxt∈I {g(t)− f (t)}. By the way, we leave the reader to
check the optimal constant C in Theorem 1 has to be ≤ 0.5.

14Karasëv, 2013, “On two conjectures of Makeev”.
15Tao, 2017, “An integration approach to the Toeplitz square peg problem”.
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Lemma 1 – Let γ1,γ2,γ3,γ4 : [t0, t1]→R
2 be rectifiables curves and x,y,a,b : [t0, t1]→

R be continuous functions such that

γ1(t) = (x(t), y(t))
γ2(t) = (x(t) + a(t), y(t) + b(t))
γ3(t) = (x(t) + a(t)− b(t), y(t) + a(t) + b(t))
γ4(t) = (x(t)− b(t), y(t) + a(t))

∀t ∈ [t0, t1]. (1)

Then we have the identity

∫
γ1

y dx −
∫
γ2

y dx+
∫
γ3

y dx −
∫
γ4

y dx =
a(t1)2 − b(t1)2

2
− a(t0)2 − b(t0)2

2
. (2)

The above result will be used to show that if our simple closed curve (made of
the union of the graphs of two 1-Lipschitz functions) does inscribe only squares
with small sidelength then some area enclosed by a piece of graph of g together with
a piece of the set of opposite square corners has to be small. The second observation
is the following type of result which gives a lower bound for some integral if the
union of the graphs of two 1-Lipschitz functions inscribes a certain type of square,
its proof is given in Figure 8.

Lemma 2 – Let f ,g : [T0,T1] → R be 1-Lipschitz functions such that f (T0) = g(T0),
f (T1) = g(T1) and f (t) < g(t) for all t ∈ (T0,T1) and t,a,b ∈R be such that

T0 ≤ t, t + a, t − b, t + a− b ≤ T1, a > 0 (3)

and

f (t + a) = f (t) + b
g(t + a− b) = f (t) + a+ b

g(t − b) = f (t) + a.
(4)

Then we have

∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≥ a2 + b2

2
. (5)
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1. A rough idea of the proof of Theorem 1

t t + a

f (t)
f (t) + b

f (t) + a

f (t) + a+ b

graph of g(· − b)

graph of f

Figure 8 –
∫ t+a−b
t−b g(s)ds −

∫ t+a
t

f (s)ds =
∫ t+a
t

g(s − b)− f (s)ds is larger or equal to the
sum of the blue area and the red area given respectively by a2/2 and b2/2

Then the proof of Theorem 1 is divided in two parts:

First part: We note that it is sufficient to prove the result for functions which are
(1− ϵ)-Lipschitz for some ϵ > 0 small. Then, we fix ϵ > 0 and two (1− ϵ)-Lipschitz
functions f and g as in the assumption of Theorem 1, we extend them to the whole
real line and consider the set of (possibly degenerate) opposite square corners of
the form

Qt = P
f
t +R

g
t −O

f
t ,

where t ∈ R, Of
t = (t, f (t)), P f

t ∈ Γ f , Rg
t ∈ Γ g and R

g
t is the image of P f

t by the rota-

tion of angle π/2 with center O
f
t . As shown by Tao16, the function t ∈ R 7→ Qt is

Lipschitz and injective, so its image is a simple rectifiable curve joining (T0, f (T0))
to (T1, f (T1)), and by construction, the curve t ∈ R 7→ Qt comes along with three

Lipschitz curves t ∈ R 7→ O
f
t ∈ Γ f , t ∈ R 7→ P

f
t ∈ Γ f and t ∈ R 7→ R

g
t ∈ Γ g such

that (Of
t P

f
t QtR

g
t ) is always a square (see Lemma 3). Therefore, any intersection of

(Qt)t∈R with Γ g gives rise to a (possibly degenerate) inscribed square. Furthermore,
if we consider two consecutive intersections of (Qt)t∈R with Γ g , say at times t0 < t1
in [T0,T1] then Tao’s conservation lemma can be used to bound from above the
(non-signed) area enclosed by the simple closed curve made of the concatenation
of Q[t0,t1] and the piece Γ g joining Qt0 to Qt1 in terms of the sizelengths of the
corresponding squares at t0 and t1 (see Lemma 6). This result allows to show that
the smaller are the squares at t0 and t1 the smaller is the area and the closer to Γ g

16Tao, 2017, “An integration approach to the Toeplitz square peg problem”.
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has to be the curve t ∈R 7→Qt (see Lemma 8).

Second part: From the first part, we need to figure out what happens when the
curve t ∈R 7→Qt is close to Γ g in some sense and to see how to get a contradiction
if the squares at times t0 and t1 are too small. To do this let us imagine, for sake
of simplicity, that Qt is so close to Γ g that it belongs indeed to Γ g for all t ∈ [t0, t1]
and that the sidelength of the squares at t0, t1 is equal to 0. Then in this case, Tao’s
Lemma 1 allows to show that we have (compare Lemma 7)∫ t+at−bt

t−bt
g(s)ds −

∫ t+at

t
f (s)ds =

a2
t − b2

t

2
t ∈ [t0, t1],

where we suppose that Of
t , P

f
t ,Qt and R

g
t satisfy

O
f
t = (t, f (t))

P
f
t = (t + at , f (t + at)) = (t + at , f (t) + bt)
Qt = (t + at − bt , g(t + at − bt)) = (t + at − bt , f (t) + at + bt)
R
g
t = (t − bt , g(t − bt)) = (t − bt , f (t) + at)

∀t ∈ [t0, t1].

Furthermore, Lemma 2 implies that we also have∫ t+at−bt

t−bt
g(s)ds −

∫ t+at

t
f (s)ds ≥

a2
t + b2

t

2
t ∈ [t0, t1].

Then, we conclude that bt = 0 for all t ∈ [t0, t1] and as a consequence that

g(t)− f (t) = g(t + at)− f (t + at) = at and
∫ t+at

t
g(s)− f (s)ds =

a2
t

2
,

for all t ∈ [t0, t1]. This type of property prevents the function g − f to admit a
maximum at some T ∈ (t0, t1) such that T ∈ (t, t+at) ∈ [t0, t1] for some t ∈ [t0, t1] (this
fact is a consequence of Lemma 10), and yields a contradiction.

The proof of Theorem 1 consists in quantifying all the above arguments to make
the sketch of proof correct.

2 Proof of Theorem 1

It is sufficient to prove the result for functions f and g which are (1− ϵ)-Lipschitz
for some ϵ > 0. As a matter of fact, if Theorem 1 holds true in this case, then given
f ,g : I → R we can define for every ϵ > 0 small fϵ, gϵ : I → R by fϵ := (1− ϵ)f and
gϵ := (1− ϵ)g, apply the result and pass to the limit as ϵ ↓ 0 to obtain the required
inscribed square as the limit of a sequence of squares whose sidelengths are bounded
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from below by C ·maxt∈I {gϵ(t)− fϵ(t)} which tends to C ·maxt∈I {g(t)− f (t)}. So from
now on, we assume that we are given two functions f ,g : I → R which are (1− ϵ)-
Lipschitz for some ϵ > 0 and set

M := max
t∈I

{
g(t)− f (t)

}
> 0.

Moreover, as in Tao (2017), we extend f and g to the whole real line R by setting

f (t) = g(t) = f (T0) = g(T0)∀t ≤ T0 and f (t) = g(t) = f (T1) = g(T1)∀t ≥ T1,

and denote respectively the graphs of f and g over R by Γ f and Γ g . Then, for every

t ∈ R, we set Of
t = (t, f (t)) and denote by Rotft : R2→ R

2 the rotation of angle π/2

with center Of
t .

Lemma 3 – The following properties hold:

(i) For every t ∈ R, the set Rotft
(
Γ f

)
∩ Γ g is a singleton equal to {Rg

t } with R
g
t =

Rotft (P f
t ) ∈ Γ g and P

f
t = (ut , f (ut)) ∈ Γ f , where ut ∈ [t + (g(t)− f (t))/2,+∞) is the

unique solution u ∈R of the equation

g(t + f (t)− f (u))− f (t)−u + t = 0.

(ii) If t < (T0,T1), then Rotft
(
Γ f

)
∩ Γ g = {Of

t } = {(t,g(t)}.

(iii) The functions t ∈R 7→ P
f
t , t ∈R 7→ R

f
t and Q : R→R

2 defined by

Q(t) = Qt := P
f
t +R

g
t −O

f
t ∀t ∈R

are Lipschitz.

(iv) The Lipschitz functions a,b : R→ R defined by at := ut − t and bt := f (ut)− f (t)
for all t ∈R satisfy

P
f
t = (t + at , f (t) + bt) = (t + at , f (t + at))
Qt = (t + at − bt , f (t) + at + bt)
R
g
t = (t − bt , f (t) + at) = (t − bt , g(t − bt)) ,

and

at ≥
g(t)− f (t)

2
, |bt | ≤ at

for all t ∈R.
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(v) The function t ∈R 7→Qt is injective.

Remark 1 – The triple (Of
t , P

f
t ,R

g
t ) is not always in SC (the set of square corners), it

is the case if and only if Of
t , P

f
t ⇔ ut , 0⇔ t ∈ (T0,T1). Moreover, we do not have

necessarily Qt ∈ SOSC(Graphf (I)∪Graphg (I)) for all t ∈ (T0,T1) because we might

have that P f
t ∈ Γ f \Graphf (I) (remember that Γ f denotes the graph of f over R) for

some t in (T0,T1).

Remark 2 – If we denote for every t ∈R, by Rotf ,−t : R2→R
2 the rotation of angle

−π/2 with center O
f
t , by Rotgt : R2→ R

2 the rotation of angle π/2 with center O
g
t

and by Rotg,−t : R2→R
2 the rotation of angle −π/2 with center Og

t , then Lemma 3
implies by symmetry (we can exchange the roles of f anf g and/or reverse time)

that for every t ∈R, the sets Rotf ,−t
(
Γ f

)
∩ Γ g , Rotgt (Γ g )∩ Γ f and Rotg,−t (Γ g )∩ Γ f are

singletons and the corresponding mappings t ∈R 7→Q2
t , t ∈R 7→Q3

t and t ∈R 7→Q4
t

are Lipschitz and injective. Moreover, we can check easily that

SOSC(Graphf (I)∪Graphg (I)) ⊂
⋃

t∈[T0,T1]

{
Qt ,Q

2
t ,Q

3
t ,Q

4
t

}
.

Remark 3 – Lemma 3 requires f and g to be (1−ϵ)-Lipschitz for some ϵ > 0. If f and

g are only 1-Lipschitz then one can show that for every t ∈R, the set Rotft
(
Γ f

)
∩ Γ g

is either a singleton or a segment of slope ±1.

Proof (Proof of Lemma 3). Let t ∈R be fixed. The continuous function ϕt : [t,+∞)→
R defined by

ϕt(u) := g(t + f (t)− f (u))− f (t)−u + t ∀u ∈R,

satisfies

lim
u→+∞

ϕt(u) = −∞

and, by 1-lipschitzness of f and g (they are indeed (1− ϵ)-Lipschitz) and the non-
negativity of g − f , we have

ϕt

(
t +

g(t)− f (t)
2

)
= g

(
t + f (t)− f

(
t +

g(t)− f (t)
2

))
−
f (t)

2
−
g(t)

2

≥ g(t)−
∣∣∣∣∣∣f (t)− f

(
t +

g(t)− f (t)
2

)∣∣∣∣∣∣− f (t)
2
−
g(t)

2

≥ g(t)−
∣∣∣∣∣g(t)− f (t)

2

∣∣∣∣∣− f (t)
2
−
g(t)

2
= 0.
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Hence there is u ≥ t + g(t)−f (t)
2 such that ϕt(u) = 0, that is, such that

Rotft (u,f (u)) = (t, f (t)) + (f (t)− f (u),u − t) = (t + f (t)− f (u), f (t) +u − t) ∈ Γ g .

This u is unique because if there is another u′ ∈R verifying ϕt(u′) = 0, then we have
( by (1− ϵ)-lipschitzness of f and g)

|u′ −u| =
∣∣∣g(t + f (t)− f (u′))− g(t + f (t)− f (u))

∣∣∣
≤ (1− ϵ)

∣∣∣f (u′)− f (u)
∣∣∣ ≤ (1− ϵ)2|u′ −u|,

which shows that u′ = u. Thus the proof of (i) is complete. We notice that if
t < (T0,T1), then ϕt(t) = g(t)− f (t) = 0, which shows that u = t, that is Rg

t = P
f
t = O

f
t ,

corresponds to the unique point in Rotft
(
Γ f

)
∩ Γ g and proves (ii). For every t, t′ in

R, we have

|ut −ut′ |
=

∣∣∣g (t + f (t)− f (ut))− f (t) + t − g (t′ + f (t′)− f (ut′ )) + f (t′)− t′
∣∣∣

≤
∣∣∣g (t + f (t)− f (ut))− g (t′ + f (t′)− f (ut′ ))

∣∣∣+
∣∣∣f (t′)− f (t)

∣∣∣+
∣∣∣t′ − t∣∣∣

≤ (1− ϵ)
∣∣∣(t + f (t)− f (ut))− (t′ + f (t′)− f (ut′ ))

∣∣∣+ (1− ϵ)
∣∣∣t′ − t∣∣∣+

∣∣∣t′ − t∣∣∣
≤

∣∣∣(t + f (t)− f (ut))− (t′ + f (t′)− f (ut′ ))
∣∣∣+ 2

∣∣∣t′ − t∣∣∣
≤ |f (ut)− f (ut′ )|+

∣∣∣f (t′)− f (t)
∣∣∣+ 3

∣∣∣t′ − t∣∣∣
≤ (1− ϵ) |ut′ −ut |+ (1− ϵ)

∣∣∣t′ − t∣∣∣+ 3
∣∣∣t′ − t∣∣∣ ≤ (1− ϵ) |ut′ −ut |+ 4

∣∣∣t′ − t∣∣∣ ,
which implies that |ut′ −ut | ≤ (4/ϵ)|t′ − t|. This shows that the function t ∈R 7→ ut is
Lipschitz and as a consequence that the functions defined in (iii) are Lipschitz. The
first part of (iv) is a straightforward consequence of the definitions of P f

t ,R
g
t ,Qt and

at ,bt . Concerning the second part, at ≥ (g(t)− f (t))/2 follows from ut ≥ t + (g(t)−
f (t))/2 and |bt | ≤ at follows from the 1-lipschitzness of f (because f (t+at) = f (t)+bt).
To prove (v) we suppose for contradiction that there are t , t′ ∈R such that Qt = Qt′ .
Then, the point Q = Qt = Qt′ belongs to the two squares

(Of
t P

f
t QR

g
t ) and (Of

t′P
f
t′ QR

g
t′ ),

which shows that P f
t , P

f
t′ , R

g
t , R

g
t′ (otherwise O

f
t = O

f
t′ which is impossible because

t , t′) and that Rg
t (resp. Rg

t′ ) is the image of P f
t (resp. of P f

t′ ) by the rotation of angle

−π/2 about Q. Therefore, the lines D = (P f
t P

f
t′ ) and D ′ = (Rg

t R
g
t′ ) are well-defined

(they pass through different points) and D ′ is the image of D by the rotation of
angle −π/2 about Q. But since P

f
t and P

f
t′ belong to Γ f and f is (1− ϵ)-Lipschitz the

angle between D and the horizontal is strictly less than π/4 and consequently the
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angle of D ′, its image by the rotation of angle −π/2 about Q, with the vertical is
strictly less than π/4. This is a contradiction because R

g
t and R

g
t′ belong to Γ g and g

is (1− ϵ)-Lipschitz. □

By construction, for every t ∈R, the points Of
t , P

f
t ,Qt and R

g
t form a square, and

in addition the points Of
t and P

f
t always belong to Γ f and R

g
t always belongs to Γ g .

So, we can apply Lemma 1 and write some integrals in terms of integrals of f and g.

Lemma 4 – For every t < t′ ∈R,∫ t+at

t
f (s)ds −

∫ t′+at′

t′
f (s)ds+

∫
Q([t,t′])

y dx −
∫ t′−bt′

t−bt
g(s)ds =

a2
t′ − b

2
t′

2
−
a2
t − b2

t

2
.

Proof (Proof of Lemma 4). Applying Tao’s Lemma 1 with γ1,γ2,γ3,γ4 : [t, t′]→ R
2

defined by (see Lemma 3)

γ1(s) = O
f
s = (s, f (s))

γ2(s) = P
f
s = (s+ as, f (s) + bs) = (s+ as, f (s+ as))

γ3(s) = Qs = (s+ as − bs, f (s) + as + bs)
γ4(s) = R

g
s = (s − bs, f (s) + as) = (s − bs, g(s − bs)) ,

∀s ∈ [t, t′],

we obtain∫
γ1

y dx −
∫
γ2

y dx+
∫
γ3

y dx −
∫
γ4

y dx =
a2
t′ − b

2
t′

2
−
a2
t − b2

t

2
. (6)

Since γ1,γ2 and γ4 are graphs, we have (see Tao (2017, Example 3.3))∫
γ1

y dx =
∫ t′

t
f (s)ds,

∫
γ2

y dx =
∫ t′+at′

t+at
f (s)ds,

∫
γ4

y dx =
∫ t′−bt′

t−bt
g(s)ds.

Then (6) gives∫ t′

t
f (s)ds −

∫ t′+at′

t+at
f (s)ds+

∫
Q([t,t′])

y dx −
∫ t′−bt′

t−bt
g(s)ds =

a2
t′ − b

2
t′

2
−
a2
t − b2

t

2

and we conclude by the equality∫ t′

t
f (s)ds =

∫ t+at

t
f (s)ds+

∫ t′+at′

t+at
f (s)ds+

∫ t′

t′+at′
f (s)ds.

□

Let T ∈ (T0,T1) such that (g − f )(T ) = M be fixed and ρ ∈ (0,1/8) a constant to be
chosen later. We define t0, t1 ∈ [T0,T1] by

t0 = max
{
t ∈ [T0,T ] |Qt ∈ Γ g and at ≤ ρM

}
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and

t1 = min
{
t ∈ [T ,T1] |Qt ∈ Γ g and at ≤ ρM

}
,

which are well-defined because aT0
= 0 and aT1

= 0 by Lemma 3 (iv). Then we set

τ0 := t0 + at0 − bt0 and τ1 := t1 + at1 − bt1
and note that by construction, the following result holds:

Lemma 5 – We have

t0 ≤ τ0 < T < T +
3M
8

< t1 ≤ τ1 (7)

and

Qt0 = (τ0, g(τ0)) , Qt1 = (τ1, g(τ1)) and Qt < Γ
g ∀t ∈ (t0, t1). (8)

Furthermore, if we denote by Ω ⊂R
2 the bounded open set enclosed by the curve

γ : [0, t1 − t0 + τ1 − τ0] −→R
2

given by the concatenation of C := Q([t0, t1]) with the reversal of Graphg ([τ0, τ1]) (which
is a simple closed curve thanks to the property (8) and Lemma 3 (v)), then there is
σ ∈ {−1,1} such that the following property holds: For every τ ∈ (τ0, τ1), there are λτ > 0
and tτ ∈ (t0, t1) such that

(τ,g(τ) + σ λ) = Qtτ ∈ C and (τ,g(τ) + σ s) ∈Ω ∀s ∈ (0,λτ ). (9)

Moreover, if σ = 1 then the curve γ is clockwise oriented and if σ = −1 it is anticlockwise
oriented.

Proof. By construction and the fact that both at0 − bt0 , at1 − bt1 are nonnegative (see
Lemma 3 (iv)), we already know that t0 ≤ T ≤ t1, t0 ≤ τ0 and t1 ≤ τ1. Since Qt0 ∈ Γ

g ,
we have, by Lemma 3 (iv),

g(τ0) = g
(
t0 + at0 − bt0

)
= f (t0) + at0 + bt0 = f

(
t0 + at0

)
+ at0 ,

which gives (by 1-lipschitzness of f )

|g(τ0)− f (τ0)| ≤
∣∣∣g(τ0)− f (t0 + at0 )

∣∣∣+
∣∣∣f (t0 + at0 )− f (τ0)

∣∣∣ ≤ 2at0 ≤ 2ρM. (10)

Consequently, if τ0 ≥ T , then we have (remember that |bt0 | ≤ at0 )

0 ≤ τ0 − T ≤ τ0 − t0 = at0 − bt0 ≤ 2at0 ≤ 2ρM,

which implies (by 2-lipschitzness of g − f )

(g(τ0)− f (τ0)) ≥ (g(T )− f (T ))− 2 |τ0 − T | ≥M − 4ρM = (1− 4ρ)M,
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which contradicts (10) since ρ < 1/8. Furthermore, since g(t1 − b1) = f (t1) + at1 and
|bt1 | ≤ at1 , we have (by 1-lipschitzness of f and g)

M − 2(t1 − T ) = g(T )− f (T )− 2(t1 − T ) ≤
g(t1)− f (t1)

≤
∣∣∣g(t1)− g(t1 − bt1 )

∣∣∣+
∣∣∣g(t1 − bt1 )− f (t1)

∣∣∣ ≤ 2at1 ≤ 2ρM

which implies that t1 − T ≥M(1− 2ρ)/2 > 3M/8 since ρ ∈ (0,1/8). So, the proof of
(7) is complete. The property (8) is a direct consequence of the construction of t0
and t1. Let us now prove the second part of the statement. The concatenation of
C := Q([t0, t1]) with the reversal of Graphg ([τ0, τ1]) is the curve

γ : [0, t1 − t0 + τ1 − τ0] −→R
2

defined by

γ(s) :=
{

Qt0+s if s ∈ [0, t1 − t0]
(τ1 − (s − t1 + t0), g (τ1 − (s − t1 + t0))) if s ∈ [t1 − t0, t1 − t0 + τ1 − τ0],

for all s ∈ [0, t1 − t0 + τ1 − τ0]. We check easily that γ is Lipschitz and closed as the
concatenation of two Lipschitz curves with the same endpoints (we have, by (8),
γ(0) = Qt0 = (τ0, g(τ0)) and γ(t1 − t0) = Qt1 = (τ1, g(τ1))) and that it is simple because
t ∈ R 7→ Qt is injective and Qt < Γ

g for all t ∈ [t0, t1] (by (8)). Then, by the Jordan
curve Theorem, the image of γ , I := γ([0, t1 − t0 +τ1 −τ0]), divides the plane R

2 into
two connected components Ω and O where Ω is the bounded open set enclosed by
γ and O is the complement of Ω. For every τ ∈ (τ0, τ1), the point (τ,g(τ)) belongs
to the image of γ but not to γ([0, t1 − t0]). So, since g is 1-Lipschitz there is hτ > 0
such that the vertical segment centered at (τ,g(τ)) of length 2hτ intersects I only at
(τ,g(τ)) (note that the vertical line through (τ,g(τ)) intersects I at (τ,g(τ)) and at at
least another point of C either at h . By connectedness of Ω and O (and the fact that
they are separated by I ), we can show that there is σ ∈ {−1,+1} such that for every
τ ∈ (τ0, τ1), (τ,g(τ)) + σ (0,hτ ) belongs to Ω and we can check that γ is clockwise
oriented if σ = 1 and anticlockwise oriented if σ = −1. If for every τ ∈ (τ0, τ1), we
define λτ > 0 by

λτ := min
{
h > 0 | (τ,g(τ)) + σ (0,h) <Ω

}
,

then, since Ω is bounded λτ is well-defined, since λτ ≥ hτ λτ is positive, and by
construction (τ,g(τ))+σ (0, s) ∈Ω for s ∈ (0,λτ ) and (τ,g(τ))+σ (0,λτ ) ∈Ω\ Γ g = C so
that there is a unique tτ ∈ [t0, t1] (by Lemma 3 (v)) such that (τ,g(τ)) +σ (0,λτ ) = Qtτ .
This completes the proof of the Lemma. □

By Lemma 5, we know that for every τ ∈ (τ0, τ1) the concatenation of the curve
Cτ := Q([t0, tτ ]) with the vertical segment joining Qtτ to (τ,g(τ)) and the reversal of
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2. Proof of Theorem 1

Graphg ([τ0, τ]) is a simple closed curve (note that by construction (see (9)) the open
interval ((τ,g(τ)),Qtτ ) is contained in Ω), we denote by Ωτ the open set enclosed by
that curve and we set

Aτ =
∫
Q([t0,tτ ])

y dx −
∫ τ

τ0

g(s)ds.

graph of g

curve C

τ0 τ τ1

Qtτ
Ωτ

Figure 9 – The set Ωτ is contained in Ω, the set enclosed by the concatenation of C
with Graphg ([τ0, τ1])

The following result follows from Stoke’s formula, Lemma 4 and Lemma 9 whose
proof can be found in Section 3 (L2 denotes the Lebesgue measure on R

2):

Lemma 6 – We have

L2(Ωτ ) = |Aτ | ≤ L2(Ω) ≤ ρ2M2 ∀τ ∈ (τ0, τ1). (11)

Furthermore, if σ = 1, then we have 0 ≤ Aτ ≤ Aτ1
for all τ ∈ [τ0, τ1] and if σ = −1, then

we have Aτ1
≤ Aτ ≤ 0 for all τ ∈ [τ0, τ1].

Proof (Proof of Lemma 6). By Lemma 5 and Stoke’s formula, we have (see Tao (2017,
Lemma 3.4))

L2(Ω) = σ

(∫
Q([t0,t1])

y dx −
∫ τ1

τ0

g(s)ds
)

= σAτ1
(12)

and since for every τ ∈ (τ0, τ1) the concatenation of Cτ with the vertical segment
joining Qtτ to (τ,g(τ)) and the reversal of Graphg ([τ0, τ]) is a simple closed curve
with the same orientation of γ , we also have

L2(Ωτ ) = σAτ ∀τ ∈ (τ0, τ1). (13)
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By construction, Ωτ is contained in Ω for all τ ∈ (τ0, τ1), so we have L2(Ωτ ) = |Aτ | ≤
L2(Ω) for every τ ∈ (τ0, τ1) and the second part of the lemma follows easily from
(12)-(13). It remains to show that L2(Ω) ≤ ρ2M2. We note that by Lemma 4, we
have ∫

Q([t0,t1])
y dx −

∫ t1+at1−bt1

t0+at0−bt0
g(s)ds

=
∫
Q([t0,t1])

y dx −
∫ t1−bt1

t0−bt0
g(s)ds −

∫ t0−bt0

t0+at0−bt0
g(s)ds −

∫ t1+at1−bt1

t1−bt1
g(s)ds

=
a2
t1
− b2

t1

2
−
a2
t0
− b2

t0

2
−
∫ t0+at0

t0

f (s)ds+
∫ t1+at1

t1

f (s)ds

−
∫ t0−bt0

t0+at0−bt0
g(s)ds −

∫ t1+at1−bt1

t1−bt1
g(s)ds

=
a2
t1
− b2

t1

2
−
a2
t0
− b2

t0

2
+

∫ t0+at0−bt0

t0−bt0
g(s)ds −

∫ t0+at0

t0

f (s)ds


−
∫ t1+at1−bt1

t1−bt1
g(s)ds −

∫ t1+at1

t1

f (s)ds

 .
But Lemma 9 gives

a2
ti

+ b2
ti

2
≤

∫ ti+ati−bti

ti−bti
g(s)ds −

∫ ti+ati

ti

f (s)ds ≤
3a2

ti
− b2

ti

2
∀i = 0,1.

Then, we conclude that

−ρ2M2 ≤ −a2
t1 ≤ −a

2
t1 + b2

t0 ≤
∫
Q([t0,t1])

y dx −
∫ τ1

τ0

g(s)ds ≤ a2
t0 − b

2
t1 ≤ a2

t0 ≤ ρ2M2,

which completes the proof of the lemma. □

Lemma 7 – We have for every τ ∈ [τ0, τ1]∫ τ

tτ−btτ
g(s)ds −

∫ tτ+atτ

tτ

f (s)ds ≤
a2
tτ
− b2

tτ

2
+ ρ2M2.

Proof (Proof of Lemma 7). Let τ ∈ [τ0, τ1] be fixed. If σ = 1, then Lemma 4 with t = t0
and t′ = tτ , the definition of Aτ and Aτ ≥ 0 (by Lemma 6) give∫ τ

tτ−btτ
g(s)ds −

∫ tτ+atτ

tτ

f (s)ds(Cont. next page)
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=
∫ τ

tτ−btτ
g(s)ds+

a2
tτ
− b2

tτ

2
−
a2
t0
− b2

t0

2
−
∫ t0+at0

t0

f (s)ds

−
∫
Q([t0,tτ ])

y dx+
∫ tτ−btτ

t0−bt0
g(s)ds

=
a2
tτ
− b2

tτ

2
−
a2
t0
− b2

t0

2
+
∫ τ0

t0−bt0
g(s)ds −

∫ t0+at0

t0

f (s)ds −Aτ

≤
a2
tτ
− b2

tτ

2
−
a2
t0
− b2

t0

2
+
∫ τ0

t0−bt0
g(s)ds −

∫ t0+at0

t0

f (s)ds,

which can be bounded from above, by (31) of Lemma 9 with δ = 0, by

a2
tτ
− b2

tτ

2
−
a2
t0
− b2

t0

2
+

3a2
t0
− b2

t0

2
=
a2
tτ
− b2

tτ

2
+ a2

t0 ≤
a2
tτ
− b2

tτ

2
+ ρ2M2.

If σ = −1, then Lemma 4 with t = tτ and t′ = t1 gives∫ τ

tτ−btτ
g(s)ds −

∫ tτ+atτ

tτ

f (s)ds =

a2
tτ
− b2

tτ

2
−
a2
t1
− b2

t1

2
−
∫ t1+at1

t1

f (s)ds+
∫
Q([tτ ,t1])

y dx −
∫ t1−bt1

τ
g(s)ds

where we have∫
Q([tτ ,t1])

y dx −
∫ t1−bt1

τ
g(s)ds =

∫
Q([t0,t1])

y dx −
∫
Q([t0,tτ ])

y dx

−
∫ τ0

τ
g(s)ds −

∫ τ1

τ0

g(s)ds −
∫ t1−bt1

τ1

g(s)ds = Aτ1
−Aτ +

∫ τ1

t1−bt1
g(s)ds.

Therefore, since Aτ1
≤ Aτ ≤ 0 (by Lemma 6), we infer that∫ τ

tτ−btτ
g(s)ds −

∫ tτ+atτ

tτ

f (s)ds

≤
a2
tτ
− b2

tτ

2
−
a2
t1
− b2

t1

2
−
∫ t1+at1

t1

f (s)ds+
∫ τ1

t1−bt1
g(s)ds,

which can be bounded from above, by (31) of Lemma 9 with δ = 0, by

a2
tτ
− b2

tτ

2
−
a2
t1
− b2

t1

2
+

3a2
t1
− b2

t1

2
=
a2
tτ
− b2

tτ

2
+ a2

t1 ≤
a2
tτ
− b2

tτ

2
+ ρ2M2. □
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For every µ > 0, we set

Λµ :=
{
τ ∈ [τ0, τ1] |λτ ≥ µ

}
.

The Lebesgue measure of this set is controlled by the area of Ω, we have (L1 and L2

denote respectively the Lebesgue measures on R and R
2):

Lemma 8 – For every µ > 0, L1(Λµ) ≤ L2(Ω)/µ.

Proof (Proof of Lemma 8). By Fubini’s Theorem, we have (H1 denotes the
1-dimensional Hausdorff measure)

L2(Ω) =
∫
R

H1(Ω∩Vτ )dτ,

where Vτ denotes the vertical line of abscissa τ . If τ ∈ [τ0, τ1] is such that λτ ≥ µ,
then by (9) of Lemma 5, the 1-dimensional set Ω∩Vτ contains at least a vertical
segment of length µ, so that H1(Ω∩Vτ ) ≥ µ. As a consequence, we have that

L2(Ω) ≥
∫
Λµ

µdτ = µL1
(
Λµ

)
,

which proves the result. □

We are now ready to conclude the proof of Theorem 1. We consider a constant
B ≥ 2 to be fixed later and set

ν := ρM and µ := 2Bρ2M.

Since [
T +

M
4
− M

4B
,T +

M
4

+
M
4B

]
⊂ [τ0, τ1] (by (7))

and

L1
([
T +

M
4
− M

4B
,T +

M
4

+
M
4B

])
=

M
2B

=
ν2

µ
,

there exists by Lemma 6 (L2(Ω) ≤ ν2) and Lemma 8

τ ∈
[
T +

M
4
− M

4B
,T +

M
4

+
M
4B

]
(14)

such that

λτ ∈ [0,µ]. (15)

80



2. Proof of Theorem 1

We set λ := λτ , t := tτ , a := atτ ,b := btτ and

E :=
∫ τ

t−b
g(s)ds −

∫ t+a

t
f (s)ds.

The contradiction will come from two inconsistent bounds for E, one from above
given by Lemma 7 and one from below that will follow from Lemma 10. On the
one hand, Lemma 7 gives

E ≤ a2 − b2

2
+ ν2. (16)

Now, in order to apply Lemma 10, we need to show that τ − a < T . Let us do it. By
Lemma 3 (iv), we have

τ = t + a− b
f (t + a) = f (t) + b

g(t + a− b) = f (t) + a+ b − σλ
g(t − b) = f (t) + a,

(17)

which can be used to show that (by using the 1-lipschitzness of f )

0 < a = g(t + a− b)− f (t + a) + σλ

≤ g(τ)− f (τ) + |f (t + a− b)− f (t + a)|+ σλ

≤M + |b|+λ. (18)

Then, by (16) and (30) of Lemma 9 with δ = −σλ, we have

a2 + b2

2
− σλ(a+ b)

2
+
λ2

4
≤ E ≤ a2 − b2

2
+ ν2,

which gives by (15) and (18)

b2 ≤ ν2 − λ2

4
+
σλ(a+ b)

2

≤ ν2 − λ2

4
+
λ(a+ |b|)

2

≤ ν2 − λ2

4
+
λM

2
+
λ2

2
+λ|b|

≤ ν2 +
µ2

4
+
µM

2
+µ|b|. (19)

The roots of the quadratic polynomial b2 −µb − ν2 −µ2/4−µM/2 (in the b variable)
are given by

µ−
√

2µ2 + 2µM + 4ν2

2
and

µ+
√

2µ2 + 2µM + 4ν2

2
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so the inequality (19) implies that

|b| ≤
µ+

√
2µ2 + 2µM + 4ν2

2
= ρMD

with D = D(ρ,B) := Bρ+
√

2B2ρ2 +B+ 1. (20)

By 1-lipschitzness of f and g together with (17), we infer that

a = g(t + a− b)− f (t + a) + σλ

= g(τ)− f (τ) + f (t + a− b)− f (t + a) + σλ

≥M − 2(τ − T )− |b| −µ, (21)

which yields (by (14))

τ − a ≤ τ −M + 2(τ − T ) + |b|+µ

≤ T +
M
4

+
M
4B
−M + 2

(M
4

+
M
4B

)
+ ρMD + 2Bρ2M

= T − M
4

(
1− 3

B
− 4ρD − 8Bρ2

)
.

In conclusion, we have proved that if

1− 3
B
− 4ρD − 8Bρ2 > 0, (22)

then we have τ −a < T < τ and Lemma 10 can be applied to the 2-Lipschitz function
h := g − f . Assuming that (22) holds, we obtain∫ τ

τ−a
h(t)dt ≥

h(T )2

4
− a2

2
+
h(τ − a)2 + h(τ)2

8
− h(T )(h(τ − a) + h(τ))

4

+
a (h(T )− 2T + 2τ)

2
+

(T − τ + a)h(τ − a)
2

+
(τ − T )h(τ)

2
− (τ −T )2,

where (remember (17))

h(T ) = M
h(τ) = a+ δ1 with δ1 := −σλ+ f (t + a)− f (t + a− b)

h(τ − a) = a+ δ2 with δ2 := f (t)− f (t − b).

So, by setting u := τ − T , we have
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∫ τ

τ−a
h(s)ds ≥ M2

4
− a2

2
+

(a+ δ2)2 + (a+ δ1)2

8
− M(2a+ δ1 + δ2)

4
(Cont. next page)

+
a (M + 2u)

2
+

(a−u)(a+ δ2)
2

+
u(a+ δ1)

2
−u2

=
a2

2
+
M2 − a2

4
+ au −u2

+
(a−M)(δ1 + 3δ2)

4
+
δ2

1 + δ2
2

8
+
u(δ1 − δ2)

2
+
Mδ2

2
. (23)

By construction, we have u ∈ [M/4(1−1/B),M/4(1 + 1/B)] (see (14)) and, by (18) and
(21),

M(1−F)− 2u ≤ a ≤M(1 +F)

with

F = F(ρ,B) := ρD + 2Bρ2 > 0.

So Lemma 11 gives

M2 − a2

4
+ au −u2 ≥ M2

16

(
3− 2

B
− 1
B2

)
− M2F

4

(
1 +F +

1
B

)
. (24)

We need now to bound from below the remaining terms of the right-hand side of
(23). We have by 1-lipschitzness of f and g and the above inequalities

|δ1| ≤ λ+ |f (t + a)− f (t + a− b)| ≤ µ+ |b| ≤M
(
2Bρ2 + ρD

)
,

|δ2| ≤ |f (t)− f (t − b)| ≤ |b| ≤MρD,

0 ≤ u ≤ M
4

(
1 +

1
B

)
,

and

|a−M | = |g(t + a− b)− f (t + a) + σλ− g(T ) + f (T )|
≤ |g(t + a− b)− g(T )|+ |f (T )− f (t + a)|+λ

≤ |τ − T |+ |T − τ − b|+µ

≤ 2|τ − T |+ |b|+µ

≤ M
2

(
1 +

1
B

)
+ ρMD + 2Bρ2M.

So we infer that

(a−M)(δ1 + 3δ2)
4

+
δ2

1 + δ2
2

8
+
u(δ1 − δ2)

2
+
Mδ2

2
(Cont. next page)

83



A quantitative version of Tao’s result on the Toeplitz Problem L. Rifford

≥ −|a−M | (δ1|+ 3|δ2|)
4

− u (|δ1|+ |δ2|)
2

− M |δ2|
2

≥ −M
2

4

(1
2

(
1 +

1
B

)
+ ρD + 2Bρ2

)(
2Bρ2 + 4ρD

)
− M2

8

(
1 +

1
B

)(
2Bρ2 + 2ρD

)
− M2

2
ρD. (25)

Finally, we note that E can be written as

E =
∫ t+a−b

t−b
g(s)− f (s)ds+

∫ t

t−b
f (s)ds −

∫ t+a

t+a−b
f (s)ds

=
∫ τ

τ−a
h(s)ds+

∫ t

t−b
f (s)ds −

∫ t+a

t+a−b
f (s)ds,

where by 1-lipschitness of f we have∫ t

t−b
f (s)ds −

∫ t+a

t+a−b
f (s)ds =

∫ t

t−b
f (s)− f (s+ a)ds ≥ −|b|a,

and we infer that E satisfies

E ≥
∫ τ

τ−a
h(t)dt − |b|a, (26)

where the term
∫ τ

τ−a h(t)dt can be bounded from below thanks to (23), (24) and (25).
In conclusion, we have proved that if (22) is satisfied, then, by (16), (26) and the

related inequalities, we have

a2

2
≥ a2 − b2

2
≥ E − ρ2M2

≥
∫ τ

τ−a
h(t)dt − |b|a− ρ2M2

≥
∫ τ

τ−a
h(t)dt − |b||a−M | − |b|M − ρ2M2

≥ a2

2
+
M2

16

(
3− 2

B
− 1
B2

)
− M2

4
G,

where (remembering that F(ρ,B) = ρD + 2Bρ2)

G = G(ρ,B) := F
(
1 +F +

1
B

)
+
(
1 +

1
B

+ 2ρD + 4Bρ2
)(
Bρ2 + 2ρD

)
(Cont. next page)
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+
(
1 +

1
B

)(
Bρ2 + ρD

)
+ 2ρD

+ 2ρD
((

1 +
1
B

)
+ 2ρD + 4Bρ2

)
+ 4ρD + 4ρ2

= 6
(
2 +

1
B

)
ρD + 4(2 +B)ρ2 + 9ρ2D2 + 22Bρ3D + 8B2ρ4.

and D = Bρ+
√

2B2ρ2 +B+ 1. We obtain a contradiction if the pair ρ,B ∈ (0,1/8)×
[2,∞) satisfies

1− 3
B
− 4ρD − 8Bρ2 > 0 and

M2

16

(
3− 2

B
− 1
B2

)
− M2

4
G(ρ,B) > 0. (27)

Since we have for every B > 3,

1− 3
B
> 0, 3− 2

B
− 1
B2 > 0 and lim

ρ↓0
4ρD + 8Bρ2 = lim

ρ↓0
G(ρ,B) = 0,

such pairs exist for any choice of B in (3,∞). For example, if we take B = 4, then (27)
is equivalent to requiring that ρ ∈ (0,1/8) satisfies

1
4
> 4ρD + 32ρ2

and

39
16

> 4G(ρ,4) = 54ρD + 96ρ2 + 36ρ2D2 + 352ρ3D + 512ρ4

with D = 4ρ+
√

32ρ2 + 5.

Those properties are satisfied for ρ = 0.018.

3 Estimates

We gather here the technical lemmas used in the proof of Theorem 1.

Lemma 9 – Let f ,g : R→R be 1-Lipschitz functions and t,a,b,δ ∈R such that

a > 0, |b| ≤ a, (28)

and

f (t + a) = f (t) + b, g(t − b) = f (t) + a, g(t + a− b) = f (t) + a+ b+ δ. (29)

Then ∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≥ a2 + b2

2
+
δ(a+ b)

2
+
δ2

4
(30)
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and ∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≤ 3a2 − b2

2
+
δ(a− b)

2
− δ2

4
. (31)

Proof (Proof of Lemma 9). We first note that if h : R→ R is a 1-Lipschitz function
then we have for every c,d ∈R with c ≤ d,∫ d

c
h(s)ds ≥ 1

4
(h(d)− h(c))2 +

1
2

(d − c) (h(d) + h(c))− 1
4

(d − c)2. (32)

As a matter of fact, given c,d ∈ R with c ≤ d, we can define the functions φ1,φ2 :
[c,d]→R by

φ1(s) = h(c)− (s − c) and φ2(s) = h(d) + (s − d),

for all s ∈R and notice that since h is 1-Lipschitz and h(c) = φ1(c), h(d) = φ2(d), we
have

h(s) ≥ h(c)− |s − c| = φ1(s) and h(s) ≥ g(d)− |s − d| = φ2(s) ∀s ∈ [c,d].

Since φ1 and φ2 are affine with different slopes, there is a unique s̄ ∈ R such that
φ1(s̄) = φ2(s̄), it is given by

s̄ =
1
2

(
h(c)− h(d) + c+ d

)
.

Since s̄−c = (h(c)−h(d)−c+d)/2 and d−s̄ = (h(d)−h(c)−c+d)/2 ≥ 0 by 1-Lipschitzness
of h, we have φ1 ≥ φ2 on [c, s̄] and φ2 ≥ φ1 on [s̄,d]. Then, we have∫ d

c
h(s)ds ≥

∫ s̄

c
φ1(s)ds+

∫ d

s̄
φ2(s)ds,

where∫ s̄

c
φ1(s)ds = (s̄ − c) (h(c) + c)− 1

2

(
s̄2 − c2

)
= (s̄ − c)h(c)− 1

2
(s̄ − c)2

=
1
2

(h(c)− h(d)− c+ d)h(c)− 1
8

(h(c)− h(d)− c+ d)2

and ∫ d

s̄
φ2(s)ds = (d − s̄)(h(d)− d) +

1
2

(
d2 − s̄2

)
(Cont. next page)
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= (d − s̄)h(d)− 1
2

(d − s̄)2

=
1
2

(h(d)− h(c)− c+ d)h(d)− 1
8

(h(d)− h(c)− c+ d)2,

which gives (32). We can apply (32) to h = g on the interval [t−b, t+a−b] and h = −f
on [t, t + a]. We obtain∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≥

1
4

(g(t + a− b)− g(t − b))2 +
a
2

(g(t + a− b) + g(t − b))− a2

4

+
1
4

(−f (t + a) + f (t))2 +
a
2

(−f (t + a)− f (t))− a2

4
,

which, by (29), gives∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≥

1
4

(b+ δ)2 +
a
2

(2f (t) + 2a+ b+ δ)− a2

4
+
b2

4
+
a
2

(−2f (t)− b)− a2

4

and implies (30). We can also apply (32) to h = −g on the interval [t −b, t + a−b] and
h = f on [t, t + a] to get∫ t+a−b

t−b
−g(s)ds+

∫ t+a

t
f (s)ds ≥

1
4

(−g(t + a− b) + g(t − b))2 +
a
2

(−g(t + a− b)− g(t − b))− a2

4

+
1
4

(f (t + a)− f (t))2 +
a
2

(f (t + a) + f (t))− a2

4
.

By (29), we obtain∫ t+a−b

t−b
g(s)ds −

∫ t+a

t
f (s)ds ≤

− 1
4

(b+ δ)2 +
a
2

(2f (t) + 2a+ b+ δ) +
a2

4
− b2

4
+
a
2

(−2f (t)− b) +
a2

4
,

which gives (31). □

Lemma 10 – Let h : R→R be a 2-Lipschitz function and T ,τ,a ∈R such that

τ − a < T < τ. (33)
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Then we have∫ τ

τ−a
h(t)dt ≥

h(T )2

4
− a2

2
+
h(τ − a)2 + h(τ)2

8
− h(T )(h(τ − a) + h(τ))

4

+
a (h(T )− 2T + 2τ)

2
+

(T − τ + a)h(τ − a)
2

+
(τ − T )h(τ)

2
− (τ −T )2.

(34)

Proof (Proof of Lemma 10). Since the function h/2 is 1-Lipschitz, we can apply the
lower bound (32) obtained at the beginning of the proof of Lemma 9. We obtain
that for every c,d ∈R, with c ≤ d, we have∫ d

c
h(s)ds ≥ 1

8
(h(d)− h(c))2 +

1
2

(d − c) (h(d) + h(c))− 1
2

(d − c)2. (35)

We infer that∫ τ

τ−a
h(t)dt

=
∫ T

τ−a
h(t)dt +

∫ τ

T
h(t)dt

≥ 1
8

(h(T )− h(τ − a))2 +
1
2

(T − τ + a) (h(T ) + h(τ − a))− 1
2

(T − τ + a)2

+
1
8

(h(τ)− h(T ))2 +
1
2

(τ − T ) (h(τ) + h(T ))− 1
2

(τ − T )2

which gives (34). □

Lemma 11 – Let M,δ > 0 and B > 1 be fixed. Then for any a,u ∈R such that

M(1− δ)− 2u ≤ a ≤M(1 + δ) and
M
4

(
1− 1

B

)
≤ u ≤ M

4

(
1 +

1
B

)
we have

M2 − a2

4
+ au −u2 ≥ M2

16

(
3− 2

B
− 1
B2

)
− M2δ

4

(
1 + δ+

1
B

)
. (36)

Proof (Proof of Lemma 11). Let Φ : R2→R be the function defined by

Φ(a,u) :=
M2 − a2

4
+u(a−u) =

M2

4
− (a− 2u)2

4
∀(a,u) ∈R2.
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The gradient of Φ is given by

∇Φ(a,u) = − (a− 2u)
2

(
1
−2

)
So, if it vanishes at (a,u), we have Φ(a,u) = M2/4 and (a,u) is necessarily a local
maximum of φ. As a consequence, the minimum of Φ on the closed set

F =
{
(a,u) ∈R2 |M(1− δ)− 2u ≤ a ≤M(1 + δ),

M
4

(
1− 1

B

)
≤ u ≤ M

4

(
1 +

1
B

)}
is attained on the boundary. We check easily that the vector (1,−2) is never orthogo-
nal to the fours faces of the boundary. This shows that the minimum of Φ on F has
to be attained at one of the four corners of F whose images by Φ are given by

Φ

(
M(1 + δ),

M
4

(
1 +

ϵ
B

))
=
M2

4

(
−2δ − δ2

)
+
M
4

(
1 +

ϵ
B

)(
M(1 + δ)− M

4

(
1 +

ϵ
B

))
=
M2

16

(
3 +

2ϵ
B
− 1
B2

)
+
M2

4

(
−δ − δ2 +

ϵδ
B

)
and

Φ

(
M(1− δ)− M

2

(
1 +

ϵ
B

)
,
M
4

(
1 +

ϵ
B

))
=
M2

4
− 1

4

(
M(1− δ)−M

(
1 +

ϵ
B

))2

=
M2

4

(
1− 1

B2

)
− M2

4

(ϵδ
B

+ δ2
)

for ϵ = ±1. We note that since B > 1, we have 4(1 − 1/B2) > 3 − 2/B − 1/B2, so the
minimum of the four values above is attained for (a,u) = (M(1 +δ),M(1−1/B)/4), so
we obtain that

Φ(a,u) ≥ M2

16

(
3 +

2ϵ
B
− 1
B2

)
− M2δ

4

(
δ+ δ2 +

δ
B

)
,

which proves the result. □
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